Energia de deformação na flexão

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Energia de deformação na flexão"

Transcrição

1 - UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Energa de deformação na flexão Aplcações: Vgas que se comportam de uma manera elástca lnear, ou seja, o materal segue a le de Hooke e as deflexões e rotações precsam ser pequenas. Seja uma vga bapoada submetda à flexão pura. A curva de deflexão é um arco M crcular quase plano de curvatura constante κ =. O ângulo θ compreenddo por esse EI arco é gual a L ρ, onde L é o comprmento da vga e ρ o rao de curvatura. Dessa forma, tem-se: L ML θ = = κl = (1) ρ EI Fgura 1 - Vga em flexão pura. A relação (1) é mostrada na Fgura. Conforme os bnáros de flexão aumentam gradualmente em magntude desde zero até seus valores máxmos, eles realzam o trabalho W representado pela área hachurada abaxo da lnha OA e é dado por: Mθ W = U = () 1

2 Fgura - Dagrama mostrando a relação lnear entre os momentos fletores M e o ângulo θ. Teorema de Castglano Combnando as equações (1) e () obtém-se a expressão da energa de deformação armazenada em uma vga em flexão pura: M L EIθ U = ; U = (3a, b) EI L Flexão Não-Unforme As equações 3a e b aplcam-se a um elemento de vga como na Fgura 3 e ntegra-se ao longo do comprmento, onde, d ν dθ = κdx = (4) dx Fgura 3 - Vsta lateral de um elemento de uma vga submetda ao momento fletor M. A energa de deformação du do elemento é dada por qualquer uma das seguntes equações: M dx du = ; EI ( dθ ) EI du = dx = EI dx d ν dx dx EI d ν = dx dx (5a, b)

3 Integrando-se as equações anterores ao longo do comprmento de uma vga tem-se: M EI d U = dx ; EI ν U = dx dx (6a, b) Se a força de csalhamento for consderada será armazenada na vga uma energa de deformação adconal. Exercíco: Uma vga engastada AB está submetda a um carregamento P em sua extremdade lvre A. Determne a energa de deformação da vga e a deflexão vertcal δ A devdo ao carregamento P na extremdade A da vga. Fgura 4 - Vga engastada e lvre suportando um carregamento smples P. P L Resposta: U =, 6EI 3 δ A = PL 3 3EI Teorema de Castglano Objetvo: Encontrar as deflexões de uma estrutura a partr da deformação da estrutura. Seja uma vga engastada com um carregamento P atuando na extremdade lvre como na Fgura 4. A energa de deformação dessa vga é dada por: 3 P L U = (7) 6 EI 3

4 Dervando-se a expressão (7) em relação ao carregamento P tem-se du dp 3 3 d P L PL = = dp 6EI (8) 3EI A equação (8) mostra que a dervada da energa de deformação com relação ao carregamento é gual a deflexão correspondente ao carregamento. O teorema de Castglano é uma afrmação generalzada dessa observação. Dedução do teorema de Castglano para Qualquer número de Carregamentos Hstórco Um dos mas famosos teoremas na análse estrutural fo descoberto por Carlos Alberto Po Castglano ( ), engenhero talano. Consderações Consderemos uma vga submetda a qualquer número de carregamentos, dgamos n carregamentos com suas respectvas deflexões como está apresentada na Fgura 5. Fgura 5 - Vga suportando n carregamentos. Quando os carregamentos são aplcados à vga, eles aumentam gradualmente de em grandeza desde zero até seus valores máxmos. Ao mesmo tempo, cada um dos carregamentos move-se através de seus deslocamentos correspondentes e produz trabalho. O trabalho total realzado pelos carregamentos é gual a Energa de deformação U armazenada na vga: W é uma função dos carregamentos atuantes na vga. W=U (9) 4

5 Consderemos que o enésmo carregamento é aumentado levemente pela quantdade dp enquanto os outros carregamentos são mantdos constantes. Esse aumento no carregamento rá causar um pequeno aumento du na energa de deformação da vga. Esse aumento na energa de deformação pode ser expresso como a taxa de varação de U com relação a P vezes o pequeno aumento P. Dessa forma o aumento na energa de deformação é: du = dp (10) P Em que U P é a taxa de varação de U com relação a P (Uma vez que U é uma função de todos os carregamentos, a dervada com relação a qualquer um dos carregamentos é uma dervada parcal). A energa de deformação da vga é dada por: U + du = U + dp (11) P onde U é a energa de deformação da eq. (9). Como o prncípo da superposção mantém-se para essa vga, a energa de deformação total é ndependente da ordem em que os carregamentos são aplcados. Quando o carregamento dp é aplcado prmero, ele produz energa de deformação gual à metade do produto do carregamento dp e seu deslocamento correspondente dδ. A quantdade de energa de deformação devdo o carregamento dp é: dp dδ (1) Quando todos os carregamentos são aplcados a força dp se move através do deslocamento δ. Fazendo sso ela produz trabalho adconal gual ao produto da força e da dstânca através da qual ela se move dado por: dpδ (13) A energa de deformação fnal para a segunda seqüênca de carregamento é: dp dδ + U + dp δ (14) Igualando (11) e (14) dp dδ + U + dp δ = U + dp (15) P Podemos descartar o prmero termo porque ele contém o produto de dos dferencas e é nfntesmalmente pequeno comparado aos outros termos. Obtemos então a segunte relação: δ = (16) P Essa é a equação conhecda como Teorema de Castglano A dervada parcal da energa de deformação de uma estrutura com relação a qualquer carregamento é gual ao deslocamento correspondente aquele carregamento. 5

6 Referêncas Bblográfcas: 1. BEER, F.P. e JOHNSTON, JR., E.R. Resstênca dos Materas, 3.º Ed., Makron Books, Gere, J. M. Mecânca dos Materas, Edtora Thomson Learnng 3. HIBBELER, R.C. Resstênca dos Materas, 3.º Ed., Edtora Lvros Técncos e Centífcos, 000. Observações: 1- O presente texto é baseado nas referêncas ctadas. - Todas as fguras se encontram nas referêncas ctadas. 6

Flambagem de Colunas Introdução

Flambagem de Colunas Introdução - UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Flambagem de Colunas Introdução Os sistemas

