Índices de Concentração 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Índices de Concentração 1"

Transcrição

1 Índces de Concentração Crstane Alkmn Junquera Schmdt arcos André de Lma 3 arço / 00 Este documento expressa as opnões pessoas dos autores e não reflete as posções ofcas da Secretara de Acompanhamento Econômco - SEAE. Coordenadora - Geral de Defesa da Concorrênca - BSB da Secretara de Acompanhamento Econômco (SEAE) do nstéro da Fazenda, Economsta pela FGV/EPGE (mestrado e doutorado), Av. Presdente Antono Carlos 375, sala 09, , Ro de Janero - RJ. Tel: () , Fax: () Técnco da Coordenação - Geral de Defesa da Concorrênca - BSB da Secretara de Acompanhamento Econômco (SEAE) do nstéro da Fazenda, Economsta pela UFRJ (graduação) e UFRS (mestrado), E-mal: Av. Presdente Antono Carlos 375, sala 034, , Ro de Janero - RJ. Tel: () , Fax: ()

2 SEAE/F Documento de Trabalho nº 3- RESUO O presente trabalho tem por objetvo apresentar dferentes meddas de concentração utlzadas por órgãos anttruste de dversos países. Além de apresentar a fórmula para o cálculo destas meddas, são nformados os valores extremos adotados para a análse de atos de concentração nos Estados Undos e no éxco.

3 SEAE/F Documento de Trabalho nº 3-. INTRODUÇÃO As meddas de concentração são muto utlzadas como forma de ndcar como é a estrutura de um determnado mercado. Neste texto são dscutdas algumas meddas de concentração utlzadas pelos órgãos anttruste de dversos países. Estas meddas se dvdem em dos grupos: as razões de concentração e os índces de concentração. No tem são apresentadas estas meddas e os crtéros adotados pelos países que as utlzam (que em mutos casos são segudos por outros város países), no tem 3 conclu-se o trabalho, e por últmo, faz-se um breve apêndce explcatvo, o qual é dspensável para os menos famlarzados com a matemátca, mas nteressante para os demas letores.. EDIDAS DE CONCENTRAÇÃO.. Razões de Concentração (C4, C5, C7,...CN) Suponha empresas / frmas no mercado, em que as N prmeras frmas (,,..., N) são as que possuem os maores market shares. Defne-se como razão de concentração a segunte equação: C N N β, em que β é o market share da empresa. Assm sendo, a razão pode ser expressa como: N Se N 3, temos o C3, se N 4, temos o C4, assm por dante. Esta é uma medda muto fácl de ser computada, prncpalmente se a fnaldade é encontrar o C, C3 ou C4, pos as nformações sobre faturamento, capacdade nstalada ou vendas das líderes, normalmente, são dsponíves. Uma varação postva desta medda (antes e pós fusão) se dá quando uma das frmas, que faz parte das N empresas anterormente escolhdas, se funde (ou compra ou é comprada) com uma (ou uma ou de uma) das frmas fora do conjunto das N empresas. Uma varação nula ocorre se ambas as frmas estão fora das N empresas e permanecem fora após a fusão. Por últmo, uma varação negatva nunca ocorre, como resultado de uma fusão ou aqusção. C N 3

4 SEAE/F Documento de Trabalho nº 3-.. Herfndahl-Hrshman Index (HHI) 4 Suponha empresas / frmas no mercado, defne-se como HHHI a segunte equação: HHI β, em que β é o market share da empresa. Assm sendo, o índce pode ser expresso como: C N Exstem duas formas de expressar o HHI. A prmera é consderar o valor em %, sto é, se houver monopólo e a empresa tem 00% do mercado, o HHI (00) Portanto, se exstem N frmas dêntcas com market shares (S) guas (concorrênca perfeta), o HHI sera: N HHI. Assm, percebe-se que quanto maor o poder de mercado, maor N N será o HHI. A segunda forma de expressar o HHI é desconsderar o %. Assm, o range sera de que sera o caso em que a frma tem o poder de mercado máxmo (monopólo). N,, em Esta é uma medda, dferentemente do C, mas complcada de ser computada, pos as nformações sobre faturamento, capacdade nstalada ou vendas de todas, e não apenas das líderes, às vezes, não são dsponíves. Isto porque há mercados em que exste uma franja sgnfcatva, o que pode tornar o cálculo probtvo. Assm, quanto maor for esta franja, maor o erro que a estmação do HHI. Com este índce, após uma fusão, sempre haverá uma varação postva do mesmo. Portanto, nunca se observará uma varação nula ou negatva. Regras do DOJ e FTC: Independentemente das duas formas para expressar o índce, suponha que X ou. Além dsso, suponha que os sub-índces 0 e querem dzer, antes e pós fusão, respectvamente. Desta forma, os crtéros para aprovação de um Ato de Concentração são os seguntes: 4 HERFINDAHL, O. C. (950) Concentraton n the Steel Industry, Tese de Doutorado. 4

5 SEAE/F Documento de Trabalho nº 3- a) Se HHI < 0%X OK para a operação. O mercado já não era concentrado antes e contnuou desconcentrado. (0%X.000 0,) b) Se 0% X < HHI < 8% X E HHI < % X OK para a operação. O mercado era pouco concentrado e com a fusão houve um pequeno aumento da possbldade do poder coordenado. (8%X.800 0,8 e %X 00 0,0) c) Se HHI > 8% X E HHI 0,5% X OK para a operação. Não há nexo causal. O < mercado antes já era concentrado. (0,5%X 50 0,005) Vale observar que quanto maor a dferença entre as partcpações de mercado (S) das empresas, maor será o HHI. Ex: magne uma fusão com duas frmas com 50% cada. Tera-se HHI e HHI ( HHI 5.000). Agora, magne uma fusão entre duas frmas, uma com 90% e outra com 0%. Resultara em HHI > e HHI ( HHI.800).... Uma breve comparação entre a razão de concentração (C) e o HHI Suponha o segunte exemplo abaxo: Empresas Partcpação no Partcpação ercado A ercado B no ercado A: C4 80% HHI 950 ercado B: C4 80% HHI 000 Pelo exemplo acma, concluí-se que, muto embora o C4 seja o mesmo em ambos os mercados, o HHI consegue captar o fato do mercado A ser mas concentrado do que o mercado B. Assm 5

