AULA 10 Entropia e a Segunda Lei da Termodinâmica

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "AULA 10 Entropia e a Segunda Lei da Termodinâmica"

Transcrição

1 UFABC - BC Prof. Germán Lugones AULA 10 Entropa e a Segunda Le da ermodnâmca Sad Carnot [ ] R. Clausus [ ] W. homson (Lord Kelvn) [ ]

2 Quando um saco de ppocas é aquecdo em u m f o r n o d e mcroondas, os grãos de mlho explodem em flocos. Contudo, se você decdr remover energa térmca dos grãos estourados colocando-os em um refrgerador, eles nunca voltarão ao seu estado orgnal. Este processo e rreversível, ele não pode ser nvertdo por meo apenas de pequenas mudanças em seu ambente. A chave para a compreensão de porque certos processos não podem ser nvertdos envolve uma grandeza conhecda como entropa.

3 Processos Irreversíves e Entropa Qualquer processo em que a energa total seja conservada é compatível com a Prmera Le da ermodnâmca. Se um dado processo ocorre num certo sentdo ou sequênca temporal, conservando a energa em cada nstante, nada mpedra, de acordo com a Prmera Le, que ele ocorresse em sentdo nverso (nvertendo a sequênca temporal), ou seja, o processo sera reversível. No entanto, a experênca mostra que os processos observados na escala macroscópca tendem a ocorrer num só sentdo, ou seja, são rreversíves à A Prmera Le da ermodnâmca não conta a hstora toda. Exemplo: Para elevar de 1 C a temperatura de 1 ltro de água, gastamos 1 kcal. Resfrando de 1 C 1ltro de água, devera então ser possível extrar 1 kcal de energa. Um navo podera ser propeldo por essa energa e ao mesmo tempo resfrar sua carga: o oceano consttura um reservatóro pratcamente nesgotável de energa. Por que sto não funcona?

4 A resposta às questões acma está relaconada com a 2da le da termodnâmca. Hstorcamente, a formulação da Segunda Le esteve lgada com um problema de engenhara, surgdo pouco após a nvenção da máquna a vapor: como se podera aumentar o rendmento de uma máquna térmca, tornando-a o mas efcente possível? Esta questão fo abordada em 1824 por um jovem (28 anos) e genal engenhero francês, Ncolas Sad Carnot Após o trabalho de Carnot que conduzu à Segunda Le, ela fo formulada de manera mas precsa por Clausus em 1850 e por Kelvn em Embora estas formulações sejam dferentes, veremos que são equvalentes. Carnot Clausus Lord Kelvn

5 Entropa Para formular a Segunda Le da ermodnâmca precsamos do conceto de Entropa S. Exstem duas maneras equvalentes para se defnr a varação na entropa de um sstema: 1. em termos da temperatura do sstema e da energa que ele ganha ou perde na forma de calor (vsão macroscópca) 2. contando as maneras nas quas os átomos ou moléculas que compõem o sstema podem ser arranjados (vsão mcroscópca).

6 Entropa A pressão, o volume, a temperatura e a energa nterna são propredades de estado, propredades que dependem apenas do estado do gás e não de como ele atngu esse estado. Supomos agora que o gás possu anda uma outra propredade de estado - sua entropa. Defnmos a varação de entropa S f - S do sstema durante um processo que leva o sstema de um estado ncal para um estado fnal f como: ΔS = S f S = f dq Por ser uma função de estado, a dferença de entropa entre os estados e f depende apenas destes estados e não da forma pela qual o sstema fo de um estado para o outro.

7 Varação de entropa em uma transção de fase. Se o processo for sotérmco reversível, S = Z f dq = 1 Z f dq = Q = ml ) S = ml onde m é a massa da substanca que sofre a transção de fase e L é o calor latente de fusão ou de vaporzação.

8 Varação de entropa em um processo adabátco reversível. Como dq = 0, tem-se que S = 0. Logo, S = S f. al processo é conhecdo como processo (ou transformação) sentrópca.

9 Varação de entropa em um fludo ncompressível Neste caso, dq = n c V d. Assumndo-se que c V seja constante, temos: S = S f S = Z f dq = nc V Z f d ) S = nc V ln f

10 Varação de entropa para um processo quase-estátco reversível em um gás deal Para tornar o processo reversível, ele é realzado lentamente através de uma sére de pequenos passos, com o gás em um estado de equlíbro ao fnal de cada passo. Para cada pequeno passo temos: dq à energa transferda na forma de calor (para o gás ou a partr do gás). dw à trabalho realzado pelo gás du à varação na energa nterna Pela prmera le da termodnâmca temos: du = dq - dw. Como os passos são reversíves, com o gás em estados de equlíbro, podemos usar: dw = p dv e du = nc V d. Resolvendo para dq chega-se então a dq = du + pdv = nc V d + nr dv V

11 Dvdmos cada termo por : dq = nc V d + nr dv V Agora ntegramos cada termo desta equação entre um estado ncal arbtráro e um estado arbtráro fnal f para obtermos S = Z f dq = nc V ln f + nr ln V f V Observe que não tvemos que especfcar um processo reversível partcular ao realzarmos a ntegração. Portanto, a ntegração deve ser válda para todos os processos reversíves que levam o gás do estado para o estado f. Assm, a varação na entropa ΔS entre os estados ncal e fnal de um gás deal depende apenas das propredades do estado ncal (V e ) e das propredades do estado fnal (V f e f ) à ΔS não depende de como o gás vara entre os dos estados.

