Exercícios de Aprofundamento Matemática Progressão Aritmética e Geométrica

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Exercícios de Aprofundamento Matemática Progressão Aritmética e Geométrica"

Transcrição

1 Exercícios de Aprofudameto Matemática Progressão Aritmética e b. (Fuvest 05) Dadas as sequêcias a 4 4, b, c a a e d, b defiidas para valores iteiros positivos de, cosidere as seguites afirmações: I. a é uma progressão geométrica; II. b é uma progressão geométrica; III. c é uma progressão aritmética; IV. d é uma progressão geométrica. São verdadeiras apeas a) I, II e III. b) I, II e IV. c) I e III. d) II e IV. e) III e IV.. (Uicamp 05) Se ( α, α,..., α ) é uma progressão aritmética (PA) cuja soma dos termos é 78, etão α 7 é igual a a) 6. b) 7. c) 8. d) 9.. (Espcex (Ama) 05) Na figura abaixo temos uma espiral formada pela uião de ifiitos semicírculos cujos cetros pertecem ao eixo das abscissas. Se o raio do primeiro semicírculo (o maior) é igual a e o raio de cada semicírculo é igual à metade do semicírculo aterior, o comprimeto da espiral é igual a a) π. b) π. c) π. d) 4 π. e) 5 π. 4. (Fuvest 05) Um alfabeto miimalista é costituído por apeas dois símbolos, represetados por * e #. Uma palavra de comprimeto,, é formada por escolhas sucessivas de um desses dois símbolos. Por exemplo, # é uma palavra de comprimeto e #* * # é uma palavra de comprimeto 4. Usado esse alfabeto miimalista, a) quatas palavras de comprimeto meor do que 6 podem ser formadas? b) qual é o meor valor de N para o qual é possível formar de palavras de tamaho meor ou igual a N? Págia de

2 Exercícios de Aprofudameto Matemática Progressão Aritmética e 5. (Ita 05) Seja (a,a,a,...) a sequêcia defiida da seguite forma: a, a e a a a para. Cosidere as afirmações a seguir: I. Existem três termos cosecutivos, a p, ap, a p, que, esta ordem, formam uma progressão geométrica. II. a 7 é um úmero primo. III. Se é múltiplo de, etão a é par. É (são) verdadeira(s) a) apeas II. b) apeas I e II. c) apeas I e III. d) apeas II e III. e) I, II e III. 6. (Uesp 05) Para cada atural, seja o úmero vezes K vezes Se, para que valor se aproxima K? 7. (Uicamp 05) Seja (a,b,c,d) uma progressão geométrica (PG) de úmeros reais, com razão q 0 e a 0. a) Mostre que x é uma raiz do poliômio cúbico p(x) a bx cx dx. q b) Sejam e e f úmeros reais quaisquer e cosidere o sistema liear as variáveis x e y, a c x e. Determie para que valores da razão q esse tem solução úica. d b y f 8. (Uicamp 04) O perímetro de um triâgulo retâgulo é igual a 6,0 m e as medidas dos lados estão em progressão aritmética (PA). A área desse triâgulo é igual a a),0 m. b),0 m. c),5 m. d),5 m. 9. (Uicamp 04) Dizemos que uma sequêcia de úmeros reais ão ulos (a, a, a, a 4,...) é uma progressão harmôica se a sequêcia dos iversos,,,,... é uma a a a a4 progressão aritmética (PA). 4 a) Dada a progressão harmôica,,,..., 5 9 ecotre o seu sexto termo. b) Sejam a, b e c termos cosecutivos de uma progressão harmôica. Verifique que ac b. a c 0. (Ita 04) Uma pirâmide de altura h cm e volume V 50 cm tem como base um polígoo covexo de lados. A partir de um dos vértices do polígoo traçam-se Págia de

3 Exercícios de Aprofudameto Matemática Progressão Aritmética e diagoais que o decompõem em triâgulos cujas áreas S, i i,,...,, costituem uma progressão aritmética a qual S cm e S6 cm. Etão é igual a a). b) 4. c) 6. d) 8. e).. (Espcex (Ama) 04) Os úmeros aturais ímpares são dispostos como mostra o quadro ª liha ª liha 5 ª liha 7 9 4ª liha ª liha O primeiro elemeto da 4ª liha, a horizotal, é: a) 807 b) 007 c) 07 d) 507 e) (Ita 04) Cosidere os poliômios em x da forma p(x) x a x a x a x. As raízes de p(x) 0 igual a 5 a), 0, b),, c), 0, d), 0,. 4 4 e),,. 4 4 a, a, a é costituem uma progressão aritmética de razão quado. (Espm 04) Dois irmãos começaram jutos a guardar diheiro para uma viagem. Um deles guardou R$ 50,00 por mês e o outro começou com R$ 5,00 o primeiro mês, depois R$ 0,00 o segudo mês, R$ 5,00 o terceiro e assim por diate, sempre aumetado R$ 5,00 em relação ao mês aterior. Ao fial de um certo úmero de meses, os dois tiham guardado exatamete a mesma quatia. Esse úmero de meses correspode a: a) pouco mais de um ao e meio. b) pouco meos de um ao e meio. c) pouco mais de dois aos. d) pouco meos de um ao. e) exatamete um ao e dois meses. 4. (Espm 04) A figura abaixo mostra a trajetória de um móvel a partir de um poto A, com BC CD, DE EF, FG GH, HI IJ e assim por diate. Págia de

4 Exercícios de Aprofudameto Matemática Progressão Aritmética e Cosiderado ifiita a quatidade desses segmetos, a distâcia horizotal AP alcaçada por esse móvel será de: a) 65 m b) 7 m c) 80 m d) 96 m e) 00 m 5. (Fuvest 04) Cosidere o triâgulo equilátero Δ A0OB0 de lado 7cm. a) Sedo A o poto médio do segmeto A0B 0, e B o poto simétrico de A em relação à reta determiada por O e B, 0 determie o comprimeto de OB. b) Repetido a costrução do item a), tomado agora como poto de partida o triâgulo Δ AOB, pode se obter o triâgulo Δ AOB tal que A é o poto médio do segmeto AB, e B o poto simétrico de A em relação à reta determiada por O e B. Repetido mais uma vez o procedimeto, obtém se o triâgulo Δ AOB. Assim, sucessivamete, pode se costruir uma sequêcia de triâgulos Δ AOB tais que, para todo, A é o poto médio de AB, e B, o poto simétrico de A em relação à reta determiada por O e B, coforme figura abaixo. Deotado por a, para, o comprimeto do segmeto A A, verifique que a,a,a,... é uma progressão geométrica. Determie sua razão. c) Determie, em fução de, uma expressão para o comprimeto da liha poligoal A A A...A,. 0 O poto P é simétrico ao poto P em relação à reta r se o segmeto PP' é perpedicular à reta r e a iterseção de PP' e r é o poto médio de PP'. 6. (Fgv 04) a) Um sábio da Atiguidade propôs o seguite problema aos seus discípulos: Págia 4 de

5 Exercícios de Aprofudameto Matemática Progressão Aritmética e Uma rã parte da borda de uma lagoa circular de 7,5 metros de raio e se movimeta saltado em liha reta até o cetro. Em cada salto, avaça a metade do que avaçou o salto aterior. No primeiro salto avaça 4 metros. Em quatos saltos chega ao cetro? b) O mesmo sábio faz a seguite afirmação em relação à situação do tem A: Se o primeiro salto da rã é de metros, ela ão chega ao cetro. Justifique a afirmação. Págia 5 de