6 SEAE/F Documento de Trabalho nº 3- sendo, se for possível o cálculo do HHI (sto é, se não exstr franja ou se esta for nsgnfcante) o uso deste índce pode ser mas aproprado..3. Índce de Domnânca (ID) 5 Suponha frmas/ empresas no mercado, e que se possa defnr a segunte função F: F(, α ) α, (,) e α > 0 é um parâmetro exógeno ao modelo. α Se α F HHI Se α < o índce fca ndetermnado, sem conclusão. Se α > em partcular, se α Índce de Domnânca (ID). 4 F( ) ID, (,) Uma outra forma de calcular o Índce de Domnânca sera a partr de nformações referentes aos market shares das empresas e ao HHI, da segunte forma: 4 β F ( ) ID ( HHI ), (,) O autor qus ntroduzr neste índce um fator muto nteressante, qual seja, de que se uma fusão ocorre entre duas empresas com partcpações pequenas e que o novo market share fque abaxo do da maor empresa do mercado, esta nova empresa terá melhores condções de concorrer com as rvas. Desta forma, a tradução que se pode fazer quando a varação do índce for negatva, é que a operação é pró-compettva. Esta nterpretação não ocorre com nenhum dos índces vstos acma. Em contrapartda, se as empresas se juntam e passam a ter uma partcpação maor que a de qualquer outra no mercado ou se elas já tem uma partcpação alta, a varação do índce é 5 GARCIA ALBA I., P. (994) Un Índce de Domnacón para el Análss de la Estructura de los ercados, El Trmestre Económco, vol. LXI, n

7 SEAE/F Documento de Trabalho nº 3- postva, o que ndca que a operação pode gerar danos a concorrênca, sto é, que há a possbldade do exercíco do poder de mercado coordenado. Além dsso, o índce se propõe a nclur a fórmula do HHI, quando α. Regras para o sstema mexcano de concorrênca 6 : a) Se ID > 5%X (.500 ou 0,5) 7 A fusão precsa contnuar sendo analsada. b) Se ID > 0 e se ID 5%X (.500 ou 0,5) Em geral OK, mas em alguns casos a análse contnua c) Se ID < 0 e se ID 5%X (.500 ou 0,5) Em geral OK, mas em alguns casos a análse contnua. Crítcas: As regras do autor são um pouco nconclusvas com relação a como o técnco deve proceder na análse de um ato de concentração. 3. CONCLUSÃO Este texto expôs, de forma dreta, objetva e smples, os três ndcadores de concentração mas utlzados pelas autordades anttruste ao redor do mundo. Cada um deles tem as suas peculardades. Sendo utlzados juntos e com a percepção exata de suas dferenças, podem conceder um bom panorama sobre a estrutura de mercado de uma determnada ndústra. Por sso que estes ndcadores são útes tanto para análses de fusões e aqusções como para estudos de condutas desleas, como por exemplo cartés. Ambos os casos requerem uma análse dnâmca, para saber, ao fnal e ao cabo, qual o provável efeto sobre o bem-estar socal. 4. BIBLIOGRAFIA GARCÍA ALBA I., P. (994), Un índce de domnacón para el análss de la estructura de os mercados, El Trmestre Económco, vol. LXI, n. 43. RESENDE,. (994) eddas de Concentração Industral: Uma Resenha, Análse Econômca, março e setembro, p CONSELHO ADINISTRATIVO DE DEFESA ECONÔICA (999) Resolução n.º 0, De 9 de junho. 6 Comsón Federal de Competenca de éxco. 7 Este valor eqüvale a uma estrutura com quatro frmas de gual tamanho. 7

8 SEAE/F Documento de Trabalho nº 3- APÊNDICE Tanto o Índce de Domnânca quanto o Índce de Herfndahl-Hrshman possuem as seguntes propredades: a) São homogêneos de grau zero em (,,..., N ); b) Seus valores extremos são /N e (ou 0.000/N e para o HHI); c) Um aumento na quantdade vendda por uma frma grande eleva o valor dos índces HHI e ID, e o aumento na quantdade vendda por uma frma pequena reduz o valor dos índces. Esta proposção vale desde que as quantdades venddas pelas demas frmas não se alterem. A propredade (c) pode ser verfcada dervando a famíla de índces representada por F em relação à quantdade da frma : α α F α F α α O snal da dervada va depender da relação entre os termos entre parênteses. Se α tem-se que os termos representam o market share da frma e o índce HHI. Outro fato nteressante a ser verfcado dz respeto à varação dos índces englobados por F quando ocorre uma transferênca de produção de uma empresa à outra. Supondo que está ocorrendo a aqusção da empresa r pela empresa. A verfcação desta varação dependerá da dferença F / F /, que pode ser expressa, para o caso em que α, por: r HHI HHI ( r) r Daí, pode-se conclur que nos casos em que uma determnada empresa transfere sua produção (fusão ou aqusção) para outra que possu uma maor partcpação no mercado, o valor do índce HHI se eleva. De forma geral, conforme já menconado no texto, o valor do índce HHI sempre se eleva em casos que envolvam fusões ou aqusções. O resultado mostrado na equação acma apenas comprova em parte este resultado geral. 8

Estatística II Antonio Roque Aula 18. Regressão Linear

Estatística II Antonio Roque Aula 18. Regressão Linear Estatístca II Antono Roque Aula 18 Regressão Lnear Quando se consderam duas varáves aleatóras ao mesmo tempo, X e Y, as técncas estatístcas aplcadas são as de regressão e correlação. As duas técncas estão

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca

Leia mais

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência.

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência. MODELO DE REGRESSÃO DE COX Os modelos de regressão paramétrcos vstos anterormente exgem que se suponha uma dstrbução estatístca para o tempo de sobrevvênca. Contudo esta suposção, caso não sea adequada,

Leia mais

COEFICIENTE DE GINI: uma medida de distribuição de renda

COEFICIENTE DE GINI: uma medida de distribuição de renda UNIVERSIDADE DO ESTADO DE SANTA CATARINA ESCOLA SUPERIOR DE ADMINISTRAÇÃO E GERÊNCIA DEPARTAMENTO DE CIÊNCIAS ECONÔMICAS COEFICIENTE DE GINI: uma medda de dstrbução de renda Autor: Prof. Lsandro Fn Nsh

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ 1 É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Numa relação expermental os valores de uma das

Leia mais

7 - Distribuição de Freqüências

7 - Distribuição de Freqüências 7 - Dstrbução de Freqüêncas 7.1 Introdução Em mutas áreas há uma grande quantdade de nformações numércas que precsam ser dvulgadas de forma resumda. O método mas comum de resumr estes dados numércos consste

Leia mais

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA CAPÍTULO DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA. A MÉDIA ARITMÉTICA OU PROMÉDIO Defnção: é gual a soma dos valores do grupo de dados dvdda pelo número de valores. X x Soma dos valores de x número de

