MATEMÁTICA BÁSICA PROF ª. PAULA FRANCIS BENEVIDES

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "MATEMÁTICA BÁSICA PROF ª. PAULA FRANCIS BENEVIDES"

Transcrição

1 MATEMÁTICA BÁSICA PROF ª. PAULA FRANCIS BENEVIDES

2 FRAÇÕES: Adição e Subtrção ) ) ) ) ) 6) Multiplicção 7 Divisão 7 7) ) = Número Misto 9) 0) Coversão de Número Decimis em Frção ) 0, = ), = ) 0, =

3 TESTES: ) é igul : 6 c) 6 e).d.. ) Efetudo 9 c) 9 e).d.. 0, 9 obtém: ) (MARÍLIA) - Os ftores primos de 00 são:,,,, 7, 9,,, 7 c),, 7,, 7 ) A frção equivlete 6 96 c) 66 6 e).d que tem umerdor é:

4 ) (PUC) O vlor d epressão c) 6 6 e).d.. é: 6) Efetudo-se c) 6 e) 0 0 obtém-se: 7) (FMU) - O vlor de c) 7 e).d.. é: ) Clculdo-se c) e).d.. ecotr-se:

5 9) (FMU) Efetudo-se 7 6 c) e) tem-se: 0) (PUC) Um firm gst meslmete reis com mteril de escritório, / dess quti com serviços de terceiros e ¼ del com trsporte. O gsto em reis mesl em cojuto esses três ites é: c) e) ) Se = + 0 c) - e) ão eiste ) (BRASÍLIA) A epressão c).d.. etão o vlor de / é igul : é equivlete : 7 ) Resolvedo 9 c) temos resultdo igul :

6 e) ) 0 c) 0 0 e).d.. é igul : Gbrito c d c B b b b b e b e c C Regr de siis: ) = ) ( - ) = ) ( - ) = POTENCIAÇÃO Csos Prticulres: ) 0 = ) 0 = Produto de potêcis de mesm bse: mtém bse e som-se os epoetes 6). = 7). = ). y.. y = Divisão de potêcis de mesm bse: mtém bse e subtri-se os epoetes 9) 0) ) 7 Produto elevdo um potêci: elev-se cd ftor esse potêci ) () = ) (y) = ) ( - ) = Potêci elevd outr potêci: tem por epoete o produto dos epoetes

7 ) ( ) = 6) (( ) ) = 7) ( y ) = Potêci de frção: elev-se, seprdmete, o umerdor e o deomidor à potêci ) 9) 0) ) y Potêcis de 0: ) 0 = ). 0 = ) 0000 = ) 0 = 6) 0,000 = 7) 0,00 = Potêcis de ordem superior: ) = 9) ( ) = Potêcis de úmeros decimis: 0) (, ) = ) (0,) = ) (0,0) = ) (0,0) = ) (0,) = ) Quts css decimis terá (,) 60? Eercícios de sl: = = c) (- ) = = e) ( ) - = f) (- ) + 0 = g),. 0 = h). 0 = i) (,) = j) (0,) = k) (0,0) = l) Achr metde de = 6

8 TESTES: ) 0 é igul : c) 0 e).d. ) ( 0 + ) 0 é igul : c) 6 e).d. ) A epressão - + c) e) ¼ 6-0 é igul : ) 0,00 pode ser represetdo por:. 0,. 0 c). 0,. 0 e).d. ) (. ).(. ) é igul :.. 6 c). 6 e).d. 6) ( - ) é igul : c) e).d. 7 y 7) é igul : y y y c) 0 y 6 y e).d. 7

9 ) ( ).( ) é igul : c) 0 e).( ) 9) ( y ) : [ (y ) ] vle: y y c) y 7 y e).d. 0) (PUC) - O vlor de c) 0 0 e).d. ) é igul : 6 6 c) e).d. 0 0 é: ) O vlor de 0,0 dividido por. 0 é:,, c) 0, e).d. ) (LONDRINA) O vlor d epressão / /9 c) / / e) 9/ é: 6 ) Simplificdo ( + ) : ( + ), obtém-se: / /6 c) / / e) 7/

10 ) [ (- ) ( - ) ] é igul : 6 c) e).d. 0 6). ( ) 0 : 7 7 c) e) 6 é igul : b 7) (S.CARLOS) A epressão b c) b b b b( b ) b é equivlete : + b Questões berts: ) A epressão + 6 : + vle: 9) = 0 + +, o vlor de é: 0) vle: 9

11 ) (LONDRINA) Se =, etão 7 é: 7 ) vle: ) Assile cd questão com V ou F ( ) 0,00 =,. 0 ( ) ( ) = ( ) (0,) = 0,00 ( ) (0,) 0 = ( ) (- ) = 6 ( ) ( ) = 6 Gbrito: C D B B B B A A B B C C C E D A B ) V F V V V V - F 0

12 RADICIAÇÃO Propriedde dos rdicis: b b b b b b m m m. m m m. q p p q ) ) ) ) ) 6) 7) ) 6 = 9 9) 0) 6 7 ) ) ) ) ) 6) 7) ) 6 9) 0) ) ) ) ) ) 7 = 6) 7 0 7) ) = 9) =

13 RACIONALIZAÇÃO DE FRAÇÕES Rciolizr um deomidor irrciol é fzer com que ão teh rdicl, em epoete frcioário. Deomidor moômio: y y y Multiplic-se e divide-se por y, deomido ftor de rciolizção. Qudo o ídice é mior que : q p p q y q p y, ftor de rciolizção : q q p y Deomidor Biômio: N b N b b b N b b Multiplic-se e divide-se pelo cojugdo do deomidor ) ) ) ) ) 6) 7) ) 9) Eercícios de sl: ) = ) ) = ) ) 6) 7)

14 TESTES: Associr cd um ds operções à direit um resultdo d esquerd (0 0) ). ) 6 ) ) 9 c) ) 6 e) 6) (FMU) O vlor d epressão c) 0 - e) - 6 é: 6 7) é igul : c) e) ) c) - 6 e).d. vle: 9) é igul : c) e) 6

15 0) c) 6 e) 7 6 é igul : ) (CEFET-PR) -, úmero rel positivo, é o mesmo que: c) ( ) / - ) c) 7 é equivlete : ) O vlor de c) 6 é: ) / / c) / / pode ser escrito: ) b b b c) b b pode ser escrito:

16 6) + c) e).d.. é igul : 7) b 6 9 /b /b c) b - pode ser escrito: ) Rciolizdo - c) temos: 9) O vlor de c) - impossível 7 é: 0) Efetudo-se c) 7 result: ) (CEFET-PR) Clculdo-se ( + ), obtém-se: + 9 c) e) 9

17 ) (SERGIPE) O vlor d epressão c) 6 7 ) Relciodo c) ) Rciolizdo c) temos: temos: 7 9 é: ) (LONDRINA) O vlor d epressão 9, 0 0, é: c) e) 6) eqüivle : c) 6 9 Questões berts: 7) O resultdo de 6 9 é: = ) (FEI) 9) O vlor d epressão é igul : Gbrito C A A B E D D C D E B B C D B D C B C D C B A B C B 0 6