6 Exercícios de Aprofudameto Matemática Progressão Aritmética e Gabarito: Resposta da questão : [E] [I] Falsa. Tem-se que a ( ). Logo, como a razão a ( ) a ( ) ão é costate, segue que a ão é uma progressão geométrica. [II] Falsa. De fato, a razão ( ) b b ão é costate. Daí, podemos cocluir que b ão é uma progressão geométrica. [III] Verdadeira. A difereça etre quaisquer dois termos cosecutivos da sequêcia c é a a ( ) 4( ) 4 ( 4 4) Desse modo, c é uma progressão aritmética de primeiro termo e razão igual a. [IV] Verdadeira. De (II), temos 8 e razão igual a 4. d, que é uma progressão geométrica de primeiro termo Resposta da questão : [A] Como α 7 é o termo médio da progressão aritmética, segue-se que 78 α7 e, portato, temos α7 6. Resposta da questão : [B] Comprimeto de uma semicircuferêcia de raio Logo, a soma pedida será dada por: S π π π 4 π 8... S π ( ) S π S π πr r : π r Págia 6 de

7 Exercícios de Aprofudameto Matemática Progressão Aritmética e Resposta da questão 4: a) palavras com uma letra: palavras com duas letras: palavras com três letras: E assim sucessivamete. Portato, o úmero de palavras de comprimeto meor do que 6 será dado por: b) Utilizado a fórmula da soma dos primeiros termos de uma P.G, temos: N 6 0 N 6 0 N 6 0 N Logo, N 0 N 9. Resposta da questão 5: [D] [I] Falsa. Cosiderado a existêcia dos termos da sequêcia a codição dada, temos: 5 x q x q x q q 0 q (irracioal) Portato, ão existem termos desta sequêcia que formam uma P.G, pois os termos são todos positivos e ão ulos. [II] Verdadeira. Determiado o sétimo termo da sequêcia, temos a7, que é um úmero primo. [III] Verdadeira. Aalisado a paridade da sequêcia (ímpar, ímpar, par, ímpar, ímpar, par,...) percebemos que os termos de ordem, 6, 9,,... são pares. Portato, apeas as afirmações [II] e [III] são verdadeiras. Resposta da questão 6: Tem-se que K 4 4. Págia 7 de

8 Exercícios de Aprofudameto Matemática Progressão Aritmética e Se, etão 0 e, portato, segue que K. Resposta da questão 7: a) Tem-se que b aq, c aq e d aq. Logo, vem p a aq aq aq q q q q a a a a 0. Por coseguite, x é uma raiz do poliômio p(x). q b) De (a), obtemos a c x e a aq x e. d b y f aq aq y f Sabedo que a 0, q 0 e q, o sistema terá solução úica se, e somete se, a aq aq aq 5 0 a q a q 0 a q( q )( q ) 0. Portato, além de q 0, deve-se ter q. Resposta da questão 8: [C] Sejam x, x r e x r as medidas, em metros, dos lados do triâgulo, com x, r 0. Aplicado o Teorema de Pitágoras, ecotramos x r. Logo, os lados do triâgulo medem r, 4r e 5r. Sabedo que o perímetro do triâgulo mede 6,0 m, vem r 4r 5r 6 r. Portato, a área do triâgulo é igual a r 4r 6,5 m. Resposta da questão 9: 4 a) Se a progressão,,, 5 9 é harmôica, etão a sequêcia 5 9,,, 4 é uma Págia 8 de

9 Exercícios de Aprofudameto Matemática Progressão Aritmética e progressão aritmética de razão 9 5. Daí, seu sexto termo é dado por a Em cosequêcia, o resultado pedido é 4. 5 b) Sabedo que em toda progressão aritmética cada termo é igual à média aritmética do seu atecessor e do seu sucessor (exceto o primeiro e o último), tem-se a c a c b b ac ac b. a c Resposta da questão 0: [C] Se a altura da pirâmide mede cm e seu volume 50cm, etão a área da base é tal que 50 S Si 50cm. i i i Além disso, temos S6 S r r r cm. Logo, S S r S S cm. Por coseguite, o valor de é Si [ S ( ) r] 50 ( ) i ( ) ( ) Resposta da questão : [E] Até a 4 a liha, temos: Págia 9 de

10 Exercícios de Aprofudameto Matemática Progressão Aritmética e (4) termos. Portato, o primeiro elemeto da 4ª liha será o 904º úmero atural ímpar. Etão: a Resposta da questão : [C] Sejam,,, e as raízes de p(x). Podemos escrever p(x) sob a forma p(x) x 0x a x a x a x a. Assim, das Relações de Girard, tem-se Portato, p(x) x(x ) x x (x ) x(x ) x x x x implica em (a, a, a ), 0,. 4 4 Resposta da questão : [A] Seja o úmero de meses decorridos até que os dois irmãos veham a ter o mesmo capital. Tem-se que, , ou seja, um ao e sete meses, o que equivale a pouco mais de um ao e meio. Resposta da questão 4: [C] Pelo Teorema de Pitágoras aplicado o triâgulo ABC, ecotramos facilmete AC 0 m. Págia 0 de

11 Exercícios de Aprofudameto Matemática Progressão Aritmética e Os triâgulos ABC, CDE, EFG, são semelhates por AA. Logo, como a razão de semelhaça é igual a CD, segue-se que AC 0 m, CE 5 m, AB EG m, costituem uma 4 0 progressão geométrica cujo limite da soma dos primeiros termos é dado por 80 m. 4 Resposta da questão 5: a) Como OB0 AB, AA AB e OA é comum aos triâgulos OAA e OBA, segue-se que os triâgulos OAA e OBA são cogruetes por LAL. Além disso, OAB 0 OAA 90 e AB0 A 60 implicam em OAB 60. Portato, o triâgulo OA B é equilátero. Desse modo, o resultado pedido correspode à altura do triâgulo A0OB 0, ou seja, 7 cm. b) Raciociado de forma iteiramete aáloga ao item (a), cocluímos que OA OA, com. Daí, como OA a A A, temos OA a, a OA para todo e, portato, a, a, a, é uma progressão geométrica de primeiro termo 7 a cm e razão. c) O comprimeto da poligoal A0AA A, com, correspode à soma dos primeiros termos da progressão geométrica a, a, a,, ou seja, 7 7( ) cm. Resposta da questão 6: a) As distâcias percorridas pela rã costituem uma progressão geométrica de primeiro termo igual a 4 e razão. alcace o cetro, etão Logo, se é o úmero de saltos ecessários para que a rã Págia de

12 Exercícios de Aprofudameto Matemática Progressão Aritmética e 7,5 4 7, b) Supodo que a rã pudesse dar tatos saltos quato quisesse, teríamos lim S 6. Portato, como 6 7,5, cocluímos que a rã ão chegaria ao cetro. Págia de

Whats: PROGRESSÃO GEOMÉTRICA

Whats: PROGRESSÃO GEOMÉTRICA Questões Vídeos 1. As áreas dos quadrados a seguir estão em progressão geométrica de razão 2. Podemos afirmar que os lados dos quadrados estão em a) progressão aritmética de razão 2. b) progressão geométrica

Leia mais

A soma dos perímetros dos triângulos dessa sequência infinita é a) 9 b) 12 c) 15 d) 18 e) 21

A soma dos perímetros dos triângulos dessa sequência infinita é a) 9 b) 12 c) 15 d) 18 e) 21 Nome: ºANO / CURSO TURMA: DATA: 0 / 0 / 05 Professor: Paulo. (Pucrj 0) Vamos empilhar 5 caixas em ordem crescete de altura. A primeira caixa tem m de altura, cada caixa seguite tem o triplo da altura da

Leia mais

ITA Destas, é (são) falsa(s) (A) Apenas I (B) apenas II (C) apenas III (D) apenas I e III (E) apenas nenhuma.

