Lista de Exercícios de Fenômeno de Transporte II

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Lista de Exercícios de Fenômeno de Transporte II"

Transcrição

1 Lista de Execícios de Fenômeno de Tanspote II Exemplo.) Considee a tansfeência de calo em estado estacionáio ente duas supefícies gandes mantidas a tempeatua constantes de 300 e 00 K e que estão sepaadas po uma distância de cm. Assumindo que as supefícies são negas e que os efeitos de convecção natual são despezíveis, detemine a taxa de tansfeência de calo ente as duas placas, po unidade de áea, assumindo que o espaço ente as placa é: a) peenchido com a atmosféico; b) evacuado; c) peenchido com uetana (isolante témico); d) peenchido com um mateial supeisolante cuja condutividade témica é 0,0000 W/m.K. Exemplo.) Uma baa condutoa muito longa, de diâmeto D, tem uma esistência elética po unidade de compimento da baa R e e está inicialmente em equilíbio com a tempeatua ambiente. Quando uma coente elética I passa a pecoe a baa, inicia-se um pocesso de toca témica convectiva ente a baa e o meio que a cicunda, que está a T, e ainda um pocesso de toca adiativa com as vizinhanças. Enconte a equação que fonece a vaiação de tempeatua na baa com o tempo. Exemplo.3) Uma supefície, cuja tempeatua é mantida a 400 C, está sepaada de uma coente de a po uma camada de isolamento témico de 5 mm de espessua e condutividade témica 0, W/m.K. Se a tempeatua do a fo 35 C e se o coeficiente convectivo fo 500 W/m.K, detemine a tempeatua da supefície extena consideando: a) despezível as tocas po adiação témica; b) que a toca convectiva ocoe simultaneamente a uma tansfeência adiativa com as vizinhanças que está a 35 C (assuma a emissividade da supefície igual a 0,8). Compae citicamente os esultados. (Resp.: T s = 37,89 ºC ; T s = 37,86 ºC) Exemplo.4) (Questão de Pova) - A figua abaixo mosta a vaiação de tempeatua com a posição no inteio de uma paede num ceto instante de tempo t duante um pocesso tansiente. Veifique se a paede está sendo esfiada ou aquecida. Exemplo.5) O coeficiente de tansfeência de calo po convecção natual sobe uma chapa fina vetical aquecida, suspensa no a em epouso, pode se deteminado atavés de obsevações da mudança na tempeatua da chapa em função do tempo, enquanto ela se esfia. Supondo que a chapa seja isotémica e que a toca po adiação com a vizinhança seja despezível, detemine o coeficiente de tansfeência de calo convectivo da chapa paa o a no instante em que a tempeatua da chapa é de 5 ºC e a sua taxa de vaiação com o tempo (dt/dt) é de 0,0 K/s. A tempeatua do a ambiente é 5 ºC, a chapa mede 0,3 x 0,3 m, possui uma massa de 3,75 kg e o mateial da chapa tem calo específico de.770 J/kg.K. Exemplo.6) Uma maneia comum paa se medi condutividade témica de um mateial consiste de um expeimento onde é feito um sandwich do mateial a se investigado colocando como echeio um aquecedo elético, confome está mostado na figua. Em um deteminado expeimento, amostas cilíndicas de 5 cm de diâmeto e 0 cm de compimento são usadas, sendo que, em cada

2 amosta, dois temopaes, sepaados po uma distância de 3 cm, são usados paa medi a tempeatua. Passado o tansiente inicial, as difeenças de tempeatua ente os dois temopaes é 5 C. Se o aquecedo elético é 0 V e po ele passa uma coente de 0,4 A, detemine a condutividade témica da amosta. (Resp.: k =,4 W/m.K) Exemplo.7) Em um dado instante de tempo, a distibuição de tempeatua em um paede com 0,3 m de espessua é T(x) = a + bx + cx onde T é dado em gaus C, a = 00 C, b = -00 C/m e c = 30 C/m. A paede possui uma condutividade témica de W/m.K. a) Com base em uma supefície de áea unitáia, detemine a taxa de tansfeência de calo paa dento e paa foa da paede, bem como a taxa de vaiação da enegia acumulada no inteio da paede. b) Se a supefície fia está exposta a um fluido a 00 C, qual é o valo do coeficiente de tansfeência de calo po convecção ente esta supefície e o fluido? Exemplo.8) Uma placa de metal com espessua muito meno do que os lados é mantida a uma tempeatua T i. Em um deteminado momento, a pate infeio da placa é posta em contato com um fluido que está a uma tempeatua T enquanto que a supeio mantém-se à tempeatua inicial. Neste momento, a placa passa a se pecoida po uma coente elética geando uma enegia S (W/m 3 ). Esceva a equação difeencial govenante que deve se esolvida e as condições de contono e inicial paa se conhece a tempeatua da placa em um dado ponto em um dado instante de tempo. Exemplo.9) Um cilindo longo de cobe com tempeatua unifome de 800 K é etiado de um fono e é colocado em um tanque que contém água a 300 K e que está muito bem agitado a fim de se efetua um pocesso de têmpea do metal. Deseja-se sabe qual é a distibuição de tempeatua no inteio do cilindo em função do tempo a pati do momento que o mesmo é jogado no tanque. Esceva a equação difeencial govenante do pocesso e as condições de contono e inicial petinentes. Moste como seia possível detemina o fluxo de calo na supefície do cilindo paa um deteminado tempo. O que aconteceá com a peça se o tempo de espea no tanque fo muito gande? Exemplo 3.) Considee uma janela de vido duplo com 0,8 m de altua e,5 m de lagua constituída po duas camadas de vido (k = 0,78 W/m.K) de 4 mm de espessua sepaadas po uma camada de a estagnada (k = 0,06 W/m.K) de 0 mm. Detemine a taxa de calo pedida atavés desta janela, em estado estacionáio, quando as tempeatuas intena e extena são iguais a,

