AS LEIS DE NEWTON. r r

Tamanho: px
Começar a partir da página:

Download "AS LEIS DE NEWTON. r r"

Transcrição

1 As leis de Newwton 49 AS LEIS DE NEWON 4 4. Intodução Até o momento estudamos váios tipos de movimento sem no entanto nos peocupamos com suas causas. Já sabíamos intuitivamente que paa se modifica o movimento de um copo é necessáia a ação de um agente exteno. De fato, na ausência completa de ação extena, o copo pemanece num estado de movimento constante. A maneia pela qual o agente exteno age sobe o copo é atavés da atuação de uma foça. Potanto, a foça nada mais é do que a quantificação da ação de um copo sobe outo. A foça pode se definida como uma gandeza física capaz de altea o estado de movimento de um copo ou a foma deste copo. O estado de movimento de um copo é caacteizado pelo seu momentum linea, que é definido como: p = mv de foma que a existência de uma foça poduz alteações em p. O compotamento de um copo quando sujeito a foças extenas é egido pelas leis de Newton, expessas como: Lei I - odo copo pemanece em epouso ou em movimento etilíneo unifome, a menos que seja obigado a modifica seu estado de movimento pela ação de foças extenas. Lei II - A modificação do movimento é popocional à foça atuante, ou seja, F = dp / dt. Lei III - A toda ação coesponde uma eação igual e oposta ou, as ações mútuas de dois copos são sempe diigidas em sentidos opostos.

2 50 As leis de Newwton A pimeia lei estabelece justamente o que havíamos dito anteiomente, isto é, paa modificamos p (gandeza que quantifica o estado de movimento do copo) é necessáio um agente exteno execendo uma foça sobe o copo. Suponha po exemplo, um cometa movendo-se em movimento etilíneo unifome. Ele continuaá neste estado até chega nas poximidades de um planeta, que atavés da foça gavitacional, modificaá seu estado de movimento fazendo com que o momentum p mude em módulo e dieção. Esta idéia que acabamos de apesenta, emboa bastante lógica, não o ea na época de Galileu, pois se aceditava que paa mante um copo em movimento etilíneo unifome ea necessáia a ação de agentes extenos. O único estado natual e espontâneo paa um copo ea o epouso! A foça também é necessáia paa altea a foma de um copo. Duante a defomação as patículas deste copo são aceleadas até atingiem uma nova situação de equilíbio. O equilíbio de um copo pode se de tipos difeentes. Inicialmente, um copo só estaá em equilíbio quando a esultante das foças agindo sobe ele fo nula. O equilíbio é dito estável quando uma pequena petubação tia o sistema de equilíbio, mas a vizinhança do copo age de foma a estaua o equilíbio. O equilíbio é dito instável quando uma pequena petubação tia o sistema do equilíbio e a vizinhança age no sentido de amplifica este efeito. Vamos considea que a quantidade de matéia num deteminado copo não se modifica. Neste caso, a ação de uma ou mais foças leva a uma aceleação: F = mdv / dt = m a e a constante de popocionalidade ente foça e aceleação é denominada massa do copo. A unidade de massa é Kg (SI) ou g (CGS) enquanto que a da aceleação é m/s (KSÁ) ou cm/s (CGS). Potanto, a unidade de foça é definida como: [F] = N = Kg.m/s no Sistema Intenacional (SI) ou [F] = dyn = g.cm/s no sistema CGS, sendo potanto, dyn = 0-5 N.

3 As leis de Newwton 5 Quando a massa de um copo vaia, como po exemplo, duante a exaustão de combustível num foguete, a foma mais geal da segunda lei de Newton fica: dp d dv dm F = = ( m v) = m + v dt dt dt dt A expessão p = mv paa o momentum de um copo é válida quando este tem velocidade bem meno que a velocidade da luz, c, que é de apoximadamente km/s. Paa velocidades altas (v c), p = m v / c v = m(v) v 0 onde m 0 é chamado de massa de epouso e m(v) vaia de uma maneia que copo tona-se cada vez mais pesado quanto mais se aumenta sua velocidade. Poém, se v/c <<, a apoximação m m 0 é bastante boa. Quando um copo enconta-se póximo à supefície da ea, esta exece sobe ele uma foça que é denominada peso, dada po: w = mg e que está diigida paa o cento da ea. A massa de um copo, como vimos, é quantificada atavés da azão ente a foça e a aceleação, Associado à massa, há uma popiedade impotante que é denominada inécia. Imagine uma locomotiva e um cainho de bebê sobe o chão sem atito, completamente lives paa se moveem. Ao execemos uma ação sobe cada um deles (po exemplo, um empuão), o cainho começa a anda enquanto que o tem ofeeceá fote esistência à mudança de movimento po possui uma inécia maio. Copos com maioes massas apesentam maio inécia e, conseqüentemente, maio esistência a mudanças no seu estado de movimento. odos os copos apesentam a tendência de pemanece no seu estado oiginal de movimento quando acionados subitamente po um agente exteno. Uma ilustação deste fato é o que ocoe com os passageios no inteio de um automóvel em movimento etilíneo unifome que é feado ou faz uma cuva acentuada. No pimeio caso, a tendência do passageio é choca-se conta o

4 5 As leis de Newwton páa-bisa enquanto que no segundo, a tendência é sai pela tangente à cuva. Este tipo de compotamento está elacionado com a inécia do passageio. Das tês leis de Newton, a 3 a é aquela que sem dúvida exige um maio esclaecimento. Ela desceve uma popiedade impotante das foças: sua ocoência em paes, isto é, toda ação coesponde uma eação de mesma intensidade, poém de sentido oposto. Um fato impotante a se obsevado é que ação e eação não se cancelam (ou se equilibam) poque agem em copos difeentes. Um exemplo disto é o de um copo sobe uma mesa como ilustado na Fig. 4.. O copo exece uma foça N ' sobe a mesa e esta esponde execendo sobe o copo uma foça N = N'. N e N ' constituem um pa ação-eação. A ea exece sobe o copo a foça peso w paa a qual existe uma eação w ' execida do copo sobe a ea. w e w ' ' constituem outo pa ação-eação poém w e N não constituem pa ação-eação. Devido ao fato do copo esta em equilíbio, pela a Lei de Newton, a = 0 e potanto F = 0. Logo: w + N = 0 w = N Quando dois copos isolados constituem um sistema, as únicas foças existentes são as que constituem o pa ação-eação. Neste caso, olhando paa o sistema como um todo, vemos que: N copo mesa N w w ' Fig Foças agindo num copo sobe uma mesa.

5 As leis de Newwton 53 F + F d dt = 0 dp dp + dt dt dp dt ( p + p ) = = 0 = 0 e assim concluímos que o momentum total se conseva na ausência de foças extenas já que F e F constituem foças extenas ao sistema. Esta lei de consevação do momentum é de gande impotância no estudo de colisões ente copos, onde as foças envolvidas são intenas ao sistema. 4. Refeenciais As gandezas cinemáticas só têm sentido físico quando medidas com elação a um ponto de efeência. Assim, se consideamos po exemplo, um tem movendo-se com velocidade v 0 na dieção x > 0 e um homem dento do tem movendo-se com velocidade -v 0 (na dieção x < 0), obsevamos que paa uma pessoa paada foa do tem, a velocidade do homem seá nula. Com este exemplo vemos claamente que o conceito de movimento está intinsecamente ligado ao de efeencial. Consideemos um sistema de coodenadas O (x, y, z) fixo no espaço, no qual a posição de um copo é especificada pelo veto posição: = x î + y ĵ + z kˆ a pati do qual podemos enconta a velocidade e a aceleação da maneia tadicional: v = x& î + y& ĵ + z& kˆ a = && x î + && y ĵ + && z kˆ Consideemos a segui um segundo sistema de coodenadas O (x, y, z ) movendo-se com velocidade v0 ' = v' ox î + v' oy ĵ + v' oz kˆ com elação ao efeencial fixo, confome mosta a Fig. 4.. O veto R desceve a posição do ponto O com elação ao ponto O. Se este efeencial estive unifomemente aceleado, R (t) seá dado po:

6 54 As leis de Newwton x O z z O R v ' x y y Fig Refeenciais em movimento elativo. R(t) = R 0 + v0t + a R t Po outo lado, olhando paa a figua vemos que a adição geomética dos vetoes nos fonece: = R + ou = R, onde desceve a posição do copo visto po um obsevado solidáio ao efeencial móvel. Este obsevado veá a velocidade do copo dada po: v & = & = & R = v v a que é a velocidade que o copo possui no sistema de coodenadas O menos a velocidade de O com elação a O. A aceleação po sua vez é: a = a que é a aceleação no sistema fixo menos a aceleação elativa ento os dois efeenciais. No caso paticula em que o sistema móvel O' não está aceleado ( a R = 0 ) temos a = a, isto é, a aceleação é a mesma nos dois efeenciais. Refeenciais deste. tipo, onde a lei de Newton tem a mesma foma ( F = ma = ma ) são chamados de efeenciais ineciais. 4.3 Aplicações das leis de Newton Como vimos, as leis de Newton são as leis básicas da ecânica Clássica. Em pincipio, qualque poblema de dinâmica pode se esolvido a R 0 R t

7 As leis de Newwton 55 atavés de sua aplicação. Passaemos agoa a analisa uma séie de exemplos que ilustam tais leis. De modo geal, os poblemas envolvendo foças podem se classificados em duas categoias. Na pimeia, conhecemos as foças que agem sobe o copo e queemos enconta seu efeito, expesso atavés de mudanças na velocidade e posição. Na segunda categoia, conhecemos o movimento do copo e a pati disto queemos detemina o conjunto de foças agindo sobe ele. A solução de um poblema pode se encontada atavés de una sequência natual de análises. Pimeiamente, o poblema deve esta claamente colocado e se ele apesenta váias pates, cada uma delas deve se analisada antes de se considea o sistema como um todo. Sempe que houve contato ente copos, lembe-se que ação e eação agem em copos difeentes. a) Plano inclinado sem atito Queemos enconta o movimento de um copo colocado sobe um plano com ângulo de inclinação como mostado na Fig As foças agindo sobe ele são: o peso w, que é diigido paa baixo e a foça de eação N, que é nomal à supefície. N y W x Fig Plano inclinado sem atito. Como o copo não pode peneta no plano inclinado, concluímos que o movimento só deve ocoe na dieção paalela a ele. Isto implica em que a foça esultante na dieção pependicula ao plano é nula e assim:

