Probabilidade: Diagramas de Árvore

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Probabilidade: Diagramas de Árvore"

Transcrição

1 Probabldade: Dagramas de Árvore Ana Mara Lma de Faras Departamento de Estatístca (GET/UFF) Introdução Nesse texto apresentaremos, de forma resumda, concetos e propredades báscas sobre probabldade condconal utlzados na atvdade Probabldade: Dagramas de Árvore. Expermento aleatóro Um expermento aleatóro é um processo que acusa varabldade em seus resultados, sto é, repetndo-se o expermento sob as mesmas condções, os resultados serão dferentes. Contrapondo aos expermentos aleatóros, temos os expermentos determnístcos, que são expermentos que, repetdos sob as mesmas condções, conduzem a resultados dêntcos. Espaço amostral O espaço amostral de um expermento aleatóro é o conjunto de todos os resultados possíves desse expermento. Vamos denotar tal conjunto pela letra grega ômega maúsculo, Ω. Eventos aleatóros Os subconjuntos de Ω são chamados eventos aleatóros; já os elementos de Ω são chamados eventos elementares. Defnção clássca de probabldade Seja Ω um espaço amostral tal que todos os eventos elementares são gualmente prováves. Se A é um evento qualquer desse espaço amostral, defne-se a probabldade de tal evento como # A P( A ) = # Ω onde # representa número de elementos de. Esta fo a prmera defnção formal de probabldade, tendo sdo explctada por Grolamo Cardano ( ). Defnção axomátca de probabldade A defnção clássca assoca a cada evento de Ω um número P(A), que satsfaz dversas propredades; mas ela se basea em duas hpóteses que restrngem seu campo de aplcação: (1) Há um número fnto de eventos elementares, sto é, Ω é um conjunto fnto. (2) Os

2 eventos elementares são gualmente prováves. Em 1933, Kolmogorov ( ) construu a teora da probabldade partndo de um conjunto de axomas, apresentados a segur, em uma versão mas smples. 1 1) P( A) 0 2) P( Ω ) = 1 3) Se A B =, então P( A B) = P( A) + P( B) Note que a defnção clássca satsfaz esses três axomas. Propredades da probabldade As seguntes propredades são obtdas a partr dos axomas acma: 1) P( ) = 0 Podemos escrever Ω=Ω e aplcar os axomas 2 e 3. 2) P( A) = 1 P( A) Podemos escrever Ω= A A e aplcar os axomas 2 e 3. 3) P( A B) = P( A) P( A B) Podemos escrever (veja a fgura a segur) A = ( A B) ( A B) e aplcar o axoma 3. 4) P( A B) = P( A) + P( B) P( A B) Na fgura abaxo podemos ver que A B = B ( A B) e o resultado segue do axoma 3 e da propredade anteror. 1 Segundo o dconáro Aurélo: Axoma Proposção que se admte como verdadera porque dela se podem deduzr as proposções de uma teora ou de um sstema lógco ou matemátco.

3 5) Se A B P( A) < P( B) Note que A B A B = A P( B A) = P( B) P( A) 0 Probabldade condconal Mutas vezes, saber que um evento B ocorreu pode nos ajudar a reavalar a probabldade de ocorrênca de um evento A. Consdere o lançamento de um dado equlbrado e suponha que estejamos nteressados no evento A = face 2. Se não temos qualquer nformação, sabemos que P(A) = 1/6. Mas suponha que a segunte nformação seja fornecda: sau face par. Com essa nformação, reavalamos a probabldade de ocorrênca do evento A para P(A) = 1/3. Consdere a stuação lustrada na fgura a segur: se sabemos que ocorreu o evento B, esse evento passa a ser o novo espaço amostral. Nesse novo espaço amostral, a ocorrênca de A equvale à ocorrênca de A B. Dessa forma, defne-se a probabldade condconal de A dada a ocorrênca de B como P( A B) = P( A B) PB ( ) A dvsão por P(B) garante que a probabldade do novo espaço amostral B seja gual a 1. Obs.: lê-se P( A B ) resumdamente como probabldade de A dado B Regra da multplcação A regra da multplcação trata da probabldade da nterseção de eventos. Note que, da defnção de probabldade condconal, segue o segunte resultado: Para 3 eventos temos P( A B) = P( B) P( A B)

4 P( A A A ) = P( A ) P( A A ) P( A A A ) E para o caso geral, temos o segunte resultado: P( A1 A2 An ) = P( A1) P( A2 A1) P( A3 A2 A1) P( An A1 An 1) Teorema da probabldade total Seja A, A,, A uma coleção de eventos de um espaço amostral Ω tal que 1 2 n 1. A A = j j 2. n = 1 A =Ω Uma tal coleção é chamada de partção de Ω. Veja a fgura a segur. Seja B um evento de Ω. Podemos, então, expressar B com a segunte unão de eventos: B = ( A B) ( A B) ( A B ) 1 2 n Como os A s são mutuamente exclusvos, segue que os ( A B ) s também o são. Logo,

5 PB ( ) = P[( A B) ( A B) ( A B)] 1 2 = P( A B) + P( A B) + + P( A B)] 1 2 n n Exemplo Em uma determnada cdade, o número de homens é gual ao número de mulheres. 5% dos homens são daltôncos e 0,4% das mulheres são daltôncas. Sortea-se aleatoramente uma pessoa dessa cdade e verfca-se que é daltônca. Qual é a probabldade de ter sdo sorteada uma mulher? Solução Vamos resolver esse exemplo passo a passo. A prmera cosa a observar é que o espaço amostral é formado por todos os moradores da cdade. Os eventos de nteresse são homem (H), mulher (M), daltônco, (D) e não daltônco (N). Para defnr a partção aproprada, temos que ver quas são as probabldades a pror fornecdas no problema, ou seja, probabldades dadas sem conhecmento de qualquer outro evento. As probabldades a pror se referem aos eventos Homem e Mulher. Veja a segur a representação dessas nformações num dagrama de Venn e num dagrama de árvore. O dagrama de árvore é mas aproprado, pos nos permte ndcar as probabldades. As probabldades dadas são: P(H) = P(M) = 0,5 P(D H) = 0,05 P(N H) = 0,95 (a le do complementar vale também para a probabldade condconal) P(D M) = 0,004 P(N M) = 0,996 Aplcando o teorema da multplcação obtemos as probabldades dos seguntes eventos: Homem e daltônco: PH ( D) = PH ( ) PD ( H ) = 0, 50, 05 = 0, 025 Homem e não daltônco: PH ( N) = PH ( ) PN ( H ) = 05095,, = 0475, Mulher e daltônca: PM ( D) = PM ( ) PD ( M ) = ,, = 0002, Mulher e não daltônca: PM ( N) = PM ( ) PN ( M ) = 0, 50, 996 = 0, 498