3 espectivamente, 0 e 0 ºC. O coeficiente de toca de calo convectivo inteno é igual a 0 W/m.K e o exteno é igual a 40 W/m.K. Detemine a segui o calo pedido po uma janela simples, com as mesmas dimensões anteioes, com apenas uma camada de vido de espessua 4 mm. Compae citicamente os esultados. (Resp.: q = 69, W) Exemplo 3.) (Questão de Pova) - Roupas feitas com divesas camadas de tecido sepaadas po camadas de a, denominadas de oupas de esquiadoes, são feqüentemente usadas em egiões de clima muito fio poque são leves, bonitas e muito eficientes do ponto de vista de isolamento témico. Considee uma jaqueta composta po 5 camadas de 0, mm de espessua de um tecido sintético (k = 0,3 W/m.C) sepaadas po camadas de a (k = 0,06 W/m.C) de,5 mm de espessua. Assumindo uma tempeatua intena da jaqueta igual a 8 C e uma áea de toca témica de, m, detemine: a) a taxa de calo pedida atavés da jaqueta quando extenamente tem-se uma coente de a com tempeatua de 5 C e um coeficiente convectivo de 5 W/m.K); b) a peda témica se a jaqueta fosse feita com apenas uma camada de 5 mm de espessua do mesmo tecido; c) a espessua necessáia de um tecido de lã natual (k = 0,035 W/m.C) paa que a pessoa tivesse o mesmo nível de confoto témico do que aquele coespondente à jaqueta de esquiado. (Resp.: q =3,8 W; q = 46,64 W; L = 0,8 cm) Exemplo 3.3) O vido taseio de um automóvel é desembaçado pela fixação de um aquecedo em película, fino e tanspaente, sobe a sua supefície intena. O seu funcionamento fonece um fluxo témico unifome na supefície intena do vido. Paa um vido com 4 mm de espessua, detemine a potência elética, po unidade de áea, necessáia paa mante a tempeatua na supefície intena em 5 ºC, quando a tempeatua do a no inteio do cao e o espectivo coeficiente de convecção são de T,i = 5 ºC e h i = 0 W/m.K e a tempeatua e o coeficiente de convecção no lado exteno (ambiente) são de T,e = -0 ºC e h e = 65 W/m.K. (Resp.: q aquec. = 8,7 W/) Exemplo 3.4) Um chip delgado de silício e um substato de alumínio, com 8 mm de espessua, estão sepaados po uma junta de epoxi com 0,0 mm de espessua que fonece uma deteminada esistência témica de contato. As supefícies expostas do chip e do substato são esfiadas po a a 5 C com um coeficiente convectivo de 00 W/m.K. Se o chip dissipa 0 4 W/m em condições nomais, pegunta-se se a sua opeação se daá abaixo da tempeatua máxima admissível de 85 C. Exemplo 3.5) Uma paede plana é composta de dois mateiais, A e B. A paede de mateial A tem uma geação unifome de calo S =,5x0 6 W/m 3, k A = 75 W/m.K e espessua L A = 50 mm. A paede de mateial B não tem geação de calo, k B = 50 W/m.K e a espessua é L B = 0 mm. A supefície intena do mateial A está bem isolada, enquanto que a supefície extena do mateial B está esfiada po uma coente de água com T = 30C e h =.000 W/m.K.

4 (a) Faça o gáfico da distibuição de tempeatua na paede composta paa a situação de egime pemanente. (b) Detemine as tempeatua T 0 da supefície isolada, T na inteface ente os dois mateiais e T na supefície esfiada. Exemplo 3.6) (Pova 006/) - Uma paede plana de espessua L tem fontes intenas de enegia cuja intensidade vaia de acodo com a seguinte equação: S S o cosax, onde S é dado em W/m 3, a é uma constante e x é vaiável espacial, medida a pati da linha cental da placa. Se ambos os lados da paede tocam calo po convecção com um fluido a T atavés de um coeficiente de toca de calo h, paa a situação de estado estacionáio, enconte: a) a expessão paa o pefil de tempeatua na paede; b) a expessão paa a taxa de calo tocado na posição junto à supefície da esqueda; c) a expessão paa a taxa de calo tocado no cento da placa o

5 OPERAÇÕES VETORIAIS NOS SISTEMAS DE COORDENADAS CARTESIANO, CILÍNDRICO E ESFÉRICO a.) Gadiente x y Catesiano: ; ; x y z z Cilíndico: ; ; z z Esféico: ; ; b.) Divegente sen Catesiano: Ax. A x Ay y Az z Cilíndico: A. A A Az z A sen A Esféico:. A c.) Laplaciano x sen y z Catesiano: Cilíndico: sen sen A z sen Esféico: sen

Aula 2 de Fenômemo de transporte II. Cálculo de condução Parede Plana Parede Cilíndrica Parede esférica

Aula 2 de Fenômemo de transporte II. Cálculo de condução Parede Plana Parede Cilíndrica Parede esférica Aula 2 de Fenômemo de tanspote II Cálculo de condução Paede Plana Paede Cilíndica Paede esféica Cálculo de condução Vamos estuda e desenvolve as equações da condução em nível básico paa egime pemanente,

Leia mais

UPM/EE/DEM/FT-II-5C/Profa. Dra. Míriam Tvrzská de Gouvêa/2004-2S UPM/EE/DEM&DEE/FT-II-4E/F/Profa. Dra. Esleide Lopes Casella/2004-2S

UPM/EE/DEM/FT-II-5C/Profa. Dra. Míriam Tvrzská de Gouvêa/2004-2S UPM/EE/DEM&DEE/FT-II-4E/F/Profa. Dra. Esleide Lopes Casella/2004-2S Questão paa eflexão: em sítios, não é incomum nos fogões a lenha te-se uma tubulação que aquece água, a qual é conduzida paa os chuveios e toneias sem o uso de bombas. Explique o po quê. (figua extaída

Leia mais

FGE0270 Eletricidade e Magnetismo I

FGE0270 Eletricidade e Magnetismo I FGE7 Eleticidade e Magnetismo I Lista de execícios 9 1. Uma placa condutoa uadada fina cujo lado mede 5, cm enconta-se no plano xy. Uma caga de 4, 1 8 C é colocada na placa. Enconte (a) a densidade de

Leia mais

Condução Unidimensional em Regime Permanente

Condução Unidimensional em Regime Permanente Condução Unidimensional em Regime Pemanente Num sistema unidimensional os gadientes de tempeatua existem somente ao longo de uma única coodenada, e a tansfeência de calo ocoe exclusivamente nesta dieção.

Leia mais

UNIVERSIDADE EDUARDO MONDLANE

UNIVERSIDADE EDUARDO MONDLANE UNIVERSIDADE EDUARDO MONDLANE Faculdade de Engenhaia Tansmissão de calo 3º Ano Aula 4 Aula Pática- Equação Difeencial de Tansmissão de Calo e as Condições de Contono Poblema -4. Calcula a tempeatua no

Leia mais

Problemas sobre Indução Electromagnética

Problemas sobre Indução Electromagnética Faculdade de Engenhaia Poblemas sobe Indução Electomagnética ÓPTICA E ELECTROMAGNETISMO MIB Maia Inês Babosa de Cavalho Setembo de 7 Faculdade de Engenhaia ÓPTICA E ELECTROMAGNETISMO MIB 7/8 LEI DE INDUÇÃO

Leia mais

TEXTO DE REVISÃO 13 Impulso e Quantidade de Movimento (ou Momento Linear).

TEXTO DE REVISÃO 13 Impulso e Quantidade de Movimento (ou Momento Linear). TEXTO DE REVISÃO 13 Impulso e Quantidade de Movimento (ou Momento Linea). Cao Aluno: Este texto de evisão apesenta um dos conceitos mais impotantes da física, o conceito de quantidade de movimento. Adotamos

Leia mais

Nessas condições, a coluna de água mede, em metros, a) 1,0. b) 5,0. c) 8,0. d) 9,0. e) 10.

