1ª e 2ª leis da termodinâmica

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "1ª e 2ª leis da termodinâmica"

Transcrição

1 1ª e 2ª les da termodnâmca 1ª Le da Termodnâmca Le de Conservação da Energa 2ª Le da Termodnâmca Restrnge o tpo de conversões energétcas nos processos termodnâmcos Formalza os concetos de processos reversíves e rreversíves 1ª LEI DA TERMODINÂMICA Consdere-se um clndro delmtado por um pstão e uma expansão quas-estátca, através de deslocamentos, dy, do pstão. O trabalho realzado pelo gás é: dw Fdy PAdy Pd dw é postvo quando o trabalho é realzado pelo sstema. Numa stuação mas geral o trabalho vem dado por: W Pd, que tem em conta a orma como a pressão vara no processo. Quando se representa os estados do sstema num dagrama P o trabalho realzado nesse processo é dado pela área abaxo da curva que corresponde ao processo. O trabalho é postvo quando o volume nal é maor do que o ncal e negatvo quando o volume nal é menor do que o ncal. O trabalho depende, assm, do camnho percorrdo. 23

2 Se consderarmos Q a quantdade postva que corresponde ao calor recebdo por um determnado sstema e W a quantdade postva que corresponde ao trabalho realzado pelo sstema sobre a vznhança (repare-se que são ambas quantdades energétcas) observa-se que a quantdade Q W (que corresponde à varação de energa nterna do sstema, U) é ndependente do camnho percorrdo, sendo, portanto, uma unção de estado. U U U Q W Casos especas de varações energétcas: I Sstema Isolado: Um sstema solado é aquele que não nteractua com o exteror. Q 0 ; W 0 U 0 U U A energa nterna de um sstema solado mantém-se constante II Processo Cíclco: U 0 Q W Num processo cíclco o calor transerdo guala o trabalho realzado III Processo Isocórco: Um processo socórco ou sovolúmco é aquele que ocorre a volume constante. 0 W 0 U Q Num processo socórco a varação de energa nterna guala o calor transerdo I Processo Adabátco: Um processo adabátco é aquele que não troca calor com a sua vznhança, ou porque se encontra termcamente solado desta, ou porque ocorre muto rapdamente. Q 0 U W Num processo adabátco a varação da energa nterna guala o trabalho realzado sobre o sstema Processo Isobárco: Um processo sobárco é aquele que ocorre a pressão constante. W P 24

3 I Processo Isotérmco: Um processo sotérmco é aquele que ocorre a temperatura constante. ejamos o que acontece num gás deal: Como P nrt P c te, então : W Pd... nrt ln Mas, como veremos, num gás deal, quando T = 0 U = 0 Q = W IRREERSIBILIDADE, PROBABILIDADE E 2ª LEI DA TERMODINÂMICA No segumento do estudo das Les da Termodnâmca mporta ter presente algumas noções relaconadas com rreversbldade, probabldade e ordem Atente-se nas seguntes armações: 1. Os enómenos desordenados são mas prováves. 2. Fenómenos mprováves que envolvam grandes números podem ser consderados mpossíves 3. Os dos pontos anterores conduzem a que quando os enómenos envolvem grandes números a passagem espontânea de um estado desordenado para um estado ordenado é mpossível. Para ocorrer uma transormação deste tpo é necessáro consumo de energa, enquanto que o contráro ocorre lvremente! 4. Então, sendo o calor um tpo de energa com carácter aleatóro, é sempre possível transormar uma dada quantdade de trabalho em calor, enquanto que na passagem de calor a trabalho há sempre perdas. Este últmo ponto é, essencalmente, a 2ª Le da Termodnâmca. ENTROPIA E 2ª LEI A 2ª Le da Termodnâmca envolve, pos, uma nteressante unção de estado à qual se dá o nome de Entropa, denda a partr da segunte stuação: Consdere-se um sstema que ca sujeto a um processo nntesmal entre dos estados de equlíbro. Se dq r or a quantdade de energa térmca envolvda nesse processo, sendo este reversível, a varação de entropa ds será dada por: ds onde T é a temperatura absoluta. dq T r 25

4 Do ponto de vsta estatístco a entropa está assocada à desordem. Uma outra orma de enuncar a 2ª Le da Termodnâmca é: A entropa de um sstema solado nunca dmnu: num processo reversível mantém-se constante, num processo rreversível, aumenta. O que sgnca que para aumentar a ordem de um sstema é necessáro aumentar a entropa da vznhança. Para calcular a varação de entropa num processo, utlza-se a equação: S dq T r Sendo a entropa uma medda de desordem, repare-se que ela aumenta porque a desordem é sempre mas provável Há anda uma outra grandeza ísca envolvda nestas questões à qual se dá o nome de normação, e que está ntmamente relaconada com a noção de ordem, uma vez que esta exge não apenas energa, mas também normação de como a usar No caso dos seres vvos, por exemplo, a energa provém dos almentos ou do sol (no caso das plantas), enquanto que a normação de como usar essa energa está contda no DNA. ENERGÉTICA DO CORPO HUMANO A taxa metabólca do corpo humano é o consumo energétco do ndvíduo por undade de área e de tempo. Tem, pos, undade J m -2 s -1. Para a calcular necessta-se de conhecer a área do corpo que é determnada, no caso do homem, através da expressão empírca: sendo m a massa do ndvíduo e h a sua altura. Calcule-se, então, a energa consumda por da de um ndvíduo com 70 kg e 1.55 m, sabendo que a taxa metabólca é aproxmadamente 40 kcal m -2 h -1 (Resposta: 1622 kcal. 26