18 REGRA DE TRÊS Dus grdezs são diretmete proporciois se o dobro, o triplo, o quádruplo... de um, correspode o dobro, triplo, o quádruplo d outr. Eemplo: Três revists custm R$,00. Quto custm revists. Resolução: Escrevemos os ddos do problem, coforme o dispositivo prático: Revists Vlores,0 Note que s grdezs revists e vlores são diretmete proporciois, pois dobrdo ou triplicdo o úmero e revists, dobrm ou triplicm os vlores; temos etão proporção:, 7, 7 ou sej, custrm R$,00. Esse é um eemplo de um Regr de Três Simples Diret. Dus grdezs são iversmete proporciois se o dobro, triplo, quádruplo,... de um, correspode à metde, terç prte, qurt prte, de outr. Eemplo:Um crro com velocidde médi de 0 km/h percorre um trjeto em três hors. Qul deve ser ov velocidde pr percorrer este mesmo trjeto em qutro hors? Resolução: Velocidde tempo 0 km/h h h Note que s grdezs são iversmete proporciois. Teoricmete, dobrdo, triplicdo velocidde, o tempo dimiui d metde, d terç prte, etc. No dispositivo prático ivertemos um ds grdezs: ou sej, velocidde será de 60 km/h. EXERCÍCIOS: ) Comprei 0 mçãs R$ 6,00. Qudo custrão 0 mçs? ) Com 00 kg de trigo pode se fzer kg de frih. Que qutidde de frih obtém-se com 0 kg de trigo? ) Um utomóvel com velocidde de 0 km/h percorre um trjeto AB em 6h. Qul deve ser ov velocidde pr percorrer o mesmo trjeto em h? 7

19 ) Um livro tem 00 págis com lihs em cd um. Pr imprimi-lo, empregdo os mesmos crcteres, quts págis de 0 lihs serão ecessáris? ) Pr ldrilhr pr ldrilhr de um pátio empregrm-se 6.60 ldrilhos. Qutos ldrilhos iguis serão ecessários 7 do mesmo pátio? PORCENTAGEM Porceto: É um rzão em que o coseqüete é 00. Eemplos: 0:00 ou 0/00 ou id 0% Clculr % de R$ 00,00 Vlor T Logo, % de R$00,00 são R$ 7,00 c) Qutos porceto de é 9? Vlor T 00 9 =900 = 900/ = 0 Logo, 9 correspode 0% de EXERCÍCIOS: ) Quto é % de R$900,00? ) 6 represetm qutos % de 0? ) Comprei um objeto por R$0,00 e vedi-o com um lucro de %. Por quto vedi o objeto?

20 JUROS E DESCONTOS SIMPLES j = juros C = cpitl i = t uitári = úmero de períodos C motte (cpitl com juros cumuldos em períodos) J = Ci C = C ( + i) C = C. + i ) Determir os juros de um cpitl de R$ 00,00. % o o, durte 7 meses. ) O cpitl de R$ 00,00 foi colocdo 0% o o durte 9 meses. Determir os juros. (Neste problem, t e o umero de períodos podem ser epressos com relção o trimestre. A t de juros trimestrl proporciol 0% o o é %, e 9 meses são trimestres) ) Qul o motte de um cpitl de R$ 600,00, %.., durte meses? ) Qul o cpitl que produz o motte de R$,00, %.., durte 6 meses? ) Determir os juros do cpitl de R$ 00,00 %.. durte meses e dis. 9

21 6) Um duplict de vlor omil equivlete R$ 00,00 foi resgtd três meses tes do vecimeto, t de 9%... Qul o descoto? 7) Qul o vlor tul de um duplict de vlor omil equivlete R$ 0,7, t de 6%.., meses tes do vecimeto? ) Um título de R$ 0,00 foi resgtdo um mês e dis tes do vecimeto, t de %... Qul o descoto? 9) Um letr de câmbio de vlor omil R$ 0,00 foi resgtd meses e 6 dis tes do vecimeto,,% o mês. Qul o vlor do resgte? 0) Qul o vlor tul de um duplict de vlor omil equivlete R$0,7 à um t de 6%.., meses tes do vecimeto? 0

EXERCÍCIOS BÁSICOS DE MATEMÁTICA

EXERCÍCIOS BÁSICOS DE MATEMÁTICA . NÚMEROS INTEIROS Efetur: ) + ) 8 ) 0 8 ) + ) ) 00 ( ) ) ( ) ( ) 8) + 9) + 0) ( + ) ) 8 + 0 ) 0 ) ) ) ( ) ) 0 ( ) ) 0 8 8) 0 + 0 9) + 0) + ) ) ) 0 ) + 9 ) 9 + ) ) + 8 8) 9) 8 0000 09. NÚMEROS FRACIONÁRIOS

Leia mais

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA LISTA 2 RADICIAÇÃO

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA LISTA 2 RADICIAÇÃO INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA Professores: Griel Brião / Mrcello Amdeo Aluo(: Turm: ESTUDO DOS RADICAIS LISTA RADICIAÇÃO Deomi-se riz de ídice de um úmero rel, o úmero rel tl que

Leia mais

MÓDULO IV. EP.02) Determine o valor de: a) 5 3 = b) 3 4 = c) ( 4) 2 = d) 4 2 = EP.03) Determine o valor de: a) 2 3 = b) 5 2 = c) ( 3) 4 = d) 3 4 =

MÓDULO IV. EP.02) Determine o valor de: a) 5 3 = b) 3 4 = c) ( 4) 2 = d) 4 2 = EP.03) Determine o valor de: a) 2 3 = b) 5 2 = c) ( 3) 4 = d) 3 4 = MÓDULO IV. Defiição POTENCIACÃO Qudo um úmero é multiplicdo por ele mesmo, dizemos que ele está elevdo o qudrdo, e escrevemos:. Se um úmero é multiplicdo por ele mesmo váris vezes, temos um potêci:.. (

Leia mais

PROF. GILMAR AUGUSTO PROF. GILMAR AUGUSTO

PROF. GILMAR AUGUSTO PROF. GILMAR AUGUSTO MÚLTIPLOS E DIVISORES - (Of. Justiç Bttis e Adrdi). Ds firmtivs: - O úmero zero é o úico úmero pr que é primo; - O úmero ão é primo em composto; - Os úmeros que têm mis de dois divisores são chmdos úmeros

Leia mais

o quociente C representa a quantidade de A por unidade de B. Exemplo Se um objecto custar 2, então 10 objectos custam 20. Neste caso temos 20 :10 2.

o quociente C representa a quantidade de A por unidade de B. Exemplo Se um objecto custar 2, então 10 objectos custam 20. Neste caso temos 20 :10 2. Mtemátic I - Gestão ESTG/IPB Resolução. (i).0 : r 0.000.0 00.0 00 0 0.0 00 0 00.000 00 000.008 90 0.000.000 00 000 008 90.00 00 00 00 9 Dividedo = Divisor x Quociete + Resto.0 = x.008 + 0.000. Num divisão

Leia mais

MATEMÁTICA FINANCEIRA

MATEMÁTICA FINANCEIRA VICE-REITORIA DE ENSINO DE GRADUAÇÃO E CORPO DISCENTE COORDENAÇÃO DE EDUCAÇÃO A DISTÂNCIA MATEMÁTICA FINANCEIRA Rio de Jeiro / 007 TODOS OS DIREITOS RESERVADOS À UNIVERSIDADE CASTELO BRANCO UNIDADE I PROGRESSÕES