Leia mais

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação Mnstéro da Educação Insttuto Naconal de Estudos e Pesqusas Educaconas Aníso Texera Cálculo do Conceto Prelmnar de Cursos de Graduação Nota Técnca Nesta nota técnca são descrtos os procedmentos utlzados

Leia mais

Cap. 6 - Energia Potencial e Conservação da Energia Mecânica

Cap. 6 - Energia Potencial e Conservação da Energia Mecânica Unversdade Federal do Ro de Janero Insttuto de Físca Físca I IGM1 014/1 Cap. 6 - Energa Potencal e Conservação da Energa Mecânca Prof. Elvs Soares 1 Energa Potencal A energa potencal é o nome dado a forma

Leia mais

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma Capítulo 8 Dferencação Numérca Quase todos os métodos numércos utlzados atualmente para obtenção de soluções de equações erencas ordnáras e parcas utlzam algum tpo de aproxmação para as dervadas contínuas

Leia mais

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão. AULA 2.1 Oligopólio em Quantidades (Cournot)

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão. AULA 2.1 Oligopólio em Quantidades (Cournot) Mcroeconoma II Cursos de Economa e de Matemátca Aplcada à Economa e Gestão AULA 2.1 Olgopólo em Quantdades (Cournot) Isabel Mendes 2007-2008 18-03-2008 Isabel Mendes/MICRO II 1 2.1 Olgopólo em Quantdades

Leia mais

Algarismos Significativos Propagação de Erros ou Desvios

Algarismos Significativos Propagação de Erros ou Desvios Algarsmos Sgnfcatvos Propagação de Erros ou Desvos L1 = 1,35 cm; L = 1,3 cm; L3 = 1,30 cm L4 = 1,4 cm; L5 = 1,7 cm. Qual destas meddas está correta? Qual apresenta algarsmos com sgnfcado? O nstrumento

Leia mais

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012 Notas Processos estocástcos Nestor Catcha 23 de abrl de 2012 notas processos estocástcos 2 O Teorema de Perron Frobenus para matrzes de Markov Consdere um processo estocástco representado por um conunto

Leia mais

RISCO. Investimento inicial $ $ Taxa de retorno anual Pessimista 13% 7% Mais provável 15% 15% Otimista 17% 23% Faixa 4% 16%

RISCO. Investimento inicial $ $ Taxa de retorno anual Pessimista 13% 7% Mais provável 15% 15% Otimista 17% 23% Faixa 4% 16% Análse de Rsco 1 RISCO Rsco possbldade de perda. Quanto maor a possbldade, maor o rsco. Exemplo: Empresa X va receber $ 1.000 de uros em 30 das com títulos do governo. A empresa Y pode receber entre $

Leia mais

CORRELAÇÃO E REGRESSÃO

CORRELAÇÃO E REGRESSÃO CORRELAÇÃO E REGRESSÃO Constata-se, freqüentemente, a estênca de uma relação entre duas (ou mas) varáves. Se tal relação é de natureza quanttatva, a correlação é o nstrumento adequado para descobrr e medr

Leia mais

Curvas Horizontais e Verticais

Curvas Horizontais e Verticais Insttução: Faculdade de Tecnologa e Cêncas Professor: Dego Queroz de Sousa Dscplna: Topografa Curvas Horzontas e ertcas 1. Introdução Exstem dversas ocasões na engenhara em que os projetos são desenvolvs

Leia mais

Capítulo 16: Equilíbrio Geral e Eficiência Econômica

Capítulo 16: Equilíbrio Geral e Eficiência Econômica Capítulo 6: Equlíbro Geral e Efcênca Econômca Pndck & Rubnfeld, Capítulo 6, Equlíbro Geral::EXERCÍCIOS. Em uma análse de trocas entre duas pessoas, suponha que ambas possuam dêntcas preferêncas. A curva

Leia mais

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma.

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma. UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS EXATAS DEPARTAMENTO DE FÍSICA AV. FERNANDO FERRARI, 514 - GOIABEIRAS 29075-910 VITÓRIA - ES PROF. ANDERSON COSER GAUDIO FONE: 4009.7820 FAX: 4009.2823

Leia mais

PROJEÇÕES POPULACIONAIS PARA OS MUNICÍPIOS E DISTRITOS DO CEARÁ

PROJEÇÕES POPULACIONAIS PARA OS MUNICÍPIOS E DISTRITOS DO CEARÁ GOVERNO DO ESTADO DO CEARÁ SECRETARIA DO PLANEJAMENTO E GESTÃO - SEPLAG INSTITUTO DE PESQUISA E ESTRATÉGIA ECONÔMICA DO CEARÁ - IPECE NOTA TÉCNICA Nº 29 PROJEÇÕES POPULACIONAIS PARA OS MUNICÍPIOS E DISTRITOS

Leia mais

1. CORRELAÇÃO E REGRESSÃO LINEAR

1. CORRELAÇÃO E REGRESSÃO LINEAR 1 CORRELAÇÃO E REGREÃO LINEAR Quando deseja-se estudar se exste relação entre duas varáves quanttatvas, pode-se utlzar a ferramenta estatístca da Correlação Lnear mples de Pearson Quando essa correlação

Leia mais

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos Curso de extensão, MMQ IFUSP, feverero/4 Alguns exercíco báscos I Exercícos (MMQ) Uma grandeza cujo valor verdadero x é desconhecdo, fo medda três vezes, com procedmentos expermentas dêntcos e, portanto,

Leia mais

AEP FISCAL ESTATÍSTICA

AEP FISCAL ESTATÍSTICA AEP FISCAL ESTATÍSTICA Módulo 11: Varáves Aleatóras (webercampos@gmal.com) VARIÁVEIS ALEATÓRIAS 1. Conceto de Varáves Aleatóras Exemplo: O expermento consste no lançamento de duas moedas: X: nº de caras

Leia mais

Introdução a Combinatória- Aplicações, parte II

Introdução a Combinatória- Aplicações, parte II Introdução a Combnatóra- Aplcações, AULA 7 7.1 Introdução Nesta aula vamos estudar aplcações um pouco dferentes das da aula passada. No caso estudaremos arranjos com repetção, permutações crculares e o

Leia mais

Diferença entre a classificação do PIB per capita e a classificação do IDH

Diferença entre a classificação do PIB per capita e a classificação do IDH Curso Bem Estar Socal Marcelo Ner - www.fgv.br/cps Metas Socas Entre as mutas questões decorrentes da déa de se mplementar uma proposta de metas socas temos: Qual a justfcatva econômca para a exstênca