Leia mais

7. Resolução Numérica de Equações Diferenciais Ordinárias

7. Resolução Numérica de Equações Diferenciais Ordinárias 7. Resolução Numérca de Equações Dferencas Ordnáras Fenômenos físcos em dversas áreas, tas como: mecânca dos fludos, fluo de calor, vbrações, crcutos elétrcos, reações químcas, dentre váras outras, podem

Leia mais

Regressão e Correlação Linear

Regressão e Correlação Linear Probabldade e Estatístca I Antono Roque Aula 5 Regressão e Correlação Lnear Até o momento, vmos técncas estatístcas em que se estuda uma varável de cada vez, estabelecendo-se sua dstrbução de freqüêncas,

Leia mais

Tensões Admissíveis e Tensões Últimas; Coeficiente de Segurança

Tensões Admissíveis e Tensões Últimas; Coeficiente de Segurança - UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Tensões Admissíveis e Tensões

Leia mais

1 Princípios da entropia e da energia

1 Princípios da entropia e da energia 1 Prncípos da entropa e da energa Das dscussões anterores vmos como o conceto de entropa fo dervado do conceto de temperatura. E esta últma uma conseqüênca da le zero da termodnâmca. Dentro da nossa descrção

Leia mais

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma.

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma. UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS EXATAS DEPARTAMENTO DE FÍSICA AV. FERNANDO FERRARI, 514 - GOIABEIRAS 29075-910 VITÓRIA - ES PROF. ANDERSON COSER GAUDIO FONE: 4009.7820 FAX: 4009.2823

Leia mais

Exercícios de Física. Prof. Panosso. Fontes de campo magnético

Exercícios de Física. Prof. Panosso. Fontes de campo magnético 1) A fgura mostra um prego de ferro envolto por um fo fno de cobre esmaltado, enrolado mutas vezes ao seu redor. O conjunto pode ser consderado um eletroímã quando as extremdades do fo são conectadas aos

Leia mais

Covariância e Correlação Linear

Covariância e Correlação Linear TLF 00/ Cap. X Covarânca e correlação lnear Capítulo X Covarânca e Correlação Lnear 0.. Valor médo da grandeza (,) 0 0.. Covarânca na propagação de erros 03 0.3. Coecente de correlação lnear 05 Departamento

Leia mais

Introdução: momento fletor.

Introdução: momento fletor. Flexão em Vigas e Projeto de Vigas APOSTILA Mecânica dos Sólidos II Introdução: As vigas certamente podem ser consideradas entre os mais importantes de todos os elementos estruturais. Citamos como exemplo

Leia mais

Introdução A tensão plana existe praticamente em todas as estruturas comuns, incluindo prédios máquinas, veículos e aeronaves.

Introdução A tensão plana existe praticamente em todas as estruturas comuns, incluindo prédios máquinas, veículos e aeronaves. - UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Vasos de Pressão Introdução

Leia mais

Física. Física Módulo 1 Vetores, escalares e movimento em 2-D

Física. Física Módulo 1 Vetores, escalares e movimento em 2-D Físca Módulo 1 Vetores, escalares e movmento em 2-D Vetores, Escalares... O que são? Para que servem? Por que aprender? Escalar Defnção: Escalar Grandea sem dreção assocada. Eemplos: Massa de uma bola,

Leia mais

Apostila de Estatística Curso de Matemática. Volume II 2008. Probabilidades, Distribuição Binomial, Distribuição Normal. Prof. Dr. Celso Eduardo Tuna

Apostila de Estatística Curso de Matemática. Volume II 2008. Probabilidades, Distribuição Binomial, Distribuição Normal. Prof. Dr. Celso Eduardo Tuna Apostla de Estatístca Curso de Matemátca Volume II 008 Probabldades, Dstrbução Bnomal, Dstrbução Normal. Prof. Dr. Celso Eduardo Tuna 1 Capítulo 8 - Probabldade 8.1 Conceto Intutvamente pode-se defnr probabldade

Leia mais

Sistemas Robóticos. Sumário. Introdução. Introdução. Navegação. Introdução Onde estou? Para onde vou? Como vou lá chegar?

Sistemas Robóticos. Sumário. Introdução. Introdução. Navegação. Introdução Onde estou? Para onde vou? Como vou lá chegar? Sumáro Sstemas Robótcos Navegação Introdução Onde estou? Para onde vou? Como vou lá chegar? Carlos Carreto Curso de Engenhara Informátca Ano lectvo 2003/2004 Escola Superor de Tecnologa e Gestão da Guarda

Leia mais

RESOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS

RESOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS Defnções RESOLUÇÃO NUMÉRICA DE EQUAÇÕES DIFERENCIAIS Problemas de Valor Incal PVI) Métodos de passo smples Método de Euler Métodos de sére de Talor Métodos de Runge-Kutta Equações de ordem superor Métodos

Leia mais

(note que não precisa de resolver a equação do movimento para responder a esta questão).

(note que não precisa de resolver a equação do movimento para responder a esta questão). Mestrado Integrado em Engenhara Aeroespacal Mecânca e Ondas 1º Ano -º Semestre 1º Teste 31/03/014 18:00h Duração do teste: 1:30h Lea o enuncado com atenção. Justfque todas as respostas. Identfque e numere

Leia mais

Aula 7: Circuitos. Curso de Física Geral III F-328 1º semestre, 2014

Aula 7: Circuitos. Curso de Física Geral III F-328 1º semestre, 2014 Aula 7: Crcutos Curso de Físca Geral III F-38 º semestre, 04 Ponto essencal Para resolver um crcuto de corrente contínua, é precso entender se as cargas estão ganhando ou perdendo energa potencal elétrca

Leia mais

CÁLCULO DOS ESFORÇOS INTERNOS E DEFLEXÕES DE VIGAS SOBRE BASE ELÁSTICA NÃO LINEAR USANDO O MÉTODO DA FLEXIBILIDADE

CÁLCULO DOS ESFORÇOS INTERNOS E DEFLEXÕES DE VIGAS SOBRE BASE ELÁSTICA NÃO LINEAR USANDO O MÉTODO DA FLEXIBILIDADE MINISTÉRIO DA EDUCAÇÃO E DO DESPORTO Unversdade Federal de Ouro Preto Escola de Mnas Departamento de Engenhara Cvl CÁCUO DOS ESFORÇOS INTERNOS E DEFEXÕES DE VIGAS SOBRE BASE EÁSTICA NÃO INEAR USANDO O

Leia mais

CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnilesteMG

CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnilesteMG 1 CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnlesteMG Dscplna: Introdução à Intelgênca Artfcal Professor: Luz Carlos Fgueredo GUIA DE LABORATÓRIO LF. 01 Assunto: Lógca Fuzzy Objetvo: Apresentar o

Leia mais

Notas de Aula de Física

Notas de Aula de Física Versão prelmnar 7 de setembro de Notas de Aula de Físca 7. TRABAO E ENERGIA CINÉTICA... MOVIMENTO EM UMA DIMENSÃO COM FORÇA CONSTANTE... TRABAO EXECUTADO POR UMA FORÇA VARIÁVE... Análse undmensonal...