12 Exemplo: expansão lvre de um gás deal Consderemos a expansão lvre de um gás deal. No estado de equlíbro ncal, temos o gás confnado na metade esquerda de um recpente termcamente solado por uma válvula fechada. Se abrrmos a válvula, o gás preencherá rapdamente todo o recpente, fnalmente atngndo o estado de equlíbro fnal f. Este é um processo rreversível; todas as moléculas do gás jamas voltarão espontaneamente a ocupar a metade esquerda do recpente.

13 Por outro lado, como o gás preenche rapdamente todo o volume do recpente, a pressão, a temperatura e o volume do gás flutuam de forma mprevsível. Em outras palavras, elas não têm uma sequênca de valores de equlíbro bem defndos durante os estágos ntermedáros entre o estado de equlíbro ncal e o estado de equlíbro fnal f! à Para a expansão lvre não podemos traçar uma trajetóra no dagrama P-V à não podemos encontrar uma relação entre Q e que nos permta realzar a ntegração ΔS = S f S = f dq

14 Mas, a entropa é uma propredade de estado à a dferença de entropa entre os estados e f depende apenas destes estados e não da forma pela qual o sstema fo de um estado para o outro. Logo, para calcular ΔS, substtuímos a expansão lvre rreversível por um processo reversível que conecta os mesmos estados e f. Sabemos que a temperatura de um gás deal não vara durante uma expansão lvre: = f = à os pontos e f devem estar sobre a mesma soterma. à Consderamos o processo sotérmco reversível da Fgura entre os estados e f para calcular o ΔS da expansão lvre rreversível. De acordo com o vsto em sldes anterores, para um gás deal, temos: S = Z f dq = nc V ln f + nr ln V f V

15 Como = f =, temos: S = nr ln V f V Esta expressão, calculada para um processo reversível, representa a varação de entropa para um processo rreversível (expansão lvre) com os mesmos estados ncal e fnal.

Prof. Oscar. Cap. 20 ENTROPIA E SEGUNDA LEI DA TERMODINÂMICA

Prof. Oscar. Cap. 20 ENTROPIA E SEGUNDA LEI DA TERMODINÂMICA Pro. Oscar Cap. 20 ENROPIA E SEGUNDA LEI DA ERMODINÂMICA 20.1 INRODUÇÃO Os processos que ocorrem num únco sentdo são chamados de rreversíves. A chave para a compreensão de por que processos undreconas

Leia mais

Nenhum desses processos violaria a Lei de Conservação de Energia se ocorresse no sentido inverso.

Nenhum desses processos violaria a Lei de Conservação de Energia se ocorresse no sentido inverso. SEGUNDA LEI E ENROPIA Processos rreversíves e entroa Alguns rocessos termodnâmcos num só sentdo. Exemlos: - grão de mlho se transformando em oca; - caneca de café esfrando - exansão lvre de um gás. ocorrem

Leia mais

γ = C P C V = C V + R = q = 2 γ 1 = 2 S gas = dw = W isotermico

γ = C P C V = C V + R = q = 2 γ 1 = 2 S gas = dw = W isotermico Q1 Um clndro feto de materal com alta condutvdade térmca e de capacdade térmca desprezível possu um êmbolo móvel de massa desprezível ncalmente fxo por um pno. O rao nterno do clndro é r = 10 cm, a altura

Leia mais

Entropia e Segunda Lei da Termodinâmica.

Entropia e Segunda Lei da Termodinâmica. Cap 20: Entropa e Segunda Le da ermodnâmca - Pro. Wladmr 1 Entropa e Segunda Le da ermodnâmca. 20.1 Introdução Os processos que ocorrem num únco sentdo são chamados de rreversíves. chave para a compreensão

Leia mais

Cálculo de variações de entropia

Cálculo de variações de entropia álculo de varações de entropa I stema de um corpo em nteracção com uma onte de calor quecmento rreversível, a volume constante m, c c onte F F onte onte entropa é uma unção de estado e a sua varação é

Leia mais

Física 10 Questões [Difícil]

Física 10 Questões [Difícil] Físca Questões [Dfícl] - (UF MG) Um líqudo encontra-se, ncalmente, à temperatura T o, pressão P o e volume o, em um recpente fechado e solado termcamente do ambente, conforme lustra a fgura ao lado. Após

Leia mais

18 e 20/Abr/2016 Aulas 12 e 13. Introdução à Física Estatística Postulados Equilíbrio térmico Função de Partição; propriedades termodinâmicas

18 e 20/Abr/2016 Aulas 12 e 13. Introdução à Física Estatística Postulados Equilíbrio térmico Função de Partição; propriedades termodinâmicas 01/Abr/2016 Aula 11 Potencas termodnâmcos Energa nterna total Entalpa Energas lvres de Helmholtz e de Gbbs Relações de Maxwell 18 e 20/Abr/2016 Aulas 12 e 13 Introdução à Físca Estatístca Postulados Equlíbro

Leia mais

DISPONIBILIDADE DE ENERGIA

DISPONIBILIDADE DE ENERGIA Notas de Físca II Pros Amaur e Rcardo DISPONIBILIDADE DE ENERGIA Neste capítulo será estudado a Segunda Le da ermodnâmca sob város aspectos: ecênca e otmzação de máunas térmcas, rergeradores e entropa.