8 56 de onde obtemos: g cos + N = 0 F F y x = 0 = a x N = g cos As leis de Newwton gsen = a x a x = gsen e como a x é constante, o movimento paalelo ao plano é do tipo unifomemente aceleado já visto anteiomente. b) Copo suspenso po codas Imagine um copo suspenso po duas codas confome mosta a Fig As codas ficaão sujeitas às tensões e diigidas ao longo de seu compimento e, potanto, agindo sobe o copo. Como este está em equilíbio, a soma total das foças agindo sobe ele é nula, de foma que: Fx = Fy = 0 cos cos = sen + sen g = 0 0 y g x Fig Copo suspenso po codas. Destas duas equações tiamos e :

9 As leis de Newwton 57 g cos = cos sen + sen g cos = cos sen + sen g cos = sen ( + ) g cos = sen ( + ) No caso da coda esisti somente a uma tensão máxima max, podemos analisa se ou ultapassa tal limite. Em dinâmica, os poblemas envolvendo codas e fios são bastante feqüentes e, potanto, vamos tece algumas consideações a este espeito. Vamos considea uma coda de massa c e compimento L que sustenta um copo de massa ao longo da vetical (ve Fig.4.5). Queemos calcula a tensão na coda em toda a extensão de seu compimento. g x Fig Copo suspenso po uma coda com massa. Se isolamos o ponto de contato ente o copo e a coda temos = g. Po outo lado, se tomamos um ponto a uma altua x sobe o copo, a massa total abaixo dele é +( C /L) x e paa que a coda esteja em equilíbio, a tensão deveá se: (x) = g + L Isto mosta que à medida que subimos pela coda seu nível de tensão aumenta e no ponto de contato com o teto = ( + c ) g, como espeado. No entanto, se a massa da coda fo despezível, a tensão é a mesma em cada ponto ao longo de seu compimento e ela funciona apenas como tansmissoa de esfoços. c g x

10 58 As leis de Newwton c) Dois copos ligados po uma coda Considee dois copos com massas e ligados po uma coda sem massa e podendo desliza sobe uma mesa sem atito. Existe ainda uma foça F agindo sobe, como indicado na Fig Queemos enconta a tensão na coda e a aceleação do sistema. Como a coda tem massa despezível, ela simplesmente tansmite a foça. Isolando os copos, temos: = a F = a F Fig Copos ligados pó uma coda. O sistema está vinculado de foma tal que os copos são obigados a anda juntos e assim a = a = a. Logo: F F a = a a = + F = a = + d) Copos em contato Uma foça F é aplicada sobe um copo de massa que está em contato com outo copo de massa, como mosta a Fig Ambos estão colocados sobe uma mesa sem atito e a questão que se petende esponde é sobe a foça que é tansmitida ao copo. Como os copos se movem juntos, a aceleação seá a mesma paa os dois e então podemos esceve: F = ( + ) a a = F +

11 As leis de Newwton 59 Voltamos agoa a analisa o copo. Chamando a foça que faz sobe, temos: = F a = + e assim vemos que este esultado é simila ao do caso em que os dois copos estão ligados pela coda. F Fig Copos em contato. e) n copos conectados po codas emos n copos conectados po codas confome mosta a Fig. 4.8 e queemos calcula a tensão na coda que conecta um pa qualque destes copos. Como os copos possuem mesma massa e se deslocam juntos quando submetidos à ação da foça F, podemos esceve que a aceleação do sistema é a foça dividida pela massa total, isto é, a = F/(n). A foça i po sua vez movimenta todos os copos a sua esqueda, desde i até n. O númeo destes copos é n - i + e potanto: ( n i ) F F + i = ( n i + ) a = ( n i + ) = nμ n n n- n- 3 Fig Copos conectados po codas. f) Sistema com polias: máquina de Atwood Vamos considea inicialmente uma coda ao edo de uma polia sem atito e sem massa como indica a Fig. 4.9(a). Como a coda possui massa despezível, ela simplesmente tansmite a tensão e potanto, F = F = F. F

12 60 As leis de Newwton F F F N π α (a) F (b) F F Fig Coda ao edo de uma polia (a) e pequena poção da coda (b). Desta foma, é como se a polia simplesmente mudasse a dieção da foça. Podemos calcula a foça nomal à polia da seguinte maneia. omemos uma pequena poção de coda definida pelo ângulo, como mosta a Fig. 4.9(b). Pojetando as foças F na dieção adial temos: ( ) dn = Fsen F enquanto que a componente tangencial se anula. Paa encontamos a foça nomal total (somada em módulo) devemos intega no ângulo: α N = Fd = αf (em módulo) 0 A máquina de Atwood é um dos exemplos mais simples envolvendo polias, onde duas massas, e são inteligadas atavés de uma coda sem massa, como mostado na Fig Chamando a tensão na coda de, temos: - g = a -+ g = a de onde tiamos a = A tensão é dada po: ( ) ( + ) g = g + a = g + ( ) ( + ) g

13 As leis de Newwton 6 e a foça execida sobe o supote da polia é: 4 = ( + ) + g a g g Fig áquina de Atwood. g) Bloco sobe a mesa puxado po copo na vetical A Fig. 4. mosta um bloco de massa sobe uma mesa sem atito, puxado po outo bloco de massa sob a ação da gavidade. Isolando o bloco temos: = a enquanto que ao isola o bloco obtemos: g = a Combinando estas duas equações obtemos a aceleação do sistema como: g a = +

14 6 As leis de Newwton a g Fig Bloco sobe a mesa e copo na vetical. h) Peso apaente de um objeto num elevado aceleado Vamos imagina um objeto no inteio de um elevado aceleado como indica a Fig. 4.. Qual seia seu peso apaente se ele estivesse sendo medido po una balança? O objeto pessiona a balança com una foça N, que é o pópio peso apaente medido po ela. Pela 3 a lei de Newton, a balança poduz uma foça N, só que diigida paa cima. O objeto anda junto com o elevado de foma que a a lei de Newton fica: N g = a N = (g + a) Se o elevado estive aceleado paa cima, o peso apaente é maio que g,enquanto que se a aceleação fo paa baixo, o peso apaente seá meno que g. a N g Fig Objeto num elevado aceleado.

15 As leis de Newwton ovimento cicula Como vimos anteiomente, quando um copo enconta-se em movimento cicula, existe uma aceleação adial, denominada centípeta, que é dada po a v /, onde é o aio do movimento cicula e v é a c = velocidade tangencial. É clao que a velocidade tangencial pode vaia e, potanto, existi uma aceleação tangencial. Vamos a segui estuda váios casos deste tipo de movimento. a) Pêndulo cônico Considee um pêndulo de compimento L, fomando um ângulo com a vetical e descevendo um cículo de aio R no plano hoizontal, como indica a Fig Qual é a velocidade tangencial da massa? Paa esponde esta pegunta, vamos analisa as foças agindo sobe ela. L sen cos R g Fig Pêndulo cônico. Na dieção adial temos sen = v /R, enquanto que na dieção vetical, cos = g. Dividindo uma equação pela outa obtemos: tg = v / Rg ou então: v = Rg L R R = L R g R isto ocoeá? Suponha que o fio se ompa com uma tensão 0. Paa que velocidade

16 64 As leis de Newwton b) ovimento cicula vetical Considee um copo de massa peso a uma coda de compimento R sem massa, posto paa oda em movimento cicula no plano vetical, como mostado na Fig A posição do copo é especificada pelo ângulo e tal que no ponto máximo () = 0 e no ponto mínimo () = π. Inicialmente estamos inteessados em detemina a tensão na coda quando o copo se movimenta com velocidade constante. Na dieção adial temos: + g cos = v /R = v R g cos g R Fig ovimento cicula vetical. Deste esultado vemos que = v /R - g é a tensão mínima paa = 0 o e = v /R + g é a tensão máxima paa = π. A Fig. 4.5 mosta um gáfico completo de conta. A velocidade mínima capaz de mante o movimento cicula ocoe quando = 0 e vale v min = gr. Paa velocidades infeioes a esta, não é possível have movimento cicula na vetical. () v + g R v g R π π Fig ensão na coda em função do ângulo.

17 As leis de Newwton 65 c) Pêndulo simples O movimento pendula é um dos movimentos mais estudados em ecânica Clássica, ao lado do movimento hamónico do sistema massa-mola. Considee o pêndulo da Fig. 4.6 deslocado de um ceto ângulo. Usando a a lei de Newton nas dieções adial e tangencial temos espectivamente: g cos = v g sen = a t /L L g Fig Pêndulo simples. Vamos supo que a condição inicial do movimento seja = 0 e v = 0, de foma que 0 = g cos 0. Como a t = dv/dt = ( dv/d)( d/dt) = ( dv/d) v/ L temos paa a dieção tangencial: dv gsen = d que pode se integado, esultando em: gl v L glsen d = v dv v sen d = v dv = 0 0 A ealização desta integal é simples e leva a: gl ( cos cos ) = 0 v v

18 66 As leis de Newwton Logo: v /L = - g(cos 0 - cos) e assim, a tensão no fio vaia com de acodo com: = g(3cos - cos 0 ) d) Coda giante Imagine uma coda de massa e compimento L colocada paa gia num plano hoizontal (sobe uma mesa sem atito) com velocidade angula ω, confome mosta a Fig Queemos enconta a tensão na coda a uma distância do ponto de fixação. Paa isto vamos considea um elemento de compimento, como mostado na figua, cuja massa é m = ( /L). Este elemento está sujeito às tensões () e ( + ). Pela a lei de Newton temos: ( ) ( + ) = m ω = ω L ω () m (+ ) Fig Coda giando sobe uma mesa sem atito. Podemos e-esceve esta expessão como: ( + ) ( ) No limite em que tende a zeo ficamos com: lim 0 ( + ) ( ) ω = L = A segui, vamos intega ente os pontos 0 e : d ω = d L