Leia mais

MAE5778 - Teoria da Resposta ao Item

MAE5778 - Teoria da Resposta ao Item MAE5778 - Teora da Resposta ao Item Fernando Henrque Ferraz Perera da Rosa Robson Lunard 1 de feverero de 2005 Lsta 2 1. Na Tabela 1 estão apresentados os parâmetros de 6 tens, na escala (0,1). a b c 1

Leia mais

CQ110 : Princípios de FQ

CQ110 : Princípios de FQ CQ110 : Prncípos de FQ CQ 110 Prncípos de Físco Químca Curso: Farmáca Prof. Dr. Marco Vdott mvdott@ufpr.br Potencal químco, m potencal químco CQ110 : Prncípos de FQ Propredades termodnâmcas das soluções

Leia mais

14. Correntes Alternadas (baseado no Halliday, 4 a edição)

14. Correntes Alternadas (baseado no Halliday, 4 a edição) 14. orrentes Alternadas (baseado no Hallday, 4 a edção) Por que estudar orrentes Alternadas?.: a maora das casas, comérco, etc., são provdas de fação elétrca que conduz corrente alternada (A ou A em nglês):

Leia mais

S.A. 1. 2002; TIPLER, P. A.; MOSCA, G.

S.A. 1. 2002; TIPLER, P. A.; MOSCA, G. Rotação Nota Alguns sldes, fguras e exercícos pertencem às seguntes referêncas: HALLIDAY, D., RESNICK, R., WALKER, J. Fundamentos da Físca. V 1. 4a.Edção. Ed. Lvro Técnco Centífco S.A. 00; TIPLER, P. A.;

Leia mais

Objetivos da aula. Essa aula objetiva fornecer algumas ferramentas descritivas úteis para

Objetivos da aula. Essa aula objetiva fornecer algumas ferramentas descritivas úteis para Objetvos da aula Essa aula objetva fornecer algumas ferramentas descrtvas útes para escolha de uma forma funconal adequada. Por exemplo, qual sera a forma funconal adequada para estudar a relação entre

Leia mais

Escolha do Consumidor sob condições de Risco e de Incerteza

Escolha do Consumidor sob condições de Risco e de Incerteza 9/04/06 Escolha do Consumdor sob condções de Rsco e de Incerteza (Capítulo 7 Snyder/Ncholson e Capítulo Varan) Turma do Prof. Déco Kadota Dstnção entre Rsco e Incerteza Na lteratura econômca, a prmera

Leia mais

Sempre que surgir uma dúvida quanto à utilização de um instrumento ou componente, o aluno deverá consultar o professor para esclarecimentos.

Sempre que surgir uma dúvida quanto à utilização de um instrumento ou componente, o aluno deverá consultar o professor para esclarecimentos. Insttuto de Físca de São Carlos Laboratóro de Eletrcdade e Magnetsmo: Transferênca de Potênca em Crcutos de Transferênca de Potênca em Crcutos de Nesse prátca, estudaremos a potênca dsspada numa resstênca

Leia mais

Trabalho e Energia. Definimos o trabalho W realizado pela força sobre uma partícula como o produto escalar da força pelo deslocamento.

Trabalho e Energia. Definimos o trabalho W realizado pela força sobre uma partícula como o produto escalar da força pelo deslocamento. Trabalho e Energa Podemos denr trabalho como a capacdade de produzr energa. Se uma orça eecutou um trabalho sobre um corpo ele aumentou a energa desse corpo de. 1 OBS: Quando estudamos vetores vmos que

Leia mais

Tensão de Cisalhamento

Tensão de Cisalhamento - UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Tensão de Cisalhamento

Leia mais

Consideraremos agora, uma de cada vez, as equivalentes angulares das grandezas de posição, deslocamento, velocidade e aceleração.

Consideraremos agora, uma de cada vez, as equivalentes angulares das grandezas de posição, deslocamento, velocidade e aceleração. CAPÍTULO 5 77 5.1 Introdução A cnemátca dos corpos rígdos trata dos movmentos de translação e rotação. No movmento de translação pura todas as partes de um corpo sofrem o mesmo deslocamento lnear. Por

Leia mais

Mecânica Geral II Notas de AULA 3 - Teoria Prof. Dr. Cláudio S. Sartori

Mecânica Geral II Notas de AULA 3 - Teoria Prof. Dr. Cláudio S. Sartori ecânca Geral II otas de UL 3 - Teora Prof. Dr. Cláudo S. Sartor QUILÍBRIO D PRTÍCUL. QUILÍBRIO D CORPOS RÍGIDOS. DIGR D CORPO LIVR. QUILÍBRIO D CORPOS RÍGIDOS 3 DISÕS. QUILÍBRIO D CORPOS RÍGIDOS SUBTIDOS

Leia mais

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma Capítulo 8 Dferencação Numérca Quase todos os métodos numércos utlzados atualmente para obtenção de soluções de equações erencas ordnáras e parcas utlzam algum tpo de aproxmação para as dervadas contínuas

Leia mais

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF)

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF) PMR 40 - Mecânca Computaconal CAPÍTULO VI Introdução ao Método de Elementos Fntos (MEF). Formulação Teórca - MEF em uma dmensão Consderemos a equação abao que representa a dstrbução de temperatura na barra

Leia mais

Despacho Econômico de. Sistemas Termoelétricos e. Hidrotérmicos

Despacho Econômico de. Sistemas Termoelétricos e. Hidrotérmicos Despacho Econômco de Sstemas Termoelétrcos e Hdrotérmcos Apresentação Introdução Despacho econômco de sstemas termoelétrcos Despacho econômco de sstemas hdrotérmcos Despacho do sstema braslero Conclusões