Leia mais

Análise Complexa Resolução de alguns exercícios do capítulo 1

Análise Complexa Resolução de alguns exercícios do capítulo 1 Análse Complexa Resolução de alguns exercícos do capítulo 1 1. Tem-se:. = (0, 1) = (0, 1) =. 3. Sejam a, b R. Então Exercíco nº1 = (0, 1).(0, 1) = (0.0 1.1, 0.1 + 1.0) = ( 1, 0) = 1. a + b = a b = a +

Leia mais

2 Principio do Trabalho Virtual (PTV)

2 Principio do Trabalho Virtual (PTV) Prncpo do Trabalho rtual (PT)..Contnuo com mcroestrutura Na teora que leva em consderação a mcroestrutura do materal, cada partícula anda é representada por um ponto P, conforme Fgura. Porém suas propredades

Leia mais

Polos Olímpicos de Treinamento. Aula 10. Curso de Teoria dos Números - Nível 2. Divisores. Prof. Samuel Feitosa

Polos Olímpicos de Treinamento. Aula 10. Curso de Teoria dos Números - Nível 2. Divisores. Prof. Samuel Feitosa Polos Olímpcos de Trenamento Curso de Teora dos Números - Nível 2 Prof. Samuel Fetosa Aula 10 Dvsores Suponha que n = p α 1 2...pα é a fatoração em prmos do ntero n. Todos os dvsores de n são da forma

Leia mais

8.16. Experimentos Fatoriais e o Fatorial Fracionado

8.16. Experimentos Fatoriais e o Fatorial Fracionado 8.6. Expermentos Fatoras e o Fatoral Fraconado Segundo Kng (995) os arranos fatoras e fatoral fraconado estão dentre os arranos mas usados em expermentos ndustras. Veremos aqu alguns casos mas geras e

Leia mais

2ª PARTE Estudo do choque elástico e inelástico.

2ª PARTE Estudo do choque elástico e inelástico. 2ª PARTE Estudo do choque elástco e nelástco. Introdução Consderemos dos corpos de massas m 1 e m 2, anmados de velocdades v 1 e v 2, respectvamente, movmentando-se em rota de colsão. Na colsão, os corpos

Leia mais

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha)

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha) Estatístca p/ Admnstração II - Profª Ana Cláuda Melo Undade : Probabldade Aula: 3 Varável Aleatóra. Varáves Aleatóras Ao descrever um espaço amostral de um expermento, não especfcamos que um resultado

Leia mais

3 Subtração de Fundo Segmentação por Subtração de Fundo

3 Subtração de Fundo Segmentação por Subtração de Fundo 3 Subtração de Fundo Este capítulo apresenta um estudo sobre algortmos para a detecção de objetos em movmento em uma cena com fundo estátco. Normalmente, estas cenas estão sob a nfluênca de mudanças na

Leia mais

5.1 Seleção dos melhores regressores univariados (modelo de Índice de Difusão univariado)

5.1 Seleção dos melhores regressores univariados (modelo de Índice de Difusão univariado) 5 Aplcação Neste capítulo será apresentada a parte empírca do estudo no qual serão avalados os prncpas regressores, um Modelo de Índce de Dfusão com o resultado dos melhores regressores (aqu chamado de

Leia mais

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão AULA 5.3. Afectação de Bens Públicos: a Condição de Samuelson

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão AULA 5.3. Afectação de Bens Públicos: a Condição de Samuelson Mcroeconoma II Cursos de Economa e de Matemátca Aplcada à Economa e Gestão AULA 5.3 Afectação de Bens Públcos: a Condção de Isabel Mendes 2007-2008 5/3/2008 Isabel Mendes/MICRO II 5.3 Afectação de Bens

Leia mais

Eletromagnetismo Aplicado

Eletromagnetismo Aplicado letromagnetsmo Aplcado Undade 5 Propagação de Ondas letromagnétcas em Meos Ilmtados e Polaração Prof. Marcos V. T. Heckler Propagação de Ondas letromagnétcas e Polaração 1 Conteúdo Defnções e parâmetros

Leia mais

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu 1 Programação Não Lnear com Restrções Aula 9: Programação Não-Lnear - Funções de Váras Varáves com Restrções Ponto Regular; Introdução aos Multplcadores de Lagrange; Multplcadores de Lagrange e Condções

Leia mais

2 Incerteza de medição

2 Incerteza de medição 2 Incerteza de medção Toda medção envolve ensaos, ajustes, condconamentos e a observação de ndcações em um nstrumento. Este conhecmento é utlzado para obter o valor de uma grandeza (mensurando) a partr

Leia mais

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas 3.6. Análse descrtva com dados agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas

Leia mais

4. MODELAMENTOS EM POLUIÇÃO DO AR: PREDITIVOS E RECEPTORES

4. MODELAMENTOS EM POLUIÇÃO DO AR: PREDITIVOS E RECEPTORES 4. MODELAMENTOS EM POLUIÇÃO DO AR: PREDITIVOS E RECEPTORES Para o Curso de Físca da Polução do Ar FAP346, º Semestre/006 Prof. Amérco Sansgolo Kerr Montora: Mara Emíla Rehder aver 4. INTRODUÇÃO No modelamento

Leia mais

Métodos Estatísticos Aplicados à Economia I (GET00117) Números Índices

Métodos Estatísticos Aplicados à Economia I (GET00117) Números Índices Unversdade Federal Flumnense Insttuto de Matemátca e Estatístca Métodos Estatístcos Aplcados à Economa I (GET7) Números Índces Ana Mara Lma de Faras Departamento de Estatístca Agosto 25 Sumáro Índces Smples.

Leia mais

CAPITULO II - FORMULAÇAO MATEMATICA

CAPITULO II - FORMULAÇAO MATEMATICA CAPITULO II - FORMULAÇAO MATEMATICA II.1. HIPOTESES BASICAS A modelagem aqu empregada está baseado nas seguntes hpóteses smplfcadoras : - Regme permanente; - Ausênca de forças de campo; - Ausênca de trabalho

Leia mais

Objetivos da aula. Essa aula objetiva fornecer algumas ferramentas descritivas úteis para

Objetivos da aula. Essa aula objetiva fornecer algumas ferramentas descritivas úteis para Objetvos da aula Essa aula objetva fornecer algumas ferramentas descrtvas útes para escolha de uma forma funconal adequada. Por exemplo, qual sera a forma funconal adequada para estudar a relação entre

Leia mais

PRESSUPOSTOS DO MODELO DE REGRESSÃO

PRESSUPOSTOS DO MODELO DE REGRESSÃO PREUPOTO DO MODELO DE REGREÃO A aplcação do modelo de regressão lnear múltpla (bem como da smples) pressupõe a verfcação de alguns pressupostos que condensamos segudamente.. Os erros E são varáves aleatóras