Leia mais

Mecânica Estatística. - Leis da Física Macroscópica - Propriedades dos sistemas macroscópicos

Mecânica Estatística. - Leis da Física Macroscópica - Propriedades dos sistemas macroscópicos Mecânca Estatístca Tal como a Termodnâmca Clássca, também a Mecânca Estatístca se dedca ao estudo das propredades físcas dos sstemas macroscópcos. Tratase de sstemas com um número muto elevado de partículas

Leia mais

Expansão livre de um gás ideal

Expansão livre de um gás ideal Expansão lvre de um gás deal (processo não quase-estátco, logo, rreversível) W=0 na expansão lvre (P e = 0) Paredes adabátcas a separar o gás das vznhanças Q = 0 ª Le U gás = Q + W = 0 U = U Para um gás

Leia mais

Corolário do Teorema de Carnot ou Segundo Teorema de Carnot

Corolário do Teorema de Carnot ou Segundo Teorema de Carnot eorema de Carnot De todas as máqunas térmcas que unconam entre duas determnadas ontes de calor, a que tem rendmento máxmo é a máquna de Carnot. * * * * * e > Fr. Coroláro do eorema de Carnot ou Seundo

Leia mais

do Semi-Árido - UFERSA

do Semi-Árido - UFERSA Unversdade Federal Rural do Sem-Árdo - UFERSA Temperatura e Calor Subêna Karne de Mederos Mossoró, Outubro de 2009 Defnção: A Termodnâmca explca as prncpas propredades damatéra e a correlação entre estas

Leia mais

Leis de conservação em forma integral

Leis de conservação em forma integral Les de conservação em forma ntegral J. L. Balño Departamento de Engenhara Mecânca Escola Poltécnca - Unversdade de São Paulo Apostla de aula Rev. 10/08/2017 Les de conservação em forma ntegral 1 / 26 Sumáro

Leia mais

FÍSICO-QUÍMICA I Termodinâmica do Equilíbrio

FÍSICO-QUÍMICA I Termodinâmica do Equilíbrio UNIVERSIDADE FEDERAL DE MINAS GERAIS Departamento de Químca, ICEx, Setor de Físco-Químca FÍSICO-QUÍMICA I Termodnâmca do Equlíbro Prof. Wellngton Ferrera de MAGALHÃES, Departamento de Químca, e-mal: welmag@ufmg.br

Leia mais

1 Princípios da entropia e da energia

1 Princípios da entropia e da energia 1 Prncípos da entropa e da energa Das dscussões anterores vmos como o conceto de entropa fo dervado do conceto de temperatura. E esta últma uma conseqüênca da le zero da termodnâmca. Dentro da nossa descrção

Leia mais

Cap. 6 - Energia Potencial e Conservação da Energia Mecânica

Cap. 6 - Energia Potencial e Conservação da Energia Mecânica Unversdade Federal do Ro de Janero Insttuto de Físca Físca I IGM1 014/1 Cap. 6 - Energa Potencal e Conservação da Energa Mecânca Prof. Elvs Soares 1 Energa Potencal A energa potencal é o nome dado a forma

Leia mais

Q T = T Q T = T Q T. ds = (4.8)

Q T = T Q T = T Q T. ds = (4.8) 4.5 Entropa O prncípo zero da termodnâmca envolve o conceto de temperatura e o prmero prncípo envolve o conceto de energa nterna. temperatura e a energa nterna são ambas varáves de estado; sto é, podem

Leia mais

Teoria Cinética dos Gases

Teoria Cinética dos Gases Cap 19: Teora Cnétca dos Gases - Prof. Wladmr 1 Teora Cnétca dos Gases 19.1 Introdução Um gás consste em átomos que preenchem o volume de seu recpente. As varáves volume, pressão e temperatura, são conseqüêncas

Leia mais

Entropia e Segunda Lei

Entropia e Segunda Lei Entropia e Segunda Lei BC0205 Roosevelt Droppa Jr. roosevelt.droppa@ufabc.edu.br Entropia e Segunda Lei Sentido de um processo Desordem no processo Conceito de entropia Entropia em proc. reversíveis e

Leia mais

CQ110 : Princípios de FQ

CQ110 : Princípios de FQ CQ 110 Prncípos de Físco Químca Curso: Farmáca Prof. Dr. Marco Vdott mvdott@ufpr.br 1 soluções eletrolítcas Qual a dferença entre uma solução 1,0 mol L -1 de glcose e outra de NaCl de mesma concentração?

Leia mais

Aula 7: Circuitos. Curso de Física Geral III F-328 1º semestre, 2014

Aula 7: Circuitos. Curso de Física Geral III F-328 1º semestre, 2014 Aula 7: Crcutos Curso de Físca Geral III F-38 º semestre, 04 Ponto essencal Para resolver um crcuto de corrente contínua, é precso entender se as cargas estão ganhando ou perdendo energa potencal elétrca

Leia mais

CQ110 : Princípios de FQ

CQ110 : Princípios de FQ CQ110 : Prncípos de FQ CQ 110 Prncípos de Físco Químca Curso: Farmáca Prof. Dr. Marco Vdott mvdott@ufpr.br Potencal químco, m potencal químco CQ110 : Prncípos de FQ Propredades termodnâmcas das soluções