5 Uma almentação equlbrada poderá então ser calculada tendo em conta os valores energétcos dos almentos. A título de exemplo, poder-se-á reerr que um grama de hdratos de carbono corresponde a 4 kcal, enquanto que um grama de lípdos corresponde a 9 kcal. Nos cálculos do balanço energétco deve anda atender-se ao acto de algumas reacções químcas que ocorrem no corpo humano necesstarem da acção de catalzadores que exgem oxgéno (exgndo, por sso, mas energa). Exstem város mecansmos de perda de calor que devem ser reerdos quando se aborda o tema do balanço energétco, são eles: 1. A condutvdade 2. A convecção e radação 3. O suor 4. A evaporação pela respração (menor quando comparada com os restantes mecansmos) 27

Prof. A.F.Guimarães Questões de termologia 7

Prof. A.F.Guimarães Questões de termologia 7 Questão (FUES SP) Uma equena bolha de ar, artndo da rounddade de, m abaxo da sueríce de um lago, tem seu volume aumentado em % ao chegar à sueríce. Suonha que a temeratura do lago seja constante e unorme,

Leia mais

γ = C P C V = C V + R = q = 2 γ 1 = 2 S gas = dw = W isotermico

γ = C P C V = C V + R = q = 2 γ 1 = 2 S gas = dw = W isotermico Q1 Um clndro feto de materal com alta condutvdade térmca e de capacdade térmca desprezível possu um êmbolo móvel de massa desprezível ncalmente fxo por um pno. O rao nterno do clndro é r = 10 cm, a altura

Leia mais

18 e 20/Abr/2016 Aulas 12 e 13. Introdução à Física Estatística Postulados Equilíbrio térmico Função de Partição; propriedades termodinâmicas

18 e 20/Abr/2016 Aulas 12 e 13. Introdução à Física Estatística Postulados Equilíbrio térmico Função de Partição; propriedades termodinâmicas 01/Abr/2016 Aula 11 Potencas termodnâmcos Energa nterna total Entalpa Energas lvres de Helmholtz e de Gbbs Relações de Maxwell 18 e 20/Abr/2016 Aulas 12 e 13 Introdução à Físca Estatístca Postulados Equlíbro

Leia mais

Prof. Oscar. Cap. 20 ENTROPIA E SEGUNDA LEI DA TERMODINÂMICA

Prof. Oscar. Cap. 20 ENTROPIA E SEGUNDA LEI DA TERMODINÂMICA Pro. Oscar Cap. 20 ENROPIA E SEGUNDA LEI DA ERMODINÂMICA 20.1 INRODUÇÃO Os processos que ocorrem num únco sentdo são chamados de rreversíves. A chave para a compreensão de por que processos undreconas

Leia mais

A esse tipo de tabela, cujos elementos não foram numericamente organizados, denominamos tabela primitiva.

A esse tipo de tabela, cujos elementos não foram numericamente organizados, denominamos tabela primitiva. Dstrbução de Frequênca Tabela prmtva ROL Suponhamos termos feto uma coleta de dados relatvos à estaturas de quarenta alunos, que compõem uma amostra dos alunos de um colégo A, resultando a segunte tabela

Leia mais

1 Princípios da entropia e da energia

1 Princípios da entropia e da energia 1 Prncípos da entropa e da energa Das dscussões anterores vmos como o conceto de entropa fo dervado do conceto de temperatura. E esta últma uma conseqüênca da le zero da termodnâmca. Dentro da nossa descrção

Leia mais

Probabilidade e Estatística. Correlação e Regressão Linear

Probabilidade e Estatística. Correlação e Regressão Linear Probabldade e Estatístca Correlação e Regressão Lnear Varáves Varável: característcas ou tens de nteresse de cada elemento de uma população ou amostra Também chamada parâmetro, posconamento, condção...

Leia mais

AULA 10 Entropia e a Segunda Lei da Termodinâmica

AULA 10 Entropia e a Segunda Lei da Termodinâmica UFABC - BC0205 - Prof. Germán Lugones AULA 10 Entropa e a Segunda Le da ermodnâmca Sad Carnot [1796-1832] R. Clausus [1822-1888] W. homson (Lord Kelvn) [1824-1907] Quando um saco de ppocas é aquecdo em

Leia mais

Aula 7: Circuitos. Curso de Física Geral III F-328 1º semestre, 2014

Aula 7: Circuitos. Curso de Física Geral III F-328 1º semestre, 2014 Aula 7: Crcutos Curso de Físca Geral III F-38 º semestre, 04 Ponto essencal Para resolver um crcuto de corrente contínua, é precso entender se as cargas estão ganhando ou perdendo energa potencal elétrca

Leia mais

Física 10 Questões [Difícil]

Física 10 Questões [Difícil] Físca Questões [Dfícl] - (UF MG) Um líqudo encontra-se, ncalmente, à temperatura T o, pressão P o e volume o, em um recpente fechado e solado termcamente do ambente, conforme lustra a fgura ao lado. Após

Leia mais

Capítulo 19. A teoria cinética dos gases

Capítulo 19. A teoria cinética dos gases Capítulo 19 A teora cnétca dos gases Neste capítulo, a ntroduzr a teora cnétca dos gases que relacona o momento dos átomos e moléculas com olume, pressão e temperatura do gás. Os seguntes tópcos serão

Leia mais

DISPONIBILIDADE DE ENERGIA

DISPONIBILIDADE DE ENERGIA Notas de Físca II Pros Amaur e Rcardo DISPONIBILIDADE DE ENERGIA Neste capítulo será estudado a Segunda Le da ermodnâmca sob város aspectos: ecênca e otmzação de máunas térmcas, rergeradores e entropa.

