Revisão de Potenciação e Radiciação

Tamanho: px
Começar a partir da página:

Download "Revisão de Potenciação e Radiciação"

Transcrição

1 Revisão de Poteição e Rdiição Agrdeietos à Prof : Alessdr Stdler Fvro Misik Defiição de Poteição A poteição idi ultiplições de ftores iguis Por eeplo, o produto pode ser idido for Assi, o síolo, sedo u úero iteiro e u úero turl ior que, sigifi o produto de ftores iguis : ftores - é se; - é o epoete; - o resultdo é potêi Por defiição teos que: 0 e Eeplos: ) ) ) d) CUIDADO!! Cuiddo o os siis Núero egtivo elevdo epoete pr fi positivo Eeplos: Núero egtivo elevdo epoete ípr peree egtivo Eeplo: E : Se, qul será o vlor de? Oserve:, pois o sil egtivo ão está elevdo o qudrdo os prêteses deve ser usdos, porque o sil egtivo - ão deve ser elevdo o qudrdo, soete o úero que é o vlor de

2 0 ; o Proprieddes d Poteição Qudro Resuo ds Proprieddes A seguir presetos lgus eeplos pr ilustrr o uso ds proprieddes: ) E : E : E : este so deveos prieirete resolver s potêis pr depois ultiplir os resultdos, pois s ses e são diferetes Os: Deveos lerr que est propriedde é válid os dois setidos Assi: Eeplo: ) E : E : Os:Est propriedde té é válid os dois setidos, sej Eeplo: ) E : E : Os:Est propriedde té é válid os dois setidos, sej

3 E: d) E : E : E : E : Os:Est propriedde té é válid os dois setidos, sej E: e) 0 o, E : E : Os:Est propriedde té é válid os dois setidos, sej E: f) E : E : E : Os:Est propriedde té é válid os dois setidos, sej E: g) E : O sil egtivo o epoete idi que se d potêi deve ser ivertid e siulteete deveos eliir o sil egtivo do epoete

4 E : E : Os:Est propriedde té é válid os dois setidos, sej E: CUIDADO!!! PARA TREINO: EXERCÍCIOS LISTA Eeplos is opleos: () () () Prieiro eliios o sil egtivo do epoete ivertedo se

5 () positivo fi epoetepr, elevdo ºegtivo () Nos eeplos () e () seguir, deveos prieiro resolver operção que pree detro dos prêteses () () () Siplifique s epressões: Coo teos ultiplição e divisão de potêis de ses diferetes, deveos reduzir tods es se Coo eor se é, tetreos esrever todos os úeros que pree se Sustituireos por e por Agor plireos s proprieddes de ultiplição e divisão de potêis de es se

6 RADICIAÇÃO Defiição de Rdiição A rdiição é operção ivers d poteição De odo gerl podeos esrever: e E : pois E : pois N riz, teos: - O úero é hdo ídie; - O úero é hdo rdido CÁLCULO DA RAIZ POR DECOMPOSIÇÃO RAÍZES NUMÉRICAS Eeplos: ) Deveos ftorr ) Os: Ne sepre hegreos eliir o rdil Resultdos possíveis For ftord de For ftord de R A Í Z E S L I T E R A I S )

7 Esrever o rdil for de epoete frioário ão resolve o prole, pois ove ão é divisível por Assi deoporeos o úero d seguite for: = +, pois é divisível por que é o ídie d riz Assi tereos: ) pois é divisível por (ídie d riz) Outros Eeplos: ) (pois é divisível por ) ) ão pois é divisível por

8 Ess propriedde ostr que todo rdil pode ser esrito for de u potêi Proprieddes dos rdiis ) p p E : E : E : Os: é iportte lerr que est propriedde té é uito usd o setido otrário sej p p (o deoidor do epoete frioário é o ídie do rdil) Eeplo : ) E: ) E: d) E: e) E: f) E:

9 O P E R A Ç Õ E S C O M R A D I C A I S Adição e Sutrção Qudo teos rdiis seelhtes e u dição lgéri, podeos reduzilos u úio rdil sodo-se os ftores eteros desses rdiis Eeplos: ) ) ftores eteros Os: Podeos dizer que estos olodo e evidêi os rdiis que preer e todos os teros d so ) ) ão pode ser is reduzid MULTIPLICAÇÃO u: Teos sos ásios pr ultiplição de rdiis, seguir vereos d º CASO: Rdiis tê rízes ets Neste so st etrir riz e ultiplir os resultdos: Eeplo: º CASO: Rdiis tê o eso ídie Deveos oservr o ídie e ultiplir os rdidos, siplifido sepre que possível o resultdo otido Eeplos: ) prr qui! ) pode Se quiseros otiur, podeos seprr os rdiis dite de ultiplição e divisão: A orde dos ftores ão lter o produto (ultiplição) ) 0 º CASO: Rdiis tê ídies diferetes

10 O iho is fáil é trsforr os rdiis e potêis frioáris Logo e seguid, trsforr os epoetes frioários e frções equivletes (o eso deoidor) Eeplos: ) ) º CASO: Utilizdo propriedde distriutiv Multiplios uerdor e deoidor d frção por e trsforos frção equivlete Eeplo: ATENÇÃO: -, sej, riz de is riz de dois é igul dus rízes de dois por que? - id podeos lerr que tod riz pode ser esrit for de potêi, etão: Coservos se e soos os epoetes regr de poteição Divisão A divisão de rdiis te sos ásios, seguir vereos d u deles: º CASO: Os rdiis tê rízes ets Nesse so, etríos s rízes e dividios os resultdos Eeplo: : : º CASO: Rdiis tê o eso ídie Deveos oservr o ídie e dividir os rdidos

11 Coo os ídies ds rízes são iguis, podeos sustituir s dus rízes por u só! Eeplos: : : 0 0 º CASO: Rdiis o ídies diferetes O iho is fáil é trsforr os rdiis e potêis frioáris, efetur s operções de potêis de es se e voltr pr for de rdil Eeplo: : Riolizção de Deoidores Riolizr u frção ujo deoidor é u úero irriol, sigifi hr u frção equivlete à el o deoidor riol Pr isso, deveos ultiplir os os teros d frção por u úero oveiete Aid podeos dizer que riolizr u frção sigifi reesrever frção eliido do deoidor os rdiis Vejos lgus eeplos: ) Teos o deoidor pes riz qudrd: ) Teos o deoidor rízes o ídies iores que : () Teos que ultiplir uerdor e deoidor por, pois + = () = Teos que ultiplir uerdor e deoidor por, pois +

12 ) Teos o deoidor so sutrção de rdiis: PARA TREINO: EXERCÍCIOS LISTA O sil deve ser otrário, seão riz ão será eliid do deoidor

A potenciação indica multiplicações de fatores iguais. Por exemplo, o produto n fatores