6 Aplcando o teorema da probabldade total temos: PD ( ) = PM ( D) + PH ( D) = PH ( ) PD ( H) + PM ( ) PD ( M) = 0, , 002 = 0, 027 PN ( ) = PM ( N) + PH ( N) = PH ( ) PN ( H) + PM ( ) PN ( M) = 0, , 498 = 0, 973 = 1 PD ( ) Agora, vamos calcular a probabldade pedda, P(M D), que é uma probabldade a posteror, sto é, vamos atualzar a probabldade do evento ser mulher sabendo que ocorreu o evento D (no enuncado foram dadas a probabldade a pror P(M) e a probabldade de daltônco dado que é mulher ): PM ( D) 0002, PM ( D) = = = 0074, PD ( ) 0027, Bblografa Faras, A. M. L.; Laurencel, L. C. Probabldade. Apostla. Departamento de Estatístca. Nteró: UFF 2008 (versão para download em Morgado, A.C.O.; Carvalho, J.B.P.; Carvalho, P.C.P.; Fernandez, P. Análse Combnatóra e Probabldade, Coleção do Professor de Matemátca. Ro de Janero: Socedade Braslera de Matemátca, 2006 Hazzan, S. Fundamentos de Matemátca Elementar: Combnatóra, Probabldade - vol. 5, 7a. edção. São Paulo: Atual Edtora, Julanell, J.R.; Dasse, B.A.; Lma, M.L.A.; Sá, I.P. Curso de Análse Combnatóra e Probabldade - Aprendendo com a resolução de problemas. Ro de Janero: Edtora Cênca Moderna, 2009.

Critérios de divisibilidade em bases numéricas genéricas

Critérios de divisibilidade em bases numéricas genéricas Crtéros de dvsbldade em bases numércas genércas Clezo A. Braga 1 Jhon Marcelo Zn 1 Colegado do Curso de Matemátca - Centro de Cêncas Exatas e Tecnológcas da Unversdade Estadual do Oeste do Paraná Caxa

Leia mais

INTRODUÇÃO À PROBABILIDADE. A probabilidade é uma medida da incerteza dos fenômenos. Traduz-se por um número real compreendido de 0 ( zero) e 1 ( um).

INTRODUÇÃO À PROBABILIDADE. A probabilidade é uma medida da incerteza dos fenômenos. Traduz-se por um número real compreendido de 0 ( zero) e 1 ( um). INTRODUÇÃO À PROILIDDE teora das probabldade nada mas é do que o bom senso transformado em cálculo probabldade é o suporte para os estudos de estatístca e expermentação. Exemplos: O problema da concdênca

Leia mais

Apostila de Estatística Curso de Matemática. Volume II 2008. Probabilidades, Distribuição Binomial, Distribuição Normal. Prof. Dr. Celso Eduardo Tuna

Apostila de Estatística Curso de Matemática. Volume II 2008. Probabilidades, Distribuição Binomial, Distribuição Normal. Prof. Dr. Celso Eduardo Tuna Apostla de Estatístca Curso de Matemátca Volume II 008 Probabldades, Dstrbução Bnomal, Dstrbução Normal. Prof. Dr. Celso Eduardo Tuna 1 Capítulo 8 - Probabldade 8.1 Conceto Intutvamente pode-se defnr probabldade

Leia mais

PROBABILIDADE - CONCEITOS BÁSICOS

PROBABILIDADE - CONCEITOS BÁSICOS ROBBILIDD - CONCITOS BÁSICOS xpermento leatóro é um expermento no qual: todos os possíves resultados são conhecdos; resulta num valor desconhecdo, dentre todos os resultados possíves; pode ser repetdo

Leia mais

Introdução a Combinatória- Aplicações, parte II

Introdução a Combinatória- Aplicações, parte II Introdução a Combnatóra- Aplcações, AULA 7 7.1 Introdução Nesta aula vamos estudar aplcações um pouco dferentes das da aula passada. No caso estudaremos arranjos com repetção, permutações crculares e o

Leia mais

Em muitas aplicações, estamos interessados em subgrafos especiais de um determinado grafo.

Em muitas aplicações, estamos interessados em subgrafos especiais de um determinado grafo. .4 Árvores Geradoras Em mutas aplcações estamos nteressados em subgrafos especas de um determnado grafo. Defnção Árvore Geradora - uma árvore T é chamada de árvore geradora de um grafo G se T é um subgrafo

Leia mais

Q 1-1,5(Q3-Q1) < X i < Q 3 + 1,5(Q 3 -Q 1 ) Q 3 +1,5(Q 3 -Q 1 ) < X i < Q 3 +3(Q 3 -Q 1 ) Q 1 3(Q 3 -Q 1 ) < X i < Q 1 1,5(Q 3 -Q 1 )

Q 1-1,5(Q3-Q1) < X i < Q 3 + 1,5(Q 3 -Q 1 ) Q 3 +1,5(Q 3 -Q 1 ) < X i < Q 3 +3(Q 3 -Q 1 ) Q 1 3(Q 3 -Q 1 ) < X i < Q 1 1,5(Q 3 -Q 1 ) DIGRM OX-PLOT E CRCTERIZÇÃO DE OUTLIERS E VLORES EXTREMOS Outlers e valores extremos são aqueles que estão muto afastados do centro da dstrbução. Uma forma de caracterzá-los é através do desenho esquemátco

Leia mais

Algarismos Significativos Propagação de Erros ou Desvios

Algarismos Significativos Propagação de Erros ou Desvios Algarsmos Sgnfcatvos Propagação de Erros ou Desvos L1 = 1,35 cm; L = 1,3 cm; L3 = 1,30 cm L4 = 1,4 cm; L5 = 1,7 cm. Qual destas meddas está correta? Qual apresenta algarsmos com sgnfcado? O nstrumento

Leia mais

Departamento de Informática. Modelagem Analítica. Modelagem Analítica do Desempenho de Sistemas de Computação. Disciplina: Medida de Probabilidade

Departamento de Informática. Modelagem Analítica. Modelagem Analítica do Desempenho de Sistemas de Computação. Disciplina: Medida de Probabilidade Departaento de Inforátca Dscplna: do Desepenho de Ssteas de Coputação Medda de Probabldade Prof. Sérgo Colcher colcher@nf.puc-ro.br Teora da Probabldade Modelo ateátco que perte estudar, de fora abstrata,