Leia mais

Expansão livre de um gás ideal

Expansão livre de um gás ideal Expansão lvre de um gás deal (processo não quase-estátco, logo, rreversível) W=0 na expansão lvre (P e = 0) Paredes adabátcas a separar o gás das vznhanças Q = 0 ª Le U gás = Q + W = 0 U = U Para um gás

Leia mais

Q T = T Q T = T Q T. ds = (4.8)

Q T = T Q T = T Q T. ds = (4.8) 4.5 Entropa O prncípo zero da termodnâmca envolve o conceto de temperatura e o prmero prncípo envolve o conceto de energa nterna. temperatura e a energa nterna são ambas varáves de estado; sto é, podem

Leia mais

CQ110 : Princípios de FQ

CQ110 : Princípios de FQ CQ 110 Prncípos de Físco Químca Curso: Farmáca Prof. Dr. Marco Vdott mvdott@ufpr.br 1 soluções eletrolítcas Qual a dferença entre uma solução 1,0 mol L -1 de glcose e outra de NaCl de mesma concentração?

Leia mais

Corolário do Teorema de Carnot ou Segundo Teorema de Carnot

Corolário do Teorema de Carnot ou Segundo Teorema de Carnot eorema de Carnot De todas as máqunas térmcas que unconam entre duas determnadas ontes de calor, a que tem rendmento máxmo é a máquna de Carnot. * * * * * e > Fr. Coroláro do eorema de Carnot ou Seundo

Leia mais

Probabilidade: Diagramas de Árvore

Probabilidade: Diagramas de Árvore Probabldade: Dagramas de Árvore Ana Mara Lma de Faras Departamento de Estatístca (GET/UFF) Introdução Nesse texto apresentaremos, de forma resumda, concetos e propredades báscas sobre probabldade condconal

Leia mais

MÉTODO DE FIBONACCI. L, em que L

MÉTODO DE FIBONACCI. L, em que L Métodos de bonacc e da Seção Aúrea Adotando a notação: MÉTODO DE IBOACCI L e L L, em que L b a, resulta a: ncal orma Recursva: ara,,, - (-a) ou ara,,, - (-b) A esta equação se assoca a condção de contorno

Leia mais

Conceitos básicos de transferência de Calor:

Conceitos básicos de transferência de Calor: Condução - Le de ourer Concetos báscos de transferênca de Calor: órmula geral para 3 dmensões: ρc = λ t x + λ x y + λ y z p x y z z com ρ - densdade (Kg/m³). λ - condutvdade térmca na drecção (x, y ou

Leia mais

Y = AN α, 0 < α < 1 (1) Π = RT CT = P Y W N (2) Π/ N = α N α -1 AP W = 0. W = α P AN α -1. P = W/α AN α -1

Y = AN α, 0 < α < 1 (1) Π = RT CT = P Y W N (2) Π/ N = α N α -1 AP W = 0. W = α P AN α -1. P = W/α AN α -1 Gabarto da Lsta 1 de Macro II 2008.01 1 a Questão a)falso, pode ocorrer que a força de trabalho cresça juntamente com o número de empregados. Se a Força de trabalho crescer mas que o número de empregados

Leia mais

Nenhum desses processos violaria a Lei de Conservação de Energia se ocorresse no sentido inverso.

Nenhum desses processos violaria a Lei de Conservação de Energia se ocorresse no sentido inverso. SEGUNDA LEI E ENROPIA Processos rreversíves e entroa Alguns rocessos termodnâmcos num só sentdo. Exemlos: - grão de mlho se transformando em oca; - caneca de café esfrando - exansão lvre de um gás. ocorrem

Leia mais

Cap. 6 - Energia Potencial e Conservação da Energia Mecânica

Cap. 6 - Energia Potencial e Conservação da Energia Mecânica Unversdade Federal do Ro de Janero Insttuto de Físca Físca I IGM1 014/1 Cap. 6 - Energa Potencal e Conservação da Energa Mecânca Prof. Elvs Soares 1 Energa Potencal A energa potencal é o nome dado a forma

Leia mais

CÁLCULO DA DIRECTRIZ

CÁLCULO DA DIRECTRIZ CÁCUO DA DIRECTRIZ I - Elementos de defnção da polgonal de apoo: - Coordenadas dos vértces da polgonal (M, P ); - Dstânca entre vértces da polgonal ( d); - Rumos dos alnhamentos (ângulo que fazem com a

Leia mais

Tensão, Corrente Elétrica e Resistência Elétrica

Tensão, Corrente Elétrica e Resistência Elétrica Tensão, Corrente Elétrca e Resstênca Elétrca Bblografa: Instalações Elétrcas Predas Geraldo Cavaln e Severno Cerveln Capítulo 1. Instalações Elétrcas Hélo Creder Capítulo 2. Curso de Físca Volume 3 Antôno

Leia mais

Comprimento de Arco. Comprimento de Arco

Comprimento de Arco. Comprimento de Arco UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Comprmento de Arco

Leia mais

Cálculo de variações de entropia

Cálculo de variações de entropia álculo de varações de entropa I stema de um corpo em nteracção com uma onte de calor quecmento rreversível, a volume constante m, c c onte F F onte onte entropa é uma unção de estado e a sua varação é

Leia mais

Física 2 - Termodinâmica

Física 2 - Termodinâmica Física 2 - Termodinâmica Calor e Temperatura Criostatos de He 3-272.85 C Física II 1º. Lei da Termodinâmica Calor: Energia em trânsito T c >T ambiente T c

Leia mais

b. As medidas de posição mais importantes são as medidas de tendência central. Dentre elas, destacamos: média aritmética, mediana, moda.

b. As medidas de posição mais importantes são as medidas de tendência central. Dentre elas, destacamos: média aritmética, mediana, moda. Meddas de Posção Introdução a. Dentre os elementos típcos, destacamos aqu as meddas de posção _ estatístcas que representam uma sére de dados orentando-nos quanto à posção da dstrbução em relação ao exo