19 As leis de Newwton 67 ( R ) ω L d = d 0 0 ω L ( ) = ( ) 0 ω = 0 L Paa enconta o valo de 0, notamos que = 0 paa = L (a coda acaba neste ponto). Logo, ωl ωl 0 = 0 0 = e conseqüentemente: () = ω L ( L ) A Fig. 4.8 mosta o gáfico de (). () ω L Fig. 4.8 ensão na coda como função da posição adial. 4.5 Foça etadadoa popocional à velocidade Quando um copo move-se no inteio de um fluido (gás ou liquido), age sobe ele uma foça popocional à velocidade, poém na dieção oposta ao movimento. Esta foca é denominada viscosa. Assim, vamos imagina um copo com velocidade inicial v 0, movendo-se num meio viscoso. Pela a lei de Newton temos: 0 L ma = dv m dt = bv

20 68 As leis de Newwton Esta equação, chamada de equação difeencial, pode se esolvida se isolamos v e t e a segui integamos: dv v = b m dt v v0 dv v = b m t 0 dt Logo: l n v ln v ( t) v = ln = v 0 0 v = v 0 bt exp m bt m de modo que a velocidade do copo decesce exponencialmente como mosta a Fig v(t) v 0 Fig Velocidade de um copo jogado com velocidade v 0 num meio viscoso. Vamos imagina agoa um copo num meio viscoso caindo sob a ação da gavidade. O balanço das foças leva à seguinte equação de movimento: dv mg bv = m dt A velocidade vai aumentando até que a foça gavitacional é equilibada pela foça viscosa. A pati deste ponto teemos dv/dt = 0 e conseqüentemente não haveá mais mudanças de velocidade. Dizemos então que o copo atingiu sua velocidade teminal v que é dada po: mg = bv v = mg b t

21 As leis de Newwton 69 Paa esolvemos a equação de movimento vamos supo que o copo patiu do epouso. Isolando v e t temos: dv g bv m = dt Fazendo a substituição: g m b g bv/m l n = g b m bv m = u g bv/m v dv g bv m = 0 = g t du u dv = t 0 dt t 0 m b dt du g bv/m = exp g A velocidade do copo cesce como mosta a Fig v(t) { bt / m} v t t Fig Velocidade de um copo aceleado num meio viscoso. 4.6 Foças obsevadas na natueza As foças existentes ente as pates de um sistema são oiundas de inteações fundamentais tais como: foças gavitacionais, foças eletomagnéticas e foças nucleaes (fotes e facas). Estas foças, esponsáveis pela existência da matéia, seão vistas em váios cusos futuos. Nós vamos aqui aboda apenas os efeitos macoscópicos destas foças. a) Focas elásticas: lei de Hooke Denominamos de elásticos aqueles copos que ao sofeem defomações quando sujeitos a esfoços, têm a popiedade de ecupeaem

22 70 As leis de Newwton sua foma oiginal quando tais esfoços são emovidos. Vamos imagina a seguinte expeiência: consideemos uma mola com uma das extemidades fixa na paede e com uma foça F aplicada na outa, como ilusta a Fig. 4.. k F Fig ola tacionada. Antes da aplicação da foça F, a mola tem um compimento live x 0. Após a aplicação desta, ela distende-se paa um novo compimento x, tal que a defomação é dada po x = x x 0. Se fomos aumentando gadativamente a foça F e medindo a defomação x associada, veificaemos a existência de dois tipos de compotamento. Inicialmente, a foça e a defomação são dietamente popocionais, mas confome F aumenta isto deixa de se vedade. Num gáfico de F conta x, mostado na Fig. 4., a egião de lineaidade vai do ponto 0 até o ponto. Neste egime, denominado de elástico, vale a elação: F = k x onde k (inclinação da eta) é chamada de constante de mola e a expessão acima, conhecida como lei de Hooke. Se olhamos micoscopicamente paa o mateial, neste egime os váios planos de átomos sofem deslocamento elativo ente si, mas um deteminado átomo pemanece sempe ligado à sua posição oiginal. F 0 x Fig Defomação de uma mola eal sujeita a uma foça F.

23 As leis de Newwton 7 O egime que vai de a é denominado plástico e a defomação causada nesta egião é pemanente. icoscopicamente, os planos atômicos pulam de uma posição paa a seguinte, geando defomações pemanentes no mateial. Ao atingi o ponto, o mateial não esiste mais ao esfoço e ompese. elástico plástico Fig Descição micoscópica dos egimes elástico e plástico. b) Focas de contato e atito Quando duas supefícies sólidas são colocadas em contato, existe uma esistência ao deslocamento elativo destas supefícies que é denominada de atito. O atito tem sua oigem no fato de que as supefícies não são micoscopicamente pefeitas, de maneia a se estabeleceem váios pontos de contato que dificultam o movimento elativo ente as supefícies, como mosta a Fig Fig Supefícies eais em contato. Devido a esta natueza da foça de atito, espeamos que quanto mais fote uma supefície fo pessionada conta a outa, maio deve se a esistência ao deslizamento, ou seja, maio é o atito. Logo, a foça de atito é

24 7 As leis de Newwton popocional à foça nomal ente as duas supefícies: F at α N. Outo fato que influencia a intensidade da foça de atito é a qualidade da supefície: se esta fo bem polida, o atito seá meno. Finalmente, o tipo de mateial usado na confecção de copo também é impotante na deteminação de F at : se o mateial fo macio, a tendência é que ele se amolde à outa supefície e isto dificulta o deslizamento. A qualidade da supefície e a dueza do mateial especificam o coeficiente de atito µ que definiemos a segui. Vamos imagina um expeimento onde uma foça F vaiável é aplicada sobe um copo de massa, inicialmente em epouso sobe uma supefície áspea, como esquematizado na Fig Se F é elativamente pequena, o copo continua em epouso e neste caso, F = F at. Note que se F = 0, F at = 0, indicando que a foça de atito só existe se houve tendência ao deslizamento. Se continuamos a aumenta F, esta atinge um valo máximo paa o qual o copo se enconta iminência de desliza. Neste ponto define-se o coeficiente de atito estático como F max = µ e N. A pati daí, o copo enta em movimento e qualque incemento em F contibui exclusivamente paa acelea o copo, como mosta a Fig Na situação de movimento, a foça de atito é F at = µ d N, onde µ d é chamado de coeficiente de atito dinâmico. Assim, no egime estático F at µ e N e no egime dinâmico F at = µ d N, sendo µ d < µ e (veificado expeimentalmente). F at F Fig Copo puxado sobe uma supefície com atito. Como exemplo do cálculo de foça de atito, tomemos um copo de massa sobe um plano inclinado, como mosta a Fig Da. a lei de Newton temos: N g cos = 0 e g sen - F at = a

25 As leis de Newwton 73 µ e N µ d N F at iminência de deslizamento deslizamento 45 o F Fig Vaiação da foça de atito com a foça extena aplicada. No caso do copo esta na iminência de deslizamento, a = 0 e F at = µ e N. Desta foma, µ e = tg. N F at a g Fig Copo sobe um plano inclinado com atito. Como segundo exemplo, vamos analisa um oto no paque de divesões, mostado na Fig Este oto é constituído de um cilindo de aio R, com fundo, colocado paa oda com velocidade angula ω, tendo váias pessoas no seu inteio. Assim que o cilindo atinge a otação máxima, o fundo é etiado e as pessoas são mantidas no seu inteio somente pelo atito do contato com a paede. Sendo µ o coeficiente de atito estático, g a aceleação da gavidade local, queemos enconta a mínima velocidade angula capaz de mante a pessoa equilibada. Neste caso, a foça nomal é dada pela foça centípeta e então,

26 74 As leis de Newwton g = µ e N = µ e ω R ω min = g µ R e ω F N at = µ e N = ω R g Fig Roto com atito num paque de divesões. Como exemplo final desta seção, vamos tata o caso de uma polia com atito. Como já discutimos anteiomente, uma polia ideal (sem atito) apenas modifica a dieção de uma foça sem modifica seu valo. Queemos agoa analisa como a pesença do atito modifica F compaada com F. Paa isto, vamos toma um elemento da polia mostada na Fig. 4.9 e veifica as foças sobe ele. + F F µn N Fig Coda em polia com atito. Na dieção x: N = ( ) + + sen sen

27 As leis de Newwton 75 Como é pequeno, sen e cos e assim, N = Na dieção y: ( + ) + = + ( + ) cos = cos + µ N = µ N = µ = µ no limite em que 0, temos lim 0 ( / ) = d / d = µ potanto: d F = µ d d = µ F 0 F l n = µ F = F exp F e d { µ} 4.7 Foças ineciais Quando a obsevação de um movimento é feita de um efeencial não inecial (aceleado), as leis de Newton deixam de se válidas, isto é, a foça sobe o copo não obedece a elação F = mdv / dt. Como a lei de foça neste caso fica bastante difícil de se escita, pincipalmente poque ela depende da posição momentânea do copo, nós intoduziemos uma foça exta no poblema, que é equivalente ao efeito poduzido pelo fato do efeencial se não inecial. Com a adição destas foças fictícias, chamadas de foças ineciais, a lei de Newton passa a se novamente válida. Note que as foças ineciais simulam o efeito de uma foça eal, poém elas não são execidas po nenhum elemento do sistema. Vamos ilusta o uso das foças ineciais atavés dos váios exemplos que seguem. a) Vagão aceleado

28 76 As leis de Newwton Vamos considea um vagão aceleado como mostado na Fig dento do qual enconta-se um obsevado. Se deixamos um copo cai a pati do epouso, paa um obsevado exteno, a tajetóia é tal que a única foça agindo sobe o copo é g. Paa um obsevado no inteio do vagão aceleado, a tajetóia do copo é tal que indica a existência de uma foça a, de foma que a foça total vista po ele é: F = g a onde o temo ente a é a foça inecial. a a g Fig Copo em queda live visto po um obsevado aceleado. Po outo lado, se o copo estive peso po uma coda no teto do vagão, um obsevado exteno veá o copo aceleado tal que: + g = a (obsevado em epouso) Paa um obsevado no inteio do vagão, o copo não está aceleado e, potanto, paa ele, a equação de foças é: + g a = 0 (obsevado aceleado) b) Foça centífuga Consideemos uma platafoma giando com velocidade angula ω e sobe ela um copo peso ao cento po uma haste sem massa, como mostado na Fig Paa um obsevado exteno à platafoma, a única foça agindo