Leia mais

INTRODUÇÃO À ESTATÍSTICA ECONÔMICA 2a. Prova 11/7/2006 Profa. Ana Maria Farias Turma A hs

INTRODUÇÃO À ESTATÍSTICA ECONÔMICA 2a. Prova 11/7/2006 Profa. Ana Maria Farias Turma A hs INTRODUÇÃO À ESTATÍSTICA ECONÔMICA 2a. rova /7/2006 rofa. Ana Mara Faras Turma A 4-6 hs. Consdere os dados da tabela abaxo, onde temos preços e uantdades utlzadas de materal de escrtóro. Item Undade reço

Leia mais

Proposta de resolução da Prova de Matemática A (código 635) 21 de Junho de 2010

Proposta de resolução da Prova de Matemática A (código 635) 21 de Junho de 2010 Proposta de resolução da Prova de Matemátca A (códgo 6 Como A e B são acontecmentos ncompatíves, 0 e Ou seja, de acordo com os dados do enuncado, 0% 0% 0% Versão : B Versão : C Como se trata de uma únca

Leia mais

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha)

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha) Estatístca p/ Admnstração II - Profª Ana Cláuda Melo Undade : Probabldade Aula: 3 Varável Aleatóra. Varáves Aleatóras Ao descrever um espaço amostral de um expermento, não especfcamos que um resultado

Leia mais

Introdução e Organização de Dados Estatísticos

Introdução e Organização de Dados Estatísticos II INTRODUÇÃO E ORGANIZAÇÃO DE DADOS ESTATÍSTICOS 2.1 Defnção de Estatístca Uma coleção de métodos para planejar expermentos, obter dados e organzá-los, resum-los, analsá-los, nterpretá-los e deles extrar

Leia mais

7 - Distribuição de Freqüências

7 - Distribuição de Freqüências 7 - Dstrbução de Freqüêncas 7.1 Introdução Em mutas áreas há uma grande quantdade de nformações numércas que precsam ser dvulgadas de forma resumda. O método mas comum de resumr estes dados numércos consste

Leia mais

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012 Notas Processos estocástcos Nestor Catcha 23 de abrl de 2012 notas processos estocástcos 2 O Teorema de Perron Frobenus para matrzes de Markov Consdere um processo estocástco representado por um conunto

Leia mais

DISTRIBUIÇÃO DA AÇÃO DO VENTO NOS ELEMENTOS DE CONTRAVENTAMENTO CONSIDERANDO O PAVIMENTO COMO DIAFRAGMA RÍGIDO: ANÁLISE SIMPLIFICADA E MATRICIAL

DISTRIBUIÇÃO DA AÇÃO DO VENTO NOS ELEMENTOS DE CONTRAVENTAMENTO CONSIDERANDO O PAVIMENTO COMO DIAFRAGMA RÍGIDO: ANÁLISE SIMPLIFICADA E MATRICIAL DISTRIBUIÇÃO DA AÇÃO DO VENTO NOS ELEMENTOS DE CONTRAVENTAMENTO CONSIDERANDO O PAVIMENTO COMO DIAFRAGMA RÍGIDO: ANÁLISE SIMPLIFICADA E MATRICIAL Dstrbuton of the wnd acton n the bracng elements consderng

Leia mais

4. O princípio de Hardy-Weinberg

4. O princípio de Hardy-Weinberg 4. O prncípo de Hardy-Wenberg Em 1908 G. H. Hardy, matemátco nglês, e o médco alemão Wlhelm Wenberg propuseram que as populações de seres vvos dplódes se constturam em sstemas heredtáros suetos ao mendelsmo.

Leia mais

Exercícios de CPM e PERT Enunciados

Exercícios de CPM e PERT Enunciados Capítulo 7 Exercícos de CPM e PERT Enuncados Exercícos de CPM e PERT Enuncados 106 Problema 1 O banco TTM (Tostão a Tostão se faz um Mlhão) decdu transferr e amplar a sua sede e servços centras para a

Leia mais

Escola Secundária de Lousada Ficha de trabalho de Matemática do 7º ano nº Data: / / 2011 Assunto: Tratamento de dados I Lições nº, e,

Escola Secundária de Lousada Ficha de trabalho de Matemática do 7º ano nº Data: / / 2011 Assunto: Tratamento de dados I Lições nº, e, Escola Secundára de Lousada Fcha de trabalho de Matemátca do 7º ano nº Data: / / 2011 Assunto: Tratamento de dados I Lções nº, e, Estatístca é um ramos da Matemátca que permte fazer um estudo de uma forma

Leia mais

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma.

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma. UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS EXATAS DEPARTAMENTO DE FÍSICA AV. FERNANDO FERRARI, 514 - GOIABEIRAS 29075-910 VITÓRIA - ES PROF. ANDERSON COSER GAUDIO FONE: 4009.7820 FAX: 4009.2823

Leia mais

Probabilidade e Estatística. Correlação e Regressão Linear

Probabilidade e Estatística. Correlação e Regressão Linear Probabldade e Estatístca Correlação e Regressão Lnear Varáves Varável: característcas ou tens de nteresse de cada elemento de uma população ou amostra Também chamada parâmetro, posconamento, condção...

Leia mais

Resolução das Questões Objetivas

Resolução das Questões Objetivas COMISSÃO PERMANENTE DE SELEÇÃO COPESE PRÓ-REITORIA DE GRADUAÇÃO PROGRAD CONCURSO PISM III - TRIÊNIO 2008-2010 Prova de Matemátca Resolução das Questões Objetvas São apresentadas abaxo possíves soluções

Leia mais

Introdução aos Processos Estocásticos - Independência

Introdução aos Processos Estocásticos - Independência Introdução aos Processos Estocásticos - Independência Eduardo M. A. M. Mendes DELT - UFMG Programa de Pós-Graduação em Engenharia Elétrica Universidade Federal de Minas Gerais emmendes@cpdee.ufmg.br Eduardo

Leia mais

COEFICIENTE DE GINI: uma medida de distribuição de renda

COEFICIENTE DE GINI: uma medida de distribuição de renda UNIVERSIDADE DO ESTADO DE SANTA CATARINA ESCOLA SUPERIOR DE ADMINISTRAÇÃO E GERÊNCIA DEPARTAMENTO DE CIÊNCIAS ECONÔMICAS COEFICIENTE DE GINI: uma medda de dstrbução de renda Autor: Prof. Lsandro Fn Nsh