ITA Destas, é (são) falsa(s) (A) Apenas I (B) apenas II (C) apenas III (D) apenas I e III (E) apenas nenhuma. ITA 00. (ITA 00) Cosidere as afirmações abaixo relativas a cojutos A, B e C quaisquer: I. A egação de x A B é: x A ou x B. II. A (B C) = (A B) (A C) III. (A\B) (B\A) = (A B) \ (A B) Destas, é (são) falsa(s)

Leia mais

PG apostila (Pucrs 2015) O resultado da adição indicada 0,001 0, , é. a) 1 9. b) c) 99. d) 100. e) 999

PG apostila (Pucrs 2015) O resultado da adição indicada 0,001 0, , é. a) 1 9. b) c) 99. d) 100. e) 999 PG apostila. (Fuvest 05) Um alfabeto miimalista é costituído por apeas dois símbolos, represetados por * e #. Uma palavra de comprimeto,, é formada por escolhas sucessivas de um desses dois símbolos. Por

Leia mais

26/11/2000 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO VESTIBULAR PROVA 2 MATEMÁTICA. Prova resolvida pela Profª Maria Antônia Conceição Gouveia.

26/11/2000 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO VESTIBULAR PROVA 2 MATEMÁTICA. Prova resolvida pela Profª Maria Antônia Conceição Gouveia. 6//000 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO VESTIBULAR 00- PROVA MATEMÁTICA Prova resolvida pela Profª Maria Atôia Coceição Gouveia RESPONDA ÀS QUESTÕES A SEGUIR, JUSTIFICANDO SUAS SOLUÇÕES QUESTÃO A

Leia mais

CPV O cursinho que mais aprova na fgv

CPV O cursinho que mais aprova na fgv CPV O cursiho que mais aprova a fgv FGV ecoomia a Fase 0/dezembro/0 MATEMÁTICA 0. Chamaremos de S() a soma dos algarismos do úmero iteiro positivo, e de P() o produto dos algarismos de. Por exemplo, se

Leia mais

NOTAÇÕES. Observação: Os sistemas de coordenadas considerados são os cartesianos retangulares.

NOTAÇÕES. Observação: Os sistemas de coordenadas considerados são os cartesianos retangulares. R C : cojuto dos úmeros reais : cojuto dos úmeros complexos i : uidade imagiária: i2 = 1 z Re(z) Im(z) det A : módulo do úmero z E C : parte real do úmero z E C : parte imagiária do úmero z E C : determiate

Leia mais

COLÉGIO ANCHIETA-BA. ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. RESOLUÇÃO: PROFA, MARIA ANTÔNIA C. GOUVEIA

COLÉGIO ANCHIETA-BA. ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. RESOLUÇÃO: PROFA, MARIA ANTÔNIA C. GOUVEIA Questão 0. (UDESC) A AVALIAÇÃO DE MATEMÁTICA DA UNIDADE I-0 COLÉGIO ANCHIETA-BA ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. PROFA, MARIA ANTÔNIA C. GOUVEIA Um professor de matemática, após corrigir

Leia mais

FICHA DE TRABALHO 11º ANO. Sucessões

FICHA DE TRABALHO 11º ANO. Sucessões . Observe a sequêcia das seguites figuras: FICHA DE TRABALHO º ANO Sucessões Vão-se costruido, sucessivamete, triâgulos equiláteros os vértices dos triâgulos equiláteros já existetes, prologado-se os seus

Leia mais

Sucessão ou Sequência. Sucessão ou seqüência é todo conjunto que consideramos os elementos dispostos em certa ordem. janeiro,fevereiro,...

Sucessão ou Sequência. Sucessão ou seqüência é todo conjunto que consideramos os elementos dispostos em certa ordem. janeiro,fevereiro,... Curso Metor www.cursometor.wordpress.com Sucessão ou Sequêcia Defiição Sucessão ou seqüêcia é todo cojuto que cosideramos os elemetos dispostos em certa ordem. jaeiro,fevereiro,...,dezembro Exemplo : Exemplo

Leia mais

Matemática. B) Determine a equação da reta que contém a diagonal BD. C) Encontre as coordenadas do ponto de interseção das diagonais AC e BD.

Matemática. B) Determine a equação da reta que contém a diagonal BD. C) Encontre as coordenadas do ponto de interseção das diagonais AC e BD. Matemática 0. Um losago do plao cartesiao oxy tem vértices A(0,0), B(,0), C(,) e D(,). A) Determie a equação da reta que cotém a diagoal AC. B) Determie a equação da reta que cotém a diagoal BD. C) Ecotre

Leia mais

GEOMETRIA BÁSICA GGM00161-TURMA M2. Dirce Uesu Pesco Geometria Espacial 18/11/2010

GEOMETRIA BÁSICA GGM00161-TURMA M2. Dirce Uesu Pesco Geometria Espacial 18/11/2010 GEOMETRIA BÁSICA 200-2 GGM006-TURMA M2 Dirce Uesu Pesco Geometria Espacial 8//200 Defiição : PRISMA Cosidere dois plaos paralelos α e β e um segmeto de reta PQ, cuja reta suporte r itercepta o plao α.

Leia mais

PROVA DE MATEMÁTICA DA UNIFESP VESTIBULAR 2011 RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UNIFESP VESTIBULAR 2011 RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UNIFESP VESTIBULAR 0 Profa Maria Atôia Gouveia 6 A figura represeta um cabo de aço preso as etremidades de duas hastes de mesma altura h em relação a uma plataforma horizotal A represetação

Leia mais

de uma PA é justamente o valor da DIFERENÇA entre qualquer termo e o anterior.

de uma PA é justamente o valor da DIFERENÇA entre qualquer termo e o anterior. 0. PROGRESSÃO ARITMÉTICA: É toda sequêcia em que é SEMPRE costate a DIFERENÇA etre um termo qualquer da sequêcia (a partir do segudo, claro!) e seu aterior, logo dada a sequêcia a a a a a a R. A razão

Leia mais

INSTRUÇÕES. Esta prova é individual e sem consulta à qualquer material.