A potenciação indica multiplicações de fatores iguais. Por exemplo, o produto n fatores POTENCIAÇÃO E RADICIAÇÃO POTENCIAÇÃO DEFINIÇÃO DE POTENCIAÇÃO A poteição idi ultiplições de ftores iguis Por eeplo, o produto pode ser idido for Assi, o síolo de ftores iguis : - é se; - é o epoete; -

Leia mais

POTENCIAÇÃO RADICIAÇÃO

POTENCIAÇÃO RADICIAÇÃO POTENCIAÇÃO E RADICIAÇÃO POTENCIAÇÃO E RADICIAÇÃO O ódulo II é oposto por eeríios evolvedo poteição e rdiição. Estos dividido-o e dus prtes pr elhor opreesão. ª PARTE: POTENCIAÇÃO. DEFINIÇÃO DE POTENCIAÇÃO

Leia mais

MÓDULO II POTENCIAÇÃO RADICIAÇÃO

MÓDULO II POTENCIAÇÃO RADICIAÇÃO MÓDULO II POTENCIAÇÃO E RADICIAÇÃO MÓDULO II POTENCIAÇÃO E RADICIAÇÃO O ódulo II é oposto por eeríios evolvedo poteição e rdiição Estos dividido-o e dus prtes pr elhor opreesão ª PARTE: POTENCIAÇÃO DEFINIÇÃO

Leia mais

A potenciação indica multiplicações de fatores iguais. Por exemplo, o produto

A potenciação indica multiplicações de fatores iguais. Por exemplo, o produto POTENCIAÇÃO E RADICIAÇÃO POTENCIAÇÃO A potecição idic ultiplicções de ftores iguis. Por eeplo, o produto... pode ser idicdo for. Assi, o síolo, sedo u úero iteiro e u úero turl ior que, sigific o produto

Leia mais

9 = 3 porque 3 2 = 9. 16 = 4 porque 4 2 = 16. -125 = - 5 porque (- 5) 3 = - 125. 81 = 3 porque 3 4 = 81. 32 = 2 porque 2 5 = 32 -32 = - 2

9 = 3 porque 3 2 = 9. 16 = 4 porque 4 2 = 16. -125 = - 5 porque (- 5) 3 = - 125. 81 = 3 porque 3 4 = 81. 32 = 2 porque 2 5 = 32 -32 = - 2 COLÉGIO PEDRO II Cpus Niterói Discipli: Mteátic Série: ª Professor: Grziele Souz Mózer Aluo (: Tur: Nº: RADICAIS º Triestre (Reforço) INTRODUÇÃO 9 porque 9 porque - - porque (- ) - 8 porque 8 porque De

Leia mais

EXERCÍCIOS: d) 1.1 = e) = f) = g) 45.45= Potenciação de um número é o produto de fatores iguais a esse número; h)

EXERCÍCIOS: d) 1.1 = e) = f) = g) 45.45= Potenciação de um número é o produto de fatores iguais a esse número; h) d). = e).. = f).. = Potecição de um úmero é o produto de ftores iguis esse úmero; ) =. = 9 ) =.. = (OBS.: os úmeros:. são ditos ftores, ou ses) g).= h) 8.8.8= i) 89.89.89 = EXERCÍCIOS: 0. Sedo =, respod:

Leia mais

a) N g)... Q c) 4... Z d) e) ... I... Z ... Q h)... N i) N

a) N g)... Q c) 4... Z d) e) ... I... Z ... Q h)... N i) N CONJUNTOS NUMÉRICOS NÚMEROS NATURAIS(N) N = { 0,,,,,,...} ou N* = {,,,,,...} NÚMEROS INTEIROS(Z) Z = {...,-,-,-,-,0,,,,,...} Sucojuto de Z Cojuto dos úeros iteiros ão-ulos. Z* = {...,-,-,-,-,,,,,...} Cojuto

Leia mais

EXERCÍCIOS BÁSICOS DE MATEMÁTICA

EXERCÍCIOS BÁSICOS DE MATEMÁTICA . NÚMEROS INTEIROS Efetur: ) + ) 8 ) 0 8 ) + ) ) 00 ( ) ) ( ) ( ) 8) + 9) + 0) ( + ) ) 8 + 0 ) 0 ) ) ) ( ) ) 0 ( ) ) 0 8 8) 0 + 0 9) + 0) + ) ) ) 0 ) + 9 ) 9 + ) ) + 8 8) 9) 8 0000 09. NÚMEROS FRACIONÁRIOS

Leia mais

ESCOLA TÉCNICA DE BRASILIA CURSO DE MATEMÁTICA APLICADA

ESCOLA TÉCNICA DE BRASILIA CURSO DE MATEMÁTICA APLICADA AULA 0 POTENCIAÇÃO E RADICIAÇÃO. POTENCIAÇÃO N figur 0- teos o exeplo de u poteci DOIS ELEVADO A TRÊS ou DOIS ELEVADO AO CUBO ou siplesete DOIS AO CUBO. POTENCIAÇÃO Expoete (úero de vezes que o ftor se

Leia mais

Tempo Estratégia Descrição (Arte) 36,00 e compro. 3 de R$ 36,00. devo pagar 4. Multiplicação Solução 2. Devo pagar R$ 27,00. Multiplicação Aplicação

Tempo Estratégia Descrição (Arte) 36,00 e compro. 3 de R$ 36,00. devo pagar 4. Multiplicação Solução 2. Devo pagar R$ 27,00. Multiplicação Aplicação Curso Turo Discipli Crg Horári Licecitur Ple Noturo Mteátic 0h e Mteátic Eleetr I Aul Período Dt Coordedor.. /0/00 (terç-feir) Tepo Estrtégi Descrição (Arte) 0 / / 0 Vh Aertur P Céli Uidde V O cojuto dos

Leia mais

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA LISTA 2 RADICIAÇÃO

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA LISTA 2 RADICIAÇÃO INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA Professores: Griel Brião / Mrcello Amdeo Aluo(: Turm: ESTUDO DOS RADICAIS LISTA RADICIAÇÃO Deomi-se riz de ídice de um úmero rel, o úmero rel tl que

Leia mais

PROPRIEDADE E EXERCICIOS RESOLVIDOS.

PROPRIEDADE E EXERCICIOS RESOLVIDOS. PROPRIEDADE E EXERCICIOS RESOLVIDOS. Proprieddes:. Epoete Igul u(. Cosiderdo d coo se osse qulquer uero ou o d u letr que pode tor qulquer vlor. d d d e: d 9 9 9. Epoete Mior que U(. De u or gerl te-se:...