Leia mais

Notação em unitário decimal

Notação em unitário decimal Prof. Pcher MATEMÁTICA FINANCEIRA 2. TAXA DEFINIÇÃO T é um rzão usd como um vlor comprtivo, tedo como referêci um todo previmete cocebido. A t represet um rzão que iform: I) Prte de um grdez. II) Comprção

Leia mais

Unidade 8 - Polinômios

Unidade 8 - Polinômios Uidde 8 - Poliômios Situção problem Gru de um poliômio Vlor umérico de um poliômio Iguldde de poliômio Poliômio ulo Operções com poliômios Situção problem Em determids épocs do o, lgums ciddes brsileirs

Leia mais

9 = 3 porque 3 2 = 9. 16 = 4 porque 4 2 = 16. -125 = - 5 porque (- 5) 3 = - 125. 81 = 3 porque 3 4 = 81. 32 = 2 porque 2 5 = 32 -32 = - 2

9 = 3 porque 3 2 = 9. 16 = 4 porque 4 2 = 16. -125 = - 5 porque (- 5) 3 = - 125. 81 = 3 porque 3 4 = 81. 32 = 2 porque 2 5 = 32 -32 = - 2 COLÉGIO PEDRO II Cpus Niterói Discipli: Mteátic Série: ª Professor: Grziele Souz Mózer Aluo (: Tur: Nº: RADICAIS º Triestre (Reforço) INTRODUÇÃO 9 porque 9 porque - - porque (- ) - 8 porque 8 porque De

Leia mais

6.1: Séries de potências e a sua convergência

6.1: Séries de potências e a sua convergência 6 SÉRIES DE FUNÇÕES 6: Séries de potêcis e su covergêci Deiição : Um série de potêcis de orm é um série d ( ) ( ) ( ) ( ) () Um série de potêcis de é sempre covergete pr De cto, qudo, otemos série uméric,

Leia mais

EXERCÍCIOS: d) 1.1 = e) = f) = g) 45.45= Potenciação de um número é o produto de fatores iguais a esse número; h)

EXERCÍCIOS: d) 1.1 = e) = f) = g) 45.45= Potenciação de um número é o produto de fatores iguais a esse número; h) d). = e).. = f).. = Potecição de um úmero é o produto de ftores iguis esse úmero; ) =. = 9 ) =.. = (OBS.: os úmeros:. são ditos ftores, ou ses) g).= h) 8.8.8= i) 89.89.89 = EXERCÍCIOS: 0. Sedo =, respod:

Leia mais

Departamento de Matemática, Física, Química e Engenharia de Alimentos Projeto Calcule! Profª: Rosimara Fachin Pela Profª: Vanda Domingos Vieira

Departamento de Matemática, Física, Química e Engenharia de Alimentos Projeto Calcule! Profª: Rosimara Fachin Pela Profª: Vanda Domingos Vieira Deprtmeto de Mtemátic, Físic, Químic e Egehri de Alimetos Projeto Clcule! Profª Rosimr Fchi Pel Profª Vd Domigos Vieir PARTE CONJUNTOS NUMÉRICOS E NUMEROS REAIS Um umero rel e qulquer umero que pode ser

Leia mais

PROGRESSÃO GEOMÉTRICA

PROGRESSÃO GEOMÉTRICA Professor Muricio Lutz PROGREÃO GEOMÉTRICA DEFINIÇÃO Progressão geométric (P.G.) é um seüêci de úmeros ão ulos em ue cd termo posterior, prtir do segudo, é igul o terior multiplicdo por um úmero fixo,

Leia mais

NÃO existe raiz real de um número negativo se o índice do radical for par.

NÃO existe raiz real de um número negativo se o índice do radical for par. 1 RADICIAÇÃO A rdicição é operção invers d potencição. Sbemos que: ) b) Sendo e b números reis positivos e n um número inteiro mior que 1, temos, por definição: sinl do rdicl n índice Qundo o índice é,

Leia mais

Vamos supor um quadrado com este, divididos em 9 quadradinhos iguais.

Vamos supor um quadrado com este, divididos em 9 quadradinhos iguais. Rdicição O que é, fil, riz qudrd de um úmero? Vmos supor um qudrdo com este, divididos em 9 qudrdihos iguis. Pegdo cd qudrdiho como uidde de áre, podemos dizer que áre do qudrdo é 9 qudrdihos, ou sej,

Leia mais

Matemática Fascículo 03 Álvaro Zimmermann Aranha

Matemática Fascículo 03 Álvaro Zimmermann Aranha Mtemátic Fscículo 03 Álvro Zimmerm Arh Ídice Progressão Aritmétic e Geométric Resumo Teórico... Exercícios...3 Dics...4 Resoluções...5 Progressão Aritmétic e Geométric Resumo teórico Progressão Aritmétic

Leia mais

Matemática C Extensivo V. 6

Matemática C Extensivo V. 6 Mtemátic C Etesivo V 6 Eercícios ) D ) D ) C O vlor uitário do isumo é represetdo por y Portto pelo produto ds mtrizes A e B temos o seguite sistem: 5 5 9 y 5 5y 5y 9 5y 5 Portto: y 4 y 4 As médis uis

Leia mais

Tempo Estratégia Descrição (Arte) 36,00 e compro. 3 de R$ 36,00. devo pagar 4. Multiplicação Solução 2. Devo pagar R$ 27,00. Multiplicação Aplicação

Tempo Estratégia Descrição (Arte) 36,00 e compro. 3 de R$ 36,00. devo pagar 4. Multiplicação Solução 2. Devo pagar R$ 27,00. Multiplicação Aplicação Curso Turo Discipli Crg Horári Licecitur Ple Noturo Mteátic 0h e Mteátic Eleetr I Aul Período Dt Coordedor.. /0/00 (terç-feir) Tepo Estrtégi Descrição (Arte) 0 / / 0 Vh Aertur P Céli Uidde V O cojuto dos

Leia mais

Z = {, 3, 2, 1,0,1,2,3, }

Z = {, 3, 2, 1,0,1,2,3, } Pricípios Aritméticos O cojuto dos úmeros Iteiros (Z) Em Z estão defiids operções + e. tis que Z = {, 3,, 1,0,1,,3, } A) + y = y + (propriedde comuttiv d dição) B) ( + y) + z = + (y + z) (propriedde ssocitiv

Leia mais

Reforço Orientado. Matemática Ensino Médio Aula 4 - Potenciação. Nome: série: Turma: t) (0,2) 4. a) 10-2. b) (-2) -2. 2 d) e) (0,1) -2.