Leia mais

2 Principio do Trabalho Virtual (PTV)

2 Principio do Trabalho Virtual (PTV) Prncpo do Trabalho rtual (PT)..Contnuo com mcroestrutura Na teora que leva em consderação a mcroestrutura do materal, cada partícula anda é representada por um ponto P, conforme Fgura. Porém suas propredades

Leia mais

TERMODINÂMICA DE SOLUÇÕES

TERMODINÂMICA DE SOLUÇÕES UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA QUÍMICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA QUÍMICA - PPGEQ TERMODINÂMICA DE SOLUÇÕES (ENQ70) Prof. Marcos L. Corazza Curtba,

Leia mais

Laboratório de Mecânica Aplicada I Estática: Roldanas e Equilíbrio de Momentos

Laboratório de Mecânica Aplicada I Estática: Roldanas e Equilíbrio de Momentos Laboratóro de Mecânca Aplcada I Estátca: Roldanas e Equlíbro de Momentos 1 Introdução O conhecmento das condções de equlíbro de um corpo é mprescndível em númeras stuações. Por exemplo, o estudo do equlíbro

Leia mais

4 Sistemas de partículas

4 Sistemas de partículas 4 Sstemas de partículas Nota: será feta a segunte convenção: uma letra em bold representa um vector,.e. b b Nesta secção estudaremos a generalzação das les de Newton a um sstema de váras partículas e as

Leia mais

CAPITULO II - FORMULAÇAO MATEMATICA

CAPITULO II - FORMULAÇAO MATEMATICA CAPITULO II - FORMULAÇAO MATEMATICA II.1. HIPOTESES BASICAS A modelagem aqu empregada está baseado nas seguntes hpóteses smplfcadoras : - Regme permanente; - Ausênca de forças de campo; - Ausênca de trabalho

Leia mais

1 Transições de fase e sistemas abertos

1 Transições de fase e sistemas abertos Transções de fase e sstemas abertos Imagne um sstema solado K num estado M. Podemos dvdr este sstema em dos outros subsstemas K a e K b. Esta dvsão sgn ca o estabelecmento de algum vínculo nas varáves

Leia mais

EXPANSÃO TÉRMICA DOS LÍQUIDOS

EXPANSÃO TÉRMICA DOS LÍQUIDOS Físca II Protocolos das Aulas Prátcas 01 DF - Unversdade do Algarve EXPANSÃO ÉRMICA DOS ÍQUIDOS 1 Resumo Estuda-se a expansão térmca da água destlada e do glcerol utlzando um pcnómetro. Ao aquecer-se,

Leia mais

Algarismos Significativos Propagação de Erros ou Desvios

Algarismos Significativos Propagação de Erros ou Desvios Algarsmos Sgnfcatvos Propagação de Erros ou Desvos L1 = 1,35 cm; L = 1,3 cm; L3 = 1,30 cm L4 = 1,4 cm; L5 = 1,7 cm. Qual destas meddas está correta? Qual apresenta algarsmos com sgnfcado? O nstrumento

Leia mais

Capítulo 19. A teoria cinética dos gases

Capítulo 19. A teoria cinética dos gases Capítulo 19 A teora cnétca dos gases Neste capítulo, a ntroduzr a teora cnétca dos gases que relacona o momento dos átomos e moléculas com olume, pressão e temperatura do gás. Os seguntes tópcos serão

Leia mais

MECÂNICA CLÁSSICA. AULA N o 7. Teorema de Liouville Fluxo no Espaço de Fases Sistemas Caóticos Lagrangeano com Potencial Vetor

MECÂNICA CLÁSSICA. AULA N o 7. Teorema de Liouville Fluxo no Espaço de Fases Sistemas Caóticos Lagrangeano com Potencial Vetor 1 MECÂNICA CLÁSSICA AULA N o 7 Teorema de Louvlle Fluo no Espaço de Fases Sstemas Caótcos Lagrangeano com Potencal Vetor Voltando mas uma ve ao assunto das les admssíves na Físca, acrescentamos que, nos

Leia mais

Termodinâmica e Termoquímica

Termodinâmica e Termoquímica Termodnâmca e Termoquímca Introdução A cênca que trata da energa e suas transformações é conhecda como termodnâmca. A termodnâmca fo a mola mestra para a revolução ndustral, portanto o estudo e compreensão

Leia mais

Parênteses termodinâmico

Parênteses termodinâmico Parênteses termodnâmco Lembrando de 1 dos lmtes de valdade da dstrbução de Maxwell-Boltzmann: λ

Leia mais

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012 Notas Processos estocástcos Nestor Catcha 23 de abrl de 2012 notas processos estocástcos 2 O Teorema de Perron Frobenus para matrzes de Markov Consdere um processo estocástco representado por um conunto

Leia mais

2/Mar/2016 Aula 4. 26/Fev/2016 Aula 3

2/Mar/2016 Aula 4. 26/Fev/2016 Aula 3 6/Fev/016 Aula 3 Calor e Primeira Lei da Termodinâmica Calor e energia térmica Capacidade calorífica e calor específico Calor latente Diagrama de fases para a água Primeira Lei da Termodinâmica Trabalho

Leia mais

Física I LEC+LET Guias de Laboratório 2ª Parte

Física I LEC+LET Guias de Laboratório 2ª Parte Físca I LEC+LET Guas de Laboratóro 2ª Parte 2002/2003 Experênca 3 Expansão lnear de sóldos. Determnação de coefcentes de expansão térmca de dferentes substâncas Resumo Grupo: Turno: ª Fera h Curso: Nome

Leia mais

Aula 6: Corrente e resistência

Aula 6: Corrente e resistência Aula 6: Corrente e resstênca Físca Geral III F-328 1º Semestre 2014 F328 1S2014 1 Corrente elétrca Uma corrente elétrca é um movmento ordenado de cargas elétrcas. Um crcuto condutor solado, como na Fg.