Leia mais

Cálculo I 3ª Lista de Exercícios Limites

Cálculo I 3ª Lista de Exercícios Limites Cálculo I ª List de Eercícios Liites Clcule os liites: 9 / /8 Resp.: 6 li li li li li li e d c e d c Clcule os liites io: Clcule: 8 6 li 8 li e d li li c li li / /.: Resp e d c Resp.: li li li li li li

Leia mais

UNIDADE 12 FUNÇÕES POLINOMIAIS

UNIDADE 12 FUNÇÕES POLINOMIAIS REVISÃO DA TEORIA MA UNIDADE 2 FUNÇÕES POLINOMIAIS Fuções Polioiis vs Poliôios Diz-se que p: IRIR é u fução polioil qudo eiste úeros 0,,..., tis que, pr todo R, te-se p() = + +... + + 0 Se 0, dizeos que

Leia mais

Sexta Feira. Cálculo Diferencial e Integral A

Sexta Feira. Cálculo Diferencial e Integral A Set Feir Cálculo Diferecil e Itegrl A // Fuções Reis iite de Fuções Código: EXA7 A Tur: EEAN MECAN Prof. HANS-URICH PICHOWSKI Prof. Hs-Ulrich Pilchowski Nots de ul Cálculo Diferecil iites de Fuções Sej

Leia mais

NÃO existe raiz real de um número negativo se o índice do radical for par.

NÃO existe raiz real de um número negativo se o índice do radical for par. 1 RADICIAÇÃO A rdicição é operção invers d potencição. Sbemos que: ) b) Sendo e b números reis positivos e n um número inteiro mior que 1, temos, por definição: sinl do rdicl n índice Qundo o índice é,

Leia mais

a é dita potência do número real a e representa a

a é dita potência do número real a e representa a IFSC / Mteátic Básic Prof. Júlio Césr TOMIO POTENCIAÇÃO [ou Expoecição] # Potêci co Expoete Nturl: Defiição: Ddo u úero iteiro positivo, expressão ultiplicção do úero rel e questão vezes. é dit potêci

Leia mais

No que segue, apresentamos uma definição formal para a exponenciação. Se a 0, por definição coloca-se a a a, a a a a e assim por diante. Ou.

No que segue, apresentamos uma definição formal para a exponenciação. Se a 0, por definição coloca-se a a a, a a a a e assim por diante. Ou. MAT Cálculo Diferecil e Itegrl I RESUMO DA AULA TEÓRICA 3 Livro do Stewrt: Seções.5 e.6. FUNÇÃO EXPONENCIAL: DEFINIÇÃO No ue segue, presetos u defiição forl pr epoecição uisuer R e., pr 2 3 Se, por defiição

Leia mais

TÓPICOS DE REVISÃO MATEMÁTICA I MÓDULO 4 : Álgebra Elementar 3 a Série Ensino Médio Prof. Rogério Rodrigues. NOME :... Número :...Turma :...

TÓPICOS DE REVISÃO MATEMÁTICA I MÓDULO 4 : Álgebra Elementar 3 a Série Ensino Médio Prof. Rogério Rodrigues. NOME :... Número :...Turma :... TÓPICOS DE REVISÃO MATEMÁTICA I MÓDULO Álger Eleentr Série Ensino Médio Prof Rogério Rodrigues NOME Núero Tur I) PRODUTOS NOTÁVEIS ) Qudrdo d so de dois teros ( ) ) Qudrdo d diferenç ( ) c) Produto d so

Leia mais

3 ) x = 3 3 pela propriedade (a n ) m = a

3 ) x = 3 3 pela propriedade (a n ) m = a Mteátic A Etesivo V. 7 Eercícios 0) A 0) B 0,) pel propriedde 00. ftordo, 00. e ) pel propriedde.. ) ) pel propriedde. +. 0 ) ) pel propriedde ). ultiplicdo equção por 8 8 8 X 9 + ftordo 9 e 7 7 ) + pel

Leia mais

Vamos supor um quadrado com este, divididos em 9 quadradinhos iguais.

Vamos supor um quadrado com este, divididos em 9 quadradinhos iguais. Rdicição O que é, fil, riz qudrd de um úmero? Vmos supor um qudrdo com este, divididos em 9 qudrdihos iguis. Pegdo cd qudrdiho como uidde de áre, podemos dizer que áre do qudrdo é 9 qudrdihos, ou sej,

Leia mais

2. POTÊNCIAS E RAÍZES

2. POTÊNCIAS E RAÍZES 2 2. POTÊNCIAS E RAÍZES 2.. POTÊNCIAS COM EXPOENTES INTEIROS Vios teriorete lgus sectos históricos ds otêcis e dos logritos, e coo lgus rocessos ue levr à costrução dos esos. Pssreos seguir u desevolvieto

Leia mais

Departamento de Matemática, Física, Química e Engenharia de Alimentos Projeto Calcule! Profª: Rosimara Fachin Pela Profª: Vanda Domingos Vieira

Departamento de Matemática, Física, Química e Engenharia de Alimentos Projeto Calcule! Profª: Rosimara Fachin Pela Profª: Vanda Domingos Vieira Deprtmeto de Mtemátic, Físic, Químic e Egehri de Alimetos Projeto Clcule! Profª Rosimr Fchi Pel Profª Vd Domigos Vieir PARTE CONJUNTOS NUMÉRICOS E NUMEROS REAIS Um umero rel e qulquer umero que pode ser

Leia mais

Capitulo 1 - Nivelamento

Capitulo 1 - Nivelamento Cpitulo - Niveleto. Objetivo Este cpítulo foi itroduzido est postil co o objetivo de proover o iveleto de lgus luos que teh dificulddes e álgebr. Portto, o luo que ão sete dificuldde est áre d teátic está

Leia mais

Alternativa A. Alternativa B. igual a: (A) an. n 1. (B) an. (C) an. (D) an. n 1. (E) an. n 1. Alternativa E

Alternativa A. Alternativa B. igual a: (A) an. n 1. (B) an. (C) an. (D) an. n 1. (E) an. n 1. Alternativa E R é o cojuto dos úeros reis. A c deot o cojuto copleetr de A R e R. A T é triz trspost d triz A. (, b) represet o pr ordedo. [,b] { R; b}, ],b[ { R; < < b} [,b[ { R; < b}, ],b] { R; < b}.(ita - ) Se R

Leia mais

Curso de linguagem matemática Professor Renato Tião. 1. Resolver as seguintes equações algébricas: GV. Simplifique a expressão 2 GV.

Curso de linguagem matemática Professor Renato Tião. 1. Resolver as seguintes equações algébricas: GV. Simplifique a expressão 2 GV. Curso de liguge teátic Professor Reto Tião. Resolver s seguites equções lgébrics: ) x + = b) x = c) x = d) x = e) x = f) x = g) x = ) x = i) x = j) = k) logx = l) logx= x GV. GV. Siplifique expressão 8

Leia mais

ALGUMAS CONSIDERAÇÕES TEORICAS 1. Sistema de equações Lineares

ALGUMAS CONSIDERAÇÕES TEORICAS 1. Sistema de equações Lineares LGUMS CONSIDERÇÕES TEORICS. Siste de equções Lieres De fo gerl, podeos dier que u siste de equções lieres ou siste lier é u cojuto coposto por dus ou is equções lieres. U siste lier pode ser represetdo

Leia mais

Universidade Federal Fluminense ICEx Volta Redonda Métodos Quantitativos Aplicados I Professora: Marina Sequeiros

Universidade Federal Fluminense ICEx Volta Redonda Métodos Quantitativos Aplicados I Professora: Marina Sequeiros Uiversidde Federl Flumiese ICE Volt Redod Métodos Qutittivos Aplicdos I Professor: Mri Sequeiros. Poliômios Defiição: Um poliômio ou fução poliomil P, vriável, é tod epressão do tipo: P)=... 0, ode IN,

Leia mais

EXPOENTE. Podemos entender a potenciação como uma multiplicação de fatores iguais.