Leia mais

2 Lógica Fuzzy Introdução

2 Lógica Fuzzy Introdução 2 Lógca Fuzzy 2.. Introdução A lógca fuzzy é uma extensão da lógca booleana, ntroduzda pelo Dr. Loft Zadeh da Unversdade da Calfórna / Berkeley no ano 965. Fo desenvolvda para expressar o conceto de verdade

Leia mais

4 Sistemas de partículas

4 Sistemas de partículas 4 Sstemas de partículas Nota: será feta a segunte convenção: uma letra em bold representa um vector,.e. b b Nesta secção estudaremos a generalzação das les de Newton a um sstema de váras partículas e as

Leia mais

Gabarito da Lista de Exercícios de Econometria I

Gabarito da Lista de Exercícios de Econometria I Gabarto da sta de Exercícos de Econometra I Professor: Rogéro lva Mattos Montor: eonardo enrque A. lva Questão Y X y x xy x ŷ ˆ ˆ y ŷ (Y - Y ) (X - X ) (Ŷ - Y ) 360 00-76 -00 35.00 40.000 36-4 30.976 3076

Leia mais

CONCEITOS INICIAIS DE ESTATÍSTICA MÓDULO 2 DISTRIBUIÇÃO DE FREQÜÊNCIA - ELEMENTOS Prof. Rogério Rodrigues

CONCEITOS INICIAIS DE ESTATÍSTICA MÓDULO 2 DISTRIBUIÇÃO DE FREQÜÊNCIA - ELEMENTOS Prof. Rogério Rodrigues CONCEITOS INICIAIS DE ESTATÍSTICA MÓDULO DISTRIBUIÇÃO DE FREQÜÊNCIA - ELEMENTOS Prof. Rogéro Rodrgues I) TABELA PRIMITIVA E DISTRIBUIÇÃO DE FREQÜÊNCIA : No processo de amostragem, a forma de regstro mas

Leia mais

HOMOTETIAS, COMPOSIÇÃO DE HOMOTETIAS E O PROBLEMA 6 DA IMO 2008 Carlos Yuzo Shine Nível Avançado

HOMOTETIAS, COMPOSIÇÃO DE HOMOTETIAS E O PROBLEMA 6 DA IMO 2008 Carlos Yuzo Shine Nível Avançado HMTETIS, MPSIÇÃ DE HMTETIS E PREM 6 D IM 008 arlos Yuzo Shne Nível vançado ntes de começar a dscussão, vamos enuncar o problema 6 da IM 008, que é a motvação prncpal desse artgo. Problema 6, IM 008. Seja

Leia mais

Regressão e Correlação Linear

Regressão e Correlação Linear Probabldade e Estatístca I Antono Roque Aula 5 Regressão e Correlação Lnear Até o momento, vmos técncas estatístcas em que se estuda uma varável de cada vez, estabelecendo-se sua dstrbução de freqüêncas,

Leia mais

METODOLOGIA DO ÍNDICE CARBONO EFICIENTE (ICO2)

METODOLOGIA DO ÍNDICE CARBONO EFICIENTE (ICO2) METODOLOGIA DO ÍNDICE CARBONO Abrl/2015 [data] METODOLOGIA DO ÍNDICE CARBONO O ICO2 é o resultado de uma cartera teórca de atvos, elaborada de acordo com os crtéros estabelecdos nesta metodologa. Os índces

Leia mais

INTRODUÇÃO À PROBABILIDADE. A probabilidade é uma medida da incerteza dos fenômenos. Traduz-se por um número real compreendido de 0 ( zero) e 1 ( um).

INTRODUÇÃO À PROBABILIDADE. A probabilidade é uma medida da incerteza dos fenômenos. Traduz-se por um número real compreendido de 0 ( zero) e 1 ( um). INTRODUÇÃO À PROILIDDE teora das probabldade nada mas é do que o bom senso transformado em cálculo probabldade é o suporte para os estudos de estatístca e expermentação. Exemplos: O problema da concdênca

Leia mais

PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 2010/2011

PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 2010/2011 Instruções: PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 00/0 Cada uestão respondda corretamente vale (um) ponto. Cada uestão respondda ncorretamente vale - (menos um) ponto. Cada uestão

Leia mais

Estudo quantitativo do processo de tomada de decisão de um projeto de melhoria da qualidade de ensino de graduação.

Estudo quantitativo do processo de tomada de decisão de um projeto de melhoria da qualidade de ensino de graduação. Estudo quanttatvo do processo de tomada de decsão de um projeto de melhora da qualdade de ensno de graduação. Rogéro de Melo Costa Pnto 1, Rafael Aparecdo Pres Espíndula 2, Arlndo José de Souza Júnor 1,

Leia mais

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES O Danel Slvera pedu para eu resolver mas questões do concurso da CEF. Vou usar como base a numeração do caderno foxtrot Vamos lá: 9) Se, ao descontar uma promssóra com valor de face de R$ 5.000,00, seu

Leia mais

Termodinâmica e Termoquímica

Termodinâmica e Termoquímica Termodnâmca e Termoquímca Introdução A cênca que trata da energa e suas transformações é conhecda como termodnâmca. A termodnâmca fo a mola mestra para a revolução ndustral, portanto o estudo e compreensão

Leia mais

1 Princípios da entropia e da energia

1 Princípios da entropia e da energia 1 Prncípos da entropa e da energa Das dscussões anterores vmos como o conceto de entropa fo dervado do conceto de temperatura. E esta últma uma conseqüênca da le zero da termodnâmca. Dentro da nossa descrção

Leia mais

Aula 2. aula passada. Bibliografia: VVH (1995), cap 4; Motta (2005), Cap 2, 3; 1. Definição, objetivos; 2. Defesa da concorrência no Brasil;

Aula 2. aula passada. Bibliografia: VVH (1995), cap 4; Motta (2005), Cap 2, 3; 1. Definição, objetivos; 2. Defesa da concorrência no Brasil; Aula 2 Bblografa: VVH (1995), cap 4; Motta (2005), Cap 2, 3; aula passada 1. Defnção, objetvos; 2. Defesa da concorrênca no Brasl; 3. Defesa da concorrênca em pases em desenvolvmento. 1 Plano da aula I.