Leia mais

08/Mar/2017 Aula 4. 03/Mar/2017 Aula 3

08/Mar/2017 Aula 4. 03/Mar/2017 Aula 3 03/Mar/017 Aula 3 Calor e Primeira Lei da Termodinâmica Calor e energia térmica Capacidade calorífica e calor específico Calor latente Diagrama de fases para a água Primeira Lei da Termodinâmica Trabalho

Leia mais

2 Agregação Dinâmica de Modelos de Turbinas e Reguladores de Velocidade: Teoria

2 Agregação Dinâmica de Modelos de Turbinas e Reguladores de Velocidade: Teoria Agregação Dnâmca de Modelos de urbnas e Reguladores de elocdade: eora. Introdução O objetvo da agregação dnâmca de turbnas e reguladores de velocdade é a obtenção dos parâmetros do modelo equvalente, dados

Leia mais

Amplificadores de Potência ou Amplificadores de Grandes Sinais

Amplificadores de Potência ou Amplificadores de Grandes Sinais UFBA Unversdade Federal da Baha Escola oltécnca Departamento de Engenhara Elétrca Amplfcadores de otênca ou Amplfcadores de Grandes Snas Amaur Olvera Feverero de 2011 1 Característcas: Estágo fnal de amplfcação;

Leia mais

1ª e 2ª leis da termodinâmica

1ª e 2ª leis da termodinâmica 1ª e 2ª les da termodnâmca 1ª Le da Termodnâmca Le de Conservação da Energa 2ª Le da Termodnâmca Restrnge o tpo de conversões energétcas nos processos termodnâmcos Formalza os concetos de processos reversíves

Leia mais

2ª Lei da Termodinâmica Máquinas Térmicas Refrigeradores

2ª Lei da Termodinâmica Máquinas Térmicas Refrigeradores 2ª Lei da Termodinâmica Máquinas Térmicas 2 a Lei da Termodinâmica 2 a Lei da Termodinâmica O que determina o sentido de certos fenômenos da natureza? Exemplo: Sistema organizado Sistema desorganizado

Leia mais

Segunda Lei da Termodinâmica, Entropia e Máquinas Térmicas Biblografia: Halliday, Resnick e Walker, vol 2, cap20 8 a Ed, vol2

Segunda Lei da Termodinâmica, Entropia e Máquinas Térmicas Biblografia: Halliday, Resnick e Walker, vol 2, cap20 8 a Ed, vol2 Segunda Lei da Termodinâmica, Entropia e Máquinas Térmicas Biblografia: Halliday, Resnick e Walker, vol 2, cap20 8 a Ed, vol2 O tempo tem um sentido, que é aquele no qual envelhecemos.! Na natureza, os

Leia mais

TEM701 Termodinâmica dos Materiais

TEM701 Termodinâmica dos Materiais Unversdade Federal do Paraná Setor de Tecnologa Departamento de Engenhara Mecânca TEM71 Termodnâmca dos Materas Segunda Le Interpretação estatístca da entropa Prof. Rodrgo Perto Cardoso Onde estamos Introdução

Leia mais

20/Mar/2015 Aula 9. 18/Mar/ Aula 8

20/Mar/2015 Aula 9. 18/Mar/ Aula 8 18/Mar/2015 - Aula 8 Diagramas TS Entropia e a Segunda Lei da Termodinâmica; formulações de Clausius e de Kelvin-Planck Segunda Lei da Termodinâmica e reversibilidade Gases reais (não-ideais) Equação de

Leia mais

Problemas Propostos. Frações mássicas, volúmicas ou molares. Estequiometria.

Problemas Propostos. Frações mássicas, volúmicas ou molares. Estequiometria. Elementos de Engenhara Químca I II. Frações e Estequometra (problemas resolvdos) Problemas Propostos. Frações másscas, volúmcas ou molares. Estequometra.. Em 5 moles de Benzeno (C 6 H 6 ) quanto é que

Leia mais

Radiação Térmica Processos, Propriedades e Troca de Radiação entre Superfícies (Parte 2)

Radiação Térmica Processos, Propriedades e Troca de Radiação entre Superfícies (Parte 2) Radação Térmca Processos, Propredades e Troca de Radação entre Superfíces (Parte ) Obetvo: calcular a troca por radação entre duas ou mas superfíces. Essa troca depende das geometras e orentações das superfíces,

Leia mais

QiD 6 3ª SÉRIE/PRÉ - VESTIBULAR PARTE 3 QUÍMICA

QiD 6 3ª SÉRIE/PRÉ - VESTIBULAR PARTE 3 QUÍMICA PARA A VALIDADE DO QD, AS RESPOSTAS DEVEM SER APRESENTADAS EM FOLHA PRÓPRIA, FORNECIDA PELO COLÉGIO, COM DESENVOLVIMENTO E SEMPRE A TINTA. TODAS AS QUESTÕES DE MÚLTIPLA ESCOLHA DEVEM SER JUSTIFICADAS.