INSTRUÇÕES. Esta prova é individual e sem consulta à qualquer material. OPRM 016 Nível 3 Seguda Fase /09/16 Duração: Horas e 30 miutos Nome: Escola: Aplicador(a): INSTRUÇÕES Escreva seu ome, o ome da sua escola e ome do APLICADOR(A) os campos acima. Esta prova cotém 7 págias

Leia mais

01 Um triângulo isósceles tem os lados congruentes medindo 5 cm, a base medindo 8 cm. A distância entre o seu baricentro é, aproximadamente, igual a:

01 Um triângulo isósceles tem os lados congruentes medindo 5 cm, a base medindo 8 cm. A distância entre o seu baricentro é, aproximadamente, igual a: 01 Um triâgulo isósceles tem os lados cogruetes medido 5 cm, a base medido 8 cm. A distâcia etre o seu baricetro é, aproximadamete, igual a: (A) 0,1cm (B) 0,3cm (C) 0,5cm (D) 0,7cm (E) 0,9cm 02 2 2 5 3

Leia mais

PROVA DE MATEMÁTICA 2 a FASE

PROVA DE MATEMÁTICA 2 a FASE PROVA DE MATEMÁTICA a FASE DEZ/04 Questão 1 a)o faturameto de uma empresa esse ao foi 10% superior ao do ao aterior; obteha o faturameto do ao aterior sabedo-se que o desse ao foi de R$1 40 000,00 b)um

Leia mais

Solução Comentada Prova de Matemática

Solução Comentada Prova de Matemática 0 questões. Sejam a, b e c os três meores úmeros iteiros positivos, tais que 5a = 75b = 00c. Assiale com V (verdadeiro) ou F (falso) as opções abaixo. ( ) A soma a b c é igual a 9 ( ) A soma a b c é igual

Leia mais

Elevando ao quadrado (o que pode criar raízes estranhas),

Elevando ao quadrado (o que pode criar raízes estranhas), A MATEMÁTICA DO ENSINO MÉDIO, Vol. Soluções. Progressões Aritméticas ) O aumeto de um triâgulo causa o aumeto de dois palitos.logo, o úmero de palitos costitui uma progressão aritmética de razão. a a +(

Leia mais

Rua 13 de junho,

Rua 13 de junho, NOME: 1. (Cefet MG 013) Durate o mesmo período, dois irmãos depositaram, uma vez por semaa, em seus respectivos cofrihos, uma determiada quatia, da seguite forma: o mais ovo depositou, a primeira semaa,

Leia mais

MATEMÁTICA II. 01. Uma função f, de R em R, tal. , então podemos afirmar que a, b e c são números reais, tais. que. D) c =

MATEMÁTICA II. 01. Uma função f, de R em R, tal. , então podemos afirmar que a, b e c são números reais, tais. que. D) c = MATEMÁTCA 0. Uma fução f, de R em R, tal que f(x 5) f(x), f( x) f(x),f( ). Seja 9 a f( ), b f( ) e c f() f( 7), etão podemos afirmar que a, b e c são úmeros reais, tais que A) a b c B) b a c C) c a b ab

Leia mais

Duração: 90 minutos 5º Teste, Junho Nome Nº T:

Duração: 90 minutos 5º Teste, Junho Nome Nº T: Escola Secudária Dr. Âgelo Augusto da Silva Teste de MATEMÁTICA A 11º Ao Duração: 90 miutos 5º Teste, Juho 006 Nome Nº T: Classificação O Prof. (Luís Abreu) 1ª PARTE Para cada uma das seguites questões

Leia mais

( ) 4. Novo Espaço Matemática A 12.º ano Proposta de Teste de Avaliação [maio 2015] GRUPO I. f x

( ) 4. Novo Espaço Matemática A 12.º ano Proposta de Teste de Avaliação [maio 2015] GRUPO I. f x Novo Espaço Matemática A º ao Proposta de Teste de Avaliação [maio 05] Nome: Ao / Turma: Nº: Data: - - GRUPO I Os sete ites deste grupo são de escolha múltipla Em cada um deles, são idicadas quatro opções,

Leia mais

[Digite texto] T U R M A D O P R O F. J E J E C A E X A M E F I N A L R E C U P E R A Ç Ã O F I N A L 9 º E. F = b) [Digite texto]

[Digite texto] T U R M A D O P R O F. J E J E C A E X A M E F I N A L R E C U P E R A Ç Ã O F I N A L 9 º E. F = b) [Digite texto] [Digite teto] I Poteciação 0. Calcule as seguites potêcias: a) 4 b) 4 0 e) (-) 4 f) g) h) 0 i) (,4) 0 j) (-0,) 0 k) 7¹ l) (,4) ¹ m) (-) ¹ ) 4 7 o) - p) (-) - q) 4 r) s) t) u) v) 4 ESTUDO DIRIGIDO: Poteciação

Leia mais

Considerando que os triângulos são todos semelhantes, os perímetros formam uma PG de razão 1.

Considerando que os triângulos são todos semelhantes, os perímetros formam uma PG de razão 1. Resposta da questão : [B] Tem-se que t at = habitates e bt Resposta da questão : [D] PA a; a + r; a + r; a + 3r; a + 4r; a + 5r; a + 6r ( ) ( ) PG a; a + r; a + 6r; q = a + 6r a + r = a + r a + 4ar + 4r

Leia mais

MATEMÁTICA. Determine o conjunto-solução da equação sen 3 x + cos 3 x =1 sen 2 x cos 2 x. Resolução: Fatorando a equação dada:

MATEMÁTICA. Determine o conjunto-solução da equação sen 3 x + cos 3 x =1 sen 2 x cos 2 x. Resolução: Fatorando a equação dada: MATEMÁTICA 0000 Questão 0 Determie o cojuto-solução da equação se x + cos x = se x cos x Fatorado a equação dada: se x + cos x= se x cos x ( sex + cos x)( se x sexcos x+ cos x) = ( sexcos x) ( x x)( x

Leia mais

Sequências, PA e PG material teórico

Sequências, PA e PG material teórico Sequêcias, PA e PG material teórico 1 SEQUÊNCIA ou SUCESSÃO: é todo cojuto ode cosideramos os seus elemetos colocados, ou dispostos, uma certa ordem. Cosiderado a sequêcia (; 3; 5; 7;...), dizemos que:

Leia mais

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 4

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 4 Prova QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetral do Vestibular Uificado MATEMÁTICA 0 Seja f ( ) log ( ) + log uma fução

Leia mais

Módulo Elementos Básicos de Geometria - Parte 3. Diagonais de Poĺıgonos. Professores Cleber Assis e Tiago Miranda

Módulo Elementos Básicos de Geometria - Parte 3. Diagonais de Poĺıgonos. Professores Cleber Assis e Tiago Miranda Módulo Elemetos Básicos de Geometria - Parte 3 Diagoais de Poĺıgoos. 8 ao/e.f. Professores Cleber Assis e Tiago Mirada Elemetos Básicos de Geometria - Parte 3. Diagoais de Polígoos. 1 Exercícios Itrodutórios

Leia mais

PROVA DE RACIOCÍNIO MATEMÁTICO

PROVA DE RACIOCÍNIO MATEMÁTICO )Uma prova costa de testes de múltipla escolha, cada um com 5 alterativas e apeas uma correta Se um aluo ``chutar`` todas as respostas: a)qual a probabilidade dele acertar todos os testes? b)qual a probabilidade

Leia mais

Matemática FUVEST ETAPA QUESTÃO 1. b) Como f(x) = = 0 + x = 1 e. Dados m e n inteiros, considere a função f definida por m

Matemática FUVEST ETAPA QUESTÃO 1. b) Como f(x) = = 0 + x = 1 e. Dados m e n inteiros, considere a função f definida por m Mateática FUVEST QUESTÃO 1 Dados e iteiros, cosidere a fução f defiida por fx (), x para x. a) No caso e que, ostre que a igualdade f( ) se verifica. b) No caso e que, ache as iterseções do gráfico de

Leia mais

NOTAÇÕES. denota o segmento que une os pontos A e B. In x denota o logarítmo natural de x. A t denota a matriz transposta da matriz A.