Nessas condições, a coluna de água mede, em metros, a) 1,0. b) 5,0. c) 8,0. d) 9,0. e) 10. EVSÃO UEL-UEM-ENEM HDOSTÁTCA. 01 - (FATEC SP/011/Janeio) Nas figuas apesentadas, obsevam-se tês blocos idênticos e de mesma densidade que flutuam em líquidos difeentes cujas densidades são, espectivamente,

Leia mais

Aula 31 Área de Superfícies - parte II

Aula 31 Área de Superfícies - parte II MÓDULO - UL 1 ula 1 Áea de Supefícies - pate II Objetivos Defini sólidos de evolução. Detemina áeas de algumas supefícies de evolução. Intodução Considee um plano e uma linha simples L contida nesse plano.

Leia mais

du mn qn( E u B) r dt + r

du mn qn( E u B) r dt + r Aula 7 Nesta aula, continuaemos a discuti o caáte de fluido do plasma, analisando a equação de fluido que ege o movimento do plasma como fluido. 3.2 Equação de Fluido paa o Plasma Vimos no capítulo 2 que

Leia mais

Eletromagnetismo e Ótica (MEAer/LEAN) Circuitos Corrente Variável, Equações de Maxwell

Eletromagnetismo e Ótica (MEAer/LEAN) Circuitos Corrente Variável, Equações de Maxwell Eletomagnetismo e Ótica (MEAe/EAN) icuitos oente Vaiável, Equações de Maxwell 11ª Semana Pobl. 1) (evisão) Moste que a pessão (foça po unidade de áea) na supefície ente dois meios de pemeabilidades difeentes

Leia mais

ESCOAMENTO POTENCIAL. rot. Escoamento de fluido não viscoso, 0. Equação de Euler: Escoamento de fluido incompressível cte. Equação da continuidade:

ESCOAMENTO POTENCIAL. rot. Escoamento de fluido não viscoso, 0. Equação de Euler: Escoamento de fluido incompressível cte. Equação da continuidade: ESCOAMENTO POTENCIAL Escoamento de fluido não viso, Equação de Eule: DV ρ ρg gad P Dt Escoamento de fluido incompessível cte Equação da continuidade: divv Escoamento Iotacional ot V V Se o escoamento fo

Leia mais

Lei de Gauss. Ignez Caracelli Determinação do Fluxo Elétrico. se E não-uniforme? se A é parte de uma superfície curva?

Lei de Gauss. Ignez Caracelli Determinação do Fluxo Elétrico. se E não-uniforme? se A é parte de uma superfície curva? Lei de Gauss Ignez Caacelli ignez@ufsca.b Pofa. Ignez Caacelli Física 3 Deteminação do Fluxo lético se não-unifome? se A é pate de uma supefície cuva? A da da = n da da nˆ da = da definição geal do elético

Leia mais

Figura 6.6. Superfícies fechadas de várias formas englobando uma carga q. O fluxo eléctrico resultante através de cada superfície é o mesmo.

Figura 6.6. Superfícies fechadas de várias formas englobando uma carga q. O fluxo eléctrico resultante através de cada superfície é o mesmo. foma dessa supefície. (Pode-se pova ue este é o caso poue E 1/ 2 ) De fato, o fluxo esultante atavés de ualue supefície fechada ue envolve uma caga pontual é dado po. Figua 6.6. Supefícies fechadas de

Leia mais

n θ E Lei de Gauss Fluxo Eletrico e Lei de Gauss

n θ E Lei de Gauss Fluxo Eletrico e Lei de Gauss Fundamentos de Fisica Clasica Pof icado Lei de Gauss A Lei de Gauss utiliza o conceito de linhas de foça paa calcula o campo elético onde existe um alto gau de simetia Po exemplo: caga elética pontual,

Leia mais

UFJF CONCURSO VESTIBULAR 2012 REFERÊNCIA DE CORREÇÃO DA PROVA DE MATEMÁTICA. e uma das raízes é x = 1

UFJF CONCURSO VESTIBULAR 2012 REFERÊNCIA DE CORREÇÃO DA PROVA DE MATEMÁTICA. e uma das raízes é x = 1 UFJF ONURSO VESTIULR REFERÊNI DE ORREÇÃO D PROV DE MTEMÁTI 4 Questão Seja P( = ax + bx + cx + dx + e um polinômio com coeficientes eais em que b = e uma das aízes é x = Sabe-se que a < b < c < d < e fomam

Leia mais

Antenas e Propagação Folha de exercícios nº1 Conceitos Fundamentais

Antenas e Propagação Folha de exercícios nº1 Conceitos Fundamentais Antenas e Popagação Folha de execícios nº1 Conceitos Fundamentais 1. Uma onda electomagnética plana com fequência de oscilação de 9.4GHz popaga-se no polipopileno ( 2. 25 e 1). Se a amplitude do campo

Leia mais

)25d$0$*1e7,&$62%5( &21'8725(6

)25d$0$*1e7,&$62%5( &21'8725(6 73 )5d$0$*1e7,&$6%5( &1'875(6 Ao final deste capítulo você deveá se capaz de: ½ Explica a ação de um campo magnético sobe um conduto conduzindo coente. ½ Calcula foças sobe condutoes pecoidos po coentes,

Leia mais

FGE0270 Eletricidade e Magnetismo I

FGE0270 Eletricidade e Magnetismo I FGE7 Eleticidade e Magnetismo I Lista de execícios 5 9 1. Quando a velocidade de um eléton é v = (,x1 6 m/s)i + (3,x1 6 m/s)j, ele sofe ação de um campo magnético B = (,3T) i (,15T) j.(a) Qual é a foça

Leia mais

Mecânica e Ondas. Trabalho I. Conservação da Energia Mecânica da Roda de Maxwell

Mecânica e Ondas. Trabalho I. Conservação da Energia Mecânica da Roda de Maxwell Mecânica e Ondas Tabalho I Consevação da Enegia Mecânica da Roda de Maxwell Objectivo Deteminação do momento de inécia da oda de Maxwell. Estudo da tansfeência de enegia potencial em enegia de tanslação

Leia mais

CAPÍTULO 7: CAPILARIDADE

CAPÍTULO 7: CAPILARIDADE LCE000 Física do Ambiente Agícola CAPÍTULO 7: CAPILARIDADE inteface líquido-gás M M 4 esfea de ação molecula M 3 Ao colocamos uma das extemidades de um tubo capila de vido dento de um ecipiente com água,

Leia mais

Universidade de Évora Departamento de Física Ficha de exercícios para Física I (Biologia)

Universidade de Évora Departamento de Física Ficha de exercícios para Física I (Biologia) Univesidade de Évoa Depatamento de Física Ficha de eecícios paa Física I (Biologia) 4- SISTEMA DE PARTÍCULAS E DINÂMICA DE ROTAÇÃO A- Sistema de patículas 1. O objecto epesentado na figua 1 é feito de