Leia mais

RISCO. Investimento inicial $ $ Taxa de retorno anual Pessimista 13% 7% Mais provável 15% 15% Otimista 17% 23% Faixa 4% 16%

RISCO. Investimento inicial $ $ Taxa de retorno anual Pessimista 13% 7% Mais provável 15% 15% Otimista 17% 23% Faixa 4% 16% Análse de Rsco 1 RISCO Rsco possbldade de perda. Quanto maor a possbldade, maor o rsco. Exemplo: Empresa X va receber $ 1.000 de uros em 30 das com títulos do governo. A empresa Y pode receber entre $

Leia mais

Apostila de Física 12 Leis da Termodinâmica

Apostila de Física 12 Leis da Termodinâmica Apostila de Física 12 Leis da Termodinâmica 1.0 Definições Termodinâmica estuda as relações entre as quantidades de calor trocadas e os trabalhos realizados num processo físico, envolvendo um/um sistema

Leia mais

F-328 Física Geral III

F-328 Física Geral III F-328 Físca Geral III Aula exploratóra- 06 UNICAMP IFGW username@f.uncamp.br F328 2 o Semestre de 2013 1 Corrente elétrca e resstênca Defnção de corrente: Δq = dq = t+δt Undade de corrente: 1 Ampère =

Leia mais

EXPANSÃO TÉRMICA DOS LÍQUIDOS

EXPANSÃO TÉRMICA DOS LÍQUIDOS Físca II Protocolos das Aulas Prátcas 01 DF - Unversdade do Algarve EXPANSÃO ÉRMICA DOS ÍQUIDOS 1 Resumo Estuda-se a expansão térmca da água destlada e do glcerol utlzando um pcnómetro. Ao aquecer-se,

Leia mais

Objetivos da aula. Essa aula objetiva fornecer algumas ferramentas descritivas úteis para

Objetivos da aula. Essa aula objetiva fornecer algumas ferramentas descritivas úteis para Objetvos da aula Essa aula objetva fornecer algumas ferramentas descrtvas útes para escolha de uma forma funconal adequada. Por exemplo, qual sera a forma funconal adequada para estudar a relação entre

Leia mais

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha)

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha) Estatístca p/ Admnstração II - Profª Ana Cláuda Melo Undade : Probabldade Aula: 3 Varável Aleatóra. Varáves Aleatóras Ao descrever um espaço amostral de um expermento, não especfcamos que um resultado

Leia mais

Capítulo 30: Indução e Indutância

Capítulo 30: Indução e Indutância Capítulo 3: Indução e Indutânca Índce Fatos xpermentas; A e de Faraday; A e de enz; Indução e Tranferênca de nerga; Campos létrcos Induzdos; Indutores e Indutânca; Auto-ndução; Crcuto ; nerga Armazenada

Leia mais

Sistemas Robóticos. Sumário. Introdução. Introdução. Navegação. Introdução Onde estou? Para onde vou? Como vou lá chegar?

Sistemas Robóticos. Sumário. Introdução. Introdução. Navegação. Introdução Onde estou? Para onde vou? Como vou lá chegar? Sumáro Sstemas Robótcos Navegação Introdução Onde estou? Para onde vou? Como vou lá chegar? Carlos Carreto Curso de Engenhara Informátca Ano lectvo 2003/2004 Escola Superor de Tecnologa e Gestão da Guarda

Leia mais

Termodinâmica e Termoquímica

Termodinâmica e Termoquímica Termodnâmca e Termoquímca Introdução A cênca que trata da energa e suas transformações é conhecda como termodnâmca. A termodnâmca fo a mola mestra para a revolução ndustral, portanto o estudo e compreensão

Leia mais

Capítulo 4: Análise de Sistemas: 1ª e 2ª Leis da Termodinâmica

Capítulo 4: Análise de Sistemas: 1ª e 2ª Leis da Termodinâmica Capítulo 4: Análise de Sistemas: ª e ª Leis da Termodinâmica A primeira lei da termodinâmica Alguns casos particulares Primeira lei em um ciclo termodinâmico Primeira lei da termodinâmica quantidade líquida

Leia mais

Física I. Aula 5 Energia Potencial e Conservação de energia

Física I. Aula 5 Energia Potencial e Conservação de energia ísca I º Semestre de 3 Insttuto de ísca- Unversdade de São Paulo Aula 5 Energa Potencal e Conservação de energa Proessor: Valdr Gumarães E-mal: valdrg@.usp.br one: 39.74 Energa Potencal O trabalho está

Leia mais

LEIS DE KIRCHHOFF EM CIRCUITOS DE CORRENTE CONTÍNUA

LEIS DE KIRCHHOFF EM CIRCUITOS DE CORRENTE CONTÍNUA EXPERIÊNCI 04 LEIS DE KIRCHHOFF EM CIRCUITOS DE CORRENTE CONTÍNU 1. OBJETIVOS a) Determnar a força eletromotrz e a resstênca nterna de uma batera em um crcuto de malha únca. b) Calcular a resstênca nterna

Leia mais

Covariância e Correlação Linear

Covariância e Correlação Linear TLF 00/ Cap. X Covarânca e correlação lnear Capítulo X Covarânca e Correlação Lnear 0.. Valor médo da grandeza (,) 0 0.. Covarânca na propagação de erros 03 0.3. Coecente de correlação lnear 05 Departamento

Leia mais

Capítulo 24: Potencial Elétrico

Capítulo 24: Potencial Elétrico Capítulo 24: Potencal Energa Potencal Elétrca Potencal Superfíces Equpotencas Cálculo do Potencal a Partr do Campo Potencal Produzdo por uma Carga Pontual Potencal Produzdo por um Grupo de Cargas Pontuas