Leia mais

FÍSICA MÓDULO 19 ENTROPIA. Professor Ricardo Fagundes

FÍSICA MÓDULO 19 ENTROPIA. Professor Ricardo Fagundes FÍSICA Professor Ricardo Fagundes MÓDULO 19 ENTROPIA ENTROPIA, UMA BREVE ANÁLISE MICROSCÓPICA A figura abaixo mostra como duas moléculas podem se organizar um uma região de volume total V, com uma fresta.

Leia mais

8. Estudo da não-idealidade da fase líquida

8. Estudo da não-idealidade da fase líquida PQI 58 Fundamentos de Processos em Engenhara Químca II 009 8. Estudo da não-dealdade da fase líquda Assuntos. A le de Raoult. Defnção de atvdade 3. Convenções assmétrcas e a le de Henry 4. Exercícos 8..

Leia mais

1 P r o j e t o F u t u r o M i l i t a r w w w. f u t u r o m i l i t a r. c o m. b r

1 P r o j e t o F u t u r o M i l i t a r w w w. f u t u r o m i l i t a r. c o m. b r F Físca 1998 1. Um certo calorímetro contém 80 gramas de água à temperatura de 15 O C. dconando-se à água do calorímetro 40 gramas de água a 50 O C, observa-se que a temperatura do sstema, ao ser atngdo

Leia mais

Capítulo 24: Potencial Elétrico

Capítulo 24: Potencial Elétrico Capítulo 24: Potencal Energa Potencal Elétrca Potencal Superfíces Equpotencas Cálculo do Potencal a Partr do Campo Potencal Produzdo por uma Carga Pontual Potencal Produzdo por um Grupo de Cargas Pontuas

Leia mais

Física. Setor A. Índice-controle de Estudo. Prof.: Aula 25 (pág. 86) AD TM TC. Aula 26 (pág. 86) AD TM TC. Aula 27 (pág.

Física. Setor A. Índice-controle de Estudo. Prof.: Aula 25 (pág. 86) AD TM TC. Aula 26 (pág. 86) AD TM TC. Aula 27 (pág. Físca Setor Prof.: Índce-controle de studo ula 25 (pág. 86) D TM TC ula 26 (pág. 86) D TM TC ula 27 (pág. 87) D TM TC ula 28 (pág. 87) D TM TC ula 29 (pág. 90) D TM TC ula 30 (pág. 90) D TM TC ula 31 (pág.

Leia mais

Experiência V (aulas 08 e 09) Curvas características

Experiência V (aulas 08 e 09) Curvas características Experênca (aulas 08 e 09) Curvas característcas 1. Objetvos 2. Introdução 3. Procedmento expermental 4. Análse de dados 5. Referêncas 1. Objetvos Como no expermento anteror, remos estudar a adequação de

Leia mais

18/Mar/2016 Aula 9. 16/Mar/ Aula 8

18/Mar/2016 Aula 9. 16/Mar/ Aula 8 16/Mar/2016 - Aula 8 Gases reais (não-ideais) Equação de van der Waals Outras equações de estado Isotérmicas, diagramas e transições de fase Constantes críticas. Diagramas PT e PT 18/Mar/2016 Aula 9 Processos

Leia mais

1 a Lei de Kirchhoff ou Lei dos Nós: Num nó, a soma das intensidades de correntes que chegam é igual à soma das intensidades de correntes que saem.

1 a Lei de Kirchhoff ou Lei dos Nós: Num nó, a soma das intensidades de correntes que chegam é igual à soma das intensidades de correntes que saem. Les de Krchhoff Até aqu você aprendeu técncas para resolver crcutos não muto complexos. Bascamente todos os métodos foram baseados na 1 a Le de Ohm. Agora você va aprender as Les de Krchhoff. As Les de

Leia mais

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma.

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma. UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS EXATAS DEPARTAMENTO DE FÍSICA AV. FERNANDO FERRARI, 514 - GOIABEIRAS 29075-910 VITÓRIA - ES PROF. ANDERSON COSER GAUDIO FONE: 4009.7820 FAX: 4009.2823

Leia mais

3.1. Conceitos de força e massa

3.1. Conceitos de força e massa CAPÍTULO 3 Les de Newton 3.1. Concetos de força e massa Uma força representa a acção de um corpo sobre outro,.e. a nteracção físca entre dos corpos. Como grandeza vectoral que é, só fca caracterzada pelo

Leia mais

Lei das Malhas (KVL) Lei dos Nós (KCL)

Lei das Malhas (KVL) Lei dos Nós (KCL) Le das Malhas (KL) Le dos Nós (KCL) Electrónca Arnaldo Batsta 5/6 Electrónca_omed_ef KCL (Krchhoff Current Law) Nó é o ponto de lgação de dos ou mas elementos de crcuto amo é uma porção do crcuto contendo

Leia mais

ANÁLISE MATRICIAL DE ESTRUTURAS DE BARRAS PELO MÉTODO DE RIGIDEZ

ANÁLISE MATRICIAL DE ESTRUTURAS DE BARRAS PELO MÉTODO DE RIGIDEZ ANÁISE MATRICIA DE ESTRUTURAS DE BARRAS PEO MÉTODO DE RIGIDEZ A análse matrcal de estruturas pelo método de rgdez compreende o estudo de cnco modelos estruturas báscos: trelça plana, trelça espacal, pórtco