29 As leis de Newwton 77 sobe o copo é a foça centípeta F = ω, que mantém o copo na sua tajetóia cicula. Paa este obsevado, a a lei de Newton vale na sua foma usual: F = ω = a Paa um obsevado sobe a platafoma, o copo está em epouso ( a = 0 ), poém a haste continua tensionada po um valo que pode se medido com um dinamômeto. Paa ele, deve então existi uma foça contáia à da haste que mantenha o equilíbio do copo. Esta foça também vale ω, poém é diigida paa foa do cículo. Ela é chamada de foça centífuga e só existe no efeencial não inecial. ω Fig Copo solidáio a uma platafoma odando com velocidade ω. c) Foça de Coiolis Um segundo tipo de foça inicial existente em efeencial giante é a foça de Coiolis, que depende da velocidade e é pependicula a ela quando medida no efeencial giante. Consideemos dois obsevadoes, um no cento e o outo na boda de uma platafoma giante, como na Fig Num deteminado instante, o obsevado do cento (A) aemessa um copo com velocidade v paa o obsevado da boda (B). Quando o copo chega na boda, o obsevado B já deslocou-se de um ângulo e paa ele, o copo foi submetido a uma foça que se desviou paa a esqueda. O segmento de aco descito pelo obsevado B, localizado a uma distância do cento é s = = ωt. Po outo lado, o copo anda uma distância com velocidade constante v e potanto = vt. Conseqüentemente, s

30 78 As leis de Newwton = v ω t. Paa o obsevado B, este segmento de aco é consequência da aceleação povocada pela foça de Coiolis: s = ( vω) t = a t ou então: F c = mvω, pependicula à velocidade. Esta foça tem dieção tangencial e o sentido oposto ao da otação do efeencial. c A v B A B s v Fig Obsevadoes numa platafoma giante. As foças ineciais em efeenciais giantes são de extema impotância devido ao fato que a ea é um efeencial deste tipo. Estas foças podem se escitas em temos de podutos vetoiais se consideamos o veto ω como sendo pependicula à platafoma giante. F centífuga = m ω ( ω ) = m ω( ω. ) + m ( ω. ω) = m ω = mω v F Coiolis onde v é a velocidade no efeencial giante. Como exemplo do efeito da foça de Coiolis, vamos analisa o caso de um copo que cai de uma altua h sobe a supefície da ea, na linha do Equado. Na ausência de otação, o copo caiia exatamente na dieção adial. Devido à otação da ea, a foça de Coiolis poduziá uma pequena deflexão que queemos calcula. Vamos despeza a foça centífuga supondo que ela já está incluída em g. Vamos faze um cálculo simplificado paa detemina a deflexão x. Supoemos v = gt adial muito maio que a velocidade poduzida pela foça de Coiolis.

31 As leis de Newwton 79 a c dv = dt c = ωg t v c = dx dt = ωg t 3 x = ω 3 Como o tempo de queda é h ωg t = h temos x =. Usando g 3 g 5 ω = π = ad e h = 00 m obtemos x cm s gt Execícios - Enconte o ângulo da Fig tal que o sistema pemaneça em epouso. Despeze o atito. - Enconte a azão ente as massas e tal que o sistema pemaneça em epouso na Fig Despeze o atito. Kg Kg 60 o 30 o Fig Fig Enconte a aceleação do copo de Kg da Fig Enconte a massa do copo A tal que a aceleação do copo B da Fig é nula. 6 Kg fixo Kg 5 Kg A Kg B Kg Fig Fig. 4.36

32 80 As leis de Newwton 5 - No sistema da Fig o copo A desliza sobe uma supefície com coeficiente de atito µ. As codas e polias não têm massa. a) enconte as aceleações dos blocos A e B; b) enconte a tensão na coda ligada ao copo A. µ A B Fig Dado o ângulo de um plano inclinado sem atito, qual deve se a aceleação a R tal que o bloco de massa m mostado na Fig não deslize? m a R Fig Se o plano inclinado do poblema anteio tive um coeficiente de atito µ, qual são as aceleações máxima e mínima tal que o bloco não deslize? 8 - Uma coda de compimento L e densidade linea de massa λ passa po uma polia sem atito. Ela é solta do epouso, estando um compimento x pendente de um lado e L-x do outo.

33 As leis de Newwton 8 a) detemine a aceleação como função de x; b) paa que situação a aceleação é nula? 9 - a) O sistema da Fig é live de atito. Detemine o valo da foça F tal que o copo A não desça nem suba. b) Se houve um atito estático µ ente as supefícies dos blocos, quais os valoes de foças máxima e mínima tal que o copo A não desça nem suba? F A Fig Um copo com velocidade inicial v 0 peneta num meio que poduz uma foça viscosa F = b v. Detemine a máxima distância que o copo peneta neste meio. - No sistema mostado na Fig enconte: a) a aceleação do conjunto e b) a foça na coda, no ponto A. - O sistema mostado na Fig. 4.4 usa polias sem massa. Enconte as aceleações de cada bloco e a tensão na coda. polia sem atito 3 Kg A Kg Fig Fig. 4.4

34 8 As leis de Newwton 3 - No sistema mostado na Fig. 4.4, o bloco em contato com a supefície hoizontal sem atito está sujeito a uma foça F. Existe um atito estático µ ente este bloco e o bloco A de tal maneia que não existe movimento elativo ente os tês blocos que compõem o sistema. Calcule: a) o ângulo, b) a tensão na coda e c) µ mínimo. 4 - N copos ligados ente si atavés de codas sem massa são puxados em uma ampa po meio de uma foça F. Calcule a tensão na coda ligada ao i-ésimo copo. 5 - Considee o pêndulo cônico mostado na Fig. 4.43, onde a coda que liga a massa ao ponto O não tem massa. a) enconte o ângulo como função da velocidade da massa b) enconte a tensão da coda no ponto O µ 0 F A 0 L µ = 0 Fig. 4.4 Fig Um copo de massa enconta-se penduado atavés de uma coda ideal sobe um bloco tiangula de ângulo, confome mosta a Fig Não existindo atito ente os blocos, pegunta-se qual é a aceleação máxima que pode se dada ao sistema tal que o copo pemaneça em contato com o bloco tiangula. Neste caso, qual é a tensão na coda? Se o sistema estive se deslocando com velocidade constante, qual o valo da tensão na coda e da nomal? 7 Um bloco de massa epousa sobe uma mesa com coeficiente de atito estático µ e. Uma foça F é aplicada ao bloco de maneia a foma um ângulo com a hoizontal, como mosta a Fig

35 As leis de Newwton 83 Supondo que o bloco esteja sempe na iminência de desliza, a) qual o ângulo 0 que pemite que a foça aplicada seja mínima? e b) neste caso, qual seá o valo da foça F min? a R F Fig Fig Um bloco de massa enconta-se sobe outo bloco de massa, que desliza sobe o chão, confome mosta a Fig O atito estático ente os dois blocos é µ e e o atito cinético ente o bloco e o chão é µ c. a) Detemine a máxima foça F que pode se aplicada ao bloco sem que o bloco deslize sobe ele. b) se a foça fo aumentada tal que começa a desliza, e o atito cinético ente os blocos também é µ c, qual seá a aceleação de cada massa? 9 - Um bloco de massa enconta-se sobe outo bloco de mesma massa, num plano inclinado liso, de ângulo, confome mosta a Fig O atito estático ente os dois blocos é µ, e ente o bloco infeio e o plano é zeo. a) Detemine a máxima foça F que pode se aplicada ao bloco supeio sem que este deslize sobe o bloco infeio. b) Neste caso, qual seá a aceleação do sistema? F F Fig Fig. 4.47

36 84 As leis de Newwton 0 - Um copo de massa m enconta-se sobe um bloco tiangula de ângulo e massa, confome mosta a Fig Não existe atito ente o bloco tiangula e o chão, e o atito estático ente os dois blocos é µ. Pegunta-se: a) qual a foça hoizontal máxima F que pode se aplicada ao bloco m tal que ele não deslize sobe a cunha? b) qual é o valo da nomal nesta situação? F m Fig. 4.48

TEXTO DE REVISÃO 13 Impulso e Quantidade de Movimento (ou Momento Linear).

TEXTO DE REVISÃO 13 Impulso e Quantidade de Movimento (ou Momento Linear). TEXTO DE REVISÃO 13 Impulso e Quantidade de Movimento (ou Momento Linea). Cao Aluno: Este texto de evisão apesenta um dos conceitos mais impotantes da física, o conceito de quantidade de movimento. Adotamos

Leia mais

XForça. Um corpo, sobre o qual não age nenhuma força, tende a manter seu estado de movimento ou de repouso. Leis de Newton. Princípio da Inércia

XForça. Um corpo, sobre o qual não age nenhuma força, tende a manter seu estado de movimento ou de repouso. Leis de Newton. Princípio da Inércia Física Aistotélica of. Roseli Constantino Schwez constantino@utfp.edu.b Aistóteles: Um copo só enta em movimento ou pemanece em movimento se houve alguma foça atuando sobe ele. Aistóteles (384 a.c. - 3

Leia mais

du mn qn( E u B) r dt + r

du mn qn( E u B) r dt + r Aula 7 Nesta aula, continuaemos a discuti o caáte de fluido do plasma, analisando a equação de fluido que ege o movimento do plasma como fluido. 3.2 Equação de Fluido paa o Plasma Vimos no capítulo 2 que

Leia mais

A dinâmica estuda as relações entre as forças que actuam na partícula e os movimentos por ela adquiridos.

A dinâmica estuda as relações entre as forças que actuam na partícula e os movimentos por ela adquiridos. CAPÍTULO 4 - DINÂMICA A dinâmica estuda as elações ente as foças que actuam na patícula e os movimentos po ela adquiidos. A estática estuda as condições de equilíbio de uma patícula. LEIS DE NEWTON 1.ª

Leia mais

MECÂNICA. F cp. F t. Dinâmica Força resultante e suas componentes AULA 7 1- FORÇA RESULTANTE

MECÂNICA. F cp. F t. Dinâmica Força resultante e suas componentes AULA 7 1- FORÇA RESULTANTE AULA 7 MECÂICA Dinâmica oça esultante e suas componentes 1- ORÇA RESULTATE oça esultante é o somatóio vetoial de todas as foças que atuam em um copo É impotante lemba que a foça esultante não é mais uma

Leia mais

DA TERRA À LUA. Uma interação entre dois corpos significa uma ação recíproca entre os mesmos.