Leia mais

19 - Potencial Elétrico

19 - Potencial Elétrico PROBLEMAS RESOLVIDOS DE FÍSICA Pof. Andeson Cose Gaudio Depatamento de Física Cento de Ciências Exatas Univesidade Fedeal do Espíito Santo http://www.cce.ufes.b/andeson andeson@npd.ufes.b Última atualização:

Leia mais

/(,'(%,276$9$57()/8;2 0$*1e7,&2

/(,'(%,276$9$57()/8;2 0$*1e7,&2 67 /(,'(%,76$9$57()/8; 0$*1e7,& Ao final deste capítulo você deveá se capaz de: ½ Explica a elação ente coente elética e campo magnético. ½ Equaciona a elação ente coente elética e campo magnético, atavés

Leia mais

LISTA COMPLETA PROVA 03

LISTA COMPLETA PROVA 03 LISTA COMPLETA PROVA 3 CAPÍTULO 3 E. Quato patículas seguem as tajetóias mostadas na Fig. 3-8 quando elas passam atavés de um campo magnético. O que se pode conclui sobe a caga de cada patícula? Fig. 3-8

Leia mais

Fenômenos de Transporte I. Aula 10. Prof. Dr. Gilberto Garcia Cortez

Fenômenos de Transporte I. Aula 10. Prof. Dr. Gilberto Garcia Cortez Fenômenos de Tanspote I Aula Pof. D. Gilbeto Gacia Cotez 8. Escoamento inteno iscoso e incompessíel 8. Intodução Os escoamentos completamente limitados po supefícies sólidas são denominados intenos. Ex:

Leia mais

Cap014 - Campo magnético gerado por corrente elétrica

Cap014 - Campo magnético gerado por corrente elétrica ap014 - ampo magnético geado po coente elética 14.1 NTRODUÇÃO S.J.Toise Até agoa os fenômenos eléticos e magnéticos foam apesentados como fatos isolados. Veemos a pati de agoa que os mesmos fazem pate

Leia mais

Módulo 5: Conteúdo programático Eq da continuidade em Regime Permanente. Escoamento dos Fluidos - Equações Fundamentais

Módulo 5: Conteúdo programático Eq da continuidade em Regime Permanente. Escoamento dos Fluidos - Equações Fundamentais Módulo 5: Conteúdo pogamático Eq da continuidade em egime Pemanente Bibliogafia: Bunetti, F. Mecânica dos Fluidos, São Paulo, Pentice Hall, 7. Eoamento dos Fluidos - Equações Fundamentais Popiedades Intensivas:

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica ESCOL POLITÉCNIC D UNIVESIDDE DE SÃO PULO Depatamento de Engenhaia ecânica PE 100 ecânica Pova de ecupeação - Duação 100 minutos 05 de feveeio de 013 1 - Não é pemitido o uso de calculadoas, celulaes,

Leia mais

PROPAGAÇÃO II. Conceitos de Antenas

PROPAGAÇÃO II. Conceitos de Antenas Instituto Supeio de Engenhaia de Lisboa Depatamento de Engenhaia de Electónica e Telecomunicações e de Computadoes Secção de Sistemas de Telecomunicações ROAGAÇÃO II Conceitos de Antenas ISEL, opagação

Leia mais

E d A E d A E d A E d A

E d A E d A E d A E d A X R Í I OS: Lei de Gauss 1. Uma supefície fechada, na fma de um cilind et, encnta-se imes em um camp elétic unifme. O eix d cilind é paalel a camp elétic. Usand a fma integal paa flux d camp elétic, mste

Leia mais

Mecânica Técnica. Aula 5 Vetor Posição, Aplicações do Produto Escalar. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica Técnica. Aula 5 Vetor Posição, Aplicações do Produto Escalar. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues ula 5 Veto Posição, plicações do Poduto Escala Pof. MSc. Luiz Eduado Mianda J. Rodigues Pof. MSc. Luiz Eduado Mianda J. Rodigues Tópicos bodados Nesta ula Vetoes Posição. Veto Foça Oientado ao Longo de

Leia mais

Geradores e Receptores

Geradores e Receptores Geadoes e Receptoes Extensivo Física Aula 6 1. Geado elético Dispositivo que ealiza a tansfomação de outa foma de enegia ( mecânica, química, etc.) em enegia elética. Exemplos: bateias, pilhas, etc. i

Leia mais

Energia no movimento de uma carga em campo elétrico

Energia no movimento de uma carga em campo elétrico O potencial elético Imagine dois objetos eletizados, com cagas de mesmo sinal, inicialmente afastados. Paa apoximá-los, é necessáia a ação de uma foça extena, capaz de vence a epulsão elética ente eles.

Leia mais

COLÉGIO MILITAR BELO HORIZONTE

COLÉGIO MILITAR BELO HORIZONTE COLÉGIO MILITAR DE BELO HORIZONTE BELO HORIZONTE MG 3 DE OUTUBRO DE 004 DURAÇÃO: 10 MINUTOS CONCURSO DE ADMISSÃO 004 / 005 PROVA DE MATEMÁTICA 1ª SÉRIE DO ENSINO MÉDIO IDENTIFICAÇÃO NÚMERO DE INSCRIÇÃO:

Leia mais

Aula-5 Capacitância. Curso de Física Geral F-328 1 o semestre, 2008

Aula-5 Capacitância. Curso de Física Geral F-328 1 o semestre, 2008 Aula-5 apacitância uso de Física Geal F-38 o semeste, 8 apacitância apacitoes Dois condutoes caegados com cagas Q e Q e isolados, de fomatos abitáios, fomam o ue chamamos de um capacito. A sua utilidade

Leia mais

ELETRICIDADE CAPÍTULO 3 LEIS DE CIRCUITOS ELÉTRICOS

ELETRICIDADE CAPÍTULO 3 LEIS DE CIRCUITOS ELÉTRICOS ELETICIDADE CAPÍTULO 3 LEIS DE CICUITOS ELÉTICOS - CONSIDEE A SEGUINTE ELAÇÃO: 3. LEI DE OHM - QUALQUE POCESSO DE CONVESÃO DE ENEGIA PODE SE ELACIONADO A ESTA EQUAÇÃO. - EM CICUITOS ELÉTICOS : - POTANTO,

Leia mais

30/08/2016. Transferência de calor. Condução de calor. 2 º. semestre, Geometrias mais usuais. Parede plana. Esfera.