EXPOENTE. Podemos entender a potenciação como uma multiplicação de fatores iguais. EXPOENTE 2 3 = 8 RESULTADO BASE Podeos entender potencição coo u ultiplicção de ftores iguis. A Bse será o ftor que se repetirá O expoente indic qunts vezes bse vi ser ultiplicd por el es. 2 5 = 2. 2.

Leia mais

OPERAÇÕES ALGÉBRICAS

OPERAÇÕES ALGÉBRICAS MATEMÁTICA OPERAÇÕES ALGÉBRICAS 1. EXPRESSÕES ALGÉBRICAS Monômio ou Termo É expressão lgébric mis sintétic. É expressão formd por produtos e quocientes somente. 5x 4y 3x y x x 8 4x x 4 z Um monômio tem

Leia mais

MÓDULO IV. EP.02) Determine o valor de: a) 5 3 = b) 3 4 = c) ( 4) 2 = d) 4 2 = EP.03) Determine o valor de: a) 2 3 = b) 5 2 = c) ( 3) 4 = d) 3 4 =

MÓDULO IV. EP.02) Determine o valor de: a) 5 3 = b) 3 4 = c) ( 4) 2 = d) 4 2 = EP.03) Determine o valor de: a) 2 3 = b) 5 2 = c) ( 3) 4 = d) 3 4 = MÓDULO IV. Defiição POTENCIACÃO Qudo um úmero é multiplicdo por ele mesmo, dizemos que ele está elevdo o qudrdo, e escrevemos:. Se um úmero é multiplicdo por ele mesmo váris vezes, temos um potêci:.. (

Leia mais

PROPRIEDADES DAS POTÊNCIAS

PROPRIEDADES DAS POTÊNCIAS EXPONENCIAIS REVISÃO DE POTÊNCIAS Represetos por, potêci de bse rel e epoete iteiro. Defiios potêci os csos bio: 0) Gráfico d fução f( ) 0 Crescete I ]0, [.....,, ftores 0, se 0 PROPRIEDADES DAS POTÊNCIAS

Leia mais

MATEMÁTICA BÁSICA. a c ad bc. b d bd EXERCÍCIOS DE AULA. 01) Calcule o valor de x em: FRAÇÕES

MATEMÁTICA BÁSICA. a c ad bc. b d bd EXERCÍCIOS DE AULA. 01) Calcule o valor de x em: FRAÇÕES MATEMÁTICA BÁSICA FRAÇÕES EXERCÍCIOS DE AULA ) Clcule o vlor de x em: A som e sutrção de frções são efetuds prtir d oteção do míimo múltiplo comum dos deomidores. É difícil respoder de imedito o resultdo

Leia mais

Matemática Fascículo 03 Álvaro Zimmermann Aranha

Matemática Fascículo 03 Álvaro Zimmermann Aranha Mtemátic Fscículo 03 Álvro Zimmerm Arh Ídice Progressão Aritmétic e Geométric Resumo Teórico... Exercícios...3 Dics...4 Resoluções...5 Progressão Aritmétic e Geométric Resumo teórico Progressão Aritmétic

Leia mais

FUNÇÃO EXPONENCIAL. P potência. Se na potência a n a e n Q, temos: 1- Um número, não-nulo elevado a 0 (zero) é igual a 1 (um).

FUNÇÃO EXPONENCIAL. P potência. Se na potência a n a e n Q, temos: 1- Um número, não-nulo elevado a 0 (zero) é igual a 1 (um). FUNÇÃO EXPONENCIAL - Iicilmete, pr estudr fução epoecil e, coseqüetemete, s equções epoeciis, devemos rever os coceitos sore Potecição. - POTENCIAÇÃO Oserve o produto io.... = 6 Este produto pode ser revido

Leia mais

Olimpíada Brasileira de Matemática X semana olímpica 21 a 28 de janeiro de Eduardo Poço. Integrais discretas Níveis III e U

Olimpíada Brasileira de Matemática X semana olímpica 21 a 28 de janeiro de Eduardo Poço. Integrais discretas Níveis III e U Olipíd Brsileir de Mteátic X se olípic 8 de jeiro de 007 Edurdo Poço Itegris discrets Níveis III e U Itegrl discret: dizeos que F é itegrl discret de F F f f se e soete se:, pr iteiro pricípio D es for,

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 2. MATEMÁTICA III 1 SISTEMAS LINEARES

Todos os exercícios sugeridos nesta apostila se referem ao volume 2. MATEMÁTICA III 1 SISTEMAS LINEARES INTRODUÇÃO... EQUAÇÕES LINEARES... SOLUÇÕES DE UMA EQUAÇÃO LINEAR... MATRIZES DE UM SISTEMA... SOLUÇÃO DE UM SISTEMA LINEAR... SISTEMAS ESCALONADOS... RESOLUÇÃO DE SISTEMA ESCALONADO... SISTEMAS EQUIVALENTES...

Leia mais

Sexta Feira. Cálculo Diferencial

Sexta Feira. Cálculo Diferencial Set Feir Cálculo Diferecil // Itrodução Ojetivos, Método de Avlição, Plejeto e revisão de teátic Código: EXA A Turs: ELEAN, MECAN Prof HANS-ULRICH PILCHOWSKI Prof Hs-Ulrich Pilchowski Nots de ul Cálculo

Leia mais

Professor Mauricio Lutz FUNÇÃO EXPONENCIAL

Professor Mauricio Lutz FUNÇÃO EXPONENCIAL Professor Muricio Lutz REVISÃO SOBRE POTENCIAÇÃO ) Expoete iteiro positivo FUNÇÃO EPONENCIAL Se é u uero rel e é iteiro, positivo, diferete de zero e ior que u, expressão represet o produto de ftores,

Leia mais

o quociente C representa a quantidade de A por unidade de B. Exemplo Se um objecto custar 2, então 10 objectos custam 20. Neste caso temos 20 :10 2.

o quociente C representa a quantidade de A por unidade de B. Exemplo Se um objecto custar 2, então 10 objectos custam 20. Neste caso temos 20 :10 2. Mtemátic I - Gestão ESTG/IPB Resolução. (i).0 : r 0.000.0 00.0 00 0 0.0 00 0 00.000 00 000.008 90 0.000.000 00 000 008 90.00 00 00 00 9 Dividedo = Divisor x Quociete + Resto.0 = x.008 + 0.000. Num divisão