DA TERRA À LUA. Uma interação entre dois corpos significa uma ação recíproca entre os mesmos. DA TEA À LUA INTEAÇÃO ENTE COPOS Uma inteação ente dois copos significa uma ação ecípoca ente os mesmos. As inteações, em Física, são taduzidas pelas foças que atuam ente os copos. Estas foças podem se

Leia mais

Universidade. Curso: Ciência

Universidade. Curso: Ciência Univesidade Fedeal Rual do Semi Áido PROGRAD Cuso: Ciência e Tecnologia Disciplina: Mecânica Clássica UFERSA Po Reitoia de Gaduação Lista I Cinemática e Leis de Newton 1. O micômeto (1 μm) é feqüentemente

Leia mais

IMPULSO E QUANTIDADE DE MOVIMENTO

IMPULSO E QUANTIDADE DE MOVIMENTO AULA 10 IMPULSO E QUANTIDADE DE MOVIMENTO 1- INTRODUÇÃO Nesta aula estudaemos Impulso de uma foça e a Quantidade de Movimento de uma patícula. Veemos que estas gandezas são vetoiais e que possuem a mesma

Leia mais

Lista de Exercícios de Fenômeno de Transporte II

Lista de Exercícios de Fenômeno de Transporte II Lista de Execícios de Fenômeno de Tanspote II Exemplo.) Considee a tansfeência de calo em estado estacionáio ente duas supefícies gandes mantidas a tempeatua constantes de 300 e 00 K e que estão sepaadas

Leia mais

Departamento de Física - Universidade do Algarve FORÇA CENTRÍFUGA

Departamento de Física - Universidade do Algarve FORÇA CENTRÍFUGA FORÇA CENTRÍFUGA 1. Resumo Um copo desceve um movimento cicula unifome. Faz-se vaia a sua velocidade de otação e a distância ao eixo de otação, medindo-se a foça centífuga em função destes dois paâmetos..

Leia mais

. Essa força é a soma vectorial das forças individuais exercidas em q 0 pelas várias cargas que produzem o campo E r. Segue que a força q E

. Essa força é a soma vectorial das forças individuais exercidas em q 0 pelas várias cargas que produzem o campo E r. Segue que a força q E 7. Potencial Eléctico Tópicos do Capítulo 7.1. Difeença de Potencial e Potencial Eléctico 7.2. Difeenças de Potencial num Campo Eléctico Unifome 7.3. Potencial Eléctico e Enegia Potencial Eléctica de Cagas

Leia mais

O perímetro da circunferência

O perímetro da circunferência Univesidade de Basília Depatamento de Matemática Cálculo 1 O peímeto da cicunfeência O peímeto de um polígono de n lados é a soma do compimento dos seus lados. Dado um polígono qualque, você pode sempe

Leia mais

Licenciatura em Engenharia Civil MECÂNICA II

Licenciatura em Engenharia Civil MECÂNICA II Licenciatua em Engenhaia Civil MECÂNICA II Exame (época nomal) 17/01/2003 NOME: Não esqueça 1) (4 AL.) de esceve o nome a) Uma patícula desceve um movimento no espaço definido pelas seguintes tajectóia

Leia mais

Nessas condições, a coluna de água mede, em metros, a) 1,0. b) 5,0. c) 8,0. d) 9,0. e) 10.

Nessas condições, a coluna de água mede, em metros, a) 1,0. b) 5,0. c) 8,0. d) 9,0. e) 10. EVSÃO UEL-UEM-ENEM HDOSTÁTCA. 01 - (FATEC SP/011/Janeio) Nas figuas apesentadas, obsevam-se tês blocos idênticos e de mesma densidade que flutuam em líquidos difeentes cujas densidades são, espectivamente,

Leia mais

Problemas sobre Indução Electromagnética

Problemas sobre Indução Electromagnética Faculdade de Engenhaia Poblemas sobe Indução Electomagnética ÓPTICA E ELECTROMAGNETISMO MIB Maia Inês Babosa de Cavalho Setembo de 7 Faculdade de Engenhaia ÓPTICA E ELECTROMAGNETISMO MIB 7/8 LEI DE INDUÇÃO

Leia mais

Aula 31 Área de Superfícies - parte II

Aula 31 Área de Superfícies - parte II MÓDULO - UL 1 ula 1 Áea de Supefícies - pate II Objetivos Defini sólidos de evolução. Detemina áeas de algumas supefícies de evolução. Intodução Considee um plano e uma linha simples L contida nesse plano.

Leia mais

FGE0270 Eletricidade e Magnetismo I

FGE0270 Eletricidade e Magnetismo I FGE7 Eleticidade e Magnetismo I Lista de eecícios 1 9 1. As cagas q 1 = q = µc na Fig. 1a estão fias e sepaadas po d = 1,5m. (a) Qual é a foça elética que age sobe q 1? (b) Colocando-se uma teceia caga

Leia mais

Universidade de Évora Departamento de Física Ficha de exercícios para Física I (Biologia)

Universidade de Évora Departamento de Física Ficha de exercícios para Física I (Biologia) Univesidade de Évoa Depatamento de Física Ficha de eecícios paa Física I (Biologia) 4- SISTEMA DE PARTÍCULAS E DINÂMICA DE ROTAÇÃO A- Sistema de patículas 1. O objecto epesentado na figua 1 é feito de

Leia mais

UNIVERSIDADE PRESBITERIANA MACKENZIE Escola de Engenharia. 1 Cinemática 2 Dinâmica 3 Estática

UNIVERSIDADE PRESBITERIANA MACKENZIE Escola de Engenharia. 1 Cinemática 2 Dinâmica 3 Estática UNIVERSIDDE PRESITERIN MKENZIE Escola de Engenhaia 1 inemática 2 Dinâmica 3 Estática 1ºs/2006 1) Uma patícula movimenta-se, pecoendo uma tajetóia etilínea, duante 30 min com uma velocidade de 80 km/h.

Leia mais

UFJF CONCURSO VESTIBULAR 2012 REFERÊNCIA DE CORREÇÃO DA PROVA DE MATEMÁTICA. e uma das raízes é x = 1

UFJF CONCURSO VESTIBULAR 2012 REFERÊNCIA DE CORREÇÃO DA PROVA DE MATEMÁTICA. e uma das raízes é x = 1 UFJF ONURSO VESTIULR REFERÊNI DE ORREÇÃO D PROV DE MTEMÁTI 4 Questão Seja P( = ax + bx + cx + dx + e um polinômio com coeficientes eais em que b = e uma das aízes é x = Sabe-se que a < b < c < d < e fomam

Leia mais

Teo. 5 - Trabalho da força eletrostática - potencial elétrico

Teo. 5 - Trabalho da força eletrostática - potencial elétrico Teo. 5 - Tabalho da foça eletostática - potencial elético 5.1 Intodução S.J.Toise Suponhamos que uma patícula qualque se desloque desde um ponto até em ponto sob a ação de uma foça. Paa medi a ação dessa

Leia mais

19 - Potencial Elétrico

19 - Potencial Elétrico PROBLEMAS RESOLVIDOS DE FÍSICA Pof. Andeson Cose Gaudio Depatamento de Física Cento de Ciências Exatas Univesidade Fedeal do Espíito Santo http://www.cce.ufes.b/andeson andeson@npd.ufes.b Última atualização:

Leia mais

Figura 6.6. Superfícies fechadas de várias formas englobando uma carga q. O fluxo eléctrico resultante através de cada superfície é o mesmo.

Figura 6.6. Superfícies fechadas de várias formas englobando uma carga q. O fluxo eléctrico resultante através de cada superfície é o mesmo. foma dessa supefície. (Pode-se pova ue este é o caso poue E 1/ 2 ) De fato, o fluxo esultante atavés de ualue supefície fechada ue envolve uma caga pontual é dado po. Figua 6.6. Supefícies fechadas de

Leia mais

DFÍSICA ÍNDICE. Pré Vestibular Diferencial. Física Dinâmica CAPITULO 01:DINÂMICA...164 CAPITULO 02: TRABALHO E ENERGIA...173

DFÍSICA ÍNDICE. Pré Vestibular Diferencial. Física Dinâmica CAPITULO 01:DINÂMICA...164 CAPITULO 02: TRABALHO E ENERGIA...173 DFÍSIC ÍNDICE CPITULO 01:DINÂMIC...164 CPITULO 0: TRLHO E ENERGI...173 CPITULO 03: CONSERVÇÃO D ENERGI MECÂNIC...176 CPITULO 04: IMPULSO E QUNTIDDE DE MOVIMENTO...178 CPITULO 06: GRVITÇÃO UNIVERSL...181

Leia mais

3ª Aula do cap. 06 ATRITO E MOVIMENTO CIRCULAR.

3ª Aula do cap. 06 ATRITO E MOVIMENTO CIRCULAR. 3ª Aula do cap. 06 ATRITO E MOVIMENTO CIRCULAR. Moimento cicula e unifome Este moimento tem elocidade com módulo constante poem sua dieção muda continuamente. Exemplos: Moimento de satélites atificiais.

Leia mais

Aula 6: Aplicações da Lei de Gauss

Aula 6: Aplicações da Lei de Gauss Univesidade Fedeal do Paaná eto de Ciências xatas Depatamento de Física Física III Pof. D. Ricado Luiz Viana Refeências bibliogáficas: H. 25-7, 25-9, 25-1, 25-11. 2-5 T. 19- Aula 6: Aplicações da Lei de

Leia mais

Mecânica. Conceito de campo Gravitação 2ª Parte Prof. Luís Perna 2010/11

Mecânica. Conceito de campo Gravitação 2ª Parte Prof. Luís Perna 2010/11 Mecânica Gavitação 2ª Pate Pof. Luís Pena 2010/11 Conceito de campo O conceito de campo foi intoduzido, pela pimeia vez po Faaday no estudo das inteacções elécticas e magnéticas. Michael Faaday (1791-1867)

Leia mais

CAPÍTULO 7: CAPILARIDADE

CAPÍTULO 7: CAPILARIDADE LCE000 Física do Ambiente Agícola CAPÍTULO 7: CAPILARIDADE inteface líquido-gás M M 4 esfea de ação molecula M 3 Ao colocamos uma das extemidades de um tubo capila de vido dento de um ecipiente com água,

Leia mais

Energia no movimento de uma carga em campo elétrico

Energia no movimento de uma carga em campo elétrico O potencial elético Imagine dois objetos eletizados, com cagas de mesmo sinal, inicialmente afastados. Paa apoximá-los, é necessáia a ação de uma foça extena, capaz de vence a epulsão elética ente eles.