Reforço Orientado. Matemática Ensino Médio Aula 4 - Potenciação. Nome: série: Turma: t) (0,2) 4. a) 10-2. b) (-2) -2. 2 d) e) (0,1) -2. Reforço Orientdo Mtemátic Ensino Médio Aul - Potencição Nome: série: Turm: Exercícios de sl ) Clcule s potêncis, em cd qudro: r) b) (-) Qudro A s) t) (0,) Qudro B - b) (-) - e) (-,) g) (-) h) e) (0,) -

Leia mais

a.cosx 1) (ITA) Se P(x) é um polinômio do 5º grau que satisfaz as condições 1 = P(1) = P(2) = P(3) = P(4) = P(5) e P(6) = 0, então temos:

a.cosx 1) (ITA) Se P(x) é um polinômio do 5º grau que satisfaz as condições 1 = P(1) = P(2) = P(3) = P(4) = P(5) e P(6) = 0, então temos: ) (ITA) Se P(x) é um poliômio do 5º gru que stisfz s codições = P() = P() = P() = P(4) = P(5) e P(6) = 0, etão temos: ) P(0) = 4 b) P(0) = c) P(0) = 9 d) P(0) = N.D.A. ) (UFC) Sej P(x) um poliômio de gru,

Leia mais

DIVISIBILIDADE. 26 27 28 29 30 31 32 33 etc. O conjunto P dos números primos é infinito e não existe nenhuma lei de formação para esses números:

DIVISIBILIDADE. 26 27 28 29 30 31 32 33 etc. O conjunto P dos números primos é infinito e não existe nenhuma lei de formação para esses números: DIVISIBILIDADE 0. MÚLTIPLOS E DIVISORES Sejm e dois úmeros turis. Se o resto d divisão de por for zero, isto é, se divisão de por for et, dizse que é divisível por (ou que é múltiplo de ). Nesse cso, diz-se

Leia mais

Universidade Federal de Ouro Preto UFOP. Instituto de Ciências Exatas e Biológicas ICEB. Departamento de Computação DECOM

Universidade Federal de Ouro Preto UFOP. Instituto de Ciências Exatas e Biológicas ICEB. Departamento de Computação DECOM Progrmção de Computdores I BCC 701 01- List de Exercícios 01 Sequêci Simples e Prte A Exercício 01 Um P. A., Progressão Aritmétic, fic determid pel su rzão (r) e pelo seu primeiro termo ( 1 ). Escrev um

Leia mais

As funções exponencial e logarítmica

As funções exponencial e logarítmica As fuções epoecil e logrítmic. Potêcis em Sej um úmero rel positivo, isto é, * +. Pr todo, potêci, de bse e epoete é defiid como o produto de ftores iguis o úmero rel :...... vezes Pr, estbelece-se 0,

Leia mais

Quando o polinômio divisor é da forma x + a, devemos substituir no polinômio P(x), x por a, visto que: x + a = x ( a).

Quando o polinômio divisor é da forma x + a, devemos substituir no polinômio P(x), x por a, visto que: x + a = x ( a). POLINÔMIOS II. TEOREMA DE D ALEMBERT O resto d divisão de um poliômio P(x) por x é igul P(). m m Sej, com efeito, P x x x..., um poliômio de x, ordedo segudo s potecis m m decrescetes de x. Desigemos o

Leia mais

Vazão de uma torneira Q=20.t. Quantidade de água Q em. Tempo t em segundos

Vazão de uma torneira Q=20.t. Quantidade de água Q em. Tempo t em segundos Fuções Fuções O que é um fução? O próprio ome já diz. Fução é um relção etre dus grdezs qul um depede (está em fução) d outr. Por eemplo, qutidde de águ que si de um toreir vi depeder do tempo que el permecer

Leia mais

MATRIZES E DETERMINANTES

MATRIZES E DETERMINANTES Professor: Cssio Kiechloski Mello Disciplin: Mtemátic luno: N Turm: Dt: MTRIZES E DETERMINNTES MTRIZES: Em quse todos os jornis e revists é possível encontrr tbels informtivs. N Mtemátic chmremos ests

Leia mais

FUNÇÃO EXPONENCIAL. a 1 para todo a não nulo. a. a. a a. a 1. Chamamos de Função Exponencial a função definida por: f( x) 3 x. f( x) 1 1. 1 f 2.

FUNÇÃO EXPONENCIAL. a 1 para todo a não nulo. a. a. a a. a 1. Chamamos de Função Exponencial a função definida por: f( x) 3 x. f( x) 1 1. 1 f 2. 49 FUNÇÃO EXPONENCIAL Professor Lur. Potêcis e sus proprieddes Cosidere os úmeros ( 0, ), mr, N e, y, br Defiição: vezes por......, ( ), ou sej, potêci é igul o úmero multiplicdo Proprieddes 0 pr todo

Leia mais

EQUAÇÃO DO 2 GRAU ( ) Matemática. a, b são os coeficientes respectivamente de e x ; c é o termo independente. Exemplo: x é uma equação do 2 grau = 9

EQUAÇÃO DO 2 GRAU ( ) Matemática. a, b são os coeficientes respectivamente de e x ; c é o termo independente. Exemplo: x é uma equação do 2 grau = 9 EQUAÇÃO DO GRAU DEFINIÇÃO Ddos, b, c R com 0, chmmos equção do gru tod equção que pode ser colocd n form + bx + c, onde :, b são os coeficientes respectivmente de e x ; c é o termo independente x x x é

Leia mais

OPERAÇÕES ALGÉBRICAS

OPERAÇÕES ALGÉBRICAS MATEMÁTICA OPERAÇÕES ALGÉBRICAS 1. EXPRESSÕES ALGÉBRICAS Monômio ou Termo É expressão lgébric mis sintétic. É expressão formd por produtos e quocientes somente. 5x 4y 3x y x x 8 4x x 4 z Um monômio tem

Leia mais

a é dita potência do número real a e representa a

a é dita potência do número real a e representa a IFSC / Mteátic Básic Prof. Júlio Césr TOMIO POTENCIAÇÃO [ou Expoecição] # Potêci co Expoete Nturl: Defiição: Ddo u úero iteiro positivo, expressão ultiplicção do úero rel e questão vezes. é dit potêci

Leia mais

Unidade 2 Geometria: ângulos

Unidade 2 Geometria: ângulos Sugestões de tividdes Unidde 2 Geometri: ângulos 7 MTEMÁTIC 1 Mtemátic 1. Respond às questões: 5. Considere os ângulos indicdos ns rets ) Qul é medid do ângulo correspondente à metde de um ân- concorrentes.

Leia mais

Capítulo zero Glossário

Capítulo zero Glossário Cpítulo zero Glossário Esse cpítulo é formdo por tems idispesáveis à mtemátic que, certmete, você deve Ter estuddo de um ou outr form durte su vid escolr. Sempre que tiver dúvids o logo do restte do teto

Leia mais

SISTEMA DE EQUAÇÕES LINEARES

SISTEMA DE EQUAÇÕES LINEARES SISTEM DE EQUÇÕES LINERES Defiição Ddos os úmeros reis b com equção b ode são vriáveis ou icógits é deomid equção lier s vriáveis Os úmeros reis são deomidos coeficietes ds vriáveis respectivmete e b é

Leia mais

Professores Edu Vicente e Marcos José Colégio Pedro II Departamento de Matemática Potências e Radicais

Professores Edu Vicente e Marcos José Colégio Pedro II Departamento de Matemática Potências e Radicais POTÊNCIAS A potênci de epoente n ( n nturl mior que ) do número, representd por n, é o produto de n ftores iguis. n =...... ( n ftores) é chmdo de bse n é chmdo de epoente Eemplos =... = 8 =... = PROPRIEDADES

Leia mais

Lista de Exercícios 01 Algoritmos Sequência Simples

Lista de Exercícios 01 Algoritmos Sequência Simples Uiversidde Federl do Prá UFPR Setor de Ciêcis Exts / Deprtmeto de Iformátic DIf Discipli: Algoritmos e Estrutur de Ddos I CI055 Professor: Dvid Meotti (meottid@gmil.com) List de Exercícios 0 Algoritmos