Leia mais

APLICAÇÕES DE MÉTODOS DE ENERGIA A PROBLEMAS DE INSTABILIDADE DE ESTRUTURAS

APLICAÇÕES DE MÉTODOS DE ENERGIA A PROBLEMAS DE INSTABILIDADE DE ESTRUTURAS PONTIFÍCI UNIVERSIDDE CTÓLIC DO RIO DE JNEIRO DEPRTMENTO DE ENGENHRI CIVIL PLICÇÕES DE MÉTODOS DE ENERGI PROBLEMS DE INSTBILIDDE DE ESTRUTURS Julaa Bragh Ramalho Raul Rosas e Slva lua de graduação do curso

Leia mais

INTRODUÇÃO AO CÁLCULO DE ERROS NAS MEDIDAS DE GRANDEZAS FÍSICAS

INTRODUÇÃO AO CÁLCULO DE ERROS NAS MEDIDAS DE GRANDEZAS FÍSICAS Físca Laboratoral Ano Lectvo 003/04 ITRODUÇÃO AO CÁLCULO DE ERROS AS MEDIDAS DE GRADEAS FÍSICAS. Introdução.... Erros de observação: erros sstemátcos e erros fortutos ou acdentas... 3. Precsão e rgor...3

Leia mais

Eletricidade 3 Questões do ENEM. 8. Campo Elétrico 11 Questões do ENEM 13. Energia Potencial Elétrica 15 Questões do ENEM 20

Eletricidade 3 Questões do ENEM. 8. Campo Elétrico 11 Questões do ENEM 13. Energia Potencial Elétrica 15 Questões do ENEM 20 1 4º Undade Capítulo XIII Eletrcdade 3 Questões do ENEM. 8 Capítulo XIV Campo Elétrco 11 Questões do ENEM 13 Capítulo XV Energa Potencal Elétrca 15 Questões do ENEM 20 Capítulo XVI Elementos de Um Crcuto

Leia mais

ANEXO II METODOLOGIA E CÁLCULO DO FATOR X

ANEXO II METODOLOGIA E CÁLCULO DO FATOR X ANEXO II Nota Técnca nº 256/2009-SRE/ANEEL Brasíla, 29 de julho de 2009 METODOLOGIA E ÁLULO DO FATOR X ANEXO II Nota Técnca n o 256/2009 SRE/ANEEL Em 29 de julho de 2009. Processo nº 48500.004295/2006-48

Leia mais

Adaptação por fluência: uma aplicação real pelo processo dos deslocamentos

Adaptação por fluência: uma aplicação real pelo processo dos deslocamentos Insttuto Braslero do Concreto. daptação por fluênca: uma aplcação real pelo processo dos deslocamentos Ierê Martns da Slva (1); Ru Nohro Oyamada (); ndrea kem Yamasak (3); dth Slvana maury de Soua Tanaka

Leia mais

Capítulo 24: Potencial Elétrico

Capítulo 24: Potencial Elétrico Capítulo 24: Potencal Energa Potencal Elétrca Potencal Superfíces Equpotencas Cálculo do Potencal a Partr do Campo Potencal Produzdo por uma Carga Pontual Potencal Produzdo por um Grupo de Cargas Pontuas

Leia mais

01. Em porcentagem das emissões totais de gases do efeito estufa, o Brasil é o quarto maior poluidor, conforme a tabela abaixo:

01. Em porcentagem das emissões totais de gases do efeito estufa, o Brasil é o quarto maior poluidor, conforme a tabela abaixo: PROCESSO SELETIVO 7 RESOLUÇÃO MATEMÁTICA Rosane Soares Morera Vana, Luz Cláudo Perera, Lucy Tem Takahash, Olímpo Hrosh Myagak QUESTÕES OBJETIVAS Em porcentagem das emssões totas de gases do efeto estufa,

Leia mais

Eletricidade 3. Campo Elétrico 8. Energia Potencial Elétrica 10. Elementos de Um Circuito Elétrico 15. Elementos de Um Circuito Elétrico 20

Eletricidade 3. Campo Elétrico 8. Energia Potencial Elétrica 10. Elementos de Um Circuito Elétrico 15. Elementos de Um Circuito Elétrico 20 1 3º Undade Capítulo XI Eletrcdade 3 Capítulo XII Campo Elétrco 8 Capítulo XIII Energa Potencal Elétrca 10 Capítulo XIV Elementos de Um Crcuto Elétrco 15 Capítulo XV Elementos de Um Crcuto Elétrco 20 Questões

Leia mais

F-328 Física Geral III

F-328 Física Geral III F-328 Físca Geral III Aula exploratóra- 06 UNICAMP IFGW username@f.uncamp.br F328 2 o Semestre de 2013 1 Corrente elétrca e resstênca Defnção de corrente: Δq = dq = t+δt Undade de corrente: 1 Ampère =

Leia mais

Laboratório de Mecânica Aplicada I Estática: Roldanas e Equilíbrio de Momentos

Laboratório de Mecânica Aplicada I Estática: Roldanas e Equilíbrio de Momentos Laboratóro de Mecânca Aplcada I Estátca: Roldanas e Equlíbro de Momentos 1 Introdução O conhecmento das condções de equlíbro de um corpo é mprescndível em númeras stuações. Por exemplo, o estudo do equlíbro

Leia mais

Distribuição de Massa Molar

Distribuição de Massa Molar Químca de Polímeros Prof a. Dr a. Carla Dalmoln carla.dalmoln@udesc.br Dstrbução de Massa Molar Materas Polmércos Polímero = 1 macromolécula com undades químcas repetdas ou Materal composto por númeras

Leia mais

Objetivo: Determinar a equação da curva de deflexão e também encontrar deflexões em pontos específicos ao longo do eixo da viga.

Objetivo: Determinar a equação da curva de deflexão e também encontrar deflexões em pontos específicos ao longo do eixo da viga. - UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Deflexão de Vigas Objetivo:

Leia mais

4 Sistemas de partículas

4 Sistemas de partículas 4 Sstemas de partículas Nota: será feta a segunte convenção: uma letra em bold representa um vector,.e. b b Nesta secção estudaremos a generalzação das les de Newton a um sstema de váras partículas e as

Leia mais

Física. Setor A. Índice-controle de Estudo. Prof.: Aula 25 (pág. 86) AD TM TC. Aula 26 (pág. 86) AD TM TC. Aula 27 (pág.