30/08/2016. Transferência de calor. Condução de calor. 2 º. semestre, Geometrias mais usuais. Parede plana. Esfera. 30/08/06 Tanfeência de calo Condução de calo º. emete, 06 Geometia mai uuai Paede plana Efea Cilindo longo 30/08/06 Condução de calo em paede plana: ditibuição de tempeatua Balanço de enegia Taxa decondução

Leia mais

CONCURSO DE ADMISSÃO AO CURSO DE GRADUAÇÃO FÍSICA

CONCURSO DE ADMISSÃO AO CURSO DE GRADUAÇÃO FÍSICA CONCURSO DE DMISSÃO O CURSO DE GRDUÇÃO FÍSIC CDERNO DE QUESTÕES 2008 1 a QUESTÃO Valo: 1,0 Uma bóia náutica é constituída de um copo cilíndico vazado, com seção tansvesal de áea e massa m, e de um tonco

Leia mais

FÍSICA 3 Fontes de Campo Magnético. Prof. Alexandre A. P. Pohl, DAELN, Câmpus Curitiba

FÍSICA 3 Fontes de Campo Magnético. Prof. Alexandre A. P. Pohl, DAELN, Câmpus Curitiba FÍSICA 3 Fontes de Campo Magnético Pof. Alexande A. P. Pohl, DAELN, Câmpus Cuitiba EMENTA Caga Elética Campo Elético Lei de Gauss Potencial Elético Capacitância Coente e esistência Cicuitos Eléticos em

Leia mais

PUC-RIO CB-CTC. P4 DE ELETROMAGNETISMO sexta-feira. Nome : Assinatura: Matrícula: Turma:

PUC-RIO CB-CTC. P4 DE ELETROMAGNETISMO sexta-feira. Nome : Assinatura: Matrícula: Turma: UC-O CB-CTC 4 DE ELETOMAGNETSMO..09 seta-feia Nome : Assinatua: Matícula: Tuma: NÃO SEÃO ACETAS ESOSTAS SEM JUSTFCATVAS E CÁLCULOS EXLÍCTOS. Não é pemitido destaca folhas da pova Questão Valo Gau evisão

Leia mais

3. Elementos de Sistemas Elétricos de Potência

3. Elementos de Sistemas Elétricos de Potência Sistemas Eléticos de Potência 3. Elementos de Sistemas Eléticos de Potência Pofesso: D. Raphael Augusto de Souza Benedito E-mail:aphaelbenedito@utfp.edu.b disponível em: http://paginapessoal.utfp.edu.b/aphaelbenedito

Leia mais

1ª Ficha Global de Física 12º ano

1ª Ficha Global de Física 12º ano 1ª Ficha Global de Física 1º ano Duação: 10 minutos Toleância: não há. Todos os cálculos devem se apesentados de modo clao e sucinto Note: 1º - as figuas não estão desenhadas a escala; º - o enunciado

Leia mais

Lei de Gauss. Lei de Gauss: outra forma de calcular campos elétricos

Lei de Gauss. Lei de Gauss: outra forma de calcular campos elétricos ... Do que tata a? Até aqui: Lei de Coulomb noteou! : outa foma de calcula campos eléticos fi mais simples quando se tem alta simetia (na vedade, só tem utilidade pática nesses casos!!) fi válida quando

Leia mais

Transmissão de Calor Introdução

Transmissão de Calor Introdução Tansmissão de Calo Intodução P.J. Oliveia Depatamento Engenhaia Electomecânica, UBI, Setembo 2014 Temodinâmica: ciência que estuda a enegia, a inteacção ente enegia e matéia, e os pocessos de convesão

Leia mais

CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO

CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO Capítulo 4 - Cinemática Invesa de Posição 4 CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO 4.1 INTRODUÇÃO No capítulo anteio foi visto como detemina a posição e a oientação do ógão teminal em temos das vaiáveis

Leia mais

IMPULSO E QUANTIDADE DE MOVIMENTO

IMPULSO E QUANTIDADE DE MOVIMENTO AULA 10 IMPULSO E QUANTIDADE DE MOVIMENTO 1- INTRODUÇÃO Nesta aula estudaemos Impulso de uma foça e a Quantidade de Movimento de uma patícula. Veemos que estas gandezas são vetoiais e que possuem a mesma

Leia mais

Engenharia Electrotécnica e de Computadores Exercícios de Electromagnetismo Ficha 1

Engenharia Electrotécnica e de Computadores Exercícios de Electromagnetismo Ficha 1 Instituto Escola Supeio Politécnico de Tecnologia ÁREA INTERDEPARTAMENTAL Ano lectivo 010-011 011 Engenhaia Electotécnica e de Computadoes Eecícios de Electomagnetismo Ficha 1 Conhecimentos e capacidades

Leia mais

. Essa força é a soma vectorial das forças individuais exercidas em q 0 pelas várias cargas que produzem o campo E r. Segue que a força q E

. Essa força é a soma vectorial das forças individuais exercidas em q 0 pelas várias cargas que produzem o campo E r. Segue que a força q E 7. Potencial Eléctico Tópicos do Capítulo 7.1. Difeença de Potencial e Potencial Eléctico 7.2. Difeenças de Potencial num Campo Eléctico Unifome 7.3. Potencial Eléctico e Enegia Potencial Eléctica de Cagas

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 10/08/13 PROFESSOR: MALTEZ

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 10/08/13 PROFESSOR: MALTEZ ESOLUÇÃO DA AALIAÇÃO DE MATEMÁTICA o ANO DO ENSINO MÉDIO DATA: 0/08/ POFESSO: MALTEZ QUESTÃO 0 A secção tansvesal de um cilindo cicula eto é um quadado com áea de m. O volume desse cilindo, em m, é: A

Leia mais

O Jogo do resta-um num tabuleiro infinito

O Jogo do resta-um num tabuleiro infinito O Jogo do esta-um num tabuleio infinito Alexande Baaviea Milton Pocópio de Boba 1. Intodução. No EREMAT-007 em Canoas-RS, acompanhando a Kelly, aluna de Matemática da UNIVILLE, assisti a váias palestas,

Leia mais

INSTITUTO DE FISICA- UFBa Março, 2003 DEPARTAMENTO DE FÍSICA DO ESTADO SÓLIDO ESTRUTURA DA MATERIA I (FIS 101) EFEITO HALL

INSTITUTO DE FISICA- UFBa Março, 2003 DEPARTAMENTO DE FÍSICA DO ESTADO SÓLIDO ESTRUTURA DA MATERIA I (FIS 101) EFEITO HALL INSTITUTO DE FISICA- UFBa Maço, 2003 DEPARTAMENTO DE FÍSICA DO ESTADO SÓLIDO ESTRUTURA DA MATERIA I (FIS 101) Roteio elaboado po Newton Oliveia EFEITO ALL OBJETIO DO EXPERIMENTO: A finalidade do expeimento

Leia mais

Exercício 1 Escreva as coordenadas cartesianas de cada um dos pontos indicados na figura abaixo. Exemplo: A=(1,1). y (cm)

Exercício 1 Escreva as coordenadas cartesianas de cada um dos pontos indicados na figura abaixo. Exemplo: A=(1,1). y (cm) INTRODUÇÃO À FÍSICA tuma MAN / pofa Mata F Baoso EXERCÍCIOS Eecício Esceva as coodenadas catesianas de cada um dos pontos indicados na figua abaio Eemplo: A=(,) (cm) F E B A - O (cm) - D C - - Eecício

Leia mais

UNIVERSIDADE PRESBITERIANA MACKENZIE Escola de Engenharia. 1 Cinemática 2 Dinâmica 3 Estática

UNIVERSIDADE PRESBITERIANA MACKENZIE Escola de Engenharia. 1 Cinemática 2 Dinâmica 3 Estática UNIVERSIDDE PRESITERIN MKENZIE Escola de Engenhaia 1 inemática 2 Dinâmica 3 Estática 1ºs/2006 1) Uma patícula movimenta-se, pecoendo uma tajetóia etilínea, duante 30 min com uma velocidade de 80 km/h.