Leia mais

DISTRIBUIÇÃO DA AÇÃO DO VENTO NOS ELEMENTOS DE CONTRAVENTAMENTO CONSIDERANDO O PAVIMENTO COMO DIAFRAGMA RÍGIDO: ANÁLISE SIMPLIFICADA E MATRICIAL

DISTRIBUIÇÃO DA AÇÃO DO VENTO NOS ELEMENTOS DE CONTRAVENTAMENTO CONSIDERANDO O PAVIMENTO COMO DIAFRAGMA RÍGIDO: ANÁLISE SIMPLIFICADA E MATRICIAL DISTRIBUIÇÃO DA AÇÃO DO VENTO NOS ELEMENTOS DE CONTRAVENTAMENTO CONSIDERANDO O PAVIMENTO COMO DIAFRAGMA RÍGIDO: ANÁLISE SIMPLIFICADA E MATRICIAL Dstrbuton of the wnd acton n the bracng elements consderng

Leia mais

SELEÇÃO DE MODELOS VOLUMÉTRICOS PARA CLONES DE EUCALYPTUS SPP., NO PÓLO GESSEIRO DO ARARIPE

SELEÇÃO DE MODELOS VOLUMÉTRICOS PARA CLONES DE EUCALYPTUS SPP., NO PÓLO GESSEIRO DO ARARIPE SELEÇÃO DE MODELOS VOLUMÉTRICOS PARA CLONES DE EUCALYPTUS SPP, NO PÓLO GESSEIRO DO ARARIPE Jáder da Slva Jale Joselme Fernandes Gouvea Alne Santos de Melo Denns Marnho O R Souza Kléber Napoleão Nunes de

Leia mais

NOTA II TABELAS E GRÁFICOS

NOTA II TABELAS E GRÁFICOS Depto de Físca/UFMG Laboratóro de Fundamentos de Físca NOTA II TABELAS E GRÁFICOS II.1 - TABELAS A manera mas adequada na apresentação de uma sére de meddas de um certo epermento é através de tabelas.

Leia mais

UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR

UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR UNIVERSIDADE FEDERAL DE JUIZ DE FORA INSTITUTO DE CIÊNCIAS EATAS DEPARTAMENTO DE ESTATÍSTICA UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR

Leia mais

Física I LEC+LET Guias de Laboratório 2ª Parte

Física I LEC+LET Guias de Laboratório 2ª Parte Físca I LEC+LET Guas de Laboratóro 2ª Parte 2002/2003 Experênca 3 Expansão lnear de sóldos. Determnação de coefcentes de expansão térmca de dferentes substâncas Resumo Grupo: Turno: ª Fera h Curso: Nome

Leia mais

Despacho Econômico de. Sistemas Termoelétricos e. Hidrotérmicos

Despacho Econômico de. Sistemas Termoelétricos e. Hidrotérmicos Despacho Econômco de Sstemas Termoelétrcos e Hdrotérmcos Apresentação Introdução Despacho econômco de sstemas termoelétrcos Despacho econômco de sstemas hdrotérmcos Despacho do sstema braslero Conclusões

Leia mais

O problema da superdispersão na análise de dados de contagens

O problema da superdispersão na análise de dados de contagens O problema da superdspersão na análse de dados de contagens 1 Uma das restrções mpostas pelas dstrbuções bnomal e Posson, aplcadas usualmente na análse de dados dscretos, é que o parâmetro de dspersão

Leia mais

ESTUDO DE MODELOS PARA AJUSTE E PREVISÃO DE UMA SÉRIE TEMPORAL

ESTUDO DE MODELOS PARA AJUSTE E PREVISÃO DE UMA SÉRIE TEMPORAL Revsta Matz Onlne ESTUDO DE MODELOS PARA AJUSTE E PREVISÃO DE UMA SÉRIE TEMPORAL Valera Ap. Martns Ferrera Vvane Carla Fortulan Valéra Aparecda Martns. Mestre em Cêncas pela Unversdade de São Paulo- USP.

Leia mais

Estudo e Previsão da Demanda de Energia Elétrica. Parte II

Estudo e Previsão da Demanda de Energia Elétrica. Parte II Unversdade Federal de Paraná Setor de Tecnologa Departamento de Engenhara Elétrca Estudo e Prevsão da Demanda de Energa Elétrca Parte II Prof: Clodomro Unshuay-Vla Etapas de um Modelo de Prevsão Objetvo

Leia mais

Laboratório de Mecânica Aplicada I Estática: Roldanas e Equilíbrio de Momentos

Laboratório de Mecânica Aplicada I Estática: Roldanas e Equilíbrio de Momentos Laboratóro de Mecânca Aplcada I Estátca: Roldanas e Equlíbro de Momentos 1 Introdução O conhecmento das condções de equlíbro de um corpo é mprescndível em númeras stuações. Por exemplo, o estudo do equlíbro

Leia mais

CAPÍTULO 5: CÁLCULOS DE EQUILÍBRIO DE FASES. Critério de equilíbrio. O problema geral do equilíbrio líquido-vapor. Capítulo 1. f = P dp.

CAPÍTULO 5: CÁLCULOS DE EQUILÍBRIO DE FASES. Critério de equilíbrio. O problema geral do equilíbrio líquido-vapor. Capítulo 1. f = P dp. rofª Drª Geormenny R, Santos CAÍTULO 5: CÁLCULOS DE EQUILÍBRIO DE FASES O problema geral do equlíbro líqudo-vapor Crtéro de equlíbro Capítulo T T ( α ) ( β ) ( α ) ( β ) ( α ) ( β ) µ µ T T ( α ) ( β )

Leia mais

Probabilidade: Diagramas de Árvore

Probabilidade: Diagramas de Árvore Probabldade: Dagramas de Árvore Ana Mara Lma de Faras Departamento de Estatístca (GET/UFF) Introdução Nesse texto apresentaremos, de forma resumda, concetos e propredades báscas sobre probabldade condconal

Leia mais

INTRODUÇÃO À ESTATÍSTICA ECONÔMICA 2a. Prova 11/7/2006 Profa. Ana Maria Farias Turma A hs

INTRODUÇÃO À ESTATÍSTICA ECONÔMICA 2a. Prova 11/7/2006 Profa. Ana Maria Farias Turma A hs INTRODUÇÃO À ESTATÍSTICA ECONÔMICA 2a. rova /7/2006 rofa. Ana Mara Faras Turma A 4-6 hs. Consdere os dados da tabela abaxo, onde temos preços e uantdades utlzadas de materal de escrtóro. Item Undade reço

Leia mais

A ; (1) A z. A A y

A ; (1) A z. A A y 1 Prmera aula Thals Grard thalsjg@gmal.com Sumáro 1. Introdução da notação ndcal 2. O produto escalar e o de Kronecker 3. Rotações 4. O produto vetoral e o " de Lev-Cvta 5. Trplo produto escalar e determnantes

Leia mais

Análise de Regressão Linear Múltipla VII

Análise de Regressão Linear Múltipla VII Análse de Regressão Lnear Múltpla VII Aula 1 Hej et al., 4 Seções 3. e 3.4 Hpótese Lnear Geral Seja y = + 1 x 1 + x +... + k x k +, = 1,,..., n. um modelo de regressão lnear múltpla, que pode ser escrto

Leia mais

Análise de influência

Análise de influência Análse de nfluênca Dzemos que uma observação é nfluente caso ela altere, de forma substancal, alguma propredade do modelo ajustado (como as estmatvas dos parâmetros, seus erros padrões, valores ajustados...).