Leia mais

Atividade em Soluções Eletrolíticas

Atividade em Soluções Eletrolíticas Modelo de solução eletrolítca segundo Debye-Hückel. - A le lmte de Debye-Hückel (LLDH) tem o lmte que está em: I 0,01. log z.z A I 1/ valêncas do íons + e do eletrólto I 1 [ z b / b ] constante que depende

Leia mais

Atividade em Soluções Eletrolíticas

Atividade em Soluções Eletrolíticas Modelo de solução eletrolítca segundo Debye-Hückel. - A le lmte de Debye-Hückel (LLDH) tem o lmte que está em: I 0,01. log z.z A I 1/ valêncas do íons + e do eletrólto I 1 [ z b / b ] constante que depende

Leia mais

P2 - PROVA DE QUÍMICA GERAL - 08/10/07

P2 - PROVA DE QUÍMICA GERAL - 08/10/07 P2 - PRVA DE QUÍMICA GERAL - 08/10/07 Nome: Nº de Matrícula: GABARIT Turma: Assinatura: Questão Valor Grau Revisão 1 a 2,5 2 a 2,5 3 a 2,5 4 a 2,5 Total 10,0 R = 8,314 J mol -1 K -1 = 0,0821 atm L mol

Leia mais

Teoria Cinética dos Gases

Teoria Cinética dos Gases Cap 19: Teora Cnétca dos Gases - Prof. Wladmr 1 Teora Cnétca dos Gases 19.1 Introdução Um gás consste em átomos que preenchem o volume de seu recpente. As varáves volume, pressão e temperatura, são conseqüêncas

Leia mais

Resolução das Questões Objetivas

Resolução das Questões Objetivas COMISSÃO PERMANENTE DE SELEÇÃO COPESE PRÓ-REITORIA DE GRADUAÇÃO PROGRAD CONCURSO PISM III - TRIÊNIO 2008-2010 Prova de Matemátca Resolução das Questões Objetvas São apresentadas abaxo possíves soluções

Leia mais

7 - Distribuição de Freqüências

7 - Distribuição de Freqüências 7 - Dstrbução de Freqüêncas 7.1 Introdução Em mutas áreas há uma grande quantdade de nformações numércas que precsam ser dvulgadas de forma resumda. O método mas comum de resumr estes dados numércos consste

Leia mais

INTRODUÇÃO À CINETICA E TERMODINÂMICA QUÍMICA

INTRODUÇÃO À CINETICA E TERMODINÂMICA QUÍMICA INTRODUÇÃO À CINETICA E TERMODINÂMICA QUÍMICA Principios de Termodinâmica Termodinamica determina se um processo fisicoquímico é possível (i.e. espontaneo) Termodinamica não providencia informação sobre

Leia mais

Pelo que foi exposto no teorema de Carnot, obteve-se a seguinte relação:

Pelo que foi exposto no teorema de Carnot, obteve-se a seguinte relação: 16. Escala Absoluta Termodinâmica Kelvin propôs uma escala de temperatura que foi baseada na máquina de Carnot. Segundo o resultado (II) na seção do ciclo de Carnot, temos que: O ponto triplo da água foi

Leia mais

Proposta de resolução da Prova de Matemática A (código 635) 21 de Junho de 2010

Proposta de resolução da Prova de Matemática A (código 635) 21 de Junho de 2010 Proposta de resolução da Prova de Matemátca A (códgo 6 Como A e B são acontecmentos ncompatíves, 0 e Ou seja, de acordo com os dados do enuncado, 0% 0% 0% Versão : B Versão : C Como se trata de uma únca

Leia mais

A forma geral de uma equação de estado é: p = f ( T,

A forma geral de uma equação de estado é: p = f ( T, Aula: 01 Temática: O Gás Ideal Em nossa primeira aula, estudaremos o estado mais simples da matéria, o gás, que é capaz de encher qualquer recipiente que o contenha. Iniciaremos por uma descrição idealizada

Leia mais

Trabalho e Energia. Definimos o trabalho W realizado pela força sobre uma partícula como o produto escalar da força pelo deslocamento.

Trabalho e Energia. Definimos o trabalho W realizado pela força sobre uma partícula como o produto escalar da força pelo deslocamento. Trabalho e Energa Podemos denr trabalho como a capacdade de produzr energa. Se uma orça eecutou um trabalho sobre um corpo ele aumentou a energa desse corpo de. 1 OBS: Quando estudamos vetores vmos que

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1 FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1 Nome Nº Turma: Data: / / Professor 10.º Ano Classfcação Apresente o seu racocíno de forma clara, ndcando todos os cálculos que tver de efetuar e todas

Leia mais

BALANÇO ENERGÉTICO NUM SISTEMA TERMODINÂMICO

BALANÇO ENERGÉTICO NUM SISTEMA TERMODINÂMICO BALANÇO ENERGÉTICO NUM SISTEMA TERMODINÂMICO O que se pretende Determinar experimentalmente qual dos seguintes processos é o mais eficaz para arrefecer água à temperatura ambiente: Processo A com água

Leia mais

Dinâmica do Movimento de Rotação

Dinâmica do Movimento de Rotação Dnâmca do Movmento de Rotação - ntrodução Neste Capítulo vamos defnr uma nova grandeza físca, o torque, que descreve a ação gratóra ou o efeto de rotação de uma força. Verfcaremos que o torque efetvo que

Leia mais

4 Sistemas de partículas

4 Sistemas de partículas 4 Sstemas de partículas Nota: será feta a segunte convenção: uma letra em bold representa um vector,.e. b b Nesta secção estudaremos a generalzação das les de Newton a um sstema de váras partículas e as

Leia mais

Física I p/ IO FEP111 ( )