Leia mais

Programação de Computadores II TCC 00.174/Turma A 1

Programação de Computadores II TCC 00.174/Turma A 1 Programação de Computadores II TCC 00.174/Turma A 1 Professor Leandro A. F. Fernandes http://www.c.uff.br/~laffernandes Conteúdo: Introdução ao Java (exercícos) Materal elaborado pelos profs. Anselmo Montenegro

Leia mais

1ª e 2ª leis da termodinâmica

1ª e 2ª leis da termodinâmica 1ª e 2ª les da termodnâmca 1ª Le da Termodnâmca Le de Conservação da Energa 2ª Le da Termodnâmca Restrnge o tpo de conversões energétcas nos processos termodnâmcos Formalza os concetos de processos reversíves

Leia mais

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos Curso de extensão, MMQ IFUSP, feverero/4 Alguns exercíco báscos I Exercícos (MMQ) Uma grandeza cujo valor verdadero x é desconhecdo, fo medda três vezes, com procedmentos expermentas dêntcos e, portanto,

Leia mais

Caique Tavares. Probabilidade Parte 1

Caique Tavares. Probabilidade Parte 1 Caique Tavares Probabilidade Parte 1 Probabilidade: A teoria das probabilidades é um ramo da Matemática que cria, elabora e pesquisa modelos para estudar experimentos ou fenômenos aleatórios. Principais

Leia mais

Índices de Concentração 1

Índices de Concentração 1 Índces de Concentração Crstane Alkmn Junquera Schmdt arcos André de Lma 3 arço / 00 Este documento expressa as opnões pessoas dos autores e não reflete as posções ofcas da Secretara de Acompanhamento Econômco

Leia mais

37 [C] Verdadeira. Veja justificativa do item [B]. Moda = 8

37 [C] Verdadeira. Veja justificativa do item [B]. Moda = 8 Resposta da questão 1: [C] Calculando:,5 + 10 + 8 + 9,4 + 8 +,4 + x + 7,4 = 8, 8,5 + 10 + 8 + 9,4 + 8 +,4 + x + 7,4 = 5, x = 9,9 Moda = 8 8+ 8 Medana = = 8,5 + 10 + 8 + 9,4 + 8 +,4 + 7,4 Méda das outras

Leia mais

EA513 Circuitos Elétricos DECOM FEEC UNICAMP Aula 5

EA513 Circuitos Elétricos DECOM FEEC UNICAMP Aula 5 Esta aula: Teorema de Thévenn, Teorema de Norton. Suponha que desejamos determnar a tensão (ou a corrente) em um únco bpolo de um crcuto, consttuído por qualquer número de fontes e de outros resstores.

Leia mais

QUESTÕES DISCURSIVAS Módulo 01 (com resoluções)

QUESTÕES DISCURSIVAS Módulo 01 (com resoluções) QUESTÕES DISCURSIVAS Módulo 0 (com resoluções D (Fuvest-SP/00 Nos tens abaxo, denota um número complexo e a undade magnára ( Suponha a Para que valores de tem-se? b Determne o conjunto de todos os valores

Leia mais

Influência dos Procedimentos de Ensaios e Tratamento de Dados em Análise Probabilística de Estrutura de Contenção

Influência dos Procedimentos de Ensaios e Tratamento de Dados em Análise Probabilística de Estrutura de Contenção Influênca dos Procedmentos de Ensaos e Tratamento de Dados em Análse Probablístca de Estrutura de Contenção Mara Fatma Mranda UENF, Campos dos Goytacazes, RJ, Brasl. Paulo César de Almeda Maa UENF, Campos

Leia mais

Comprimento de Arco. Comprimento de Arco

Comprimento de Arco. Comprimento de Arco UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Comprmento de Arco

Leia mais

Autores: Dani Gamerman (IM-UFRJ) Oswaldo Gomes de Souza Junior (SERPROS)

Autores: Dani Gamerman (IM-UFRJ) Oswaldo Gomes de Souza Junior (SERPROS) Prevsões de partdas de futebol usando modelos dnâmcos Autores: Dan Gamerman (IM-UFRJ) Oswaldo Gomes de Souza Junor (SERPROS) Alguns resultados que poderemos responder: Resultados dos jogos futuros; Quantos

Leia mais

AEP FISCAL ESTATÍSTICA

AEP FISCAL ESTATÍSTICA AEP FISCAL ESTATÍSTICA Módulo 11: Varáves Aleatóras (webercampos@gmal.com) VARIÁVEIS ALEATÓRIAS 1. Conceto de Varáves Aleatóras Exemplo: O expermento consste no lançamento de duas moedas: X: nº de caras

Leia mais

Departamento de Informática. Modelagem Analítica do Desempenho de Sistemas de Computação. Modelagem Analítica. Disciplina: Variável Aleatória

Departamento de Informática. Modelagem Analítica do Desempenho de Sistemas de Computação. Modelagem Analítica. Disciplina: Variável Aleatória Departamento de Informátca Dscplna: do Desempenho de Sstemas de Computação Varável leatóra Prof. Sérgo Colcher colcher@nf.puc-ro.br Varável leatóra eal O espaço de amostras Ω fo defndo como o conjunto

Leia mais

Sistemas de equações lineares

Sistemas de equações lineares Sstemas - ALGA - / Sstemas de equações lneares Uma equação lnear nas ncógntas ou varáves x ; x ; :::; x n é uma expressão da forma: a x + a x + ::: + a n x n = b onde a ; a ; :::; a n ; b são constantes

Leia mais

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas 3.6. Análse descrtva com dados agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas

Leia mais

MÉTODO DE FIBONACCI. L, em que L

MÉTODO DE FIBONACCI. L, em que L Métodos de bonacc e da Seção Aúrea Adotando a notação: MÉTODO DE IBOACCI L e L L, em que L b a, resulta a: ncal orma Recursva: ara,,, - (-a) ou ara,,, - (-b) A esta equação se assoca a condção de contorno

Leia mais

1 Princípios da entropia e da energia

1 Princípios da entropia e da energia 1 Prncípos da entropa e da energa Das dscussões anterores vmos como o conceto de entropa fo dervado do conceto de temperatura. E esta últma uma conseqüênca da le zero da termodnâmca. Dentro da nossa descrção

Leia mais

PROBABILIDADE. 3) Jogando-se dois dados, qual a probabilidade de que a soma dos pontos obtidos seja menor que 4?