Leia mais

Aula Prática 5: Preparação para o teste

Aula Prática 5: Preparação para o teste Aula Pática 5: Pepaação paa o teste Tipo I: Equação Newton Foças não estauadoas & Enegia Tipo II: Equação Newton Foças estauadoas & Enegia Tipo III: Cicula & Gavidade & Enegia Poblema tipo 1: Equação Newton

Leia mais

MECÂNICA. Dinâmica Atrito e plano inclinado AULA 6 1- INTRODUÇÃO

MECÂNICA. Dinâmica Atrito e plano inclinado AULA 6 1- INTRODUÇÃO AULA 6 MECÂNICA Dinâmica Atito e plano inclinado 1- INTRODUÇÃO Quando nós temos, po exemplo, duas supefícies em contato em que há a popensão de uma desliza sobe a outa, podemos obseva aí, a apaição de

Leia mais

Seção 8: EDO s de 2 a ordem redutíveis à 1 a ordem

Seção 8: EDO s de 2 a ordem redutíveis à 1 a ordem Seção 8: EDO s de a odem edutíveis à a odem Caso : Equações Autônomas Definição Uma EDO s de a odem é dita autônoma se não envolve explicitamente a vaiável independente, isto é, se fo da foma F y, y, y

Leia mais

VETORES GRANDEZAS VETORIAIS

VETORES GRANDEZAS VETORIAIS VETORES GRANDEZAS VETORIAIS Gandezas físicas que não ficam totalmente deteminadas com um valo e uma unidade são denominadas gandezas vetoiais. As gandezas que ficam totalmente expessas po um valo e uma

Leia mais

a) A energia potencial em função da posição pode ser representada graficamente como

a) A energia potencial em função da posição pode ser representada graficamente como Solução da questão de Mecânica uântica Mestado a) A enegia potencial em função da posição pode se epesentada gaficamente como V(x) I II III L x paa x < (egião I) V (x) = paa < x < L (egião II) paa x >

Leia mais

PROCESSO SELETIVO TURMA DE 2013 FASE 1 PROVA DE FÍSICA E SEU ENSINO

PROCESSO SELETIVO TURMA DE 2013 FASE 1 PROVA DE FÍSICA E SEU ENSINO PROCESSO SELETIVO TURM DE 03 FSE PROV DE FÍSIC E SEU ENSINO Cao pofesso, caa pofessoa esta pova tem 3 (tês) questões, com valoes difeentes indicados nas pópias questões. pimeia questão é objetiva, e as

Leia mais

Mecânica e Ondas. Trabalho I. Conservação da Energia Mecânica da Roda de Maxwell

Mecânica e Ondas. Trabalho I. Conservação da Energia Mecânica da Roda de Maxwell Mecânica e Ondas Tabalho I Consevação da Enegia Mecânica da Roda de Maxwell Objectivo Deteminação do momento de inécia da oda de Maxwell. Estudo da tansfeência de enegia potencial em enegia de tanslação

Leia mais

7.3. Potencial Eléctrico e Energia Potencial Eléctrica de Cargas Pontuais

7.3. Potencial Eléctrico e Energia Potencial Eléctrica de Cargas Pontuais 7.3. Potencial Eléctico e Enegia Potencial Eléctica de Cagas Pontuais Ao estabelece o conceito de potencial eléctico, imaginamos coloca uma patícula de pova num campo eléctico poduzido po algumas cagas

Leia mais

DINÂMICA ATRITO E PLANO INCLINADO

DINÂMICA ATRITO E PLANO INCLINADO AULA 06 DINÂMICA ATRITO E LANO INCLINADO 1- INTRODUÇÃO Quando nós temos, po exemplo, duas supefícies em contato em que há a popensão de uma desliza sobe a outa, podemos obseva aí, a apaição de foças tangentes

Leia mais

Mecânica Técnica. Aula 5 Vetor Posição, Aplicações do Produto Escalar. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica Técnica. Aula 5 Vetor Posição, Aplicações do Produto Escalar. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues ula 5 Veto Posição, plicações do Poduto Escala Pof. MSc. Luiz Eduado Mianda J. Rodigues Pof. MSc. Luiz Eduado Mianda J. Rodigues Tópicos bodados Nesta ula Vetoes Posição. Veto Foça Oientado ao Longo de

Leia mais

MAT1514 Matemática na Educação Básica

MAT1514 Matemática na Educação Básica MAT54 Matemática na Educação Básica TG7 Uma Intodução ao Cálculo de olumes Gabaito Demonste que o volume de um bloco etangula cujas medidas das aestas são númeos acionais é o poduto das tês dimensões esposta:

Leia mais

Geodésicas 151. A.1 Geodésicas radiais nulas

Geodésicas 151. A.1 Geodésicas radiais nulas Geodésicas 151 ANEXO A Geodésicas na vizinhança de um buaco nego de Schwazschild A.1 Geodésicas adiais nulas No caso do movimento adial de um fotão os integais δ (expessão 1.11) e L (expessão 1.9) são

Leia mais

SOLUÇÃO PRATIQUE EM CASA

SOLUÇÃO PRATIQUE EM CASA SOLUÇÃO PRATIQUE EM CASA SOLUÇÃO PC1. [A] A velocidade linea de cada ponto da hélice é popocional ao aio: v ωr I A intensidade da foça de atito é popocional à velocidade linea: Fat kv II O toque da foça

Leia mais

MOVIMENTO DE SÓLIDOS EM CONTACTO PERMANENTE

MOVIMENTO DE SÓLIDOS EM CONTACTO PERMANENTE 1 1 Genealidades Consideemos o caso epesentado na figua, em que o copo 2 contacta com o copo 1, num ponto Q. Teemos então, sobepostos neste instante, um ponto Q 2 e um ponto Q 1, petencentes, espectivamente

Leia mais

Circunferência e círculo

Circunferência e círculo Cicunfeência e cículo evolução da humanidade foi aceleada po algumas descobetas e invenções. Ente elas, podemos cita a impensa de Johannes Gutenbeg (1400-1468), na lemanha, po volta de 1450, que pemitiu

Leia mais

Cap.12: Rotação de um Corpo Rígido

Cap.12: Rotação de um Corpo Rígido Cap.1: Rotação de um Copo Rígido Do pofesso paa o aluno ajudando na avaliação de compeensão do capítulo. Fundamental que o aluno tenha lido o capítulo. 1.8 Equilíbio Estático Estudamos que uma patícula

Leia mais

ESCOAMENTO POTENCIAL. rot. Escoamento de fluido não viscoso, 0. Equação de Euler: Escoamento de fluido incompressível cte. Equação da continuidade:

ESCOAMENTO POTENCIAL. rot. Escoamento de fluido não viscoso, 0. Equação de Euler: Escoamento de fluido incompressível cte. Equação da continuidade: ESCOAMENTO POTENCIAL Escoamento de fluido não viso, Equação de Eule: DV ρ ρg gad P Dt Escoamento de fluido incompessível cte Equação da continuidade: divv Escoamento Iotacional ot V V Se o escoamento fo

Leia mais

ELETRICIDADE CAPÍTULO 3 LEIS DE CIRCUITOS ELÉTRICOS

ELETRICIDADE CAPÍTULO 3 LEIS DE CIRCUITOS ELÉTRICOS ELETICIDADE CAPÍTULO 3 LEIS DE CICUITOS ELÉTICOS - CONSIDEE A SEGUINTE ELAÇÃO: 3. LEI DE OHM - QUALQUE POCESSO DE CONVESÃO DE ENEGIA PODE SE ELACIONADO A ESTA EQUAÇÃO. - EM CICUITOS ELÉTICOS : - POTANTO,

Leia mais

Figura 14.0(inicio do capítulo)

Figura 14.0(inicio do capítulo) NOTA DE AULA 05 UNIVESIDADE CATÓLICA DE GOIÁS DEPATAMENTO DE MATEMÁTICA E FÍSICA Disciplina: FÍSICA GEAL E EXPEIMENTAL II (MAF 0) Coodenação: Pof. D. Elias Calixto Caijo CAPÍTULO 14 GAVITAÇÃO 1. O MUNDO

Leia mais

MECÂNICA DOS MEIOS CONTÍNUOS. Exercícios

MECÂNICA DOS MEIOS CONTÍNUOS. Exercícios MECÂNICA DO MEIO CONTÍNUO Execícios Mecânica dos Fluidos 1 Considee um fluido ideal em epouso num campo gavítico constante, g = g abendo que p( z = 0 ) = p a, detemine a distibuição das pessões nos casos

Leia mais

Cap014 - Campo magnético gerado por corrente elétrica

Cap014 - Campo magnético gerado por corrente elétrica ap014 - ampo magnético geado po coente elética 14.1 NTRODUÇÃO S.J.Toise Até agoa os fenômenos eléticos e magnéticos foam apesentados como fatos isolados. Veemos a pati de agoa que os mesmos fazem pate

Leia mais

APOSTILA. AGA Física da Terra e do Universo 1º semestre de 2014 Profa. Jane Gregorio-Hetem. CAPÍTULO 4 Movimento Circular*

APOSTILA. AGA Física da Terra e do Universo 1º semestre de 2014 Profa. Jane Gregorio-Hetem. CAPÍTULO 4 Movimento Circular* 48 APOSTILA AGA0501 - Física da Tea e do Univeso 1º semeste de 014 Pofa. Jane Gegoio-Hetem CAPÍTULO 4 Movimento Cicula* 4.1 O movimento cicula unifome 4. Mudança paa coodenadas polaes 4.3 Pojeções do movimento

Leia mais

3.1 Potencial gravitacional na superfície da Terra

3.1 Potencial gravitacional na superfície da Terra 3. Potencial gavitacional na supefície da Tea Deive a expessão U(h) = mgh paa o potencial gavitacional na supefície da Tea. Solução: A pati da lei de Newton usando a expansão de Taylo: U( ) = GMm, U( +

Leia mais

Dinâmica do Movimento Circular

Dinâmica do Movimento Circular Dinâmica do Movimento Cicula Gabaito: Resposta da questão 1: [E] A fita F 1 impede que a gaota da cicunfeência extena saia pela tangente, enquanto que a fita F impede que as duas gaotas saiam pela tangente.