Física I p/ IO FEP111 ( ) ísca I p/ IO EP (4300) º Semestre de 00 Insttuto de ísca Unversdade de São Paulo Proessor: Antono Domngues dos Santos E-mal: adsantos@.usp.br one: 309.6886 4 e 6 de setembro Trabalho e Energa Cnétca º

Leia mais

AEP FISCAL ESTATÍSTICA

AEP FISCAL ESTATÍSTICA AEP FISCAL ESTATÍSTICA Módulo 11: Varáves Aleatóras (webercampos@gmal.com) VARIÁVEIS ALEATÓRIAS 1. Conceto de Varáves Aleatóras Exemplo: O expermento consste no lançamento de duas moedas: X: nº de caras

Leia mais

Capítulo 16: Equilíbrio Geral e Eficiência Econômica

Capítulo 16: Equilíbrio Geral e Eficiência Econômica Capítulo 6: Equlíbro Geral e Efcênca Econômca Pndck & Rubnfeld, Capítulo 6, Equlíbro Geral::EXERCÍCIOS. Em uma análse de trocas entre duas pessoas, suponha que ambas possuam dêntcas preferêncas. A curva

Leia mais

Física I para Engenharia. Aula 5 Trabalho Energia Potencial

Física I para Engenharia. Aula 5 Trabalho Energia Potencial ísca I para Engenhara º Semestre de 4 Insttuto de ísca- Unversdade de São Paulo Aula 5 Trabalho Energa Potencal Proessor: Valdr Gumarães E-mal: valdrg@.usp.br Trabalho realzado por uma orça constante

Leia mais

Filtros são dispositivos seletivos em freqüência usados para limitar o espectro de um sinal a um determinado intervalo de freqüências.

Filtros são dispositivos seletivos em freqüência usados para limitar o espectro de um sinal a um determinado intervalo de freqüências. 1 Fltros são dspostvos seletvos em freqüênca usados para lmtar o espectro de um snal a um determnado ntervalo de freqüêncas. A resposta em freqüênca de um fltro é caracterzada por uma faxa de passagem

Leia mais

Aula 10: Corrente elétrica

Aula 10: Corrente elétrica Unversdade Federal do Paraná Setor de Cêncas Exatas Departamento de Físca Físca III Prof. Dr. Rcardo Luz Vana Referêncas bblográfcas: H. 28-2, 28-3, 28-4, 28-5 S. 26-2, 26-3, 26-4 T. 22-1, 22-2 Aula 10:

Leia mais

Determinantes. De nição de determinante de uma matriz quadrada. Determinantes - ALGA - 2004/05 15

Determinantes. De nição de determinante de uma matriz quadrada. Determinantes - ALGA - 2004/05 15 Determnantes - ALGA - 004/05 15 Permutações Determnantes Seja n N Uma permutação p = (p 1 ; p ; : : : ; p n ) do conjunto f1; ; ; ng é um arranjo dos n números em alguma ordem, sem repetções ou omssões

Leia mais

Resistores. antes de estudar o capítulo PARTE I

Resistores. antes de estudar o capítulo PARTE I PARTE I Undade B 6 capítulo Resstores seções: 61 Consderações ncas 62 Resstênca elétrca Le de Ohm 63 Le de Joule 64 Resstvdade antes de estudar o capítulo Veja nesta tabela os temas prncpas do capítulo

Leia mais

Capítulo 3-1. A 2ª Lei da Termodinâmica

Capítulo 3-1. A 2ª Lei da Termodinâmica Capítulo 3-1. A 2ª Le da ermodnâma Baseado no lvro: Atkns Pysal Cemstry Egt Edton Peter Atkns Julo de Paula 29-04-2007 Mara da Coneção Pava 1 A segunda le da termodnâma é baseada na experêna umana. odos

Leia mais

Regressão e Correlação Linear

Regressão e Correlação Linear Probabldade e Estatístca I Antono Roque Aula 5 Regressão e Correlação Lnear Até o momento, vmos técncas estatístcas em que se estuda uma varável de cada vez, estabelecendo-se sua dstrbução de freqüêncas,

Leia mais

Capítulo 6 EQUAÇÕES DE CONSERVAÇÃO DA ENERGIA

Capítulo 6 EQUAÇÕES DE CONSERVAÇÃO DA ENERGIA Capítulo 6 EQUAÇÕE DE COERVAÇÃO DA EERA Analogamente ao que fo efetuado no Capítulo 5 para a conservação da massa, o presente capítulo apresenta formas da equação da conservação da energa em função de

Leia mais

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos Curso de extensão, MMQ IFUSP, feverero/4 Alguns exercíco báscos I Exercícos (MMQ) Uma grandeza cujo valor verdadero x é desconhecdo, fo medda três vezes, com procedmentos expermentas dêntcos e, portanto,

Leia mais

INTRODUÇÃO À PROBABILIDADE. A probabilidade é uma medida da incerteza dos fenômenos. Traduz-se por um número real compreendido de 0 ( zero) e 1 ( um).

INTRODUÇÃO À PROBABILIDADE. A probabilidade é uma medida da incerteza dos fenômenos. Traduz-se por um número real compreendido de 0 ( zero) e 1 ( um). INTRODUÇÃO À PROILIDDE teora das probabldade nada mas é do que o bom senso transformado em cálculo probabldade é o suporte para os estudos de estatístca e expermentação. Exemplos: O problema da concdênca

Leia mais

ESTATÍSTICA. na Contabilidade Revisão - Parte 2. Medidas Estatísticas

ESTATÍSTICA. na Contabilidade Revisão - Parte 2. Medidas Estatísticas 01/09/01 ESTATÍSTICA na Contabldade Revsão - Parte Luz A. Bertolo Meddas Estatístcas A dstrbução de frequêncas permte-nos descrever, de modo geral, os grupos de valores (classes) assumdos por uma varável.