PROBABILIDADE. 3) Jogando-se dois dados, qual a probabilidade de que a soma dos pontos obtidos seja menor que 4? Segmento: ENSINO MÉDIO Dscplna: MATEMÁTICA Tpo de Atvdade: LISTA DE EXERCÍCIOS Prof. Marcelo 06/2016 Turma: 3 A PROBABILIDADE 1) No lançamento de um dado, determnar a probabldade de se obter: a) o número

Leia mais

Aprendizagem de Máquina

Aprendizagem de Máquina Introdução Aprendzagem de Máquna Alessandro L. Koerch Redes Bayesanas A suposção Naïve Bayes da ndependênca condconal (a 1,...a n são condconalmente ndependentes dado o valor alvo v): Reduz a complexdade

Leia mais

Y X Baixo Alto Total Baixo 1 (0,025) 7 (0,175) 8 (0,20) Alto 19 (0,475) 13 (0,325) 32 (0,80) Total 20 (0,50) 20 (0,50) 40 (1,00)

Y X Baixo Alto Total Baixo 1 (0,025) 7 (0,175) 8 (0,20) Alto 19 (0,475) 13 (0,325) 32 (0,80) Total 20 (0,50) 20 (0,50) 40 (1,00) Bussab&Morettn Estatístca Básca Capítulo 4 Problema. (b) Grau de Instrução Procedênca º grau º grau Superor Total Interor 3 (,83) 7 (,94) (,) (,33) Captal 4 (,) (,39) (,) (,3) Outra (,39) (,7) (,) 3 (,3)

Leia mais

CQ110 : Princípios de FQ

CQ110 : Princípios de FQ CQ 110 Prncípos de Físco Químca Curso: Farmáca Prof. Dr. Marco Vdott mvdott@ufpr.br 1 soluções eletrolítcas Qual a dferença entre uma solução 1,0 mol L -1 de glcose e outra de NaCl de mesma concentração?

Leia mais

A esse tipo de tabela, cujos elementos não foram numericamente organizados, denominamos tabela primitiva.

A esse tipo de tabela, cujos elementos não foram numericamente organizados, denominamos tabela primitiva. Dstrbução de Frequênca Tabela prmtva ROL Suponhamos termos feto uma coleta de dados relatvos à estaturas de quarenta alunos, que compõem uma amostra dos alunos de um colégo A, resultando a segunte tabela

Leia mais

LEIS DE KIRCHHOFF EM CIRCUITOS DE CORRENTE CONTÍNUA

LEIS DE KIRCHHOFF EM CIRCUITOS DE CORRENTE CONTÍNUA EXPERIÊNCI 04 LEIS DE KIRCHHOFF EM CIRCUITOS DE CORRENTE CONTÍNU 1. OBJETIVOS a) Determnar a força eletromotrz e a resstênca nterna de uma batera em um crcuto de malha únca. b) Calcular a resstênca nterna

Leia mais

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência.

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência. MODELO DE REGRESSÃO DE COX Os modelos de regressão paramétrcos vstos anterormente exgem que se suponha uma dstrbução estatístca para o tempo de sobrevvênca. Contudo esta suposção, caso não sea adequada,

Leia mais

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média.

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média. Estatístca Dscplna de Estatístca 0/ Curso de Admnstração em Gestão Públca Profª. Me. Valéra Espíndola Lessa e-mal: lessavalera@gmal.com Meddas de Dspersão Indcam se os dados estão, ou não, prómos uns dos

Leia mais

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média.

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média. Estatístca Dscplna de Estatístca 0/ Curso Superor de tecnólogo em Gestão Ambental Profª. Me. Valéra Espíndola Lessa e-mal: lessavalera@gmal.com Meddas de Dspersão Indcam se os dados estão, ou não, prómos

Leia mais

Variabilidade Espacial do Teor de Água de um Argissolo sob Plantio Convencional de Feijão Irrigado

Variabilidade Espacial do Teor de Água de um Argissolo sob Plantio Convencional de Feijão Irrigado Varabldade Espacal do Teor de Água de um Argssolo sob Planto Convenconal de Fejão Irrgado Elder Sânzo Aguar Cerquera 1 Nerlson Terra Santos 2 Cásso Pnho dos Res 3 1 Introdução O uso da água na rrgação

Leia mais

Elementos de Estatística e Probabilidades II

Elementos de Estatística e Probabilidades II Elementos de Estatístca e Probabldades II Varáves e Vetores Aleatóros dscretos Inês Das 203 O prncpal objetvo da deste documento é fornecer conhecmentos báscos de varáves aleatóras dscretas e pares aleatóros

Leia mais

Laboratório de Mecânica Aplicada I Estática: Roldanas e Equilíbrio de Momentos

Laboratório de Mecânica Aplicada I Estática: Roldanas e Equilíbrio de Momentos Laboratóro de Mecânca Aplcada I Estátca: Roldanas e Equlíbro de Momentos 1 Introdução O conhecmento das condções de equlíbro de um corpo é mprescndível em númeras stuações. Por exemplo, o estudo do equlíbro

Leia mais

2) Como há 6 tipos de peso, e estamos avaliando 2 peças, o espaço amostral será uma matriz 6 x 6:

2) Como há 6 tipos de peso, e estamos avaliando 2 peças, o espaço amostral será uma matriz 6 x 6: Lsta de Exercícos - Probabldade INE 700 GABARITO LISTA DE EXERÍIOS PROBABILIDADE ) Vamos medr o tempo de duração da lâmpada. Ao lgarmos a lâmpada ela pode não funconar, ou durar um tempo ndetermnado. a)

Leia mais

Técnicas de Contagem I II III IV V VI

Técnicas de Contagem I II III IV V VI Técnicas de Contagem Exemplo Para a Copa do Mundo 24 países são divididos em seis grupos, com 4 países cada um. Supondo que a escolha do grupo de cada país é feita ao acaso, calcular a probabilidade de

Leia mais

Probabilidade nas Ciências da Saúde

Probabilidade nas Ciências da Saúde UNIVERSIDDE ESTDUL DE GOIÁS Undade Unverstára de Cêncas Exatas e Tecnológcas Curso de Lcencatura em Matemátca robabldade nas Cêncas da Saúde Rafaela Fernandes da Slva Santos NÁOLIS 014 Rafaela Fernandes

Leia mais

Cursos de Licenciatura em Ensino de Matemática e de EGI. Teoria de Probabilidade

Cursos de Licenciatura em Ensino de Matemática e de EGI. Teoria de Probabilidade Celso Albo FACULDADE DE CIÊNCIAS NATURAIS E MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA Campus de Lhaguee, Av. de Moçambque, km, Tel: +258 240078, Fax: +258 240082, Maputo Cursos de Lcecatura em Eso de Matemátca

Leia mais

A VELOCIDADE ESCALAR. Prof. Alberto Ricardo Präss

A VELOCIDADE ESCALAR. Prof. Alberto Ricardo Präss Pro. Alberto Rcardo Präss A VELOCIDADE ESCALAR O conceto de velocdade. Imagnemos que um jornal tenha envado um correspondente especal à selva amazônca a m de azer uma reportagem sobre o Pco da Neblna,

Leia mais

Para cada um dos experimentos abaixo, descreva o espaço amostral e dê o número de seus elementos.