Leia mais

Material Teórico - Sistemas Lineares e Geometria Anaĺıtica. Sistemas com Três Variáveis - Parte 2. Terceiro Ano do Ensino Médio

Material Teórico - Sistemas Lineares e Geometria Anaĺıtica. Sistemas com Três Variáveis - Parte 2. Terceiro Ano do Ensino Médio Mateial Teóico - Sistemas Lineaes e Geometia Anaĺıtica Sistemas com Tês Vaiáveis - Pate 2 Teceio Ano do Ensino Médio Auto: Pof. Fabício Siqueia Benevides Reviso: Pof. Antonio Caminha M. Neto 1 Sistemas

Leia mais

Aula Invariantes Adiabáticos

Aula Invariantes Adiabáticos Aula 6 Nesta aula, iemos inicia o estudo sobe os invaiantes adiabáticos, finalizando o capítulo 2. Também iniciaemos o estudo do capítulo 3, onde discutiemos algumas popiedades magnéticas e eléticas do

Leia mais

Carga Elétrica e Campo Elétrico

Carga Elétrica e Campo Elétrico Aula 1_ Caga lética e Campo lético Física Geal e peimental III Pof. Cláudio Gaça Capítulo 1 Pincípios fundamentais da letostática 1. Consevação da caga elética. Quantização da caga elética 3. Lei de Coulomb

Leia mais

MECÂNICA DOS FLUIDOS I Engenharia Mecânica e Naval Exame de 2ª Época 10 de Fevereiro de 2010, 17h 00m Duração: 3 horas.

MECÂNICA DOS FLUIDOS I Engenharia Mecânica e Naval Exame de 2ª Época 10 de Fevereiro de 2010, 17h 00m Duração: 3 horas. MECÂNICA DOS FLUIDOS I Engenhaia Mecânica e Naval Exame de ª Época 0 de Feveeio de 00, 7h 00m Duação: hoas Se não consegui esolve alguma das questões passe a outas que lhe paeçam mais fáceis abitando,

Leia mais

Cap. 4 - O Campo Elétrico

Cap. 4 - O Campo Elétrico ap. 4 - O ampo Elético 4.1 onceito de ampo hama-se ampo a toda egião do espaço que apesenta uma deteminada popiedade física. Esta popiedade pode se de qualque natueza, dando oigem a difeentes campos, escalaes

Leia mais

Sistemas de Referência Diferença entre Movimentos Cinética. EESC-USP M. Becker /58

Sistemas de Referência Diferença entre Movimentos Cinética. EESC-USP M. Becker /58 SEM4 - Aula 2 Cinemática e Cinética de Patículas no Plano e no Espaço Pof D Macelo ecke SEM - EESC - USP Sumáio da Aula ntodução Sistemas de Refeência Difeença ente Movimentos Cinética EESC-USP M ecke

Leia mais

Cap03 - Estudo da força de interação entre corpos eletrizados

Cap03 - Estudo da força de interação entre corpos eletrizados ap03 - Estudo da foça de inteação ente copos eletizados 3.1 INTRODUÇÃO S.J.Toise omo foi dito na intodução, a Física utiliza como método de tabalho a medida das qandezas envolvidas em cada fenômeno que

Leia mais

Licenciatura em Engenharia Civil MECÂNICA II

Licenciatura em Engenharia Civil MECÂNICA II Licenciatua em Engenhaia Civil MECÂNC Recuso 08/02/2002 Não esqueça de esceve o nome NOME: 1) ESCOLH MÚLTPL ssinale nas quadículas vedadeio V ou falso F. Nota: Podeão eisti nenhuma ou mais do que uma esposta

Leia mais

3. Estática dos Corpos Rígidos. Sistemas de vectores

3. Estática dos Corpos Rígidos. Sistemas de vectores Secção de Mecânica Estutual e Estutuas Depatamento de Engenhaia Civil e Aquitectua ESTÁTICA Aquitectua 2006/07 3. Estática dos Copos ígidos. Sistemas de vectoes 3.1 Genealidades Conceito de Copo ígido

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. Departamento de Engenharia Mecânica

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. Departamento de Engenharia Mecânica ª Questão ( pontos. Um caetel de massa M cento e aios (exteno e (inteno está aticulado a uma baa de massa m e compimento L confome indicado na figua. Mediante a aplicação de uma foça (constante a um cabo

Leia mais

TICA. Rígidos MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA. Nona Edição CAPÍTULO. Ferdinand P. Beer E. Russell Johnston, Jr.

TICA. Rígidos MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA. Nona Edição CAPÍTULO. Ferdinand P. Beer E. Russell Johnston, Jr. CAPÍTULO 4 Equilíbio MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA TICA Fedinand P. Bee E. Russell Johnston, J. Notas de Aula: J. Walt Ole Texas Tech Univesity de Copos Rígidos 2010 The McGaw-Hill Companies,

Leia mais

TICA. Rígidos MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA CAPÍTULO. Ferdinand P. Beer E. Russell Johnston, Jr.

TICA. Rígidos MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA CAPÍTULO. Ferdinand P. Beer E. Russell Johnston, Jr. CAPÍTULO 4 Equilíbio MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA TICA Fedinand P. Bee E. Russell Johnston, J. Notas de Aula: J. Walt Ole Texas Tech Univesity de Copos Rígidos 2010 The McGaw-Hill Companies,

Leia mais

3 Torção Introdução Análise Elástica de Elementos Submetidos à Torção Elementos de Seções Circulares

3 Torção Introdução Análise Elástica de Elementos Submetidos à Torção Elementos de Seções Circulares 3 oção 3.1. Intodução pimeia tentativa de se soluciona poblemas de toção em peças homogêneas de seção cicula data do século XVIII, mais pecisamente em 1784 com Coulomb. Este cientista ciou um dispositivo

Leia mais

Exercício 1 Escreva as coordenadas cartesianas de cada um dos pontos indicados na figura abaixo. Exemplo: A=(1,1). y (cm)

Exercício 1 Escreva as coordenadas cartesianas de cada um dos pontos indicados na figura abaixo. Exemplo: A=(1,1). y (cm) INTRODUÇÃO À FÍSICA tuma MAN / pofa Mata F Baoso EXERCÍCIOS Eecício Esceva as coodenadas catesianas de cada um dos pontos indicados na figua abaio Eemplo: A=(,) (cm) F E B A - O (cm) - D C - - Eecício

Leia mais

Licenciatura em Engenharia Civil MECÂNICA II

Licenciatura em Engenharia Civil MECÂNICA II Licenciatua em Engenhaia Civil MECÂNICA II Exame (época de ecuso) 11/0/003 NOME: Não esqueça 1) (4 AL.) de esceve o nome a) Diga, numa fase, o que entende po Cento Instantâneo de Rotação (CIR). Sabendo

Leia mais

APÊNDICE. Revisão de Trigonometria

APÊNDICE. Revisão de Trigonometria E APÊNDICE Revisão de Tigonometia FUNÇÕES E IDENTIDADES TRIGONOMÉTRICAS ÂNGULOS Os ângulos em um plano podem se geados pela otação de um aio (semi-eta) em tono de sua etemidade. A posição inicial do aio

Leia mais

UFABC - Física Quântica - Curso Prof. Germán Lugones. Aula 14. A equação de Schrödinger em 3D: átomo de hidrogénio (parte 2)

UFABC - Física Quântica - Curso Prof. Germán Lugones. Aula 14. A equação de Schrödinger em 3D: átomo de hidrogénio (parte 2) UFABC - Física Quântica - Cuso 2017.3 Pof. Gemán Lugones Aula 14 A equação de Schödinge em 3D: átomo de hidogénio (pate 2) 1 Equação paa a função adial R() A equação paa a pate adial da função de onda

Leia mais

Física Geral 2010/2011

Física Geral 2010/2011 Física Geal / 3 - Moimento a duas dimensões: Consideemos agoa o moimento em duas dimensões de um ponto mateial, ataés do estudo das quantidades ectoiais posição, elocidade e aceleação. Vectoes posição,

Leia mais

20 Exercícios Revisão

20 Exercícios Revisão 0 Execícios Revisão Nome Nº 1ª séie Física Beth/Reinaldo Data / / T cte. G. M. m F v a cp v G. M T.. v R Tea = 6,4 x 10 6 m M Tea = 6,0 x 10 4 kg G = 6,7 x 10 11 N.m /kg g = 10 m/s P = m.g M = F. d m d

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO MECÂNICA B PME ª LISTA DE EXERCÍCIOS MAIO DE 2010

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO MECÂNICA B PME ª LISTA DE EXERCÍCIOS MAIO DE 2010 MECÂNICA B PME 00 3ª ISTA DE EXECÍCIOS MAIO DE 010 1) A patícula pode desliza se atito no anel cicula que ia ao edo do eixo z co velocidade anula constante ω0. a) Aplique o teoea da esultante paa osta

Leia mais

(Eq. conservação da quantidade de movimento para V.C., cont) Caso particular: escoamento uniforme permanente

(Eq. conservação da quantidade de movimento para V.C., cont) Caso particular: escoamento uniforme permanente (Eq. consevação da quantidade de movimento paa.c., cont) Caso paticula: escoamento unifome pemanente Se há apenas uma entada e uma saída, a Eq. da q.d.m. tona-se: = ρ ρ da eq. da continuidade: 2 A222 1A1

Leia mais

AT4 DESENHO GEOMÉTRICO SEQUÊNCIA DE CONSTRUÇÕES GEOMÉTRICAS

AT4 DESENHO GEOMÉTRICO SEQUÊNCIA DE CONSTRUÇÕES GEOMÉTRICAS L M NNI MINTL a U/USa epatamento de ngenhaia ivil da USa xpessão áfica paa ngenhaia T4 SN MÉTI SQUÊNI NSTUÇÕS MÉTIS ste texto teóico apesenta uma séie de constuções geométicas () que são consideadas básicas.