Leia mais

MATEMÁTICA BÁSICA. a c ad bc. b d bd EXERCÍCIOS DE AULA. 01) Calcule o valor de x em: FRAÇÕES

MATEMÁTICA BÁSICA. a c ad bc. b d bd EXERCÍCIOS DE AULA. 01) Calcule o valor de x em: FRAÇÕES MATEMÁTICA BÁSICA FRAÇÕES EXERCÍCIOS DE AULA ) Clcule o vlor de x em: A som e sutrção de frções são efetuds prtir d oteção do míimo múltiplo comum dos deomidores. É difícil respoder de imedito o resultdo

Leia mais

SISTEMAS LINEARES. Sendo x e y, respectivamente, o número de pontos que cada jogador marcou, temos uma equação com duas incógnitas:

SISTEMAS LINEARES. Sendo x e y, respectivamente, o número de pontos que cada jogador marcou, temos uma equação com duas incógnitas: SISTEMAS LINEARES Do grego system ( Sy sigific juto e st, permecer, sistem, em mtemátic,é o cojuto de equções que devem ser resolvids juts,ou sej, os resultdos devem stisfzêlos simultemete. Já há muito

Leia mais

Material envolvendo estudo de matrizes e determinantes

Material envolvendo estudo de matrizes e determinantes E. E. E. M. ÁREA DE CONHECIMENTO DE MATEMÁTICA E SUAS TECNOLOGIAS PROFESSORA ALEXANDRA MARIA º TRIMESTRE/ SÉRIE º ANO NOME: Nº TURMA: Mteril envolvendo estudo de mtrizes e determinntes INSTRUÇÕES:. Este

Leia mais

FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS - ITA. Equações Exponenciais

FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS - ITA. Equações Exponenciais FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS - ITA Equções Epoeciis... Fução Epoecil..4 Logritmos: Proprieddes 6 Fução Logrítmic. Equções Logrítmics...5 Iequções Epoeciis e Logrítmics.8 Equções Epoeciis 0. (ITA/74)

Leia mais

CURSO DE MATEMÁTICA BÁSICA

CURSO DE MATEMÁTICA BÁSICA Curso de Mtemátic Básic RONALDO VILAS BOAS COSTA CURSO DE MATEMÁTICA BÁSICA CONTEÚDOS BÁSICOS PARA UM MELHOR DESENVOLVIMENTO NA DISCIPLINA DE MATEMÁTICA Prof: RONALDO VILAS BOAS COSTA UBERLÂNDIA, 07 ÍNDICE

Leia mais

0,01. Qual a resposta correta à pergunta de Chiquinho, considerandose os valores atribuídos às variáveis pelo professor?

0,01. Qual a resposta correta à pergunta de Chiquinho, considerandose os valores atribuídos às variáveis pelo professor? GABARIO Questão: Chiquiho ergutou o rofessor qul o vlor umérico d eressão + y+ z. Este resodeu-lhe com cert iroi: como queres sber o vlor umérico de um eressão, sem tribuir vlores às vriáveis? Agor, eu

Leia mais

Revisão de Potenciação e Radiciação

Revisão de Potenciação e Radiciação Revisão de Poteição e Rdiição Agrdeietos à Prof : Alessdr Stdler Fvro Misik Defiição de Poteição A poteição idi ultiplições de ftores iguis Por eeplo, o produto pode ser idido for Assi, o síolo, sedo u

Leia mais

d) xy 2 h) x c a b c) d) e) 20

d) xy 2 h) x c a b c) d) e) 20 AS RESPOSTAS ESTÃO NO FINAL DOS EXERCÍCIOS. Rdicis ) Escrev em form de potênci com epoente frcionário ) Escrev em form de rdicl ) Dividindo o índice do rdicl e os epoentes de todos os ftores do rdicndo

Leia mais

,,,,,,,,, A Integral Definida como Limite de uma Soma. A Integral Definida como Limite de uma Soma

,,,,,,,,, A Integral Definida como Limite de uma Soma. A Integral Definida como Limite de uma Soma UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Exemplo : Utilize

Leia mais

Professor Mauricio Lutz FUNÇÃO EXPONENCIAL

Professor Mauricio Lutz FUNÇÃO EXPONENCIAL Professor Muricio Lutz REVISÃO SOBRE POTENCIAÇÃO ) Expoete iteiro positivo FUNÇÃO EPONENCIAL Se é u uero rel e é iteiro, positivo, diferete de zero e ior que u, expressão represet o produto de ftores,

Leia mais

1. Breve Revisão de Operações em

1. Breve Revisão de Operações em Breve Revisão de Operções em Est seção cotém um reve resumo de lgums operções e proprieddes dos úmeros reis, s quis serão muito utilizds o desevolvimeto do Cálculo Como se trt de um rápid revisão, escolhemos

Leia mais

CURSO DE MATEMÁTICA BÁSICA

CURSO DE MATEMÁTICA BÁSICA [Digite teto] CURSO DE MATEMÁTICA BÁSICA BELO HORIZONTE MG [Digite teto] CONJUNTOS NÚMERICOS. Conjunto dos números nturis Ν é o conjunto de todos os números contáveis. N { 0,,,,,, K}. Conjunto dos números

Leia mais

PROVA DE MATEMÁTICA - TURMAS DO

PROVA DE MATEMÁTICA - TURMAS DO PROVA DE MATEMÁTICA - TURMAS DO o ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - MARÇO DE 0. ELABORAÇÃO: PROFESSORES ADRIANO CARIBÉ E WALTER PORTO. PROFESSORA MARIA ANTÔNIA C. GOUVEIA Questão 0. (UDESC SC)

Leia mais

Resolução dos Exercícios Propostos

Resolução dos Exercícios Propostos Mtemátic Ficeir: Aplicções à Aálise de Ivestimetos 4ª. Edição Resolução dos Exercícios Propostos Etre os méritos deste livro, que fzem dele um dos preferidos pelos estudtes e professores, está explicr

Leia mais

1º semestre de Engenharia Civil/Mecânica Cálculo 1 Profa Olga (1º sem de 2015) Função Exponencial

1º semestre de Engenharia Civil/Mecânica Cálculo 1 Profa Olga (1º sem de 2015) Função Exponencial º semestre de Engenhri Civil/Mecânic Cálculo Prof Olg (º sem de 05) Função Eponencil Definição: É tod função f: R R d form =, com R >0 e. Eemplos: = ; = ( ) ; = 3 ; = e Gráfico: ) Construir o gráfico d

Leia mais

- Operações com vetores:

- Operações com vetores: TEXTO DE EVISÃO 0 - VETOES Cro Aluno(): Este texto de revisão deve ser estuddo ntes de pssr pr o cp. 03 do do Hllid. 1- Vetores: As grndezs vetoriis são quels que envolvem os conceitos de direção e sentido

Leia mais

Noção intuitiva de limite

Noção intuitiva de limite Noção intuitiv de ite Qundo se proim de 1, y se proim de 3, isto é: 3 y + 1 1,5 4 1,3 3,6 1,1 3, 1,05 3,1 1,0 3,04 1,01 3,0 De um modo gerl: Eemplo de um ite básico Qundo tende um vlor determindo, o ite

Leia mais

o Seu pé direito na medicina

o Seu pé direito na medicina o Seu pé direito n medicin UNIFESP //006 MATEMÁTIA 0 Entre os primeiros mil números inteiros positivos, quntos são divisíveis pelos números,, 4 e 5? 60 b) 0 c) 0 d) 6 e) 5 Se o número é divisível por,,

Leia mais

Professor Mauricio Lutz FUNÇÃO LOGARÍTMICA

Professor Mauricio Lutz FUNÇÃO LOGARÍTMICA Professor Muriio Lutz LOGARITMO ) Defiição FUNÇÃO LOGARÍTMICA Chm-se ritmo de um úmero N, positivo, um se positiv e diferete de um, todo úmero, devemos elevr pr eotrr o úmero N Ou sej ÎÂ tl que é o epoete

Leia mais

... Soma das áreas parciais sob a curva que fornece a área total sob a curva.