NOTAÇÕES. denota o segmento que une os pontos A e B. In x denota o logarítmo natural de x. A t denota a matriz transposta da matriz A. MATEMÁTICA NOTAÇÕES é o cojuto dos úmeros compleos. é o cojuto dos úmeros reais. = {,,, } i deota a uidade imagiária, ou seja, i =. Z é o cojugado do úmero compleo Z Se X é um cojuto, PX) deota o cojuto

Leia mais

Séries e aplicações15

Séries e aplicações15 Séries e aplicações5 Gil da Costa Marques Fudametos de Matemática I 5. Sequêcias 5. Séries 5. Séries especiais 5.4 Arquimedes e a quadratura da parábola 5.5 Sobre a Covergêcia de séries 5.6 Séries de Taylor

Leia mais

Fundamentos de Análise Matemática Profª Ana Paula. Números reais

Fundamentos de Análise Matemática Profª Ana Paula. Números reais Fudametos de Aálise Matemática Profª Aa Paula Números reais 1,, 3, cojuto dos úmeros aturais 0,1,,3, cojuto dos úmeros iteiros p q /p e q cojuto dos úmeros racioais a, a 0 a 1 a a, a e a i 0, 1,, 3, 4,

Leia mais

Questão 1. Questão 2. Questão 3. Resposta. Resposta. Resposta

Questão 1. Questão 2. Questão 3. Resposta. Resposta. Resposta Questão 1 a) O faturameto de uma empresa este ao foi 1% superior ao do ao aterior; oteha o faturameto do ao aterior, saedo que o deste ao foi de R$1.4.,. ) Um comerciate compra calças a um custo de R$6,

Leia mais

11 Aplicações da Integral

11 Aplicações da Integral Aplicações da Itegral Ao itroduzirmos a Itegral Defiida vimos que ela pode ser usada para calcular áreas sob curvas. Veremos este capítulo que existem outras aplicações. Essas aplicações estedem-se aos

Leia mais

PG Progressão Geométrica

PG Progressão Geométrica PG Progressão Geométrica 1. (Uel 014) Amalio Shchams é o ome cietífico de uma espécie rara de plata, típica do oroeste do cotiete africao. O caule dessa plata é composto por colmos, cujas características

Leia mais

Exercícios de Matemática Polinômios

Exercícios de Matemática Polinômios Exercícios de Matemática Poliômios ) (ITA-977) Se P(x) é um poliômio do 5º grau que satisfaz as codições = P() = P() = P(3) = P(4) = P(5) e P(6) = 0, etão temos: a) P(0) = 4 b) P(0) = 3 c) P(0) = 9 d)

Leia mais

Colégio FAAT Ensino Fundamental e Médio

Colégio FAAT Ensino Fundamental e Médio Colégio FAAT Esio Fudametal e Médio Coteúdo: Recuperação do 4 Bimestre Matemática Prof. Leadro Capítulos 0 e : Probabilidade. Adição e multiplicação de probabilidades. Biômio de Newto. Número Biomial.

Leia mais

Questão 1. Questão 2. Questão 4. Questão 3. alternativa C. alternativa B. alternativa D. alternativa A n 2 n! O valor de log 2. c) n. b) 2n.

Questão 1. Questão 2. Questão 4. Questão 3. alternativa C. alternativa B. alternativa D. alternativa A n 2 n! O valor de log 2. c) n. b) 2n. Questão 4 6 O valor de log :! a). b). c). d) log. e) log. Para iteiro positivo, 4 6 = = ( ) ( ) ( 3) ( ) = = ( 3 ) =! Portato 4 6! log = log!! = = log =. Questão Num determiado local, o litro de combustível,

Leia mais

Números primos, números compostos e o Teorema Fundamental da Aritmética

Números primos, números compostos e o Teorema Fundamental da Aritmética Polos Olímpicos de Treiameto Curso de Teoria dos Números - Nível 3 Carlos Gustavo Moreira Aula 4 Números primos, úmeros compostos e o Teorema Fudametal da Aritmética 1 O Teorema Fudametal da Aritmética

Leia mais

Chama-se sequência ou sucessão numérica, a qualquer conjunto ordenado de números reais.

Chama-se sequência ou sucessão numérica, a qualquer conjunto ordenado de números reais. Progressões Aritméticas Itrodução Chama-se sequêcia ou sucessão umérica, a qualquer cojuto ordeado de úmeros reais. Exemplo: 7; 0; 3;... ; 34 Uma seqüêcia pode ser iita ou iiita. 7; 0; 3; 6;... esta sequêcia

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - 1o Ao 00 - a Fase Proposta de resolução GRUPO I 1. Como a probabilidade do João acertar em cada tetativa é 0,, a probabilidade do João acertar as tetativas é 0, 0, 0, 0,

Leia mais

Preliminares 1. 1 lim sup, lim inf. Medida e Integração. Departamento de Física e Matemática. USP-RP. Prof. Rafael A. Rosales. 8 de março de 2009.

Preliminares 1. 1 lim sup, lim inf. Medida e Integração. Departamento de Física e Matemática. USP-RP. Prof. Rafael A. Rosales. 8 de março de 2009. Medida e Itegração. Departameto de Física e Matemática. USP-RP. Prof. Rafael A. Rosales 8 de março de 2009. 1 lim sup, lim if Prelimiares 1 Seja (x ), N, uma seqüêcia de úmeros reais, e l o limite desta

Leia mais

n IN*. Determine o valor de a

n IN*. Determine o valor de a Progressões Aritméticas Itrodução Chama-se seqüêcia ou sucessão umérica, a qualquer cojuto ordeado de úmeros reais ou complexos. Exemplo: A=(3, 5, 7, 9,,..., 35). Uma seqüêcia pode ser fiita ou ifiita.

Leia mais

FORMA TRIGONOMÉTRICA. Para ilustrar, calcularemos o argumento de z 1 i 3 e w 2 2i AULA 34 - NÚMEROS COMPLEXOS

FORMA TRIGONOMÉTRICA. Para ilustrar, calcularemos o argumento de z 1 i 3 e w 2 2i AULA 34 - NÚMEROS COMPLEXOS 145 AULA 34 - NÚMEROS COMPLEXOS FORMA TRIGONOMÉTRICA Argumeto de um Número Complexo Seja = a + bi um úmero complexo, sedo P seu afixo o plao complexo. Medido-se o âgulo formado pelo segmeto OP (módulo

Leia mais

Material Teórico - Módulo Binômio de Newton e Triangulo de Pascal. Soma de Elementos em Linhas, Colunas e Diagonais. Segundo Ano do Ensino Médio

Material Teórico - Módulo Binômio de Newton e Triangulo de Pascal. Soma de Elementos em Linhas, Colunas e Diagonais. Segundo Ano do Ensino Médio Material Teórico - Módulo Biômio de Newto e Triagulo de Pascal Soma de Elemetos em Lihas, Coluas e Diagoais Segudo Ao do Esio Médio Autor: Prof Fabrício Siqueira Beevides Revisor: Prof Atoio Camiha M Neto

Leia mais

Material Teórico - Módulo Binômio de Newton e Triangulo de Pascal. Soma de Elementos em Linhas, Colunas e Diagonais. Segundo Ano do Ensino Médio

Material Teórico - Módulo Binômio de Newton e Triangulo de Pascal. Soma de Elementos em Linhas, Colunas e Diagonais. Segundo Ano do Ensino Médio Material Teórico - Módulo Biômio de Newto e Triagulo de Pascal Soma de Elemetos em Lihas, Coluas e Diagoais Segudo Ao do Esio Médio Autor: Prof Fabrício Siqueira Beevides Revisor: Prof Atoio Camiha M Neto

Leia mais

Matemática A. Versão 1. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A.