Leia mais

Surpresa para os calouros. Série Matemática na Escola. Objetivos

Surpresa para os calouros. Série Matemática na Escola. Objetivos Surpresa para os calouros Sére Matemátca na Escola Objetvos 1. Usando a decomposção de um número em fatores prmos, pode-se provar que um número ntero é um quadrado perfeto, se e somente se tem um número

Leia mais

ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS MATRIZES NOME DO ALUNO: Nº TURMA: blog.portalpositivo.com.

ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS MATRIZES NOME DO ALUNO: Nº TURMA: blog.portalpositivo.com. ESCOL DE PLICÇÃO DR. LFREDO JOSÉ BLBI UNITU POSTIL MTRIZES PROF. CRLINHOS NOME DO LUNO: Nº TURM: blog.portalpostvo.com.br/captcar MTRIZES Uma matrz de ordem m x n é qualquer conunto de m. n elementos dspostos

Leia mais

ELE0317 Eletrônica Digital II

ELE0317 Eletrônica Digital II 2. ELEMENTOS DE MEMÓRIA 2.1. A Lnha de Retardo A lnha de retardo é o elemento mas smples de memóra. Sua capacdade de armazenamento é devda ao fato de que o snal leva um certo tempo fnto e não nulo para

Leia mais

Elaboração: Fevereiro/2008

Elaboração: Fevereiro/2008 Elaboração: Feverero/2008 Últma atualzação: 19/02/2008 E ste Caderno de Fórmulas tem por objetvo esclarecer aos usuáros a metodologa de cálculo e os crtéros de precsão utlzados na atualzação das Letras

Leia mais

UNIVERSIDADE PRESBITERIANA MACKENZIE CCSA - Centro de Ciências Sociais e Aplicadas Curso de Economia

UNIVERSIDADE PRESBITERIANA MACKENZIE CCSA - Centro de Ciências Sociais e Aplicadas Curso de Economia CCSA - Centro de Cêncas Socas e Aplcadas Curso de Economa ECONOMIA REGIONAL E URBANA Prof. ladmr Fernandes Macel LISTA DE ESTUDO. Explque a lógca da teora da base econômca. A déa que sustenta a teora da

Leia mais

PUCPR- Pontifícia Universidade Católica Do Paraná PPGIA- Programa de Pós-Graduação Em Informática Aplicada PROF. DR. JACQUES FACON

PUCPR- Pontifícia Universidade Católica Do Paraná PPGIA- Programa de Pós-Graduação Em Informática Aplicada PROF. DR. JACQUES FACON 1 PUCPR- Pontfíca Unversdade Católca Do Paraná PPGIA- Programa de Pós-Graduação Em Informátca Aplcada PROF. DR. JACQUES FACON LIMIARIZAÇÃO ITERATIVA DE LAM E LEUNG Resumo: A proposta para essa sére de

Leia mais

Caderno de Fórmulas. Notas Comerciais Cetip21

Caderno de Fórmulas. Notas Comerciais Cetip21 Notas Comercas Cetp21 Últma Atualzação: 22/12/2015 E ste Caderno tem por objetvo nformar aos usuáros a metodologa e os crtéros de precsão dos cálculos de valorzação de Notas Comercas. É acatado regstro

Leia mais

AULA 4. Segundo Quartil ( Q observações são menores que ele e 50% são maiores.

AULA 4. Segundo Quartil ( Q observações são menores que ele e 50% são maiores. Estatístca Aplcada à Engenhara AULA 4 UNAMA - Unversdade da Amazôna.8 MEDIDA EPARATRIZE ão valores que separam o rol (os dados ordenados) em quatro (quarts), dez (decs) ou em cem (percents) partes guas.

Leia mais

Construção e aplicação de índices-padrão

Construção e aplicação de índices-padrão Construção e aplcação de índces-padrão Artgo Completo José Aparecdo Moura Aranha (Admnstrador e Contador, Professor Assstente do Curso de Admnstração da Unversdade Federal de Mato Grosso do Sul - Câmpus

Leia mais

CQ110 : Princípios de FQ

CQ110 : Princípios de FQ CQ 110 Prncípos de Físco Químca Curso: Farmáca Prof. Dr. Marco Vdott mvdott@ufpr.br 1 soluções eletrolítcas Qual a dferença entre uma solução 1,0 mol L -1 de glcose e outra de NaCl de mesma concentração?

Leia mais

TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS

TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS Varável Qualquer característca assocada a uma população Classfcação de varáves Qualtatva { Nomnal sexo, cor dos olhos Ordnal Classe

Leia mais

Cristina Caldeira 97. Tem-se assim uma decomposição da região Q em mkq paralelipípedos rectangulares

Cristina Caldeira 97. Tem-se assim uma decomposição da região Q em mkq paralelipípedos rectangulares Crstna Caldera 97 (c) T {(x, y) R : y a x } (a R + ) e ρ(x, y) é a dstânca de (x, y) ao ponto (, ); (d) T [, 3] [, ] e ρ(x, y) xy..4 Integral trplo.4.1 efnção e propredades Seja Q um paralelpípedo rectangular

Leia mais

γ = C P C V = C V + R = q = 2 γ 1 = 2 S gas = dw = W isotermico

γ = C P C V = C V + R = q = 2 γ 1 = 2 S gas = dw = W isotermico Q1 Um clndro feto de materal com alta condutvdade térmca e de capacdade térmca desprezível possu um êmbolo móvel de massa desprezível ncalmente fxo por um pno. O rao nterno do clndro é r = 10 cm, a altura

Leia mais

Escala do Algodão. Celso Jamil Marur & Onaur Ruano

Escala do Algodão. Celso Jamil Marur & Onaur Ruano Escala do Alodão Celso Jaml Marur & Onaur Ruano As espéces mas cultvadas, como mlo, soja e tro, possuem escalas de crescmento e desenvolvmento, conecdas como Escala de Hanway, de Fer e de Zadocks, respectvamente.