Física. Setor A. Índice-controle de Estudo. Prof.: Aula 25 (pág. 86) AD TM TC. Aula 26 (pág. 86) AD TM TC. Aula 27 (pág. Físca Setor Prof.: Índce-controle de studo ula 25 (pág. 86) D TM TC ula 26 (pág. 86) D TM TC ula 27 (pág. 87) D TM TC ula 28 (pág. 87) D TM TC ula 29 (pág. 90) D TM TC ula 30 (pág. 90) D TM TC ula 31 (pág.

Leia mais

Hoje não tem vitamina, o liquidificador quebrou!

Hoje não tem vitamina, o liquidificador quebrou! A U A UL LA Hoje não tem vtamna, o lqudfcador quebrou! Essa fo a notíca dramátca dada por Crstana no café da manhã, lgeramente amenzada pela promessa de uma breve solução. - Seu pa dsse que arruma à note!

Leia mais

ELETRICIDADE E MAGNETISMO

ELETRICIDADE E MAGNETISMO PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE MATEMÁTICA E FÍSICA Professor: Renato Mederos ELETRICIDADE E MAGNETISMO NOTA DE AULA III Goâna - 2014 CORRENTE ELÉTRICA Estudamos anterormente

Leia mais

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA Análse de Regressão Profa Alcone Mranda dos Santos Departamento de Saúde Públca UFMA Introdução Uma das preocupações estatístcas ao analsar dados, é a de crar modelos que explctem estruturas do fenômeno

Leia mais

PROVA DE MATEMÁTICA DO VESTIBULAR 2013 DA UNICAMP-FASE 1. RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA

PROVA DE MATEMÁTICA DO VESTIBULAR 2013 DA UNICAMP-FASE 1. RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA PROVA DE MATEMÁTICA DO VESTIBULAR 03 DA UNICAMP-FASE. PROFA. MARIA ANTÔNIA C. GOUVEIA QUESTÃO 37 A fgura abaxo exbe, em porcentagem, a prevsão da oferta de energa no Brasl em 030, segundo o Plano Naconal

Leia mais

Física. Setor B. Índice-controle de Estudo. Prof.: Aula 23 (pág. 86) AD TM TC. Aula 24 (pág. 87) AD TM TC. Aula 25 (pág.

Física. Setor B. Índice-controle de Estudo. Prof.: Aula 23 (pág. 86) AD TM TC. Aula 24 (pág. 87) AD TM TC. Aula 25 (pág. Físca Setor Prof.: Índce-controle de studo ula 23 (pág. 86) D TM TC ula 24 (pág. 87) D TM TC ula 25 (pág. 88) D TM TC ula 26 (pág. 89) D TM TC ula 27 (pág. 91) D TM TC ula 28 (pág. 91) D TM TC evsanglo

Leia mais

Termodinâmica e Termoquímica

Termodinâmica e Termoquímica Termodnâmca e Termoquímca Introdução A cênca que trata da energa e suas transformações é conhecda como termodnâmca. A termodnâmca fo a mola mestra para a revolução ndustral, portanto o estudo e compreensão

Leia mais

NOTA II TABELAS E GRÁFICOS

NOTA II TABELAS E GRÁFICOS Depto de Físca/UFMG Laboratóro de Fundamentos de Físca NOTA II TABELAS E GRÁFICOS II.1 - TABELAS A manera mas adequada na apresentação de uma sére de meddas de um certo epermento é através de tabelas.

Leia mais

Cálculo do Conceito ENADE

Cálculo do Conceito ENADE Insttuto aconal de Estudos e Pesqusas Educaconas Aníso Texera IEP Mnstéro da Educação ME álculo do onceto EADE Para descrever o cálculo do onceto Enade, prmeramente é mportante defnr a undade de observação

Leia mais

Influência dos Procedimentos de Ensaios e Tratamento de Dados em Análise Probabilística de Estrutura de Contenção

Influência dos Procedimentos de Ensaios e Tratamento de Dados em Análise Probabilística de Estrutura de Contenção Influênca dos Procedmentos de Ensaos e Tratamento de Dados em Análse Probablístca de Estrutura de Contenção Mara Fatma Mranda UENF, Campos dos Goytacazes, RJ, Brasl. Paulo César de Almeda Maa UENF, Campos

Leia mais

1 a Lei de Kirchhoff ou Lei dos Nós: Num nó, a soma das intensidades de correntes que chegam é igual à soma das intensidades de correntes que saem.

1 a Lei de Kirchhoff ou Lei dos Nós: Num nó, a soma das intensidades de correntes que chegam é igual à soma das intensidades de correntes que saem. Les de Krchhoff Até aqu você aprendeu técncas para resolver crcutos não muto complexos. Bascamente todos os métodos foram baseados na 1 a Le de Ohm. Agora você va aprender as Les de Krchhoff. As Les de

Leia mais

Lista de Exercícios de Recuperação do 2 Bimestre. Lista de exercícios de Recuperação de Matemática 3º E.M.

Lista de Exercícios de Recuperação do 2 Bimestre. Lista de exercícios de Recuperação de Matemática 3º E.M. Lsta de Exercícos de Recuperação do Bmestre Instruções geras: Resolver os exercícos à caneta e em folha de papel almaço ou monobloco (folha de fcháro). Copar os enuncados das questões. Entregar a lsta

Leia mais

MODELAGEM MATEMÁTICA DO PROCESSO DE EVAPORAÇÃO MULTI-EFEITO NA INDÚSTRIA DE PAPEL E CELULOSE

MODELAGEM MATEMÁTICA DO PROCESSO DE EVAPORAÇÃO MULTI-EFEITO NA INDÚSTRIA DE PAPEL E CELULOSE MODELAGEM MATEMÁTICA DO PROCESSO DE EVAPORAÇÃO MULTI-EFEITO NA INDÚSTRIA DE PAPEL E CELULOSE R. L. S. CANEVESI 1, C. L. DIEL 2, K. A. SANTOS 1, C. E. BORBA 1, F. PALÚ 1, E. A. DA SILVA 1 1 Unversdade Estadual

Leia mais

TRANSFERÊNCIA DE CALOR NA ENVOLVENTE DA EDIFICAÇÃO

TRANSFERÊNCIA DE CALOR NA ENVOLVENTE DA EDIFICAÇÃO UNIVERSIDADE FEDERAL DE SANA CAARINA CENRO ECNOLÓGICO DEPARAMENO DE ENGENHARIA CIVIL PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA CIVIL RANSFERÊNCIA DE CALOR NA ENVOLVENE DA EDIFICAÇÃO ELABORADO POR: Martn