Matemática A. Versão 1. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A. Teste Itermédio de Matemática A Versão Teste Itermédio Matemática A Versão Duração do Teste: 90 miutos 6.05.0.º Ao de Escolaridade Decreto-Lei.º 74/004, de 6 de Março Na sua folha de respostas, idique

Leia mais

Vestibular de Verão Prova 3 Matemática

Vestibular de Verão Prova 3 Matemática Vestibular de Verão Prova N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: INSTRUÇÕES PARA A REALIZAÇÃO DA PROVA. Cofira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, que costam a etiqueta fixada

Leia mais

1ª Lista de Exercícios Números Naturais e o PIF

1ª Lista de Exercícios Números Naturais e o PIF Álgebra I Prof. Robso Rodrigues http: www.robso.mat.br e-mail: robsomat@uol.com.br 1ª Lista de Exercícios Números Naturais e o PIF Questão 01. (Cocurso Professor de Matemática SP 001) Segudo o Pricípio

Leia mais

e seja P uma matriz invisível tal que B = P -1 AP. Sendo n um número natural,

e seja P uma matriz invisível tal que B = P -1 AP. Sendo n um número natural, 3 Cosidere as matrizes A 3 alule o determiate da matriz A e 0 B, e seja P uma matriz ivisível tal que B P - AP Sedo um úmero atural, 0 det A det A, tem-se: Como ( ) ( ) ( ) det A 3 3 Cosidere uma seqüêia

Leia mais

Vestibular de Verão Prova 3 Matemática

Vestibular de Verão Prova 3 Matemática Vestibular de Verão Prova N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: INSTRUÇÕES PARA A REALIZAÇÃO DA PROVA. Cofira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, que costam a etiqueta fixada

Leia mais

Vestibular de Verão Prova 3 Matemática

Vestibular de Verão Prova 3 Matemática Vestibular de Verão Prova N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: INSTRUÇÕES PARA A REALIZAÇÃO DA PROVA. Cofira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, que costam a etiqueta fixada

Leia mais

Vestibular de Verão Prova 3 Matemática

Vestibular de Verão Prova 3 Matemática Vestibular de Verão Prova N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: INSTRUÇÕES PARA A REALIZAÇÃO DA PROVA. Cofira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, que costam a etiqueta fixada

Leia mais

UNICAMP - 2004. 2ª Fase MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

UNICAMP - 2004. 2ª Fase MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR UNICAMP - 004 ª Fase MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Em uma sala há uma lâmpada, uma televisão [TV] e um aparelho de ar codicioado [AC]. O cosumo da lâmpada equivale

Leia mais

BANCO DE QUESTÕES TURMA PM-PE PROGRESSÃO ARITMÉTRICA E GEOMÉTRICA

BANCO DE QUESTÕES TURMA PM-PE PROGRESSÃO ARITMÉTRICA E GEOMÉTRICA 01. (UNESP 016) A figura indica o padrão de uma sequência de grades, feitas com vigas idênticas, que estão dispostas em posição horizontal e vertical. Cada viga tem 0,5 m de comprimento. O padrão da sequência

Leia mais

11. Para quais valores a desigualdade x + > x (ITA/2012) Sejam r 1. r D e m o n s t r a r q u e s e A, B, C R * + 02.

11. Para quais valores a desigualdade x + > x (ITA/2012) Sejam r 1. r D e m o n s t r a r q u e s e A, B, C R * + 02. Matemática Revisão de Álgebra Exercícios de Fixação 0. Ecotre os valores das raízes racioais a, b e c de x + ax + bx + c. 0. Se f(x)f(y) f(xy) = x + y, "x,y R, determie f(x). 0. Ecotre x real satisfazedo

Leia mais

Soluções dos Exercícios do Capítulo 6

Soluções dos Exercícios do Capítulo 6 Soluções dos Eercícios do Capítulo 6 1. O poliômio procurado P() a + b + c + d deve satisfazer a idetidade P(+1) P() +, ou seja, a(+1) + b(+1) + c(+1) + d a + b + c + d +, o que é equivalete a (a 1) +

Leia mais

Em linguagem algébrica, podemos escrever que, se a sequência (a 1, a 2, a 3,..., a n,...) é uma Progres-

Em linguagem algébrica, podemos escrever que, se a sequência (a 1, a 2, a 3,..., a n,...) é uma Progres- MATEMÁTICA ENSINO MÉDIO MÓDULO DE REFORÇO - EAD PROGRESSÕES Progressão Geométrica I) PROGRESSÃO GEOMÉTRICA (P.G.) Progressão Geométrica é uma sequêcia de elemetos (a, a 2, a 3,..., a,...) tais que, a partir

Leia mais

M23 Ficha de Trabalho SUCESSÕES 2

M23 Ficha de Trabalho SUCESSÕES 2 M Ficha de Trabalho NOME: SUCESSÕES I PARTE Relativamete à sucessão a =, pode-se afirmar que: (A) É um ifiitamete grade positivo (B) É um ifiitésimo (C) É um ifiitamete grade egativo (D) É limitada Cosidere

Leia mais

1.4 Determinantes. determinante é igual ao produto dos elementos da diagonal principal menos o produto dos elementos da diagonal secundária.

1.4 Determinantes. determinante é igual ao produto dos elementos da diagonal principal menos o produto dos elementos da diagonal secundária. 1.4 Determiates A teoria dos determiates surgiu quase simultaeamete a Alemaha e o Japão. Ela foi desevolvida por dois matemáticos, Gottfried Wilhelm Leibiz (1642-1716) e Seki Shisuke Kowa (1642-1708),

Leia mais

Matemática Aplicada. Uma solução: Sejam x e y as quantidades de melancias e melões no início da manhã. No final da manhã as quantidades eram

Matemática Aplicada. Uma solução: Sejam x e y as quantidades de melancias e melões no início da manhã. No final da manhã as quantidades eram Matemática Aplicada 1 Maoel vede melacias e melões em sua barraca o mercado de frutas. Certo dia, iiciou seu trabalho com a barraca cheia de frutas e, durate a mahã, vedeu 1 melacias e 16 melões. Maoel

Leia mais

Capítulo I Séries Numéricas

Capítulo I Séries Numéricas Capítulo I Séries Numéricas Capitulo I Séries. SÉRIES NÚMERICAS DEFINIÇÃO Sedo u, u,..., u,... uma sucessão umérica, chama-se série umérica de termo geral u à epressão que habitualmete se escreve u u...

Leia mais

+... + a k. Observação: Os sistemas de coordenadas considerados são cartesianos retangulares.