Leia mais

PROVA DE FÍSICA 2º ANO - 2ª MENSAL - 1º TRIMESTRE TIPO A

PROVA DE FÍSICA 2º ANO - 2ª MENSAL - 1º TRIMESTRE TIPO A PROA DE FÍSIA 2º ANO - 2ª MENSAL - 1º RIMESRE IPO A 1) Os ios, agos e oceanos ocaizados em áeas de cima fio congeam da supefície paa as egiões mais pofundas. A camada de geo fomada funciona como um isoante

Leia mais

7.3. Potencial Eléctrico e Energia Potencial Eléctrica de Cargas Pontuais

7.3. Potencial Eléctrico e Energia Potencial Eléctrica de Cargas Pontuais 7.3. Potencial Eléctico e Enegia Potencial Eléctica de Cagas Pontuais Ao estabelece o conceito de potencial eléctico, imaginamos coloca uma patícula de pova num campo eléctico poduzido po algumas cagas

Leia mais

Universidade. Curso: Ciência

Universidade. Curso: Ciência Univesidade Fedeal Rual do Semi Áido PROGRAD Cuso: Ciência e Tecnologia Disciplina: Mecânica Clássica UFERSA Po Reitoia de Gaduação Lista I Cinemática e Leis de Newton 1. O micômeto (1 μm) é feqüentemente

Leia mais

MATEMÁTICA - 3o ciclo

MATEMÁTICA - 3o ciclo MATEMÁTICA - o ciclo Função afim e equação da eta ( o ano) Eecícios de povas nacionais e testes intemédios. Considea, num efeencial catesiano, a eta definida pela equação = +. Seja s a eta que é paalela

Leia mais

Campo Magnético produzido por Bobinas Helmholtz

Campo Magnético produzido por Bobinas Helmholtz defi depatamento de física Laboatóios de Física www.defi.isep.ipp.pt Campo Magnético poduzido po Bobinas Helmholtz Instituto Supeio de Engenhaia do Poto- Depatamento de Física ua D. António Benadino de

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO SCOL POLITÉCIC UIVRSI SÃO PULO epatamento de ngenhaia ecânica P 100 CÂIC 1 Pova Substitutiva 1 de julho de 017 - uação: 110 minutos (não é pemitido o uso de celulaes, tablets, calculadoas e dispositivos

Leia mais

LISTA COMPLETA PROVA 02. Fig Exercício 6.

LISTA COMPLETA PROVA 02. Fig Exercício 6. LISTA COMPLETA PROVA CAPÍTULO 6 5E. Quando um eléton se move de A até B ao longo da linha de campo elético, mostada na Fig. 6-4, o campo elético ealiza um tabalho de 3,94 1 19 J sobe ele. Quais são as

Leia mais

MODELAGEM NUMÉRICA DE CABOS DE LINHAS DE TRANSMISSÃO DE ENERGIA

MODELAGEM NUMÉRICA DE CABOS DE LINHAS DE TRANSMISSÃO DE ENERGIA VI CONGRESSO NACIONAL DE ENGENHARIA MECÂNICA VI NATIONAL CONGRESS OF MECHANICAL ENGINEERING 8 a de agosto de 00 Campina Gande Paaíba - Basil August 8, 00 Campina Gande Paaíba Bazil MODELAGEM NUMÉRICA DE

Leia mais

10/Out/2012 Aula 6. 3/Out/2012 Aula5

10/Out/2012 Aula 6. 3/Out/2012 Aula5 3/Out/212 Aula5 5. Potencial eléctico 5.1 Potencial eléctico - cagas pontuais 5.2 Supefícies equipotenciais 5.3 Potencial ciado po um dipolo eléctico 5.4 elação ente campo e potencial eléctico 1/Out/212

Leia mais

Prof.Silveira Jr CAMPO ELÉTRICO

Prof.Silveira Jr CAMPO ELÉTRICO Pof.Silveia J CAMPO ELÉTRICO 1. (Fuvest 017) A deteminação da massa da molécula de insulina é pate do estudo de sua estutua. Paa medi essa massa, as moléculas de insulina são peviamente ionizadas, adquiindo,

Leia mais

Condensador esférico Um condensador esférico é constituído por uma esfera interior de raio R e carga

Condensador esférico Um condensador esférico é constituído por uma esfera interior de raio R e carga onensao esféico Um conensao esféico é constituío po uma esfea inteio e aio e caga + e uma supefície esféica exteio e aio e caga. a) Detemine o campo eléctico e a ensiae e enegia em too o espaço. b) alcule

Leia mais

a) A energia potencial em função da posição pode ser representada graficamente como

a) A energia potencial em função da posição pode ser representada graficamente como Solução da questão de Mecânica uântica Mestado a) A enegia potencial em função da posição pode se epesentada gaficamente como V(x) I II III L x paa x < (egião I) V (x) = paa < x < L (egião II) paa x >

Leia mais

SISTEMA DE COORDENADAS

SISTEMA DE COORDENADAS ELETROMAGNETISMO I 1 0 ANÁLISE VETORIAL Este capítulo ofeece uma ecapitulação aos conhecimentos de álgeba vetoial, já vistos em outos cusos. Estando po isto numeado com o eo, não fa pate de fato dos nossos

Leia mais

Departamento de Física - Universidade do Algarve FORÇA CENTRÍFUGA

Departamento de Física - Universidade do Algarve FORÇA CENTRÍFUGA FORÇA CENTRÍFUGA 1. Resumo Um copo desceve um movimento cicula unifome. Faz-se vaia a sua velocidade de otação e a distância ao eixo de otação, medindo-se a foça centífuga em função destes dois paâmetos..