Leia mais

Análise Complexa Resolução de alguns exercícios do capítulo 1

Análise Complexa Resolução de alguns exercícios do capítulo 1 Análse Complexa Resolução de alguns exercícos do capítulo 1 1. Tem-se:. = (0, 1) = (0, 1) =. 3. Sejam a, b R. Então Exercíco nº1 = (0, 1).(0, 1) = (0.0 1.1, 0.1 + 1.0) = ( 1, 0) = 1. a + b = a b = a +

Leia mais

Prof. Henrique Barbosa Edifício Basílio Jafet - Sala 100 Tel

Prof. Henrique Barbosa Edifício Basílio Jafet - Sala 100 Tel Prof. Henrque arbosa Edfíco asílo Jafet - Sala 00 Tel. 309-6647 hbarbosa@f.usp.br http://www.fap.f.usp.br/~hbarbosa Faraday e Maxwell 79-867 O potencal elétrco Defnção de potencal: para um deslocamento

Leia mais

Halliday Fundamentos de Física Volume 2

Halliday Fundamentos de Física Volume 2 Halliday Fundamentos de Física Volume 2 www.grupogen.com.br http://gen-io.grupogen.com.br O GEN Grupo Editorial Nacional reúne as editoras Guanabara Koogan, Santos, Roca, AC Farmacêutica, LTC, Forense,

Leia mais

Dinâmica do Movimento de Rotação

Dinâmica do Movimento de Rotação Dnâmca do Movmento de Rotação - ntrodução Neste Capítulo vamos defnr uma nova grandeza físca, o torque, que descreve a ação gratóra ou o efeto de rotação de uma força. Verfcaremos que o torque efetvo que

Leia mais

CEL033 Circuitos Lineares I

CEL033 Circuitos Lineares I Aula 4/3/22 CEL33 Crcutos Lneares I NR- vo.junor@ufjf.edu.br Assocação Bpolos Assocação de Bpolos Assocação em Sére Elementos estão conectados em sére se são percorrdos pela mesma corrente. Assocação em

Leia mais

2 ENERGIA FIRME DE SISTEMAS HIDRELÉTRICOS

2 ENERGIA FIRME DE SISTEMAS HIDRELÉTRICOS ENERGIA FIRME DE SISTEMAS HIDRELÉTRICOS 22 2 ENERGIA FIRME DE SISTEMAS HIDRELÉTRICOS Como vsto no capítulo 1, a energa frme de uma usna hdrelétrca corresponde à máxma demanda que pode ser suprda contnuamente

Leia mais

3. Um protão move-se numa órbita circular de raio 14 cm quando se encontra. b) Qual o valor da velocidade linear e da frequência ciclotrónica do

3. Um protão move-se numa órbita circular de raio 14 cm quando se encontra. b) Qual o valor da velocidade linear e da frequência ciclotrónica do Electromagnetsmo e Óptca Prmero Semestre 007 Sére. O campo magnétco numa dada regão do espaço é dado por B = 4 e x + e y (Tesla. Um electrão (q e =.6 0 9 C entra nesta regão com velocdade v = e x + 3 e

Leia mais

Redução do consumo de energia de um equipamento de frio

Redução do consumo de energia de um equipamento de frio Faculdade de Engenhara da Unversdade do Porto Redução do consumo de energa de um equpamento de fro Nuno Mguel Rocha Mesquta VERSÃO PROVISÓRIA Dssertação/Relatóro de Projecto realzada(o) no âmbto do Mestrado

Leia mais

Transistor Bipolar de Junção TBJ Cap. 4 Sedra/Smith

Transistor Bipolar de Junção TBJ Cap. 4 Sedra/Smith Transstor Bpolar de Junção TBJ Cap. 4 Sedra/Smth Modelos de Grandes Snas e de 2a. Ordem Notas de Aula SEL 313 Crcutos Eletrôncos 1 Parte 9 1 o Sem/2017 Prof. Manoel Modelo TBJ para grandes snas Ebers-Moll

Leia mais

Procedimento Recursivo do Método dos Elementos de Contorno Aplicado em Problemas de Poisson

Procedimento Recursivo do Método dos Elementos de Contorno Aplicado em Problemas de Poisson Trabalho apresentado no III CMAC - SE, Vtóra-ES, 015. Proceedng Seres of the Brazlan Socety of Computatonal and Appled Mathematcs Procedmento Recursvo do Método dos Elementos de Contorno Aplcado em Problemas

Leia mais

UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena EEL

UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena EEL UNIVERSIDADE DE SÃO PAULO Escola de Engenhara de Lorena EEL LOB1053 - FÍSICA III Prof. Dr. Durval Rodrgues Junor Departamento de Engenhara de Materas (DEMAR) Escola de Engenhara de Lorena (EEL) Unversdade

Leia mais

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos Curso de extensão, MMQ IFUSP, feverero/4 Alguns exercíco báscos I Exercícos (MMQ) Uma grandeza cujo valor verdadero x é desconhecdo, fo medda três vezes, com procedmentos expermentas dêntcos e, portanto,

Leia mais

INTRODUÇÃO À ASTROFÍSICA

INTRODUÇÃO À ASTROFÍSICA Introdução à Astrofísca INTRODUÇÃO À ASTROFÍSICA LIÇÃO 7: A MECÂNICA CELESTE Lção 6 A Mecânca Celeste O que vmos até agora fo um panorama da hstóra da astronoma. Porém, esse curso não pretende ser de dvulgação