Leia mais

2 - Análise de circuitos em corrente contínua

2 - Análise de circuitos em corrente contínua - Análse de crcutos em corrente contínua.-corrente eléctrca.-le de Ohm.3-Sentdos da corrente: real e convenconal.4-fontes ndependentes e fontes dependentes.5-assocação de resstêncas; Dvsores de tensão;

Leia mais

www.obconcursos.com.br/portal/v1/carreirafiscal

www.obconcursos.com.br/portal/v1/carreirafiscal www.obconcursos.com.br/portal/v1/carrerafscal Moda Exercíco: Determne o valor modal em cada um dos conjuntos de dados a segur: X: { 3, 4,, 8, 8, 8, 9, 10, 11, 1, 13 } Mo 8 Y: { 10, 11, 11, 13, 13, 13,

Leia mais

Associação de resistores em série

Associação de resistores em série Assocação de resstores em sére Fg.... Na Fg.. está representada uma assocação de resstores. Chamemos de I, B, C e D. as correntes que, num mesmo nstante, passam, respectvamente pelos pontos A, B, C e D.

Leia mais

2 Máquinas de Vetor Suporte 2.1. Introdução

2 Máquinas de Vetor Suporte 2.1. Introdução Máqunas de Vetor Suporte.. Introdução Os fundamentos das Máqunas de Vetor Suporte (SVM) foram desenvolvdos por Vapnk e colaboradores [], [3], [4]. A formulação por ele apresentada se basea no prncípo de

Leia mais

Material de apoio para as aulas de Física do terceiro ano

Material de apoio para as aulas de Física do terceiro ano COLÉGIO LUTERANO CONCÓRDIA Concórda, desenvolvendo conhecmento com sabedora Mantenedora: Comundade Evangélca Luterana Crsto- Nteró Materal de apoo para as aulas de Físca do tercero ano Professor Rafael

Leia mais

2 Principio do Trabalho Virtual (PTV)

2 Principio do Trabalho Virtual (PTV) Prncpo do Trabalho rtual (PT)..Contnuo com mcroestrutura Na teora que leva em consderação a mcroestrutura do materal, cada partícula anda é representada por um ponto P, conforme Fgura. Porém suas propredades

Leia mais

Aula 03 Erros experimentais Incerteza. Aula 03 Prof. Valner Brusamarello

Aula 03 Erros experimentais Incerteza. Aula 03 Prof. Valner Brusamarello Aula 03 Erros epermentas Incerteza Aula 03 Prof. Valner Brusamarello Incerteza Combnada Efeto da Incerteza sobre = f ± u, ± u, L, ± u, L ( ) 1 1 Epansão em Sére de Talor: k k L f = f 1,, 3, + ± uk + L,,,

Leia mais

Curvas Horizontais e Verticais

Curvas Horizontais e Verticais Insttução: Faculdade de Tecnologa e Cêncas Professor: Dego Queroz de Sousa Dscplna: Topografa Curvas Horzontas e ertcas 1. Introdução Exstem dversas ocasões na engenhara em que os projetos são desenvolvs

Leia mais

CAPÍTULO 1 Exercícios Propostos

CAPÍTULO 1 Exercícios Propostos CAPÍTULO 1 Exercícos Propostos Atenção: Na resolução dos exercícos consderar, salvo menção em contráro, ano comercal de das. 1. Qual é a taxa anual de juros smples obtda em uma aplcação de $1.0 que produz,

Leia mais

IV - Descrição e Apresentação dos Dados. Prof. Herondino

IV - Descrição e Apresentação dos Dados. Prof. Herondino IV - Descrção e Apresentação dos Dados Prof. Herondno Dados A palavra "dados" é um termo relatvo, tratamento de dados comumente ocorre por etapas, e os "dados processados" a partr de uma etapa podem ser

Leia mais

Material de apoio para as aulas de Física do terceiro ano

Material de apoio para as aulas de Física do terceiro ano COLÉGIO LUTERANO CONCÓRDIA 67 Anos Educando com o Coração Mantenedora: Comundade Evangélca Luterana Crsto- Nteró Materal de apoo para as aulas de Físca do tercero ano Professor Rafael Frank de Rodrgues

Leia mais

lb d pol Para o trecho CB temos: pol Resposta: A tensão de cisalhamento no trecho AC é de 27,2 ksi e no trecho CB é de 10,9 ksi.

lb d pol Para o trecho CB temos: pol Resposta: A tensão de cisalhamento no trecho AC é de 27,2 ksi e no trecho CB é de 10,9 ksi. 1) O exo macço de 1,5 de dâmetro é usado para transmtr os torques aplcados às engrenagens. Determnar a tensão de csalhamento desenvolvda nos trechos AC e CB do exo. Para o trecho AC temos: T 1500.pés 1500

Leia mais

Todos os teoremas energéticos da teoria da elasticidade podem ser directamente deduzidos dos dois seguintes princípios energéticos complementares:

Todos os teoremas energéticos da teoria da elasticidade podem ser directamente deduzidos dos dois seguintes princípios energéticos complementares: Capítulo 4 Teoremas energétcos 4 - TEOREMS ENERGÉTICOS 4. - Introdução Todos os teoremas energétcos da teora da elastcdade podem ser drectamente deduzdos dos dos seguntes prncípos energétcos complementares:

Leia mais

As tabelas resumem as informações obtidas da amostra ou da população. Essas tabelas podem ser construídas sem ou com perda de informações.