Leia mais

Caderno de Exercícios Resolvidos

Caderno de Exercícios Resolvidos Estatístca Descrtva Exercíco 1. Caderno de Exercícos Resolvdos A fgura segunte representa, através de um polígono ntegral, a dstrbução do rendmento nas famílas dos alunos de duas turmas. 1,,75 Turma B

Leia mais

Y X Baixo Alto Total Baixo 1 (0,025) 7 (0,175) 8 (0,20) Alto 19 (0,475) 13 (0,325) 32 (0,80) Total 20 (0,50) 20 (0,50) 40 (1,00)

Y X Baixo Alto Total Baixo 1 (0,025) 7 (0,175) 8 (0,20) Alto 19 (0,475) 13 (0,325) 32 (0,80) Total 20 (0,50) 20 (0,50) 40 (1,00) Bussab&Morettn Estatístca Básca Capítulo 4 Problema. (b) Grau de Instrução Procedênca º grau º grau Superor Total Interor 3 (,83) 7 (,94) (,) (,33) Captal 4 (,) (,39) (,) (,3) Outra (,39) (,7) (,) 3 (,3)

Leia mais

4 MEDIÇÃO DA POSIÇÃO USANDO VISÃO ESTÉREO

4 MEDIÇÃO DA POSIÇÃO USANDO VISÃO ESTÉREO 4 MEDIÇÃO DA POSIÇÃO USANDO VISÃO ESÉREO Este Capítulo descreve o uso de duas câmeras para medr a posção e orentação da base superor do atuador no espaço trdmensonal. Um pequeno objeto trdmensonal é colocado

Leia mais

Cálculo de Índices de Preços do Setor Sucroalcooleiro

Cálculo de Índices de Preços do Setor Sucroalcooleiro Cálculo de Índces de reços do Setor Sucroalcoolero Introdução O projeto tem como objetvo desenvolver uma metodologa que mensure a nflação mensal dos processos de produção de cana-deaçúcar, açúcar e etanol.

Leia mais

Critério de Equilíbrio

Critério de Equilíbrio Crtéro de Equlíbro ara um sstema echado onde exstem ases em equlíbro, o crtéro geral de equlíbro de ases mpõe que o potencal químco de cada espéce presente seja gual em todas as ases. α β π µ = µ = K=

Leia mais

Neste capítulo abordam-se os principais conceitos relacionados com os cálculos de estatísticas, histogramas e correlação entre imagens digitais.

Neste capítulo abordam-se os principais conceitos relacionados com os cálculos de estatísticas, histogramas e correlação entre imagens digitais. 1 1Imagem Dgtal: Estatístcas INTRODUÇÃO Neste capítulo abordam-se os prncpas concetos relaconados com os cálculos de estatístcas, hstogramas e correlação entre magens dgtas. 4.1. VALOR MÉDIO, VARIÂNCIA,

Leia mais

FUNDAMENTOS DE ROBÓTICA. Modelo Cinemático de Robôs Manipuladores

FUNDAMENTOS DE ROBÓTICA. Modelo Cinemático de Robôs Manipuladores FUNDMENTOS DE ROBÓTIC Modelo Cnemátco de Robôs Manpuladores Modelo Cnemátco de Robôs Manpuladores Introdução Modelo Cnemátco Dreto Modelo Cnemátco de um Robô de GDL Representação de Denavt-Hartenberg Exemplos

Leia mais

Nota Técnica Médias do ENEM 2009 por Escola

Nota Técnica Médias do ENEM 2009 por Escola Nota Técnca Médas do ENEM 2009 por Escola Crado em 1998, o Exame Naconal do Ensno Médo (ENEM) tem o objetvo de avalar o desempenho do estudante ao fm da escolardade básca. O Exame destna-se aos alunos

Leia mais

Q 1-1,5(Q3-Q1) < X i < Q 3 + 1,5(Q 3 -Q 1 ) Q 3 +1,5(Q 3 -Q 1 ) < X i < Q 3 +3(Q 3 -Q 1 ) Q 1 3(Q 3 -Q 1 ) < X i < Q 1 1,5(Q 3 -Q 1 )

Q 1-1,5(Q3-Q1) < X i < Q 3 + 1,5(Q 3 -Q 1 ) Q 3 +1,5(Q 3 -Q 1 ) < X i < Q 3 +3(Q 3 -Q 1 ) Q 1 3(Q 3 -Q 1 ) < X i < Q 1 1,5(Q 3 -Q 1 ) DIGRM OX-PLOT E CRCTERIZÇÃO DE OUTLIERS E VLORES EXTREMOS Outlers e valores extremos são aqueles que estão muto afastados do centro da dstrbução. Uma forma de caracterzá-los é através do desenho esquemátco

Leia mais

Robótica. Prof. Reinaldo Bianchi Centro Universitário FEI 2016

Robótica. Prof. Reinaldo Bianchi Centro Universitário FEI 2016 Robótca Prof. Renaldo Banch Centro Unverstáro FEI 2016 6 a Aula IECAT Objetvos desta aula Momentos Lneares, angulares e de Inérca. Estátca de manpuladores: Propagação de forças e torques. Dnâmca de manpuladores:

Leia mais

Mecanismos de Escalonamento

Mecanismos de Escalonamento Mecansmos de Escalonamento 1.1 Mecansmos de escalonamento O algortmo de escalonamento decde qual o próxmo pacote que será servdo na fla de espera. Este algortmo é um dos mecansmos responsáves por dstrbur

Leia mais

5 Métodos de cálculo do limite de retenção em função da ruína e do capital inicial

5 Métodos de cálculo do limite de retenção em função da ruína e do capital inicial 5 Métodos de cálculo do lmte de retenção em função da ruína e do captal ncal Nesta dssertação serão utlzados dos métodos comparatvos de cálculo de lmte de retenção, onde ambos consderam a necessdade de

Leia mais

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão AULA 5.4

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão AULA 5.4 Mcroeconoma II Cursos de Economa e de Matemátca Aplcada à Economa e Gestão AULA 5.4 Provsão de Bens Públcos de forma descentralzada: a solução de Lndahl Isabel Mendes 2007-2008 13-05-2008 Isabel Mendes/MICRO

Leia mais

MONTAGEM E ENSAIO DE UM AMPLIFICADOR OPERACIONAL DISCRETO

MONTAGEM E ENSAIO DE UM AMPLIFICADOR OPERACIONAL DISCRETO Faculdade de Engenhara da Unersdade do Porto Lcencatura em Engenhara Electrotécnca e de Computadores Electrónca II MONTAGEM E ENSAIO DE UM AMPLIFICADOR OPERACIONAL DISCRETO Jorge André Letão, Hugo Alexandre

Leia mais