Leia mais

CAMPO ELÉCTRICO NO EXTERIOR DE CONDUTORES LINEARES

CAMPO ELÉCTRICO NO EXTERIOR DE CONDUTORES LINEARES CAMPO ELÉCTRICO NO EXTERIOR DE CONDUTORES LINEARES 1. Resumo A coente que passa po um conduto poduz um campo magnético à sua volta. No pesente tabalho estuda-se a vaiação do campo magnético em função da

Leia mais

3.1 Potencial gravitacional na superfície da Terra

3.1 Potencial gravitacional na superfície da Terra 3. Potencial gavitacional na supefície da Tea Deive a expessão U(h) = mgh paa o potencial gavitacional na supefície da Tea. Solução: A pati da lei de Newton usando a expansão de Taylo: U( ) = GMm, U( +

Leia mais

O perímetro da circunferência

O perímetro da circunferência Univesidade de Basília Depatamento de Matemática Cálculo 1 O peímeto da cicunfeência O peímeto de um polígono de n lados é a soma do compimento dos seus lados. Dado um polígono qualque, você pode sempe

Leia mais

&255(17((/e75,&$ (6.1) Se a carga é livre para se mover, ela sofrerá uma aceleração que, de acordo com a segunda lei de Newton é dada por : r r (6.

&255(17((/e75,&$ (6.1) Se a carga é livre para se mover, ela sofrerá uma aceleração que, de acordo com a segunda lei de Newton é dada por : r r (6. 9 &55(1((/e5,&$ Nos capítulos anteioes estudamos os campos eletostáticos, geados a pati de distibuições de cagas eléticas estáticas. Neste capítulo iniciaemos o estudo da coente elética, que nada mais

Leia mais

APÊNDICE. Revisão de Trigonometria

APÊNDICE. Revisão de Trigonometria E APÊNDICE Revisão de Tigonometia FUNÇÕES E IDENTIDADES TRIGONOMÉTRICAS ÂNGULOS Os ângulos em um plano podem se geados pela otação de um aio (semi-eta) em tono de sua etemidade. A posição inicial do aio

Leia mais

Leitura obrigatória Mecânica Vetorial para Engenheiros, 5ª edição revisada, Ferdinand P. Beer, E. Russell Johnston, Jr.

Leitura obrigatória Mecânica Vetorial para Engenheiros, 5ª edição revisada, Ferdinand P. Beer, E. Russell Johnston, Jr. UC - Goiás Cuso: Engenhaia Civil Disciplina: ecânica Vetoial Copo Docente: Geisa ies lano de Aula Leitua obigatóia ecânica Vetoial paa Engenheios, 5ª edição evisada, edinand. Bee, E. Russell Johnston,

Leia mais

4.4 Mais da geometria analítica de retas e planos

4.4 Mais da geometria analítica de retas e planos 07 4.4 Mais da geometia analítica de etas e planos Equações da eta na foma simética Lembemos que uma eta, no planos casos acima, a foma simética é um caso paticula da equação na eta na foma geal ou no

Leia mais

TRABALHO E POTÊNCIA. O trabalho pode ser positivo ou motor, quando o corpo está recebendo energia através da ação da força.

TRABALHO E POTÊNCIA. O trabalho pode ser positivo ou motor, quando o corpo está recebendo energia através da ação da força. AULA 08 TRABALHO E POTÊNCIA 1- INTRODUÇÃO Uma foça ealiza tabalho quando ela tansfee enegia de um copo paa outo e quando tansfoma uma modalidade de enegia em outa. 2- TRABALHO DE UMA FORÇA CONSTANTE. Um

Leia mais

Quando falámos na estrutura molecular de um sólido vimos que cada molécula de uma estrutura cristalina está condicionada no

Quando falámos na estrutura molecular de um sólido vimos que cada molécula de uma estrutura cristalina está condicionada no Pessão Quando falámos na estutua molecula de um sólido vimos que cada molécula de uma estutua cistalina está condicionada no seu movimento. Este facto esulta das foças de ligação execidas pelos seus vizinhos.

Leia mais

Análise do Perfil de Temperaturas no Gás de Exaustão de um Motor pelo Método das Diferenças Finitas

Análise do Perfil de Temperaturas no Gás de Exaustão de um Motor pelo Método das Diferenças Finitas Poceeding Seies of te Bazilian Society of Applied and Computational Matematics, Vol., N. 1, 14. Tabalo apesentado no CMAC-Sul, Cuitiba-PR, 14. Análise do Pefil de Tempeatuas no Gás de Exaustão de um Moto

Leia mais

Série 2 versão 26/10/2013. Electromagnetismo. Série de exercícios 2

Série 2 versão 26/10/2013. Electromagnetismo. Série de exercícios 2 Séie 2 vesão 26/10/2013 Electomagnetismo Séie de execícios 2 Nota: Os execícios assinalados com seão esolvidos nas aulas. 1. A figua mosta uma vaa de plástico ue possui uma caga distibuída unifomemente

Leia mais

Prof. A.F.Guimarães Questões Eletricidade 4 Energia e Potencial Elétrico Questão 1

Prof. A.F.Guimarães Questões Eletricidade 4 Energia e Potencial Elétrico Questão 1 Pof FGuimaães Questões Eleticiae 4 Enegia e Potencial Elético Questão (CESESP) Na figua abaixo, a placa é aquecia libeano elétons com velociaes muito pequenas, paticamente nulas Devio à bateia e volts,

Leia mais

Vedação. Fig.1 Estrutura do comando linear modelo ST

Vedação. Fig.1 Estrutura do comando linear modelo ST 58-2BR Comando linea modelos, -B e I Gaiola de esfeas Esfea Eixo Castanha Vedação Fig.1 Estutua do comando linea modelo Estutua e caacteísticas O modelo possui uma gaiola de esfeas e esfeas incopoadas

Leia mais

MECÂNICA. Dinâmica Atrito e plano inclinado AULA 6 1- INTRODUÇÃO

MECÂNICA. Dinâmica Atrito e plano inclinado AULA 6 1- INTRODUÇÃO AULA 6 MECÂNICA Dinâmica Atito e plano inclinado 1- INTRODUÇÃO Quando nós temos, po exemplo, duas supefícies em contato em que há a popensão de uma desliza sobe a outa, podemos obseva aí, a apaição de

Leia mais

VETORES GRANDEZAS VETORIAIS

VETORES GRANDEZAS VETORIAIS VETORES GRANDEZAS VETORIAIS Gandezas físicas que não ficam totalmente deteminadas com um valo e uma unidade são denominadas gandezas vetoiais. As gandezas que ficam totalmente expessas po um valo e uma

Leia mais

Circunferência e círculo

Circunferência e círculo Cicunfeência e cículo evolução da humanidade foi aceleada po algumas descobetas e invenções. Ente elas, podemos cita a impensa de Johannes Gutenbeg (1400-1468), na lemanha, po volta de 1450, que pemitiu

Leia mais

Lei de Gauss II Revisão: Aula 2_2 Física Geral e Experimental III Prof. Cláudio Graça

Lei de Gauss II Revisão: Aula 2_2 Física Geral e Experimental III Prof. Cláudio Graça Lei de Gauss II Revisão: Aula 2_2 Física Geal e Expeimental III Pof. Cláudio Gaça Revisão Cálculo vetoial 1. Poduto de um escala po um veto 2. Poduto escala de dois vetoes 3. Lei de Gauss, fluxo atavés