Para cada um dos experimentos abaixo, descreva o espaço amostral e dê o número de seus elementos. 1 Exercício 1 Para cada um dos experimentos abaixo, descreva o espaço amostral e dê o número de seus elementos. (a) Numa linha de produção conta-se o número de peças defeituosas num intervalo de uma hora.

Leia mais

Estimativa da Incerteza de Medição da Viscosidade Cinemática pelo Método Manual em Biodiesel

Estimativa da Incerteza de Medição da Viscosidade Cinemática pelo Método Manual em Biodiesel Estmatva da Incerteza de Medção da Vscosdade Cnemátca pelo Método Manual em Bodesel Roberta Quntno Frnhan Chmn 1, Gesamanda Pedrn Brandão 2, Eustáquo Vncus Rbero de Castro 3 1 LabPetro-DQUI-UFES, Vtóra-ES,

Leia mais

Medidas de tendência central. Média Aritmética. 4ª aula 2012

Medidas de tendência central. Média Aritmética. 4ª aula 2012 Estatístca 4ª aula 2012 Meddas de tendênca central Ajudam a conhecer a analsar melhor as característcas de dados colhdos. Chamamos de meddas de tendênca central em decorrênca dos dados observados apresentarem

Leia mais

Determinantes. De nição de determinante de uma matriz quadrada. Determinantes - ALGA - 2004/05 15

Determinantes. De nição de determinante de uma matriz quadrada. Determinantes - ALGA - 2004/05 15 Determnantes - ALGA - 004/05 15 Permutações Determnantes Seja n N Uma permutação p = (p 1 ; p ; : : : ; p n ) do conjunto f1; ; ; ng é um arranjo dos n números em alguma ordem, sem repetções ou omssões

Leia mais

Análise Complexa Resolução de alguns exercícios do capítulo 1

Análise Complexa Resolução de alguns exercícios do capítulo 1 Análse Complexa Resolução de alguns exercícos do capítulo 1 1. Tem-se:. = (0, 1) = (0, 1) =. 3. Sejam a, b R. Então Exercíco nº1 = (0, 1).(0, 1) = (0.0 1.1, 0.1 + 1.0) = ( 1, 0) = 1. a + b = a b = a +

Leia mais

7. Resolução Numérica de Equações Diferenciais Ordinárias

7. Resolução Numérica de Equações Diferenciais Ordinárias 7. Resolução Numérca de Equações Dferencas Ordnáras Fenômenos físcos em dversas áreas, tas como: mecânca dos fludos, fluo de calor, vbrações, crcutos elétrcos, reações químcas, dentre váras outras, podem

Leia mais

Energia de deformação na flexão

Energia de deformação na flexão - UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Energa de deformação na

Leia mais

Estatística I Licenciatura MAEG 2006/07

Estatística I Licenciatura MAEG 2006/07 Estatístca I Lcencatura MAEG 006/07 AMOSTRAGEM. DISTRIBUIÇÕES POR AMOSTRAGEM.. Em determnada unversdade verfca-se que 30% dos alunos têm carro. Seleccona-se uma amostra casual smples de 0 alunos. a) Qual

Leia mais

Capítulo 1. Exercício 5. Capítulo 2 Exercício

Capítulo 1. Exercício 5. Capítulo 2 Exercício UNIVERSIDADE FEDERAL DE GOIÁS CIÊNCIAS ECONÔMICAS ECONOMETRIA (04-II) PRIMEIRA LISTA DE EXERCÍCIOS Exercícos do Gujarat Exercíco 5 Capítulo Capítulo Exercíco 3 4 5 7 0 5 Capítulo 3 As duas prmeras demonstrações

Leia mais

Modelo logístico aplicado ao mercado de seguros de auto no Brasil: cálculo da probabilidade de sinistros*

Modelo logístico aplicado ao mercado de seguros de auto no Brasil: cálculo da probabilidade de sinistros* Modelo logístco aplcado ao mercado de seguros de auto no Brasl:... 1 Modelo logístco aplcado ao mercado de seguros de auto no Brasl: cálculo da probabldade de snstros* Mauríco Assuero Lma de Fretas** Doutor

Leia mais

Se considerarmos, por exemplo, uma função f real de variável real,

Se considerarmos, por exemplo, uma função f real de variável real, 107 5 Gráfcos 5.1 Introdução Dada uma função real de varável real 16 f, o gráfco desta função é o conjunto de pontos ( x, y), onde x pertence ao domíno da função e f ( x) y =, ou seja, {( x y) x D y f

Leia mais

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma Capítulo 8 Dferencação Numérca Quase todos os métodos numércos utlzados atualmente para obtenção de soluções de equações erencas ordnáras e parcas utlzam algum tpo de aproxmação para as dervadas contínuas

Leia mais

Conceitos básicos de transferência de Calor:

Conceitos básicos de transferência de Calor: Condução - Le de ourer Concetos báscos de transferênca de Calor: órmula geral para 3 dmensões: ρc = λ t x + λ x y + λ y z p x y z z com ρ - densdade (Kg/m³). λ - condutvdade térmca na drecção (x, y ou

Leia mais

PROBABILIDADE E ESTATÍSTICA APLICADAS À HIDROLOGIA

PROBABILIDADE E ESTATÍSTICA APLICADAS À HIDROLOGIA PROBABILIDADE E ESTATÍSTICA APLICADAS À HIDROLOGIA Mauro aghettn Mara Manuela Portela DECvl, IST, 0 PROBABILIDADE E ESTATÍSTICA APLICADAS À HIDROLOGIA Mauro aghettn Professor Assocado, Escola de Engenhara

Leia mais

valor do troco recebido foi a) R$ 0,50. b) R$ 1,00. c) R$ 1,50. d) R$ 2,50. e) R$ 2,00.