Leia mais

TÓPICOS DE FÍSICA BÁSICA 2006/1 Turma IFA PRIMEIRA PROVA SOLUÇÃO

TÓPICOS DE FÍSICA BÁSICA 2006/1 Turma IFA PRIMEIRA PROVA SOLUÇÃO Tópicos de Física ásica 006/1 pof. Mata SEMN 8 PRIMEIR PROV - SOLUÇÃO NOME: TÓPIOS E FÍSI ÁSI 006/1 Tuma IF PRIMEIR PROV SOLUÇÃO QUESTÃO 1 (alo: 1,5 pontos) Numa epeiência, foam deteminados os aloes da

Leia mais

4.4 Mais da geometria analítica de retas e planos

4.4 Mais da geometria analítica de retas e planos 07 4.4 Mais da geometia analítica de etas e planos Equações da eta na foma simética Lembemos que uma eta, no planos casos acima, a foma simética é um caso paticula da equação na eta na foma geal ou no

Leia mais

CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO

CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO Capítulo 4 - Cinemática Invesa de Posição 4 CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO 4.1 INTRODUÇÃO No capítulo anteio foi visto como detemina a posição e a oientação do ógão teminal em temos das vaiáveis

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO DEPARTAMENTO DE ENGENHARIA MECÂNICA

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO DEPARTAMENTO DE ENGENHARIA MECÂNICA ecânica PE 00 Pova de Recupeação /07/014 Duação da Pova: 100 minutos (Não é pemitido o uso de calculadoas, celulaes, tablets e/ou outos equipamentos similaes) 1ª uestão (4,0 pontos) No sistema indicado

Leia mais

Eletromagnetismo I Instituto de Física - USP: 2ª Aula. Elétrostática

Eletromagnetismo I Instituto de Física - USP: 2ª Aula. Elétrostática Eletomagnetismo I Instituto de Física - USP: ª Aula Pof. Alvao Vannucci Elétostática Pimeias evidências de eletização (Tales de Mileto, Gécia séc. VI AC): quando âmba (electon, em gego) ea atitado em lã

Leia mais

QUESTÕES. Prof. Edson Osni Ramos v 10. Questão 1 - (BP )

QUESTÕES. Prof. Edson Osni Ramos v 10. Questão 1 - (BP ) C U R S O GABARITO - EXTENSIVO - ABRIL - 005 Questão 1 - (BP - 005) QUESTÕES Pof. Edson Osni Ramos 01. Está coeta. Obseve a figua acima. 0. Está coeta. Se Jadel consegui salta impimindo uma velocidade

Leia mais

FÍSICA FUNDAMENTAL 1 o Semestre de 2011 Prof. Maurício Fabbri. A quantidade de movimento (ou momento) de um corpo é um vetor definido como: r

FÍSICA FUNDAMENTAL 1 o Semestre de 2011 Prof. Maurício Fabbri. A quantidade de movimento (ou momento) de um corpo é um vetor definido como: r ÍSIC UNDMENTL 1 o Semeste de 011 Pof. Mauício abbi 5 a Séie de Execícios 004-11 Dinâmica e as Leis de Newton s leis de consevação Cinemática Pate II 1. QUNTIDDE DE MOVIMENTO E S LEIS DE NEWTON (I) quantidade

Leia mais

PROVA COMENTADA. Figura 1 Diagrama de corpo livre: sistema de um grau de liberdade (1gdl) F F F P 0. k c i t

PROVA COMENTADA. Figura 1 Diagrama de corpo livre: sistema de um grau de liberdade (1gdl) F F F P 0. k c i t ? Equilíbio da estutua PROVA COMENTADA a) Diagama de copo live (DCL): Paa monta o diagama de copo live deve-se inclui todas as foças atuando no bloco de massa m. Obseve que o bloco pode movimenta-se somente

Leia mais

LOQ Fenômenos de Transporte I

LOQ Fenômenos de Transporte I OQ 083 - Fenômenos de Tanspote I FT I Escoamento viscoso inteno e incompessível of. ucécio Fábio dos Santos Depatamento de Engenhaia Química OQ/EE Atenção: Estas notas destinam-se exclusivamente a sevi

Leia mais

F-328 Física Geral III

F-328 Física Geral III F-328 Física Geal III Aula exploatóia Cap. 23 UNICAMP IFGW 1 Ponto essencial O fluxo de água atavessando uma supefície fechada depende somente das toneias no inteio dela. 2 3 1 4 O fluxo elético atavessando

Leia mais

Movimento Circular. o movimento circular uniforme o força centrípeta o movimento circular não uniforme

Movimento Circular. o movimento circular uniforme o força centrípeta o movimento circular não uniforme Movimento Cicula o movimento cicula unifome o foça centípeta o movimento cicula não unifome Movimento cicula unifome Quando uma patícula se move ao longo de uma cicunfeência com velocidade escala constante,

Leia mais

Uma derivação simples da Lei de Gauss

Uma derivação simples da Lei de Gauss Uma deivação simples da Lei de Gauss C. E. I. Caneio de maço de 009 Resumo Apesentamos uma deivação da lei de Gauss (LG) no contexto da eletostática. Mesmo paa cagas em epouso, uma deivação igoosa da LG

Leia mais

ELECTROMAGNETISMO. EXAME Época Especial 8 de Setembro de 2008 RESOLUÇÕES

ELECTROMAGNETISMO. EXAME Época Especial 8 de Setembro de 2008 RESOLUÇÕES ELETROMAGNETISMO EXAME Época Especial 8 de Setemo de 8 RESOLUÇÕES a Paa que a patícula esteja em equíio na posição ilustada, a foça eléctica tem de te o mesmo sentido que E A caga tem de se positiva T

Leia mais

Lei de Ampère. (corrente I ) Foi visto: carga elétrica com v pode sentir força magnética se existir B e se B não é // a v

Lei de Ampère. (corrente I ) Foi visto: carga elétrica com v pode sentir força magnética se existir B e se B não é // a v Lei de Ampèe Foi visto: caga elética com v pode senti foça magnética se existi B e se B não é // a v F q v B m campos magnéticos B são geados po cagas em movimento (coente ) Agoa: esultados qualitativos

Leia mais

Sempre que surgir uma dúvida quanto à utilização de um instrumento ou componente, o aluno deverá consultar o professor para esclarecimentos.

Sempre que surgir uma dúvida quanto à utilização de um instrumento ou componente, o aluno deverá consultar o professor para esclarecimentos. Instituto de Física de São Calos Laboatóio de Eleticidade e Magnetismo: Nesta pática vamos estuda o compotamento de gandezas como campo elético e potencial elético. Deteminaemos as supefícies equipotenciais

Leia mais

UFSCar Cálculo 2. Quinta lista de exercícios. Prof. João C.V. Sampaio e Yolanda K. S. Furuya

UFSCar Cálculo 2. Quinta lista de exercícios. Prof. João C.V. Sampaio e Yolanda K. S. Furuya UFSCa Cálculo 2. Quinta lista de eecícios. Pof. João C.V. Sampaio e Yolanda K. S. Fuua Rega da cadeia, difeenciais e aplicações. Calcule (a 4 w (0,, π/6, se w = 4 4 + 2 u (b (c 2 +2 (, 3,, se u =. Resposta.

Leia mais

É o trabalho blh realizado para deslocar um corpo, com velocidade idd constante, t de um ponto a outro num campo conservativo ( )

É o trabalho blh realizado para deslocar um corpo, com velocidade idd constante, t de um ponto a outro num campo conservativo ( ) 1. VAIAÇÃO DA ENEGIA POTENCIAL É o tabalho blh ealizado paa desloca um copo, com velocidade idd constante, t de um ponto a outo num campo consevativo ( ) du W = F. dl = 0 = FF. d l Obs. sobe o sinal (-):

Leia mais

Lei de Gauss II Revisão: Aula 2_2 Física Geral e Experimental III Prof. Cláudio Graça

Lei de Gauss II Revisão: Aula 2_2 Física Geral e Experimental III Prof. Cláudio Graça Lei de Gauss II Revisão: Aula 2_2 Física Geal e Expeimental III Pof. Cláudio Gaça Revisão Cálculo vetoial 1. Poduto de um escala po um veto 2. Poduto escala de dois vetoes 3. Lei de Gauss, fluxo atavés

Leia mais

Grandezas vetoriais: Além do módulo, necessitam da direção e do sentido para serem compreendidas.

Grandezas vetoriais: Além do módulo, necessitam da direção e do sentido para serem compreendidas. NOME: Nº Ensino Médio TURMA: Data: / DISCIPLINA: Física PROF. : Glênon Duta ASSUNTO: Gandezas Vetoiais e Gandezas Escalaes Em nossas aulas anteioes vimos que gandeza é tudo aquilo que pode se medido. As

Leia mais

SISTEMA DE COORDENADAS

SISTEMA DE COORDENADAS ELETROMAGNETISMO I 1 0 ANÁLISE VETORIAL Este capítulo ofeece uma ecapitulação aos conhecimentos de álgeba vetoial, já vistos em outos cusos. Estando po isto numeado com o eo, não fa pate de fato dos nossos

Leia mais

CAMPO ELÉCTRICO NO EXTERIOR DE CONDUTORES LINEARES

CAMPO ELÉCTRICO NO EXTERIOR DE CONDUTORES LINEARES CAMPO ELÉCTRICO NO EXTERIOR DE CONDUTORES LINEARES 1. Resumo A coente que passa po um conduto poduz um campo magnético à sua volta. No pesente tabalho estuda-se a vaiação do campo magnético em função da

Leia mais

PME 2200 Mecânica B 1ª Prova 31/3/2009 Duração: 100 minutos (Não é permitido o uso de calculadoras)

PME 2200 Mecânica B 1ª Prova 31/3/2009 Duração: 100 minutos (Não é permitido o uso de calculadoras) PME Mecânica B ª Pova 3/3/9 Duação: minutos (Não é pemitido o uso de calculadoas) ª Questão (3, pontos) O eixo esbelto de compimento 3L e massa m é apoiado na aticulação e no anel B e possui discos de

Leia mais

Sejam todos bem-vindos! Física II. Prof. Dr. Cesar Vanderlei Deimling

Sejam todos bem-vindos! Física II. Prof. Dr. Cesar Vanderlei Deimling Sejam todos bem-vindos! Física II Pof. D. Cesa Vandelei Deimling Bibliogafia: Plano de Ensino Qual a impotância da Física em um cuso de Engenhaia? A engenhaia é a ciência e a pofissão de adquii e de aplica

Leia mais

Seção 24: Laplaciano em Coordenadas Esféricas

Seção 24: Laplaciano em Coordenadas Esféricas Seção 4: Laplaciano em Coodenadas Esféicas Paa o leito inteessado, na pimeia seção deduimos a expessão do laplaciano em coodenadas esféicas. O leito ue estive disposto a aceita sem demonstação pode dietamente

Leia mais