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. Departamento de Engenharia Mecânica

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. Departamento de Engenharia Mecânica ESO POITÉNI D UNIVERSIDDE DE SÃO PUO Depatamento de Engenhaia Mecânica PME 00 MEÂNI ª Pova 0/04/007 Duação 00 minutos (Não é pemitido o uso de calculadoas) ω D 3 g ª Questão (3,0 pontos) O sistema mostado

Leia mais

Escola Secundária com 3º Ciclo do E. B. de Pinhal Novo Física e Química A 10ºAno MEDIÇÃO EM QUÍMICA

Escola Secundária com 3º Ciclo do E. B. de Pinhal Novo Física e Química A 10ºAno MEDIÇÃO EM QUÍMICA Escola Secundáia com 3º Ciclo do E. B. de Pinhal Novo Física e Química A 10ºAno MEDIÇÃO EM QUÍMICA Medi - é compaa uma gandeza com outa da mesma espécie, que se toma paa unidade. Medição de uma gandeza

Leia mais

MECÂNICA. F cp. F t. Dinâmica Força resultante e suas componentes AULA 7 1- FORÇA RESULTANTE

MECÂNICA. F cp. F t. Dinâmica Força resultante e suas componentes AULA 7 1- FORÇA RESULTANTE AULA 7 MECÂICA Dinâmica oça esultante e suas componentes 1- ORÇA RESULTATE oça esultante é o somatóio vetoial de todas as foças que atuam em um copo É impotante lemba que a foça esultante não é mais uma

Leia mais

3 Torção Introdução Análise Elástica de Elementos Submetidos à Torção Elementos de Seções Circulares

3 Torção Introdução Análise Elástica de Elementos Submetidos à Torção Elementos de Seções Circulares 3 oção 3.1. Intodução pimeia tentativa de se soluciona poblemas de toção em peças homogêneas de seção cicula data do século XVIII, mais pecisamente em 1784 com Coulomb. Este cientista ciou um dispositivo

Leia mais

Capítulo 29: Campos Magnéticos Produzidos por Correntes

Capítulo 29: Campos Magnéticos Produzidos por Correntes Capítulo 9: Campos Magnéticos Poduzidos po Coentes Cap. 9: Campos Magnéticos Poduzidos po Coentes Índice Lei de iot-savat; Cálculo do Campo Poduzido po uma Coente; Foça Ente duas Coentes Paalelas; Lei

Leia mais

Carga Elétrica e Campo Elétrico

Carga Elétrica e Campo Elétrico Aula 1_ Caga lética e Campo lético Física Geal e peimental III Pof. Cláudio Gaça Capítulo 1 Pincípios fundamentais da letostática 1. Consevação da caga elética. Quantização da caga elética 3. Lei de Coulomb

Leia mais

DINÂMICA ATRITO E PLANO INCLINADO

DINÂMICA ATRITO E PLANO INCLINADO AULA 06 DINÂMICA ATRITO E LANO INCLINADO 1- INTRODUÇÃO Quando nós temos, po exemplo, duas supefícies em contato em que há a popensão de uma desliza sobe a outa, podemos obseva aí, a apaição de foças tangentes

Leia mais

Resistência dos Materiais IV Lista de Exercícios Capítulo 2 Critérios de Resistência

Resistência dos Materiais IV Lista de Exercícios Capítulo 2 Critérios de Resistência Lista de Execícios Capítulo Citéios de Resistência 0.7 A tensão de escoamento de um mateial plástico é y 0 MPa. Se esse mateial é submetido a um estado plano de tensões ocoe uma falha elástica quando uma

Leia mais

Descontos desconto racional e desconto comercial

Descontos desconto racional e desconto comercial Descontos desconto acional e desconto comecial Uma opeação financeia ente dois agentes econômicos é nomalmente documentada po um título de cédito comecial, devendo esse título conte todos os elementos

Leia mais

DETERMINAÇÃO DA RESISTÊNCIA TERMICA DE CONTATO UTILIZANDO UM SINAL PERIÓDICO

DETERMINAÇÃO DA RESISTÊNCIA TERMICA DE CONTATO UTILIZANDO UM SINAL PERIÓDICO DEEMINAÇÃO DA ESISÊNCIA EMICA DE CONAO UILIZANDO UM SINAL PEIÓDICO Celso osendo Bezea Filho Univesidade Fedeal da Paaíba, Depatamento de Engenhaia Mecânica ua Apígio Veloso, 88 Campina Gande, PB, Basil

Leia mais

2.1. Fluxo Eléctrico 2.2. Lei de Gauss 2.3. Aplicações da Lei de Gauss a Isolantes Carregados 2.4. Condutores em Equilíbrio Electrostático

2.1. Fluxo Eléctrico 2.2. Lei de Gauss 2.3. Aplicações da Lei de Gauss a Isolantes Carregados 2.4. Condutores em Equilíbrio Electrostático 2. Lei de Gauss 1 2.1. Fluxo Eléctico 2.2. Lei de Gauss 2.3. Aplicações da Lei de Gauss a Isolantes Caegados 2.4. Condutoes em Equilíbio Electostático Lei de Gauss: - É uma consequência da lei de Coulomb.

Leia mais

PROVA COMENTADA E RESOLVIDA PELOS PROFESSORES DO CURSO POSITIVO

PROVA COMENTADA E RESOLVIDA PELOS PROFESSORES DO CURSO POSITIVO Vestibula AFA 010 Pova de Matemática COMENTÁRIO GERAL DOS PROFESSORES DO CURSO POSITIVO A pova de Matemática da AFA em 010 apesentou-se excessivamente algébica. Paa o equílibio que se espea nesta seleção,

Leia mais

4200V Fig. 1 C 1. 10V C 2 Fig. 2

4200V Fig. 1 C 1. 10V C 2 Fig. 2 a lista de execícios de Física 3 - Pof alos Felipe Pinheio apacitoes 1) eja E o o campo elético no inteio (vácuo) de um capacito de placas planas e paalelas Ao intoduzimos um dielético ente as placas desse

Leia mais

20 Exercícios Revisão

20 Exercícios Revisão 0 Execícios Revisão Nome Nº 1ª séie Física Beth/Reinaldo Data / / T cte. G. M. m F v a cp v G. M T.. v R Tea = 6,4 x 10 6 m M Tea = 6,0 x 10 4 kg G = 6,7 x 10 11 N.m /kg g = 10 m/s P = m.g M = F. d m d

Leia mais

Cap. 4 - O Campo Elétrico

Cap. 4 - O Campo Elétrico ap. 4 - O ampo Elético 4.1 onceito de ampo hama-se ampo a toda egião do espaço que apesenta uma deteminada popiedade física. Esta popiedade pode se de qualque natueza, dando oigem a difeentes campos, escalaes

Leia mais