... Soma das áreas parciais sob a curva que fornece a área total sob a curva. CAPÍTULO 7 - INTEGRAL DEFINIDA OU DE RIEMANN 7.- Notção Sigm pr Soms A defiição forml d itegrl defiid evolve som de muitos termos, pr isso itroduzimos o coceito de somtório ( ). Eemplos: ( + ) + + + +

Leia mais

A potenciação indica multiplicações de fatores iguais. Por exemplo, o produto

A potenciação indica multiplicações de fatores iguais. Por exemplo, o produto POTENCIAÇÃO E RADICIAÇÃO POTENCIAÇÃO A potecição idic ultiplicções de ftores iguis. Por eeplo, o produto... pode ser idicdo for. Assi, o síolo, sedo u úero iteiro e u úero turl ior que, sigific o produto

Leia mais

3. Admitindo SOLUÇÃO: dy para x 1 é: dx. dy 3t. t na expressão da derivada, resulta: Questão (10 pontos): Seja f uma função derivável e seja g x f x

3. Admitindo SOLUÇÃO: dy para x 1 é: dx. dy 3t. t na expressão da derivada, resulta: Questão (10 pontos): Seja f uma função derivável e seja g x f x UIVERSIDADE FEDERAL DE ITAJUBÁ CALCULO e PROVA DE TRASFERÊCIA ITERA, EXTERA E PARA PORTADOR DE DIPLOMA DE CURSO SUPERIOR 9/6/ CADIDATO: CURSO PRETEDIDO: OBSERVAÇÕES: Prov sem cosult. A prov pode ser feit

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 13/03/10

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 13/03/10 RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA o ANO DO ENSINO MÉDIO DATA: /0/0 PROFESSOR: CARIBÉ Num cert comuidde, 0% ds pessos estvm desempregds. Foi feit um cmph, que durou 6 meses, pr tetr iserir ests pessos

Leia mais

Vestibular Comentado - UVA/2011.1

Vestibular Comentado - UVA/2011.1 estiulr Comentdo - UA/0. Conecimentos Específicos MATEMÁTICA Comentários: Profs. Dewne, Mrcos Aurélio, Elino Bezerr. 0. Sejm A e B conjuntos. Dds s sentençs ( I ) A ( A B ) = A ( II ) A = A, somente qundo

Leia mais

Simbolicamente, para. e 1. a tem-se

Simbolicamente, para. e 1. a tem-se . Logritmos Inicilmente vmos trtr dos ritmos, um ferrment crid pr uilir no desenvolvimento de cálculos e que o longo do tempo mostrou-se um modelo dequdo pr vários fenômenos ns ciêncis em gerl. Os ritmos

Leia mais

No que segue, apresentamos uma definição formal para a exponenciação. Se a 0, por definição coloca-se a a a, a a a a e assim por diante. Ou.

No que segue, apresentamos uma definição formal para a exponenciação. Se a 0, por definição coloca-se a a a, a a a a e assim por diante. Ou. MAT Cálculo Diferecil e Itegrl I RESUMO DA AULA TEÓRICA 3 Livro do Stewrt: Seções.5 e.6. FUNÇÃO EXPONENCIAL: DEFINIÇÃO No ue segue, presetos u defiição forl pr epoecição uisuer R e., pr 2 3 Se, por defiição

Leia mais

Operações e Propriedades em

Operações e Propriedades em 1 Itrodução Operções e Proprieddes em Os cojutos formm bse d costrução de tod Mtemátic e oção mtemátic de cojuto é mesm que usmos ligugem cotidi: os cojutos estão relciodos com idéi de grupmeto, coleção,

Leia mais

Semelhança e áreas 1,5

Semelhança e áreas 1,5 A UA UL LA Semelhnç e áres Introdução N Aul 17, estudmos o Teorem de Tles e semelhnç de triângulos. Nest ul, vmos tornr mis gerl o conceito de semelhnç e ver como se comportm s áres de figurs semelhntes.

Leia mais

Índice. Matrizes, Determinantes e Sistemas Lineares. Resumo Teórico...1 Exercícios...5 Dicas...6 Resoluções...7

Índice. Matrizes, Determinantes e Sistemas Lineares. Resumo Teórico...1 Exercícios...5 Dicas...6 Resoluções...7 Índice Mtrizes, Determinntes e Sistems Lineres Resumo Teórico...1 Exercícios...5 Dics...6 Resoluções...7 Mtrizes, Determinntes e Sistems Lineres Resumo Teórico Mtrizes Representção A=( ij )x3pode ser representd

Leia mais

Capitulo 1 - Nivelamento

Capitulo 1 - Nivelamento Cpitulo - Niveleto. Objetivo Este cpítulo foi itroduzido est postil co o objetivo de proover o iveleto de lgus luos que teh dificulddes e álgebr. Portto, o luo que ão sete dificuldde est áre d teátic está

Leia mais

2.4. Função exponencial e logaritmo. Funções trigonométricas directas e inversas.

2.4. Função exponencial e logaritmo. Funções trigonométricas directas e inversas. Cpítulo II Funções Reis de Vriável Rel.. Função eponencil e logritmo. Funções trigonométrics directs e inverss. Função eponencil A um unção deinid por nome de unção eponencil de bse. ( ), onde, > 0 e,

Leia mais

B ) 2 = ( x + y ) 2 ( 31 + 8 15 + 31 8 ( 31 + 8 15 ) 2 + 2( 31 + 8 15 )( 31 8 MÓDULO 17. Radiciações e Equações

B ) 2 = ( x + y ) 2 ( 31 + 8 15 + 31 8 ( 31 + 8 15 ) 2 + 2( 31 + 8 15 )( 31 8 MÓDULO 17. Radiciações e Equações Ciêncis d Nturez, Mtemátic e sus Tecnologis MATEMÁTICA. Mostre que Rdicições e Equções + 8 5 + 8 + 8 5 + 8 ( + 8 5 + 8 5 é múltiplo de 4. 5 = x, com x > 0 5 ) = x ( + 8 5 ) + ( + 8 5 )( 8 + ( 8 5 ) = x

Leia mais

FICHA DE TRABALHO N.º 3 MATEMÁTICA A - 10.º ANO RADICAIS E POTÊNCIAS DE EXPOENTE RACIONAL

FICHA DE TRABALHO N.º 3 MATEMÁTICA A - 10.º ANO RADICAIS E POTÊNCIAS DE EXPOENTE RACIONAL Rdicis e Potêcis de Expoete Rciol Site: http://recursos-pr-mtemtic.webode.pt/ FIH E TRLHO N.º MTEMÁTI - 0.º NO RIIS E POTÊNIS E EXPOENTE RIONL ohece Mtemátic e domirás o Mudo. Glileu Glilei GRUPO I ITENS