As tabelas resumem as informações obtidas da amostra ou da população. Essas tabelas podem ser construídas sem ou com perda de informações. 1. TABELA DE DISTRIBUIÇÃO DE FREQÜÊNCIA As tabelas resumem as normações obtdas da amostra ou da população. Essas tabelas podem ser construídas sem ou com perda de normações. As tabelas sem perda de normação

Leia mais

ELEMENTOS DE CIRCUITOS

ELEMENTOS DE CIRCUITOS MINISTÉRIO D EDUCÇÃO SECRETRI DE EDUCÇÃO PROFISSIONL E TECNOLÓGIC INSTITUTO FEDERL DE EDUCÇÃO, CIÊNCI E TECNOLOGI DE SNT CTRIN CMPUS DE SÃO JOSÉ - ÁRE DE TELECOMUNICÇÕES CURSO TÉCNICO EM TELECOMUNICÇÕES

Leia mais

O USO DA INTEGRAL DEFINIDA NO CÁLCULO DA ÁREA ALAGADA DA BARRAGEM DO RIO BONITO

O USO DA INTEGRAL DEFINIDA NO CÁLCULO DA ÁREA ALAGADA DA BARRAGEM DO RIO BONITO O USO DA INTEGRAL DEFINIDA NO CÁLCULO DA ÁREA ALAGADA DA BARRAGEM DO RIO BONITO Crstna Martns Paraol crstna@hotmal.com Insttuto Federal Catarnense Rua Prefeto Francsco Lummertz Júnor, 88 88960000 Sombro

Leia mais

Metodologia IHFA - Índice de Hedge Funds ANBIMA

Metodologia IHFA - Índice de Hedge Funds ANBIMA Metodologa IHFA - Índce de Hedge Funds ANBIMA Versão Abrl 2011 Metodologa IHFA Índce de Hedge Funds ANBIMA 1. O Que é o IHFA Índce de Hedge Funds ANBIMA? O IHFA é um índce representatvo da ndústra de hedge

Leia mais

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES O Danel Slvera pedu para eu resolver mas questões do concurso da CEF. Vou usar como base a numeração do caderno foxtrot Vamos lá: 9) Se, ao descontar uma promssóra com valor de face de R$ 5.000,00, seu

Leia mais

DISTRIBUIÇÃO DA AÇÃO DO VENTO NOS ELEMENTOS DE CONTRAVENTAMENTO CONSIDERANDO O PAVIMENTO COMO DIAFRAGMA RÍGIDO: ANÁLISE SIMPLIFICADA E MATRICIAL

DISTRIBUIÇÃO DA AÇÃO DO VENTO NOS ELEMENTOS DE CONTRAVENTAMENTO CONSIDERANDO O PAVIMENTO COMO DIAFRAGMA RÍGIDO: ANÁLISE SIMPLIFICADA E MATRICIAL DISTRIBUIÇÃO DA AÇÃO DO VENTO NOS ELEMENTOS DE CONTRAVENTAMENTO CONSIDERANDO O PAVIMENTO COMO DIAFRAGMA RÍGIDO: ANÁLISE SIMPLIFICADA E MATRICIAL Dstrbuton of the wnd acton n the bracng elements consderng

Leia mais

Comprimento de Arco. Comprimento de Arco

Comprimento de Arco. Comprimento de Arco UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Comprmento de Arco

Leia mais

Órion MARATONA UFG FÍSICA. (Leonardo) NOME: Lista 03

Órion MARATONA UFG FÍSICA. (Leonardo) NOME: Lista 03 Óron ARATOA UFG FÍSICA (Leonardo) O: Lsta 03 01 - (FABC) A fgura representa um longo fo retlíneo percorrdo por uma corrente elétrca de ntensdade = 4mA. Podemos afrmar que a ntensdade do campo magnétco

Leia mais

Capítulo 26: Corrente e Resistência

Capítulo 26: Corrente e Resistência Capítulo 6: Corrente e esstênca Cap. 6: Corrente e esstênca Índce Corrente Elétrca Densdade de Corrente Elétrca esstênca e esstvdade Le de Ohm Uma Vsão Mcroscópca da Le de Ohm Potênca em Crcutos Elétrcos

Leia mais

Professor Mauricio Lutz CORRELAÇÃO

Professor Mauricio Lutz CORRELAÇÃO Professor Maurco Lutz 1 CORRELAÇÃO Em mutas stuações, torna-se nteressante e útl estabelecer uma relação entre duas ou mas varáves. A matemátca estabelece város tpos de relações entre varáves, por eemplo,

Leia mais

Aplicando o método de mínimos quadrados ordinários, você encontrou o seguinte resultado: 1,2

Aplicando o método de mínimos quadrados ordinários, você encontrou o seguinte resultado: 1,2 Econometra - Lsta 3 - Regressão Lnear Múltpla Professores: Hedbert Lopes, Prscla Rbero e Sérgo Martns Montores: Gustavo Amarante e João Marcos Nusdeo QUESTÃO 1. Você trabalha na consultora Fazemos Qualquer

Leia mais

Sinais Luminosos 2- CONCEITOS BÁSICOS PARA DIMENSIONAMENTO DE SINAIS LUMINOSOS.

Sinais Luminosos 2- CONCEITOS BÁSICOS PARA DIMENSIONAMENTO DE SINAIS LUMINOSOS. Snas Lumnosos 1-Os prmeros snas lumnosos Os snas lumnosos em cruzamentos surgem pela prmera vez em Londres (Westmnster), no ano de 1868, com um comando manual e com os semáforos a funconarem a gás. Só

Leia mais

Análise Econômica da Aplicação de Motores de Alto Rendimento

Análise Econômica da Aplicação de Motores de Alto Rendimento Análse Econômca da Aplcação de Motores de Alto Rendmento 1. Introdução Nesta apostla são abordados os prncpas aspectos relaconados com a análse econômca da aplcação de motores de alto rendmento. Incalmente

Leia mais

Análise Dinâmica de uma Viga de Euler-Bernoulli Submetida a Impacto no Centro após Queda Livre Através do Método de Diferenças Finitas

Análise Dinâmica de uma Viga de Euler-Bernoulli Submetida a Impacto no Centro após Queda Livre Através do Método de Diferenças Finitas Proceedng Seres of the Brazlan Socety of Appled and Computatonal Mathematcs, Vol. 4, N., 06. Trabalho apresentado no DINCON, Natal - RN, 05. Proceedng Seres of the Brazlan Socety of Computatonal and Appled

Leia mais

TRANSPORTE E ESTOCAGEM DE FUMO UM MODELO DE PROGRAMAÇÃO LINEAR USADO NA TOMADA DE DECISÃO

TRANSPORTE E ESTOCAGEM DE FUMO UM MODELO DE PROGRAMAÇÃO LINEAR USADO NA TOMADA DE DECISÃO TRANSPORTE E ESTOCAGEM DE FUMO UM MODELO DE PROGRAMAÇÃO LINEAR USADO NA TOMADA DE DECISÃO Janaína Poffo Possama janapoffo@gmal.com Unversdade Regonal de Blumenau Rua Antôno da Vega, 0 8902-900 - Blumenau