+... + a k. Observação: Os sistemas de coordenadas considerados são cartesianos retangulares. MATEMÁTICA NOTAÇÕES : cojuto dos úmeros aturais; = {,,, } : cojuto dos úmeros iteiros : cojuto dos úmeros racioais : cojuto dos úmeros reais : cojuto dos úmeros complexos i: uidade imagiária, i = z: módulo

Leia mais

1.1. Ordem e Precedência dos Cálculos 1) = Capítulo 1

1.1. Ordem e Precedência dos Cálculos 1) = Capítulo 1 Capítulo. Aritmética e Expressões Algébricas O estudo de cálculo exige muito mais que o cohecimeto de limite, derivada e itegral. Para que o apredizado seja satisfatório o domíio de tópicos de aritmética

Leia mais

Módulo de Progressões Geométricas. Soma dos Termos da P.G. Infinita. 1 a série E.M. Professores Tiago Miranda e Cleber Assis

Módulo de Progressões Geométricas. Soma dos Termos da P.G. Infinita. 1 a série E.M. Professores Tiago Miranda e Cleber Assis Módulo de Progressões Geométricas Soma dos Termos da P.G. Infinita a série E.M. Professores Tiago Miranda e Cleber Assis Progressões Geométrica Soma dos Termos da P.G. Infinita Eercícios Introdutórios

Leia mais

Sequências Reais. Departamento de Matemática - UEL Ulysses Sodré. 1 Sequências de números reais 1

Sequências Reais. Departamento de Matemática - UEL Ulysses Sodré.  1 Sequências de números reais 1 Matemática Essecial Sequêcias Reais Departameto de Matemática - UEL - 200 Ulysses Sodré http://www.mat.uel.br/matessecial/ Coteúdo Sequêcias de úmeros reais 2 Médias usuais 6 3 Médias versus progressões

Leia mais

3ºAno. 3ª Lista de Exercícios/4 Bim

3ºAno. 3ª Lista de Exercícios/4 Bim ºAo ª Lista de Exercícios/4 Bim 0 - (UFRN) A corrida de São Silvestre, realizada em São Paulo, é uma das mais importates provas de rua disputadas o Brasil. Seu percurso mede 5 km. João, que treia em uma

Leia mais

INSTITUTO FEDERAL DE BRASILIA LISTA DE REVISÃO. Nome: DATA: 05/12/2016. d) 4 3 a) 44 b) 22 c) 20 d) 15 e) 10. Se um saco

INSTITUTO FEDERAL DE BRASILIA LISTA DE REVISÃO. Nome: DATA: 05/12/2016. d) 4 3 a) 44 b) 22 c) 20 d) 15 e) 10. Se um saco INSTITUTO FEDERAL DE BRASILIA LISTA DE REVISÃO FUNDAMENTOS DE MATEMÁTICA Nome: DATA: 0//06 ) Se x+ y e x y, etão x + y é a) 66. b) 67. c) 68. d) 69. e) 70. ) Cosiderado-se que x 97, y 907 e z xy, o valor

Leia mais

MATEMÁTICA MÓDULO 4 PROGRESSÕES 1. SEQUÊNCIAS 2. PROGRESSÃO ARITMÉTICA (PA) 2.1. DEFINIÇÃO

MATEMÁTICA MÓDULO 4 PROGRESSÕES 1. SEQUÊNCIAS 2. PROGRESSÃO ARITMÉTICA (PA) 2.1. DEFINIÇÃO PROGRESSÕES. SEQUÊNCIAS Ates de começarmos o estudo das progressões, veremos uma defiição um pouco mais geral: estudaremos o que é uma sequêcia. Ituitivamete, uma sequêcia é uma lista de elemetos que estão

Leia mais

BINÔMIO DE NEWTON. O desenvolvimento da expressão 2. a b é simples, pois exige somente quatro multiplicações e uma soma:

BINÔMIO DE NEWTON. O desenvolvimento da expressão 2. a b é simples, pois exige somente quatro multiplicações e uma soma: 07 BINÔMIO DE NEWTON O desevolvimeto da epressão a b é simples, pois eige somete quatro multiplicações e uma soma: a b a b a b a ab ba b a ab b O desevolvimeto de a b é uma tarefa um pouco mais trabalhosa,

Leia mais

1 Formulário Seqüências e Séries

1 Formulário Seqüências e Séries Formulário Seqüêcias e Séries Difereça etre Seqüêcia e Série Uma seqüêcia é uma lista ordeada de úmeros. Uma série é uma soma iita dos termos de uma seqüêcia. As somas parciais de uma série também formam

Leia mais

MATEMÁTICA QUESTÃO 1. Resolução. Resolução Primeira solução:

MATEMÁTICA QUESTÃO 1. Resolução. Resolução Primeira solução: (9) 35-0 www.eliteampias.om.br O ELITE RESOLVE IME 007 MATEMÁTICA - DISCURSIVAS MATEMÁTICA QUESTÃO 3 0 Cosidere as matrizes A= e B =, e seja P uma matriz 3 0 iversível tal que B = P - AP. Sedo um úmero

Leia mais

3ª Lista de Exercícios de Programação I

3ª Lista de Exercícios de Programação I 3ª Lista de Exercícios de Programação I Istrução As questões devem ser implemetadas em C. 1. Desevolva um programa que leia dois valores a e b ( a b ) e mostre os seguites resultados: (1) a. Todos os úmeros

Leia mais

, respectivamente, pode-se afirmar que 5 x

, respectivamente, pode-se afirmar que 5 x 00 ITA "A matemática é o alfabeto com que Deus escreveu o mudo" Galileu Galilei NOTAÇÕES ` ^,,!` \ : cojuto dos úmeros reais > a, b @ ^ \; a d d b` > a, b> ^ \; a d b` @a, b> ^ \; a b` A\B ^ ; A e B` k

Leia mais

XXXIV OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO

XXXIV OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO XXXIV OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (Esio Médio) GABARITO GABARITO NÍVEL ) E 6) C ) E 6) B ) D ) C 7) D ) C 7) A ) A ) B 8) B ) B 8) A ) B ) D 9) D ) A 9) B ) E 5) D 0) D 5) A

Leia mais

UNIVERSIDADE FEDERAL DE PELOTAS CENTRO DAS ENGENHARIAS Disciplina: Vetores e Álgebra linear. Lista 01

UNIVERSIDADE FEDERAL DE PELOTAS CENTRO DAS ENGENHARIAS Disciplina: Vetores e Álgebra linear. Lista 01 UNIVERSIDADE FEDERAL DE PELOTAS CENTRO DAS ENGENHARIAS Disciplia: Vetores e Álgebra liear Lista Prof: Germá Suazo Desehe os seguites vetores com o poto iicial a origem de coordeadas (posição padrão) em

Leia mais

Capítulo 3. Sucessões e Séries Geométricas

Capítulo 3. Sucessões e Séries Geométricas Capítulo 3 Sucessões e Séries Geométricas SUMÁRIO Defiição de sucessão Mootoia de sucessões Sucessões itadas (majoradas e mioradas) Limites de sucessões Sucessões covergetes e divergetes Resultados sobre

Leia mais

Planificação Anual de Matemática

Planificação Anual de Matemática Direção-Geral dos Estabelecimetos Escolares Direção de Serviços da Região Cetro Plaificação Aual de Matemática Ao Letivo: 2015/2016 Domíio Coteúdos Metas Curriculares Nº de Aulas (45 miutos) TEOREMA DE

Leia mais

Exercícios de Matemática Binômio de Newton

Exercícios de Matemática Binômio de Newton Exercícios de Mateática Biôio de Newto ) (ESPM-995) Ua lachoete especializada e hot dogs oferece ao freguês 0 tipos diferetes de olhos coo tepero adicioal, que pode ser usados à votade. O tipos de hot