Leia mais

Z = {, 3, 2, 1,0,1,2,3, }

Z = {, 3, 2, 1,0,1,2,3, } Pricípios Aritméticos O cojuto dos úmeros Iteiros (Z) Em Z estão defiids operções + e. tis que Z = {, 3,, 1,0,1,,3, } A) + y = y + (propriedde comuttiv d dição) B) ( + y) + z = + (y + z) (propriedde ssocitiv

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 4

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 4 FICHA de AVALIAÇÃO de MATEMÁTICA A 0.º Ao Versão Apresete o seu rciocíio de form clr, idicdo todos os cálculos que tiver de efetur e tods s justificções ecessáris. Qudo, pr um resultdo, ão é pedid um proimção,

Leia mais

1. Breve Revisão de Operações em

1. Breve Revisão de Operações em Breve Revisão de Operções em Est seção cotém um reve resumo de lgums operções e proprieddes dos úmeros reis, s quis serão muito utilizds o desevolvimeto do Cálculo Como se trt de um rápid revisão, escolhemos

Leia mais

a.cosx 1) (ITA) Se P(x) é um polinômio do 5º grau que satisfaz as condições 1 = P(1) = P(2) = P(3) = P(4) = P(5) e P(6) = 0, então temos:

a.cosx 1) (ITA) Se P(x) é um polinômio do 5º grau que satisfaz as condições 1 = P(1) = P(2) = P(3) = P(4) = P(5) e P(6) = 0, então temos: ) (ITA) Se P(x) é um poliômio do 5º gru que stisfz s codições = P() = P() = P() = P(4) = P(5) e P(6) = 0, etão temos: ) P(0) = 4 b) P(0) = c) P(0) = 9 d) P(0) = N.D.A. ) (UFC) Sej P(x) um poliômio de gru,

Leia mais

DESIGUALDADES Onofre Campos

DESIGUALDADES Onofre Campos OLIMPÍADA BRASILEIRA DE MATEMÁTICA NÍVEL II SEMANA OLÍMPICA Slvdor, 9 6 de jeiro de 00 DESIGUALDADES Oofre Cmpos oofrecmpos@olcomr Vmos estudr lgums desigulddes clássics, como s desigulddes etre s médis

Leia mais

Roteiro da aula. MA091 Matemática básica. Divisão e produto. Francisco A. M. Gomes. Março de 2016 4 Exercícios

Roteiro da aula. MA091 Matemática básica. Divisão e produto. Francisco A. M. Gomes. Março de 2016 4 Exercícios Roteiro d ul MA09 Mtemátic ásic Aul Divisão. Operções com frções Frncisco A. M. Gomes UNICAMP - IMECC Mrço de 06 Divisão e frções Multiplicção e divisão de frções Som e sutrção de frções Frncisco A. M.

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear NOTS E U Geoetri lític e Álger ier Cpítulo - Prte Professor: ui Ferdo Nues Geoetri lític e Álger ier ii Ídice Sistes de Equções ieres efiições Geris Iterpretção Geoétric de Sistes de Equções Iterpretção

Leia mais

Unidade 8 - Polinômios

Unidade 8 - Polinômios Uidde 8 - Poliômios Situção problem Gru de um poliômio Vlor umérico de um poliômio Iguldde de poliômio Poliômio ulo Operções com poliômios Situção problem Em determids épocs do o, lgums ciddes brsileirs

Leia mais

MATRIZES E DETERMINANTES

MATRIZES E DETERMINANTES Professor: Cssio Kiechloski Mello Disciplin: Mtemátic luno: N Turm: Dt: MTRIZES E DETERMINNTES MTRIZES: Em quse todos os jornis e revists é possível encontrr tbels informtivs. N Mtemátic chmremos ests

Leia mais

séries de termos positivos e a n b n, n (div.) (conv.)

séries de termos positivos e a n b n, n (div.) (conv.) Teorem.9 Sej e b i) (div.) ii) b º Critério de Comprção séries de termos positivos e b, N b (div.) (cov.) (cov.) Estude turez d série = sbedo que,! Ν! Teorem.0 º Critério de Comprção Sejm 0, b > 0 e lim

Leia mais

um número finito de possibilidades para o resto, a saber, 0, 1, 2,..., q 1. Portanto, após no máximo q passos,

um número finito de possibilidades para o resto, a saber, 0, 1, 2,..., q 1. Portanto, após no máximo q passos, Instituto de Ciêncis Exts - Deprtmento de Mtemátic Cálculo I Profª Mri Juliet Ventur Crvlho de Arujo Cpítulo : Números Reis - Conjuntos Numéricos Os primeiros números conhecidos pel humnidde são os chmdos

Leia mais

MATEMÁTICA BÁSICA PROF ª. PAULA FRANCIS BENEVIDES

MATEMÁTICA BÁSICA PROF ª. PAULA FRANCIS BENEVIDES MATEMÁTICA BÁSICA PROF ª. PAULA FRANCIS BENEVIDES FRAÇÕES: Adição e Subtrção ) ) ) ) ) 6) Multiplicção 7 Divisão 7 7) ) = Número Misto 9) 0) Coversão de Número Decimis em Frção ) 0, = ), = ) 0, = TESTES:

Leia mais

Matrizes 2. Notação de uma matriz 2 Matriz Quadrada 2 Matriz Diagonal 2 Matriz linha 2 Matriz coluna 2 Matrizes iguais 2. Matriz Transposta 3

Matrizes 2. Notação de uma matriz 2 Matriz Quadrada 2 Matriz Diagonal 2 Matriz linha 2 Matriz coluna 2 Matrizes iguais 2. Matriz Transposta 3 //, :: Mrizes Defiição Noção de u riz Mriz Qudrd Mriz Digol Mriz lih Mriz colu Mrizes iguis Eercício Mriz Trspos Proprieddes d riz rspos Mriz Opos Mriz Nul Mriz ideidde ou Mriz uidde dição de Mrizes Eercício

Leia mais

PL - Casos Especiais

PL - Casos Especiais PL - Csos Especiis MINIMIAÇÃO Eiste fors de solução: ) Método Siple: i Vriável pr etrr bse: quel que reduz (o ivés de uetr) fução iiteste de otilidde: verificr se pode diiuir o se uetr o vlor de lgu vriável

Leia mais

GGE RESPONDE IME 2012 MATEMÁTICA 1

GGE RESPONDE IME 2012 MATEMÁTICA 1 0. O segundo, o sétio e o vigésio sétio teros de u Progressão Aritéti () de núeros inteiros, de rzão r, for, nest orde, u Progressão Geoétri (PG), de rzão q, o q e r IN* (nturl diferente de zero). Deterine:

Leia mais

MATEMÁTICA. Equações do Segundo Grau. Professor : Dêner Rocha. Monster Concursos 1

MATEMÁTICA. Equações do Segundo Grau. Professor : Dêner Rocha. Monster Concursos 1 MATEMÁTICA Equções do Segundo Gru Professor : Dêner Roh Monster Conursos 1 Equções do segundo gru Ojetivos Definir equções do segundo gru. Resolver equções do segundo gru. Definição Chm-se equção do º

Leia mais

2 - Modelos em Controlo por Computador

2 - Modelos em Controlo por Computador Modelção, Idetificção e Cotrolo Digitl 2-Modelos e Cotrolo por Coputdor 2 - Modelos e Cotrolo por Coputdor Objectivo: Itroduzir clsse de odelos digitis que são epregues est discipli pr o projecto de cotroldores

Leia mais

2 - Modelos em Controlo por Computador

2 - Modelos em Controlo por Computador Modelção, Idetificção e Cotrolo Digitl 2-Modelos e Cotrolo por Coputdor 2 - Modelos e Cotrolo por Coputdor Objectivo: Itroduzir clsse de odelos digitis que são epregues est discipli pr o projecto de cotroldores

Leia mais

Limites. Consideremos a função f(x)=2x+1 e vamos analisar o seu comportamento quando a variável x se aproxima cada vez mais de 1.