Leia mais

TP062-Métodos Numéricos para Engenharia de Produção Interpolação Métodos de Lagrange

TP062-Métodos Numéricos para Engenharia de Produção Interpolação Métodos de Lagrange TP6-Métodos Numéricos pr Egehri de Produção Iterpolção Métodos de grge Prof. Volmir Wilhelm Curitib, 5 Iterpolção Cosiste em determir um fução g() que descreve de form proimd o comportmeto de outr fução

Leia mais

Teoria VII - Tópicos de Informática

Teoria VII - Tópicos de Informática INSTITUTO DE CIÊNCIAS EXATAS E TECNOLOGIA ICET Cmpins Limeir Jundií Teori VII - Tópicos de Informátic 1 Fórmuls Especiis no Excel 2 Função Exponencil 3 Função Logrítmic Unip 2006 - Teori VII 1 1- FÓRMULAS

Leia mais

Matemática. Resolução das atividades complementares. M13 Determinantes. 1 (Unifor-CE) Sejam os determinantes A 5. 2 (UFRJ) Dada a matriz A 5 (a ij

Matemática. Resolução das atividades complementares. M13 Determinantes. 1 (Unifor-CE) Sejam os determinantes A 5. 2 (UFRJ) Dada a matriz A 5 (a ij Resolução ds tividdes complementres Mtemátic M Determinntes p. (Unifor-CE) Sejm os determinntes A, B e C. Nests condições, é verdde que AB C é igul : ) c) e) b) d) A?? A B?? B C?? C AB C ()? AB C, se i,

Leia mais

ESTABILIDADE. Pólos Zeros Estabilidade

ESTABILIDADE. Pólos Zeros Estabilidade ESTABILIDADE Pólo Zero Etbilidde Itrodução Um crcterític importte pr um item de cotrole é que ele ej etável. Se um etrd fiit é plicd o item de cotrole, etão íd deverá er fiit e ão ifiit, ito é, umetr em

Leia mais

Roteiro da aula. MA091 Matemática básica. Divisão e produto. Francisco A. M. Gomes. Março de 2016 4 Exercícios

Roteiro da aula. MA091 Matemática básica. Divisão e produto. Francisco A. M. Gomes. Março de 2016 4 Exercícios Roteiro d ul MA09 Mtemátic ásic Aul Divisão. Operções com frções Frncisco A. M. Gomes UNICAMP - IMECC Mrço de 06 Divisão e frções Multiplicção e divisão de frções Som e sutrção de frções Frncisco A. M.

Leia mais

um número finito de possibilidades para o resto, a saber, 0, 1, 2,..., q 1. Portanto, após no máximo q passos,

um número finito de possibilidades para o resto, a saber, 0, 1, 2,..., q 1. Portanto, após no máximo q passos, Instituto de Ciêncis Exts - Deprtmento de Mtemátic Cálculo I Profª Mri Juliet Ventur Crvlho de Arujo Cpítulo : Números Reis - Conjuntos Numéricos Os primeiros números conhecidos pel humnidde são os chmdos

Leia mais

CURSO DE INVERNO DE MATEMÁTICA BÁSICA 2013

CURSO DE INVERNO DE MATEMÁTICA BÁSICA 2013 Progrm de Pós-Grdução em Físic Curso de Ivero de Mtemátic Básic 0 CURSO DE INVERNO DE MATEMÁTICA BÁSICA 0 Progrm de Pós-Grdução em Físic Pró-Reitori de Esio de Grdução/UFSC Pró-Reitori de Esio de Pós-Grdução/UFSC

Leia mais

LISTA PREPARATÓRIA PARA RECUPERAÇÃO FINAL MATEMÁTICA (9º ano)

LISTA PREPARATÓRIA PARA RECUPERAÇÃO FINAL MATEMÁTICA (9º ano) PARTE I ) Determine s potêncis: ) 4 = b) - = ) Escrev usndo potênci de bse 0: ) 7 bilhões: b) um milionésimo: ) Trnsforme os números ddos em potencições e simplifique epressão: 0000000 00000 5 = 4) Escrev

Leia mais

Sólidos semelhantes. Um problema matemático, que despertou. Nossa aula. Recordando semelhança 2 = 9 3 = 12 4

Sólidos semelhantes. Um problema matemático, que despertou. Nossa aula. Recordando semelhança 2 = 9 3 = 12 4 A UA UL LA Sólidos semelhntes Introdução Um problem mtemático, que despertou curiosidde e mobilizou inúmeros ciddãos n Gréci Antig, foi o d dupli- cção do cubo. Ou sej, ddo um cubo de rest, qul deverá

Leia mais

Função Modular. x, se x < 0. x, se x 0

Função Modular. x, se x < 0. x, se x 0 Módulo de um Número Rel Ddo um número rel, o módulo de é definido por:, se 0 = `, se < 0 Observção: O módulo de um número rel nunc é negtivo. Eemplo : = Eemplo : 0 = ( 0) = 0 Eemplo : 0 = 0 Geometricmente,

Leia mais

Um disco rígido de 300Gb foi dividido em quatro partições. O conselho directivo ficou. 24, os alunos ficaram com 3 8

Um disco rígido de 300Gb foi dividido em quatro partições. O conselho directivo ficou. 24, os alunos ficaram com 3 8 GUIÃO REVISÕES Simplificção de expressões Um disco rígido de 00Gb foi dividido em qutro prtições. O conselho directivo ficou com 1 4, os docentes ficrm com 1 4, os lunos ficrm com 8 e o restnte ficou pr

Leia mais

SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFERENÇA

SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFERENÇA SISTEMAS DE TEMPO DISCRETO DESCRITO POR EQUAÇÕES A DIFEREÇA ( ( x( Coeficiete costte. ( ( x ( Coeficiete vriável (depedete do tempo. Aplicmos x( pr e cosidermos codição iicil ( ( ( M ( ( ( ( x( x( ( x(

Leia mais

81,9(56,'$'( )('(5$/ '2 5,2 '( -$1(,52 &21&8562 '( 6(/(d 2 0$7(0É7,&$

81,9(56,'$'( )('(5$/ '2 5,2 '( -$1(,52 &21&8562 '( 6(/(d 2 0$7(0É7,&$ 81,9(56,'$'( )('(5$/ ' 5, '( -$1(,5 &1&856 '( 6(/(d 0$7(0É7,&$ -867,),48( 7'$6 $6 68$6 5(667$6 De um retângulo de 18 cm de lrgur e 48 cm de comprimento form retirdos dois qudrdos de ldos iguis 7 cm, como

Leia mais

Professora: Profª Roberta Nara Sodré de Souza

Professora: Profª Roberta Nara Sodré de Souza MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICAS INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA-CAMPUS ITAJAÍ Professor: Profª Robert Nr Sodré de Souz Função

Leia mais

AULA 07 LOGARITMOS EXERCÍCIOS

AULA 07 LOGARITMOS EXERCÍCIOS FUNÇÃO LOGARÍTMICA Itroução Cosieremos os seguites prolems: A que epoete se eve elevr o úmero pr se oter? Pelo euio, temos: = = = Esse vlor eotro pr o epoete eomi-se ritmo o úmero se e se represet por:

Leia mais

Razão entre dois números é o quociente do primeiro pelo segundo número. a : b ou. antecedente. a b. consequente

Razão entre dois números é o quociente do primeiro pelo segundo número. a : b ou. antecedente. a b. consequente 1 PROPORCIONALIDADE Rzão Rzão entre dois números é o quociente do primeiro pelo segundo número. Em um rzão A rzão temos que: ntecedente é lid como está pr. : ou consequente Proporção Chmmos de proporção

Leia mais

UNIDADE 1 REGRA DE TRÊS. Exercícios de Sala 1. Se 12Kg de um certo produto custa R$ 600,00, qual o preço de 25Kg do mesmo produto?