valor do troco recebido foi a) R$ 0,50. b) R$ 1,00. c) R$ 1,50. d) R$ 2,50. e) R$ 2,00. Nome: nº Data: / _ / 017 Professor: Gustavo Bueno Slva - Ensno Médo - 3º ano Lsta de Revsão 1. (Upe-ssa 017) Márca e Marta juntas pesam 115 kg; Marta e Mônca pesam juntas 113 kg; e Márca e Mônca pesam

Leia mais

UTILIZAÇÃO DO MÉTODO DE TAGUCHI NA REDUÇÃO DOS CUSTOS DE PROJETOS. Uma equação simplificada para se determinar o lucro de uma empresa é:

UTILIZAÇÃO DO MÉTODO DE TAGUCHI NA REDUÇÃO DOS CUSTOS DE PROJETOS. Uma equação simplificada para se determinar o lucro de uma empresa é: UTILIZAÇÃO DO MÉTODO DE TAGUCHI A REDUÇÃO DOS CUSTOS DE PROJETOS Ademr José Petenate Departamento de Estatístca - Mestrado em Qualdade Unversdade Estadual de Campnas Brasl 1. Introdução Qualdade é hoje

Leia mais

2 Principio do Trabalho Virtual (PTV)

2 Principio do Trabalho Virtual (PTV) Prncpo do Trabalho rtual (PT)..Contnuo com mcroestrutura Na teora que leva em consderação a mcroestrutura do materal, cada partícula anda é representada por um ponto P, conforme Fgura. Porém suas propredades

Leia mais

CAPÍTULO 4 - Variáveis aleatórias e distribuições de probabilidade

CAPÍTULO 4 - Variáveis aleatórias e distribuições de probabilidade CAPÍTULO 4 - Varáves aleatóras e dstrbuções de probabldade Conceto de varável aleatóra Uma função cujo valor é um número real determnado por cada elemento em um espaço amostral é chamado uma varável aleatóra

Leia mais

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu 1 Programação Não Lnear com Restrções Aula 9: Programação Não-Lnear - Funções de Váras Varáves com Restrções Ponto Regular; Introdução aos Multplcadores de Lagrange; Multplcadores de Lagrange e Condções

Leia mais

Teoria Elementar da Probabilidade. a) Cada experiência poderá ser repetida indefinidamente sob condições essencialmente inalteradas.

Teoria Elementar da Probabilidade. a) Cada experiência poderá ser repetida indefinidamente sob condições essencialmente inalteradas. Estatístca 47 Estatístca 48 Teora Elemetar da Probabldade SPECTOS PERTINENTES À CRCTERIZÇÃO DE UM EXPERIÊNCI LETÓRI MODELOS MTEMÁTICOS DETERMINÍSTICOS PROBBILÍSTICOS PROCESSO (FENÓMENO) LETÓRIO - Quado

Leia mais

2 Incerteza de medição

2 Incerteza de medição 2 Incerteza de medção Toda medção envolve ensaos, ajustes, condconamentos e a observação de ndcações em um nstrumento. Este conhecmento é utlzado para obter o valor de uma grandeza (mensurando) a partr

Leia mais

Sempre que surgir uma dúvida quanto à utilização de um instrumento ou componente, o aluno deverá consultar o professor para esclarecimentos.

Sempre que surgir uma dúvida quanto à utilização de um instrumento ou componente, o aluno deverá consultar o professor para esclarecimentos. Insttuto de Físca de São Carlos Laboratóro de Eletrcdade e Magnetsmo: Transferênca de Potênca em Crcutos de Transferênca de Potênca em Crcutos de Nesse prátca, estudaremos a potênca dsspada numa resstênca

Leia mais

ANÁLISE DA VARIÂNCIA DA REGRESSÃO

ANÁLISE DA VARIÂNCIA DA REGRESSÃO ANÁLISE DA VARIÂNCIA DA REGRESSÃO PROCEDIMENTO GERAL DE REGRESSÃO Em um modelo de análse de varânca, como no DIA, o fator em estudo pode ser quanttatvo ou qualtatvo. FATOR QUANTITATIVO: é aquele cujos

Leia mais

Lista de Exercícios 5: Soluções Teoria dos Conjuntos

Lista de Exercícios 5: Soluções Teoria dos Conjuntos UFMG/ICEx/DCC DCC Matemática Discreta Lista de Exercícios 5: Soluções Teoria dos Conjuntos Ciências Exatas & Engenharias 2 o Semestre de 206. Escreva uma negação para a seguinte afirmação: conjuntos A,

Leia mais

PREVISÃO DE PARTIDAS DE FUTEBOL USANDO MODELOS DINÂMICOS

PREVISÃO DE PARTIDAS DE FUTEBOL USANDO MODELOS DINÂMICOS PREVISÃO DE PRTIDS DE FUTEBOL USNDO MODELOS DINÂMICOS Oswaldo Gomes de Souza Junor Insttuto de Matemátca Unversdade Federal do Ro de Janero junor@dme.ufrj.br Dan Gamerman Insttuto de Matemátca Unversdade

Leia mais

2010 The McGraw-Hill Companies, Inc. All rights reserved. Prof.: Anastácio Pinto Gonçalves Filho

2010 The McGraw-Hill Companies, Inc. All rights reserved. Prof.: Anastácio Pinto Gonçalves Filho rof.: nastáco nto Gonçalves lho Introdução Nem sempre é possível tratar um corpo como uma únca partícula. Em geral, o tamanho do corpo e os pontos de aplcação específcos de cada uma das forças que nele

Leia mais

CONCEITOS INICIAIS DE ESTATÍSTICA MÓDULO 2 DISTRIBUIÇÃO DE FREQÜÊNCIA - ELEMENTOS Prof. Rogério Rodrigues

CONCEITOS INICIAIS DE ESTATÍSTICA MÓDULO 2 DISTRIBUIÇÃO DE FREQÜÊNCIA - ELEMENTOS Prof. Rogério Rodrigues CONCEITOS INICIAIS DE ESTATÍSTICA MÓDULO DISTRIBUIÇÃO DE FREQÜÊNCIA - ELEMENTOS Prof. Rogéro Rodrgues I) TABELA PRIMITIVA E DISTRIBUIÇÃO DE FREQÜÊNCIA : No processo de amostragem, a forma de regstro mas

Leia mais

Estatística Básica. Probabilidade. Renato Dourado Maia. Instituto de Ciências Agrárias. Universidade Federal de Minas Gerais