Limites. Consideremos a função f(x)=2x+1 e vamos analisar o seu comportamento quando a variável x se aproxima cada vez mais de 1. Liites Noção ituitiv Cosidereos fução f() e vos lisr o u coporteto qudo vriável proi cd vez is de. o ) tede, ssuido vlores iferiores.,6,7,8,9,9,99,999,9999 f(),,,6,8,9,98,998,9998 ) tede, ssuido vlores

Leia mais

Matrizes e Vectores. Conceitos

Matrizes e Vectores. Conceitos Mtrizes e Vectores Coceitos Mtriz, Vector, Colu, Lih. Mtriz rigulr Iferior; Mtriz rigulr Superior; Mtriz Digol. Operções etre Mtrizes. Crcterístic de um mtriz; Crcterístic máxim de um mtriz. Mtriz Ivertível,

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear NOS DE U Geometri líti e Álger ier Mtrizes e Determites Professor: uiz Ferdo Nues, Dr 8/Sem_ Geometri líti e Álger ier ii Ídie Mtrizes e Determites Mtrizes Determites e Mtriz Ivers 8 Referêis iliográfis

Leia mais

EQUAÇÃO DO 2 GRAU ( ) Matemática. a, b são os coeficientes respectivamente de e x ; c é o termo independente. Exemplo: x é uma equação do 2 grau = 9

EQUAÇÃO DO 2 GRAU ( ) Matemática. a, b são os coeficientes respectivamente de e x ; c é o termo independente. Exemplo: x é uma equação do 2 grau = 9 EQUAÇÃO DO GRAU DEFINIÇÃO Ddos, b, c R com 0, chmmos equção do gru tod equção que pode ser colocd n form + bx + c, onde :, b são os coeficientes respectivmente de e x ; c é o termo independente x x x é

Leia mais

Professores Edu Vicente e Marcos José Colégio Pedro II Departamento de Matemática Potências e Radicais

Professores Edu Vicente e Marcos José Colégio Pedro II Departamento de Matemática Potências e Radicais POTÊNCIAS A potênci de epoente n ( n nturl mior que ) do número, representd por n, é o produto de n ftores iguis. n =...... ( n ftores) é chmdo de bse n é chmdo de epoente Eemplos =... = 8 =... = PROPRIEDADES

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 2

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 2 FICHA de AVALIAÇÃO de MATEMÁTICA A 4º Teste º Ao de escolridde Versão Nome: Nº Turm: Professor: José Tioco 09/0/08 Apresete o seu rciocíio de form clr, idicdo todos os cálculos que tiver de efetur e tods

Leia mais

BINÔMIO DE NEWTON E TRIÂNGULO DE PASCAL

BINÔMIO DE NEWTON E TRIÂNGULO DE PASCAL BINÔMIO DE NEWTON E TRIÂNGULO DE PASCAL Itrodução Biômio de Newto: O iômio de Newto desevolvido elo célere Isc Newto serve r o cálculo de um úmero iomil do tio ( ) Se for, fic simles é es decorr que ()²

Leia mais

PROGRESSÃO GEOMÉTRICA

PROGRESSÃO GEOMÉTRICA Professor Muricio Lutz PROGREÃO GEOMÉTRICA DEFINIÇÃO Progressão geométric (P.G.) é um seüêci de úmeros ão ulos em ue cd termo posterior, prtir do segudo, é igul o terior multiplicdo por um úmero fixo,

Leia mais

Professor Mauricio Lutz FUNÇÃO LOGARÍTMICA

Professor Mauricio Lutz FUNÇÃO LOGARÍTMICA Professor Muriio Lutz LOGARITMO ) Defiição FUNÇÃO LOGARÍTMICA Chm-se ritmo de um úmero N, positivo, um se positiv e diferete de um, todo úmero, devemos elevr pr eotrr o úmero N Ou sej ÎÂ tl que é o epoete

Leia mais

Material Teórico - Módulo Triângulo Retângulo, Leis dos Cossenos e dos Senos, Poĺıgonos Regulares. Lei dos Senos e Lei dos Cossenos - Parte 3

Material Teórico - Módulo Triângulo Retângulo, Leis dos Cossenos e dos Senos, Poĺıgonos Regulares. Lei dos Senos e Lei dos Cossenos - Parte 3 Mteril Teório - Módulo Triâgulo Retâgulo, Leis dos osseos e dos Seos, Poĺıgoos Regulres Lei dos Seos e Lei dos osseos - Prte 3 Noo o utor: Prof Ulisses Li Prete Revisor: Prof toio ih M Neto 3 de julho

Leia mais

POTENCIAÇÃO. pcdamatematica. a 1. 5 f) ( 5) 5 h) ( 3) a. b (5,2).(10,3) (9,9) 26 a. a a. Definição. Ex: a) Seja a, n e n 2. Definimos: n vezes

POTENCIAÇÃO. pcdamatematica. a 1. 5 f) ( 5) 5 h) ( 3) a. b (5,2).(10,3) (9,9) 26 a. a a. Definição. Ex: a) Seja a, n e n 2. Definimos: n vezes Sej, e. Defiimos: E0: Clcule: d) e) Defiição.... vezes 0 f) ( ) g) h) 0 6 ( ) i) ( ) j) E0: Dos úmeros bio, o que está mis próimo de (,).(0,) é: (9,9) 0,6 6, 6, d) 6 e) 60 E0: O vlor de 0, (0,6) é: 0,06

Leia mais

Curso Mentor. Radicais ( ) www.cursomentor.wordpress.com. Definição. Expoente Fracionário. Extração da Raiz Quadrada. Por definição temos que:

Curso Mentor. Radicais ( ) www.cursomentor.wordpress.com. Definição. Expoente Fracionário. Extração da Raiz Quadrada. Por definição temos que: Curso Metor www.cursometor.wordpress.com Defiição Por defiição temos que: Radicais a b b a, N, Observação : Se é par devemos ter que a é positivo. Observação : Por defiição temos:. 0 0 Observação : Chamamos