Leia mais

Instituto Universitário de Lisboa

Instituto Universitário de Lisboa Istituto Uiversitário de Lisboa Departameto de Matemática Exercícios de Sucessões e Séries Exercícios: sucessões. Estude quato à mootoia cada uma das seguites sucessões. (a) (g) + (b) + + + 4 (c) + (h)

Leia mais

Alguns autores também denotam uma sequência usando parêntesis:

Alguns autores também denotam uma sequência usando parêntesis: Capítulo 3 Sequêcias e Séries Numéricas 3. Sequêcias Numéricas Uma sequêcia umérica é uma fução real com domíio N que, a cada associa um úmero real a. Os úmeros a são chamados termos da sequêcia. É comum

Leia mais

GRAFOS E CONTAGEM DUPLA Carlos Yuzo Shine, Colégio Etapa

GRAFOS E CONTAGEM DUPLA Carlos Yuzo Shine, Colégio Etapa GRAFOS E CONTAGEM DUPLA Carlos Yuzo Shie, Colégio Etapa Nível Itermediário.. GRAFOS. O que são e para que servem grafos? Defie-se grafo como o par (V, A) ode V = {v, v,...,v } é um cojuto de vértices e

Leia mais

Cálculo II Sucessões de números reais revisões

Cálculo II Sucessões de números reais revisões Ídice 1 Defiição e exemplos Cálculo II Sucessões de úmeros reais revisões Mestrado Itegrado em Egeharia Aeroáutica Mestrado Itegrado em Egeharia Civil Atóio Beto beto@ubi.pt Departameto de Matemática Uiversidade

Leia mais

Capítulo 5 Cálculo Diferencial em IR n 5.1 Definição de função de várias variáveis: campos vetoriais e campos escalares.

Capítulo 5 Cálculo Diferencial em IR n 5.1 Definição de função de várias variáveis: campos vetoriais e campos escalares. 5. Defiição de fução de várias variáveis: campos vetoriais e. Uma fução f : D f IR IR m é uma fução de variáveis reais. Se m = f é desigada campo escalar, ode f(,, ) IR. Temos assim f : D f IR IR (,, )

Leia mais

MATEMÁTICA CADERNO 1 CURSO E FRENTE 1 ÁLGEBRA. Módulo 1 Equações do 1 ọ Grau e

MATEMÁTICA CADERNO 1 CURSO E FRENTE 1 ÁLGEBRA. Módulo 1 Equações do 1 ọ Grau e MATEMÁTICA CADERNO CURSO E FRENTE ÁLGEBRA Módulo Equações do ọ Grau e do ọ Grau ) [ ( )] = [ + ] = + = + = + = = Resposta: V = { } 9) Na equação 6 = 0, tem-se a = 6, b = e c =, etão: I) = b ac = + = b

Leia mais

Elementos de Análise - Verão 2001

Elementos de Análise - Verão 2001 Elemetos de Aálise - Verão 00 Lista Thomas Robert Malthus, 766-834, foi professor de Ecoomia Política em East Idia College e em seu trabalho trouxe à luz os estudos sobre diâmica populacioal. Um de seus

Leia mais

Prova 3 Matemática. N ọ DE INSCRIÇÃO:

Prova 3 Matemática. N ọ DE INSCRIÇÃO: Prova QUESTÕES OBJETIIVAS -- VESTIIBULAR DE VERÃO 00 N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA Cofira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, coforme

Leia mais

Planificação 1.ºperíodo

Planificação 1.ºperíodo PLANO CURRICULAR Plaificação 1.ºperíodo 7.º Ao Matemática 01/014 Uidade 1 Números racioais. Números primos e úmeros compostos.. Máximo divisor comum e míimo múltiplo comum.. Adição em Z.. Subtração em

Leia mais

Prova 3 Matemática. N ọ DE INSCRIÇÃO:

Prova 3 Matemática. N ọ DE INSCRIÇÃO: Prova QUESTÕES OBJETIIVAS -- VESTIIBULAR DE VERÃO 00 N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA Cofira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, coforme

Leia mais

Prof: Danilo Dacar Matemática

Prof: Danilo Dacar Matemática 1. (Unicamp 015) A figura abaixo exibe um círculo de raio r que tangencia internamente um setor circular de raio R e ângulo central θ. No triângulo acutângulo ABC, ilustrado na figura, o comprimento do

Leia mais

Fundamentos de Análise Matemática Profª Ana Paula. Sequência Infinitas

Fundamentos de Análise Matemática Profª Ana Paula. Sequência Infinitas Fudametos de Aálise Matemática Profª Aa Paula Sequêcia Ifiitas Defiição 1: Uma sequêcia umérica a 1, a 2, a 3,,a,é uma fução, defiida o cojuto dos úmeros aturais : f : f a Notação: O úmero é chamado de

Leia mais

1- Resolução de Sistemas Lineares.

1- Resolução de Sistemas Lineares. MÉTODOS NUMÉRICOS PR EQUÇÕES DIFERENCIIS PRCIIS 1- Resolução de Sistemas Lieares. 1.1- Matrizes e Vetores. 1.2- Resolução de Sistemas Lieares de Equações lgébricas por Métodos Exatos (Diretos). 1.3- Resolução

Leia mais

Resposta: L π 4 L π 8

Resposta: L π 4 L π 8 . A figura a seguir ilustra as três primeiras etapas da divisão de um quadrado de lado L em quadrados meores, com um círculo iscrito em cada um deles. Sabedo-se que o úmero de círculos em cada etapa cresce

Leia mais

U.C Matemática Finita. 8 de junho de 2016

U.C Matemática Finita. 8 de junho de 2016 Miistério da Ciêcia, Tecologia e Esio Superior U.C. 21082 Matemática Fiita 8 de juho de 2016 Questões de Escolha Múltipla: Critérios de avaliação Na prova de Exame, cada questão de escolha múltipla tem

Leia mais

CAPÍTULO IV DESENVOLVIMENTOS EM SÉRIE

CAPÍTULO IV DESENVOLVIMENTOS EM SÉRIE CAPÍTUO IV DESENVOVIMENTOS EM SÉRIE Série de Taylor e de Mac-auri Seja f ) uma fução real de variável real com domíio A e seja a um poto iterior desse domíio Supoha-se que a fução admite derivadas fiitas

Leia mais

Séquências e Séries Infinitas de Termos Constantes

Séquências e Séries Infinitas de Termos Constantes Capítulo Séquêcias e Séries Ifiitas de Termos Costates.. Itrodução Neste capítulo estamos iteressados em aalisar as séries ifiitas de termos costates. Etretato, para eteder as séries ifiitas devemos ates

Leia mais

Matemática Prof.: Joaquim Rodrigues 1 ESTUDO DOS POLINÔMIOS. nulo.

Matemática Prof.: Joaquim Rodrigues 1 ESTUDO DOS POLINÔMIOS. nulo. Matemática Prof.: Joaquim Rodrigues ESTUDO DOS POLINÔMIOS Questão 0 Dê o grau de P em cada caso: a) P() = 7 + b) P () = + + 7 c) P () = + d) P () = + e) P () = 0 f) P () = 0 Questão 0 Dado o poliômio P()

Leia mais

Cap. VI Histogramas e Curvas de Distribuição

Cap. VI Histogramas e Curvas de Distribuição TLF /11 Capítulo VI Histogramas e curvas de distribuição 6.1. Distribuições e histogramas. 6 6.. Distribuição limite 63 6.3. Sigificado da distribuição limite: frequêcia esperada e probabilidade de um

Leia mais