Estatística Básica. Probabilidade. Renato Dourado Maia. Instituto de Ciências Agrárias. Universidade Federal de Minas Gerais Estatística Básica Probabilidade Renato Dourado Maia Instituto de Ciências Agrárias Universidade Federal de Minas Gerais Probabilidade Condicional Dados dois eventos A e B, a probabilidade condicional

Leia mais

Experiência V (aulas 08 e 09) Curvas características

Experiência V (aulas 08 e 09) Curvas características Experênca (aulas 08 e 09) Curvas característcas 1. Objetvos 2. Introdução 3. Procedmento expermental 4. Análse de dados 5. Referêncas 1. Objetvos Como no expermento anteror, remos estudar a adequação de

Leia mais

Laboratório de Mecânica Aplicada I Determinação de Centros de Gravidade

Laboratório de Mecânica Aplicada I Determinação de Centros de Gravidade Laboratóro de Mecânca Aplcada I Determnação de Centros de Gravdade 1 Introdução Em mutos problemas de mecânca o efeto do peso dos corpos é representado por um únco vector, aplcado num ponto denomnado centro

Leia mais

Teoria dos Jogos. Prof. Maurício Bugarin Eco/UnB 2015-II. Aula 8 B Teoria dos Jogos Maurício Bugarin. Desenvolver o modelo de jogo repetido

Teoria dos Jogos. Prof. Maurício Bugarin Eco/UnB 2015-II. Aula 8 B Teoria dos Jogos Maurício Bugarin. Desenvolver o modelo de jogo repetido Teora dos Jogos Prof. Mauríco Bugarn Eco/UnB 015-II Rotero Capítulo 3. Jogos Jogos Repetdos Desenvolver o modelo de jogo repetdo Provar o teorema popular Aplcar para conluo no jogo de dlema dos prsoneros

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES INTERPOLAÇÃO

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES INTERPOLAÇÃO Uversdade Federal do Ro Grade FURG Isttuto de Matemátca, Estatístca e Físca IMEF Edtal CAPES INTERPOLAÇÃO Pro. Atôo Mauríco Mederos Alves Proª Dese Mara Varella Martez Matemátca Básca ara Cêcas Socas II

Leia mais

Coordenação de Semáforos

Coordenação de Semáforos Paragem dos Veículos Veículos "Lbertados" Paragem dos Veículos Veículos "Lbertados" "Agrupamento " Pelotões "Agrupamento " Pelotões C O O R D E N A Ç Ã O Onda Verde... IST/ Lcencaturas em Engª Cvl & Terrtóro

Leia mais

Universidade São Judas Tadeu Faculdade de Tecnologia e Ciências Exatas Cursos de Engenharia

Universidade São Judas Tadeu Faculdade de Tecnologia e Ciências Exatas Cursos de Engenharia Unversdade São Judas Tadeu Faculdade de Tecnologa e Cêncas Exatas Cursos de Engenhara Laboratóro de Físca Mesa de Forças Autor: Prof. Luz de Olvera Xaver F r = + = F1 + F + F1. F.cosα = ϕ β α BANCADA:

Leia mais

Classificação de Padrões

Classificação de Padrões Classfcação de Padrões Introdução Classfcadores Paramétrcos Classfcadores Sem-paramétrcos Redução da Dmensonaldade Teste de Sgnfcânca 6.345 Sstema de Reconhecmento de Voz Teora Acústca da Produção de Voz

Leia mais

Teoria dos Jogos. Prof. Maurício Bugarin Eco/UnB 2014-I. Aula 3 Teoria dos Jogos Maurício Bugarin. Roteiro. Horário da disciplina: 14h15 a 15h45

Teoria dos Jogos. Prof. Maurício Bugarin Eco/UnB 2014-I. Aula 3 Teoria dos Jogos Maurício Bugarin. Roteiro. Horário da disciplina: 14h15 a 15h45 Teora dos Jogos Prof. Mauríco Bugarn Eco/UnB 04-I Rotero Horáro da dscplna: 4h5 a 5h45 Introdução: Por que pensar estrategcamente? Exemplos de stuações nas quas pensar estrategcamente faz sentdo Concetos

Leia mais

14. Correntes Alternadas (baseado no Halliday, 4 a edição)

14. Correntes Alternadas (baseado no Halliday, 4 a edição) 14. orrentes Alternadas (baseado no Hallday, 4 a edção) Por que estudar orrentes Alternadas?.: a maora das casas, comérco, etc., são provdas de fação elétrca que conduz corrente alternada (A ou A em nglês):

Leia mais

Matemática Discreta - 08

Matemática Discreta - 08 Universidade Federal do Vale do São Francisco urso de Engenharia da omputação Matemática Discreta - 08 Prof. Jorge avalcanti jorge.cavalcanti@univasf.edu.br www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav

Leia mais

Aplicações de Estimadores Bayesianos Empíricos para Análise Espacial de Taxas de Mortalidade

Aplicações de Estimadores Bayesianos Empíricos para Análise Espacial de Taxas de Mortalidade Aplcações de Estmadores Bayesanos Empírcos para Análse Espacal de Taxas de Mortaldade Alexandre E. dos Santos, Alexandre L. Rodrgues, Danlo L. Lopes Departamento de Estatístca Unversdade Federal de Mnas

Leia mais

TENDENCIAS CLIMÁTICAS DA PRECIPITAÇÃO PLUVIAL NO ESTADO DO MARANHÃO

TENDENCIAS CLIMÁTICAS DA PRECIPITAÇÃO PLUVIAL NO ESTADO DO MARANHÃO TENDENCIAS CLIMÁTICAS DA PRECIPITAÇÃO PLUVIAL NO ESTADO DO MARANHÃO Danelson Jorge Delgado Neves 13, Jeane Rafaele Araúo Lma 1, Lncoln Elo de Araúo 2, Pedro Vera de Azevedo 1 1 UFCG DCA, Campna Grande

Leia mais

Física 10 Questões [Difícil]

Física 10 Questões [Difícil] Físca Questões [Dfícl] - (UF MG) Um líqudo encontra-se, ncalmente, à temperatura T o, pressão P o e volume o, em um recpente fechado e solado termcamente do ambente, conforme lustra a fgura ao lado. Após

Leia mais

Variáveis Indicadoras. Roteiro. Introdução

Variáveis Indicadoras. Roteiro. Introdução Varáves Indcadoras Rotero 1. Introdução 2. Varável Bnára de Intercepto 3. Varável de Interação 4. Aplcação 5. Varáves Qualtatvas com Váras Categoras 6. Referêncas Introdução Varáves Bnáras Modelo estenddo

Leia mais