Leia mais

Universidade Fernando Pessoa Departamento de Ciência e Tecnologia. Apontamentos ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA. Maria Alzira Pimenta Dinis

Universidade Fernando Pessoa Departamento de Ciência e Tecnologia. Apontamentos ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA. Maria Alzira Pimenta Dinis Uiversidde Ferdo Pesso Deprteto de Ciêci e ecologi potetos de ÁLGER LINER E GEOMERI NLÍIC Mri lir Piet Diis 99 Ídice Ídice Pág. Cpítulo I Mtries e Sistes de Equções Lieres. Mtries. dição de Mtries e Multiplicção

Leia mais

Matemática. Resolução das atividades complementares. M13 Determinantes. 1 (Unifor-CE) Sejam os determinantes A 5. 2 (UFRJ) Dada a matriz A 5 (a ij

Matemática. Resolução das atividades complementares. M13 Determinantes. 1 (Unifor-CE) Sejam os determinantes A 5. 2 (UFRJ) Dada a matriz A 5 (a ij Resolução ds tividdes complementres Mtemátic M Determinntes p. (Unifor-CE) Sejm os determinntes A, B e C. Nests condições, é verdde que AB C é igul : ) c) e) b) d) A?? A B?? B C?? C AB C ()? AB C, se i,

Leia mais

Quando o polinômio divisor é da forma x + a, devemos substituir no polinômio P(x), x por a, visto que: x + a = x ( a).

Quando o polinômio divisor é da forma x + a, devemos substituir no polinômio P(x), x por a, visto que: x + a = x ( a). POLINÔMIOS II. TEOREMA DE D ALEMBERT O resto d divisão de um poliômio P(x) por x é igul P(). m m Sej, com efeito, P x x x..., um poliômio de x, ordedo segudo s potecis m m decrescetes de x. Desigemos o

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 1

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 1 FICHA de AVALIAÇÃO de MATEMÁTICA A 4º Teste º Ao de escolridde Versão Nome: Nº Turm: Professor: José Tioco 09/0/08 Apresete o seu rciocíio de form clr, idicdo todos os cálculos que tiver de efetur e tods

Leia mais

Após encontrar os determinantes de A. B e de B. A, podemos dizer que det A. B = det B. A?

Após encontrar os determinantes de A. B e de B. A, podemos dizer que det A. B = det B. A? PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - ª SÉRIE - ENSINO MÉDIO ============================================================================================= Determinntes - O vlor

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão.1

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão.1 FICHA de AVALIAÇÃO de MATEMÁTICA A 5º Teste º Ao de escolridde Versão Nome: Nº Turm: Proessor: José Tioco 3/4/8 Apresete o seu rciocíio de orm clr, idicdo todos os cálculos que tiver de eetur e tods s

Leia mais

1 2 9, i n c i s o I I, d a C F ; e a r t i g o 5 º, i n c i s o V, a l í n e a s a e

1 2 9, i n c i s o I I, d a C F ; e a r t i g o 5 º, i n c i s o V, a l í n e a s a e P O R T A R I A n 2 0 1, d e 1 8 d e j u l h o d e 2 0 1 3. A P r o c u r a d o r a d a R e p ú b l i c a q u e e s t a s u b s c r e v e, e m e x e r c í c i o n a P r o c u r a d o r i a d a R e p ú

Leia mais

B ) 2 = ( x + y ) 2 ( 31 + 8 15 + 31 8 ( 31 + 8 15 ) 2 + 2( 31 + 8 15 )( 31 8 MÓDULO 17. Radiciações e Equações

B ) 2 = ( x + y ) 2 ( 31 + 8 15 + 31 8 ( 31 + 8 15 ) 2 + 2( 31 + 8 15 )( 31 8 MÓDULO 17. Radiciações e Equações Ciêncis d Nturez, Mtemátic e sus Tecnologis MATEMÁTICA. Mostre que Rdicições e Equções + 8 5 + 8 + 8 5 + 8 ( + 8 5 + 8 5 é múltiplo de 4. 5 = x, com x > 0 5 ) = x ( + 8 5 ) + ( + 8 5 )( 8 + ( 8 5 ) = x

Leia mais

Matemática Básica: Revisão 2014.1 www.damasceno.info Prof.: Luiz Gonzaga Damasceno

Matemática Básica: Revisão 2014.1 www.damasceno.info Prof.: Luiz Gonzaga Damasceno Aula 1. Introdução Hoje e dia teos a educação presencial, sei-presencial e educação a distância. A presencial é a dos cursos regulares, onde professores e alunos se encontra sepre nu local, chaado sala

Leia mais

Matemática Fascículo 01 Álvaro Zimmermann Aranha

Matemática Fascículo 01 Álvaro Zimmermann Aranha Mateática Fascículo 0 Álvaro Ziera Araha Ídice Fução Expoecial e Logaritos Resuo Teórico... Exercícios...4 Dicas...5 Resoluções...6 Fução Expoecial e Logaritos Resuo Teórico Potêcia Sedo a IR e IN, teos:

Leia mais

Matrizes e Sistemas de equações lineares. D.I.C. Mendes 1

Matrizes e Sistemas de equações lineares. D.I.C. Mendes 1 Mtrizes e Sistems de equções lieres D.I.C. Medes s mtrizes são um ferrmet básic formulção de problems de mtemátic e de outrs áres. Podem ser usds: resolução de sistems de equções lieres; resolução de sistems

Leia mais

POLINÔMIOS. Definição: Um polinômio de grau n é uma função que pode ser escrita na forma. n em que cada a i é um número complexo (ou

POLINÔMIOS. Definição: Um polinômio de grau n é uma função que pode ser escrita na forma. n em que cada a i é um número complexo (ou POLINÔMIOS Definição: Um polinômio de gru n é um função que pode ser escrit n form P() n n i 0... n i em que cd i é um número compleo (ou i 0 rel) tl que n é um número nturl e n 0. Os números i são denomindos

Leia mais

GABARITO: QUESTÃO PARA SER ANULADA, POIS NÃO HÁ NENHUMA OPÇÃO COM ESSA RESPOSTA.