Leia mais

2 PROPRIEDADES ÓPTICAS

2 PROPRIEDADES ÓPTICAS 23 2 PROPRIEDADES ÓPTICAS A segur será feta uma revsão sobre as prncpas propredades óptcas de nteresse para o nosso estudo. 2.1. Luz Segundo Maxwell, a luz é uma modaldade de energa radante que se propaga

Leia mais

Diferença entre a classificação do PIB per capita e a classificação do IDH

Diferença entre a classificação do PIB per capita e a classificação do IDH Curso Bem Estar Socal Marcelo Ner - www.fgv.br/cps Metas Socas Entre as mutas questões decorrentes da déa de se mplementar uma proposta de metas socas temos: Qual a justfcatva econômca para a exstênca

Leia mais

CURVAS CARACTERÍSTICAS DE RESISTORES

CURVAS CARACTERÍSTICAS DE RESISTORES EXPERIÊNCIA 02 CURVAS CARACTERÍSTICAS DE RESISTORES 1. OBJETIVOS a) Levantar curvas característcas (corrente x tensão) de resstores lneares e não lneares. b) Calcular a resstênca de um resstor metálco

Leia mais

Sempre que surgir uma dúvida quanto à utilização de um instrumento ou componente, o aluno deverá consultar o professor para esclarecimentos.

Sempre que surgir uma dúvida quanto à utilização de um instrumento ou componente, o aluno deverá consultar o professor para esclarecimentos. Insttuto de Físca de São Carlos Laboratóro de Eletrcdade e Magnetsmo: Transferênca de Potênca em Crcutos de Transferênca de Potênca em Crcutos de Nesse prátca, estudaremos a potênca dsspada numa resstênca

Leia mais

UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA MECÂNICA TM-364 MÁQUINAS TÉRMICAS I. Máquinas Térmicas I

UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA MECÂNICA TM-364 MÁQUINAS TÉRMICAS I. Máquinas Térmicas I Eu tenho três filhos e nenhum dinheiro... Porque eu não posso ter nenhum filho e três dinheiros? - Homer J. Simpson UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA MECÂNICA

Leia mais

Medidas de tendência central. Média Aritmética. 4ª aula 2012

Medidas de tendência central. Média Aritmética. 4ª aula 2012 Estatístca 4ª aula 2012 Meddas de tendênca central Ajudam a conhecer a analsar melhor as característcas de dados colhdos. Chamamos de meddas de tendênca central em decorrênca dos dados observados apresentarem

Leia mais

Leis de conservação em forma integral

Leis de conservação em forma integral Les de conservação em forma ntegral J. L. Balño Departamento de Engenhara Mecânca Escola Poltécnca - Unversdade de São Paulo Apostla de aula Rev. 10/08/2017 Les de conservação em forma ntegral 1 / 26 Sumáro

Leia mais

Caderno de Fórmulas em Implementação. SWAP Alterações na curva Libor

Caderno de Fórmulas em Implementação. SWAP Alterações na curva Libor Caderno de Fórmulas em Implementação SWAP Alterações na curva Lbor Atualzado em: 15/12/217 Comuncado: 12/217 DN Homologação: - Versão: Mar/218 Índce 1 Atualzações... 2 2 Caderno de Fórmulas - SWAP... 3

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca

Leia mais

Mecânica Estatística. - Leis da Física Macroscópica - Propriedades dos sistemas macroscópicos

Mecânica Estatística. - Leis da Física Macroscópica - Propriedades dos sistemas macroscópicos Mecânca Estatístca Tal como a Termodnâmca Clássca, também a Mecânca Estatístca se dedca ao estudo das propredades físcas dos sstemas macroscópcos. Tratase de sstemas com um número muto elevado de partículas

Leia mais

EQUILÍBRIO QUÍMICO: é o estado de um sistema reacional no qual não ocorrem variações na composição do mesmo ao longo do tempo.

EQUILÍBRIO QUÍMICO: é o estado de um sistema reacional no qual não ocorrem variações na composição do mesmo ao longo do tempo. IV INTRODUÇÃO AO EQUILÍBRIO QUÍMICO IV.1 Definição EQUILÍBRIO QUÍMICO: é o estado de um sistema reacional no qual não ocorrem variações na composição do mesmo ao longo do tempo. Equilíbrio químico equilíbrio

Leia mais

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão AULA 5.3. Afectação de Bens Públicos: a Condição de Samuelson

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão AULA 5.3. Afectação de Bens Públicos: a Condição de Samuelson Mcroeconoma II Cursos de Economa e de Matemátca Aplcada à Economa e Gestão AULA 5.3 Afectação de Bens Públcos: a Condção de Isabel Mendes 2007-2008 5/3/2008 Isabel Mendes/MICRO II 5.3 Afectação de Bens

Leia mais

A VELOCIDADE ESCALAR. Prof. Alberto Ricardo Präss

A VELOCIDADE ESCALAR. Prof. Alberto Ricardo Präss Pro. Alberto Rcardo Präss A VELOCIDADE ESCALAR O conceto de velocdade. Imagnemos que um jornal tenha envado um correspondente especal à selva amazônca a m de azer uma reportagem sobre o Pco da Neblna,

Leia mais

Lista de Exercícios Química Geral Entropia e energia livre

Lista de Exercícios Química Geral Entropia e energia livre Lista de Exercícios Química Geral Entropia e energia livre 1. Se a reação A + B C tiver uma constante de equilíbrio maior do que 1, qual das seguintes indicações está correta? a) A reação não é espontânea.