UNIDADE 1 REGRA DE TRÊS. Exercícios de Sala 1. Se 12Kg de um certo produto custa R$ 600,00, qual o preço de 25Kg do mesmo produto? Iclusão pr vid UNIDADE REGRA DE TRÊS GRANDEZAS DIRETAMENTE PROPORCIONAIS Dus grdezs são dits diretmete proporciois qudo o umeto um dels implic o umeto d outr mesm rzão. Eemplo: kg de limeto cust R$, kg

Leia mais

1. Conceito de logaritmo

1. Conceito de logaritmo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Logritmos Prof.: Rogério

Leia mais

2. Resolução Numérica de Equações Não-Lineares

2. Resolução Numérica de Equações Não-Lineares . Resolução Numéric de Equções Não-Lieres. Itrodução Neste cpítulo será visto lgoritmos itertivos pr ecotrr rízes de fuções ão-lieres. Nos métodos itertivos, s soluções ecotrds ão são ets, ms estrão detro

Leia mais

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução (9) - www.elitecmpins.com.br O ELITE RESOLVE MATEMÁTICA QUESTÃO Se Améli der R$, Lúci, então mbs ficrão com mesm qunti. Se Mri der um terço do que tem Lúci, então est ficrá com R$, mis do que Améli. Se

Leia mais

Matemática. Resolução das atividades complementares. M13 Progressões Geométricas

Matemática. Resolução das atividades complementares. M13 Progressões Geométricas Resolução ds tividdes complementres Mtemátic M Progressões Geométrics p. 7 Qul é o o termo d PG (...)? q q? ( ) Qul é rzão d PG (...)? q ( )? ( ) 8 q 8 q 8 8 Três números reis formm um PG de som e produto

Leia mais

2. Prisma de base hexagonal: formado 8 faces, 2 hexágonos (bases), 6 retângulos (faces laterais).

2. Prisma de base hexagonal: formado 8 faces, 2 hexágonos (bases), 6 retângulos (faces laterais). unifmu Nome: Professor: Ricrdo Luís de Souz Curso de Design Mtemátic Aplicd Atividde Explortóri V Turm: Dt: SÓLIDOS GEOMÉTRICOS: CÁLCULO DE ÁREA SUPERFICIAL E DE VOLUME Objetivo: Conecer e nomer os principis

Leia mais

Incertezas e Propagação de Incertezas. Biologia Marinha

Incertezas e Propagação de Incertezas. Biologia Marinha Incertezs e Propgção de Incertezs Cursos: Disciplin: Docente: Biologi Biologi Mrinh Físic Crl Silv Nos cálculos deve: Ser coerente ns uniddes (converter tudo pr S.I. e tender às potêncis de 10). Fzer um

Leia mais

TEORIA DOS LIMITES LIMITES. Professor: Alexandre 2. DEFINIÇÃO DE LIMITE

TEORIA DOS LIMITES LIMITES. Professor: Alexandre 2. DEFINIÇÃO DE LIMITE TEORIA DOS LIMITES Professor: Alendre LIMITES. NOÇÃO INTUITIVA DE LIMITE Vmos nlisr o comportmento gráfico d função f ( ) qundo tende pr. ) Primeirmente vmos tender vriável por vlores inferiores, ou sej,

Leia mais

Progressões Aritméticas

Progressões Aritméticas Segund Etp Progressões Aritmétics Definição São sequêncis numérics onde cd elemento, prtir do segundo, é obtido trvés d som de seu ntecessor com um constnte (rzão).,,,,,, 1 3 4 n 1 n 1 1º termo º termo

Leia mais

Alternativa A. Alternativa B. igual a: (A) an. n 1. (B) an. (C) an. (D) an. n 1. (E) an. n 1. Alternativa E

Alternativa A. Alternativa B. igual a: (A) an. n 1. (B) an. (C) an. (D) an. n 1. (E) an. n 1. Alternativa E R é o cojuto dos úeros reis. A c deot o cojuto copleetr de A R e R. A T é triz trspost d triz A. (, b) represet o pr ordedo. [,b] { R; b}, ],b[ { R; < < b} [,b[ { R; < b}, ],b] { R; < b}.(ita - ) Se R

Leia mais

ESCOLA TÉCNICA DE BRASILIA CURSO DE MATEMÁTICA APLICADA

ESCOLA TÉCNICA DE BRASILIA CURSO DE MATEMÁTICA APLICADA AULA 0 POTENCIAÇÃO E RADICIAÇÃO. POTENCIAÇÃO N figur 0- teos o exeplo de u poteci DOIS ELEVADO A TRÊS ou DOIS ELEVADO AO CUBO ou siplesete DOIS AO CUBO. POTENCIAÇÃO Expoete (úero de vezes que o ftor se

Leia mais

Matemática 1 Professor Paulo Cesar Pfaltzgraff Ferreira. Sumário

Matemática 1 Professor Paulo Cesar Pfaltzgraff Ferreira. Sumário Mtemátic Professor Pulo Cesr Pfltgrff Ferreir i Sumário Uidde Revisão de Tópicos Fudmetis do Esio Médio... 0. Apresetção... 0. Simologi Mtemátic mis usul... 0. Cojutos Numéricos... 0. Operções com Números

Leia mais

Linhas 1 2 Colunas 1 2. (*) Linhas 1 2 (**) Colunas 2 1.

Linhas 1 2 Colunas 1 2. (*) Linhas 1 2 (**) Colunas 2 1. Resumos ds uls teórics -------------------- Cp 5 -------------------------------------- Cpítulo 5 Determinntes Definição Consideremos mtriz do tipo x A Formemos todos os produtos de pres de elementos de

Leia mais

0.2 Exercícios Objetivo. (c) (V)[ ](F)[ ] A segunda derivada de f é (4) x 0 2

0.2 Exercícios Objetivo. (c) (V)[ ](F)[ ] A segunda derivada de f é (4) x 0 2 A segud derivd de f é f() = { < 0 0 0 (4) Cálculo I List úmero 07 Logritmo e epoecil trcisio.prcio@gmil.com T. Prcio-Pereir Dep. de Computção lu@: Uiv. Estdul Vle do Acrú 3 de outubro de 00 pági d discipli

Leia mais

Definição 1 O determinante de uma matriz quadrada A de ordem 2 é por definição a aplicação. det

Definição 1 O determinante de uma matriz quadrada A de ordem 2 é por definição a aplicação. det 5 DETERMINANTES 5 Definição e Proprieddes Definição O erminnte de um mtriz qudrd A de ordem é por definição plicção ( ) : M IR IR A Eemplo : 5 A ( A ) ( ) ( ) 5 7 5 Definição O erminnte de um mtriz qudrd

Leia mais