GABARITO: QUESTÃO PARA SER ANULADA, POIS NÃO HÁ NENHUMA OPÇÃO COM ESSA RESPOSTA. PROVA AMARELA Nº 0 PROVA VERDE Nº 09 Sej x um número rel tl que x + X 9. Um possível vlor de x X é. Sendo ssim, som dos lgrismos será: ) ) c) d) e) x 9 + MMC x + 9x x 9x + 0 x x 9 x x+ MMC x + 9x x 9x

Leia mais

MATEMÁTICA BÁSICA 8 EQUAÇÃO DO 2º GRAU

MATEMÁTICA BÁSICA 8 EQUAÇÃO DO 2º GRAU MATEMÁTICA BÁSICA 8 EQUAÇÃO DO 2º GRAU Sbemos, de uls nteriores, que podemos resolver problems usndo equções. A resolução de problems pelo médtodo lgébrico consiste em lgums etps que vmso recordr. - Representr

Leia mais

Métodos Numéricos Sistemas Lineares Métodos Diretos. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina

Métodos Numéricos Sistemas Lineares Métodos Diretos. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Métodos Numéricos Sistems Lieres Métodos Diretos Professor Volmir uêio Wilhelm Professor Mri Klei limição de Guss Decomposição LU Decomposição Cholesky Prtição d mtriz limição de Guss limição de Guss Motivção

Leia mais

Módulo 01. Matrizes. [Poole 134 a 178]

Módulo 01. Matrizes. [Poole 134 a 178] ódulo Note em, leitur destes potmetos ão dispes de modo lgum leitur tet d iliogrfi pricipl d cdeir hm-se à teção pr importâci do trlho pessol relizr pelo luo resolvedo os prolems presetdos iliogrfi, sem

Leia mais

As funções exponencial e logarítmica

As funções exponencial e logarítmica As fuções epoecil e logrítmic. Potêcis em Sej um úmero rel positivo, isto é, * +. Pr todo, potêci, de bse e epoete é defiid como o produto de ftores iguis o úmero rel :...... vezes Pr, estbelece-se 0,

Leia mais

Definição 1 O determinante de uma matriz quadrada A de ordem 2 é por definição a aplicação. det

Definição 1 O determinante de uma matriz quadrada A de ordem 2 é por definição a aplicação. det 5 DETERMINANTES 5 Definição e Proprieddes Definição O erminnte de um mtriz qudrd A de ordem é por definição plicção ( ) : M IR IR A Eemplo : 5 A ( A ) ( ) ( ) 5 7 5 Definição O erminnte de um mtriz qudrd

Leia mais

Potenciação e radiciação

Potenciação e radiciação Sequência didática para a sala de aula 6 MATEMÁTICA Unidade 1 Capítulo 6: (páginas 55 a 58 do livro) 1 Objetivos Associar a potenciação às situações que representam multiplicações de fatores iguais. Perceber

Leia mais

Matemática. Resolução das atividades complementares. M10 Função logarítmica. 1 Sendo ƒ uma função dada por f(x) 5 log 2

Matemática. Resolução das atividades complementares. M10 Função logarítmica. 1 Sendo ƒ uma função dada por f(x) 5 log 2 Resolução ds tividdes copleentres Mteátic M0 Função rític p. 7 Sendo ƒ u função dd por f(), clcule o vlor de f(). f() f()??? f() A epressão é igul : ) c) 0 e) b) d)? 0 0 Clcule y, sendo. y y Resolv epressão.

Leia mais

LOGARITMOS DEFINIÇÃO. log b. log 2 2. log61 0. loga. logam N logam. log N N. log. f ( x) log a. log FUNÇÃO LOGARITMICA

LOGARITMOS DEFINIÇÃO. log b. log 2 2. log61 0. loga. logam N logam. log N N. log. f ( x) log a. log FUNÇÃO LOGARITMICA LOGARITMOS DEFIIÇÃO log 0,, 0 FUÇÃO LOGARITMICA f ( ) log Eelos. Esoce o gráfico d fução 0,, 0 y log Eelos: log 8 ois 8 log log6 0 ois 0 ois 6 CODIÇÃO DE EXISTÊCIA 0 log eiste 0, EXEMPLO: Deterie os vlores

Leia mais

EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c.

EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c. EQUAÇÃO DO GRAU Você já estudou em série nterior s equções do 1 gru, o gru de um equção é ddo pelo mior expoente d vriável, vej lguns exemplos: x + = 3 equção do 1 gru já que o expoente do x é 1 5x 8 =

Leia mais

, reais ou complexos, com a

, reais ou complexos, com a 6 - Determiçã de ízes de Pliômis Pliômi é um s rtiulr de equçã ã-lier, rtt que fi vist r rízes de equções ã-lieres de ser estedid r liômis Será vist lgums rterístis eseífis de liômis Cm viu-se, r sluçã

Leia mais

CIRCUITOS LINEARES DE CORRENTE CONTÍNUA

CIRCUITOS LINEARES DE CORRENTE CONTÍNUA ssoição de resistêis em série um ligção de resitêis em série, orrete que flui o iruito é mesm e pode-se oter um resistêi uivlete do ojuto. CCTOS S D COT COTÍ...... (... )... lise de Ciruitos 0 lise de

Leia mais

1. VARIÁVEL ALEATÓRIA 2. DISTRIBUIÇÃO DE PROBABILIDADE

1. VARIÁVEL ALEATÓRIA 2. DISTRIBUIÇÃO DE PROBABILIDADE Vriáveis Aletóris 1. VARIÁVEL ALEATÓRIA Suponhmos um espço mostrl S e que cd ponto mostrl sej triuído um número. Fic, então, definid um função chmd vriável letóri 1, com vlores x i2. Assim, se o espço

Leia mais

DERIVADAS DAS FUNÇÕES SIMPLES12

DERIVADAS DAS FUNÇÕES SIMPLES12 DERIVADAS DAS FUNÇÕES SIMPLES2 Gil d Cost Mrques Fundentos de Mteátic I 2. Introdução 2.2 Derivd de y = n, n 2.2. Derivd de y = / pr 0 2.2.2 Derivd de y = n, pr 0, n =,, isto é, n é u núero inteiro negtivo

Leia mais

Aula de Medidas Dinâmicas I.B De Paula

Aula de Medidas Dinâmicas I.B De Paula Aul de Medids Diâmics I.B De Pul A medição é um operção, ou cojuto de operções, destids determir o vlor de um grdez físic. O seu resultdo, comphdo d uidde coveiete, costitui medid d grdez. O objetivo dest

Leia mais

Operações e Propriedades em

Operações e Propriedades em 1 Itrodução Operções e Proprieddes em Os cojutos formm bse d costrução de tod Mtemátic e oção mtemátic de cojuto é mesm que usmos ligugem cotidi: os cojutos estão relciodos com idéi de grupmeto, coleção,

Leia mais

Propriedades Matemáticas

Propriedades Matemáticas Proprieddes Mtemátics Guilherme Ferreir guifs2@hotmil.com Setembro, 2018 Sumário 1 Introdução 2 2 Potêncis 2 3 Rízes 3 4 Frções 4 5 Produtos Notáveis 4 6 Logritmos 5 6.1 Consequêncis direts d definição

Leia mais

MATEMÁTICA FINANCEIRA

MATEMÁTICA FINANCEIRA VICE-REITORIA DE ENSINO DE GRADUAÇÃO E CORPO DISCENTE COORDENAÇÃO DE EDUCAÇÃO A DISTÂNCIA MATEMÁTICA FINANCEIRA Rio de Jeiro / 007 TODOS OS DIREITOS RESERVADOS À UNIVERSIDADE CASTELO BRANCO UNIDADE I PROGRESSÕES

Leia mais