Leia mais

ALGORITMOS GENÉTICOS COMO FERRAMENTA AUXILIAR NA TOMADA DE DECISÃO EM ATIVIDADES DE GESTÃO AGROINDUSTRIAL

ALGORITMOS GENÉTICOS COMO FERRAMENTA AUXILIAR NA TOMADA DE DECISÃO EM ATIVIDADES DE GESTÃO AGROINDUSTRIAL ALGORITMOS GENÉTICOS COMO FERRAMENTA AUXILIAR NA TOMADA DE DECISÃO EM ATIVIDADES DE GESTÃO AGROINDUSTRIAL Danlo Augusto Hereda VIEIRA 1 Celso Correa de SOUZA 2 José Francsco dos REIS NETO 3 Resumo. As

Leia mais

UNIVERSIDADE DO ESTADO DA BAHIA - UNEB DEPARTAMENTO DE CIÊNCIAS EXATAS E DA TERRA COLEGIADO DO CURSO DE DESENHO INDUSTRIAL CAMPUS I - SALVADOR

UNIVERSIDADE DO ESTADO DA BAHIA - UNEB DEPARTAMENTO DE CIÊNCIAS EXATAS E DA TERRA COLEGIADO DO CURSO DE DESENHO INDUSTRIAL CAMPUS I - SALVADOR Matéra / Dscplna: Introdução à Informátca Sstema de Numeração Defnção Um sstema de numeração pode ser defndo como o conjunto dos dígtos utlzados para representar quantdades e as regras que defnem a forma

Leia mais

F r. PASES 2 a ETAPA TRIÊNIO o DIA GAB. 1 5 FÍSICA QUESTÕES DE 11 A 20

F r. PASES 2 a ETAPA TRIÊNIO o DIA GAB. 1 5 FÍSICA QUESTÕES DE 11 A 20 PSES 2 a ETP TRIÊNIO 2004-2006 1 o DI G. 1 5 FÍSI QUESTÕES DE 11 20 11. onsdere um sstema consttuído por duas partículas. Uma das partículas está ncalmente se movendo e colde nelastcamente com a outra

Leia mais

γ = C P C V = C V + R = q = 2 γ 1 = 2 S gas = dw = W isotermico

γ = C P C V = C V + R = q = 2 γ 1 = 2 S gas = dw = W isotermico Q1 Um clndro feto de materal com alta condutvdade térmca e de capacdade térmca desprezível possu um êmbolo móvel de massa desprezível ncalmente fxo por um pno. O rao nterno do clndro é r = 10 cm, a altura

Leia mais

PROJEÇÕES POPULACIONAIS PARA OS MUNICÍPIOS E DISTRITOS DO CEARÁ

PROJEÇÕES POPULACIONAIS PARA OS MUNICÍPIOS E DISTRITOS DO CEARÁ GOVERNO DO ESTADO DO CEARÁ SECRETARIA DO PLANEJAMENTO E GESTÃO - SEPLAG INSTITUTO DE PESQUISA E ESTRATÉGIA ECONÔMICA DO CEARÁ - IPECE NOTA TÉCNICA Nº 29 PROJEÇÕES POPULACIONAIS PARA OS MUNICÍPIOS E DISTRITOS

Leia mais

Paulo J. S. Gil. Cadeira de Satélites, Lic. Eng. Aeroespacial

Paulo J. S. Gil. Cadeira de Satélites, Lic. Eng. Aeroespacial Mecânica de Partículas (Revisão) Paulo J. S. Gil Departamento de Engenharia Mecânica, Secção de Mecânica Aeroespacial Instituto Superior Técnico Cadeira de Satélites, Lic. Eng. Aeroespacial Paulo J. S.

Leia mais

5.1 Seleção dos melhores regressores univariados (modelo de Índice de Difusão univariado)

5.1 Seleção dos melhores regressores univariados (modelo de Índice de Difusão univariado) 5 Aplcação Neste capítulo será apresentada a parte empírca do estudo no qual serão avalados os prncpas regressores, um Modelo de Índce de Dfusão com o resultado dos melhores regressores (aqu chamado de

Leia mais

Apresentação Geral e Aula 01

Apresentação Geral e Aula 01 Apresentação Geral e Aula 01 Prof. Wanderson S. Paris, M.Eng. prof@cronosquality.com.br Podemos definir que a MECÂNICA TÉCNICA considera os efeitos externos das forças que atuam no equilíbrio de um corpo

Leia mais

Universidade do Estado do Rio de Janeiro Instituto de Matemática e Estatística Econometria

Universidade do Estado do Rio de Janeiro Instituto de Matemática e Estatística Econometria Unversdade do Estado do Ro de Janero Insttuto de Matemátca e Estatístca Econometra Revsão de modelos de regressão lnear Prof. José Francsco Morera Pessanha professorjfmp@hotmal.com Regressão Objetvo: Estabelecer

Leia mais

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação Mnstéro da Educação Insttuto Naconal de Estudos e Pesqusas Educaconas Aníso Texera Cálculo do Conceto Prelmnar de Cursos de Graduação Nota Técnca Nesta nota técnca são descrtos os procedmentos utlzados

Leia mais

O migrante de retorno na Região Norte do Brasil: Uma aplicação de Regressão Logística Multinomial

O migrante de retorno na Região Norte do Brasil: Uma aplicação de Regressão Logística Multinomial O mgrante de retorno na Regão Norte do Brasl: Uma aplcação de Regressão Logístca Multnomal 1. Introdução Olavo da Gama Santos 1 Marnalva Cardoso Macel 2 Obede Rodrgues Cardoso 3 Por mgrante de retorno,

Leia mais

Metrologia Experiência IV - Resistores Uso do Ohmímetro - Prof.: Dr. Cláudio S. Sartori INTRODUÇÃO: Forma Geral dos Relatórios.

Metrologia Experiência IV - Resistores Uso do Ohmímetro - Prof.: Dr. Cláudio S. Sartori INTRODUÇÃO: Forma Geral dos Relatórios. INTODUÇÃO: Forma Geral dos elatóros É muto desejável que seja um caderno grande (formato 4) pautada com folhas enumeradas ou com folhas enumeradas e quadrculadas, do tpo contabldade, de capa dura preta,

Leia mais