Leia mais

Capítulo 4: Análise de Sistemas - 1ª e 2ª Leis da Termodinâmica

Capítulo 4: Análise de Sistemas - 1ª e 2ª Leis da Termodinâmica Capítulo 4: Análise de Sistemas - 1ª e ª Leis da Termodinâmica A primeira lei da termodinâmica Alguns casos particulares Primeira lei em um ciclo termodinâmico Exercícios Primeira lei da termodinâmica

Leia mais

Em muitas aplicações, estamos interessados em subgrafos especiais de um determinado grafo.

Em muitas aplicações, estamos interessados em subgrafos especiais de um determinado grafo. .4 Árvores Geradoras Em mutas aplcações estamos nteressados em subgrafos especas de um determnado grafo. Defnção Árvore Geradora - uma árvore T é chamada de árvore geradora de um grafo G se T é um subgrafo

Leia mais

NOTA II TABELAS E GRÁFICOS

NOTA II TABELAS E GRÁFICOS Depto de Físca/UFMG Laboratóro de Fundamentos de Físca NOTA II TABELAS E GRÁFICOS II.1 - TABELAS A manera mas adequada na apresentação de uma sére de meddas de um certo epermento é através de tabelas.

Leia mais

Estatística II Antonio Roque Aula 18. Regressão Linear

Estatística II Antonio Roque Aula 18. Regressão Linear Estatístca II Antono Roque Aula 18 Regressão Lnear Quando se consderam duas varáves aleatóras ao mesmo tempo, X e Y, as técncas estatístcas aplcadas são as de regressão e correlação. As duas técncas estão

Leia mais

DISTRIBUIÇÃO DE FREQUÊNCIAS

DISTRIBUIÇÃO DE FREQUÊNCIAS Núcleo das Cêncas Bológcas e da Saúde Cursos de Bomedcna, Ed. Físca, Enermagem, Farmáca, Fsoterapa, Fonoaudologa, Medcna Veternára, Muscoterapa, Odontologa, Pscologa DISTRIBUIÇÃO DE FREQUÊNCIAS 5 5. DISTRIBUIÇÃO

Leia mais

PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 2010/2011

PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 2010/2011 Instruções: PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 00/0 Cada uestão respondda corretamente vale (um) ponto. Cada uestão respondda ncorretamente vale - (menos um) ponto. Cada uestão

Leia mais

Notas de Aula de Física

Notas de Aula de Física Versão prelmnar 7 de setembro de Notas de Aula de Físca 7. TRABAO E ENERGIA CINÉTICA... MOVIMENTO EM UMA DIMENSÃO COM FORÇA CONSTANTE... TRABAO EXECUTADO POR UMA FORÇA VARIÁVE... Análse undmensonal...

Leia mais

GRANDEZAS ELÉTRICAS CONCEITOS BÁSICOS

GRANDEZAS ELÉTRICAS CONCEITOS BÁSICOS MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA CAMPUS DE SÃO JOSÉ CURSO TÉCNICO INTEGRADO EM TELECOMUNICAÇÕES

Leia mais

QiD 6 3ª SÉRIE/PRÉ - VESTIBULAR PARTE 3 QUÍMICA

QiD 6 3ª SÉRIE/PRÉ - VESTIBULAR PARTE 3 QUÍMICA PARA A VALIDADE DO QD, AS RESPOSTAS DEVEM SER APRESENTADAS EM FOLHA PRÓPRIA, FORNECIDA PELO COLÉGIO, COM DESENVOLVIMENTO E SEMPRE A TINTA. TODAS AS QUESTÕES DE MÚLTIPLA ESCOLHA DEVEM SER JUSTIFICADAS.

Leia mais

Coordenação de Semáforos

Coordenação de Semáforos Paragem dos Veículos Veículos "Lbertados" Paragem dos Veículos Veículos "Lbertados" "Agrupamento " Pelotões "Agrupamento " Pelotões C O O R D E N A Ç Ã O Onda Verde... IST/ Lcencaturas em Engª Cvl & Terrtóro

Leia mais

Física I LEC+LET Guias de Laboratório 2ª Parte

Física I LEC+LET Guias de Laboratório 2ª Parte Físca I LEC+LET Guas de Laboratóro 2ª Parte 2002/2003 Experênca 3 Expansão lnear de sóldos. Determnação de coefcentes de expansão térmca de dferentes substâncas Resumo Grupo: Turno: ª Fera h Curso: Nome

Leia mais

Mecanismos de Escalonamento

Mecanismos de Escalonamento Mecansmos de Escalonamento 1.1 Mecansmos de escalonamento O algortmo de escalonamento decde qual o próxmo pacote que será servdo na fla de espera. Este algortmo é um dos mecansmos responsáves por dstrbur

Leia mais

CAPITULO II - FORMULAÇAO MATEMATICA

CAPITULO II - FORMULAÇAO MATEMATICA CAPITULO II - FORMULAÇAO MATEMATICA II.1. HIPOTESES BASICAS A modelagem aqu empregada está baseado nas seguntes hpóteses smplfcadoras : - Regme permanente; - Ausênca de forças de campo; - Ausênca de trabalho

Leia mais

Sistemas de equações lineares

Sistemas de equações lineares Sstemas - ALGA - / Sstemas de equações lneares Uma equação lnear nas ncógntas ou varáves x ; x ; :::; x n é uma expressão da forma: a x + a x + ::: + a n x n = b onde a ; a ; :::; a n ; b são constantes

Leia mais

www.obconcursos.com.br/portal/v1/carreirafiscal

www.obconcursos.com.br/portal/v1/carreirafiscal www.obconcursos.com.br/portal/v1/carrerafscal Moda Exercíco: Determne o valor modal em cada um dos conjuntos de dados a segur: X: { 3, 4,, 8, 8, 8, 9, 10, 11, 1, 13 } Mo 8 Y: { 10, 11, 11, 13, 13, 13,

Leia mais