Leia mais

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu 1 Programação Não Lnear com Restrções Aula 9: Programação Não-Lnear - Funções de Váras Varáves com Restrções Ponto Regular; Introdução aos Multplcadores de Lagrange; Multplcadores de Lagrange e Condções

Leia mais

LEI DE OHM A R. SOLUÇÃO. Usando a lei de Ohm

LEI DE OHM A R. SOLUÇÃO. Usando a lei de Ohm LEI DE OHM EXEMPLO. Uma resstênca de 7 é lgada a uma batera de V. Qual é o valor da corrente que a percorre. SOLUÇÃO: Usando a le de Ohm V I 444 A 7 0. EXEMPLO. A lâmpada lustrada no esquema é percorrda

Leia mais

Física E Extensivo V. 5

Física E Extensivo V. 5 GAARITO Físca E Extensv V. 5 Exercícs 0) D É mpssível um dspstv perand em ccls cnverter ntegralmente calr em trabalh. 0) A segunda le também se aplca as refrgeradres, ps estes também sã máqunas térmcas.

Leia mais

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF)

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF) PMR 40 - Mecânca Computaconal CAPÍTULO VI Introdução ao Método de Elementos Fntos (MEF). Formulação Teórca - MEF em uma dmensão Consderemos a equação abao que representa a dstrbução de temperatura na barra

Leia mais

Universidade Estadual do Sudoeste da Bahia

Universidade Estadual do Sudoeste da Bahia Universidade Estadual do Sudoeste da Bahia Departamento de Estudos Básicos e Instrumentais 4 Termodinâmica Física II Ferreira 1 ÍNDICE 1. Conceitos Fundamentais; 2. Sistemas Termodinâmicos; 3. Leis da

Leia mais

4/Mar/2015 Aula 4 Processos termodinâmicos Capacidades caloríficas dos gases Energia interna de um gás ideal Capacidades caloríficas dos sólidos

4/Mar/2015 Aula 4 Processos termodinâmicos Capacidades caloríficas dos gases Energia interna de um gás ideal Capacidades caloríficas dos sólidos 4/Mar/05 Aula 4 Processos termodinâmicos Capacidades caloríficas dos gases Energia interna de um gás ideal Capacidades caloríficas dos sólidos Transformações termodinâmicas e gases ideais Tipos de transformações

Leia mais

Física. Física Módulo 1 Vetores, escalares e movimento em 2-D

Física. Física Módulo 1 Vetores, escalares e movimento em 2-D Físca Módulo 1 Vetores, escalares e movmento em 2-D Vetores, Escalares... O que são? Para que servem? Por que aprender? Escalar Defnção: Escalar Grandea sem dreção assocada. Eemplos: Massa de uma bola,

Leia mais

Módulo I Ondas Planas. Reflexão e Transmissão com incidência normal Reflexão e Transmissão com incidência oblíqua

Módulo I Ondas Planas. Reflexão e Transmissão com incidência normal Reflexão e Transmissão com incidência oblíqua Módulo I Ondas Planas Reflexão e Transmssão com ncdênca normal Reflexão e Transmssão com ncdênca oblíqua Equações de Maxwell Teorema de Poyntng Reflexão e Transmssão com ncdênca normal Temos consderado

Leia mais

F r. PASES 2 a ETAPA TRIÊNIO o DIA GAB. 1 5 FÍSICA QUESTÕES DE 11 A 20

F r. PASES 2 a ETAPA TRIÊNIO o DIA GAB. 1 5 FÍSICA QUESTÕES DE 11 A 20 PSES 2 a ETP TRIÊNIO 2004-2006 1 o DI G. 1 5 FÍSI QUESTÕES DE 11 20 11. onsdere um sstema consttuído por duas partículas. Uma das partículas está ncalmente se movendo e colde nelastcamente com a outra

Leia mais

TRANSFERÊNCIA DE CALOR NA ENVOLVENTE DA EDIFICAÇÃO

TRANSFERÊNCIA DE CALOR NA ENVOLVENTE DA EDIFICAÇÃO UNIVERSIDADE FEDERAL DE SANA CAARINA CENRO ECNOLÓGICO DEPARAMENO DE ENGENHARIA CIVIL PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA CIVIL RANSFERÊNCIA DE CALOR NA ENVOLVENE DA EDIFICAÇÃO ELABORADO POR: Martn

Leia mais

CQ049 : FQ IV - Eletroquímica

CQ049 : FQ IV - Eletroquímica CQ049 FQ prof. Dr. Marco Vdott LEAP Laboratóro de Eletroquímca e Polímeros mvdott@ufpr.br Imagens de Rorschach A Eletroquímca pode ser dvdda em duas áreas: Iônca: Está relaconada com os íons em solução

Leia mais

6/Mar/2013 Aula 7 Entropia Variação da entropia em processos reversíveis Entropia e os gases ideais

6/Mar/2013 Aula 7 Entropia Variação da entropia em processos reversíveis Entropia e os gases ideais 6/Mar/01 Aula 7 Entropia ariação da entropia em processos reversíveis Entropia e os gases ideais Entropia no ciclo de Carnot e em qualquer ciclo reversível ariação da entropia em processos irreversíveis

Leia mais

Capítulo 20. Processos reversíveis Entropia O Motor de Carnot Frigoríficos Motores de reais (20-1)

Capítulo 20. Processos reversíveis Entropia O Motor de Carnot Frigoríficos Motores de reais (20-1) Capítulo 20 Entropia e a Segunda ei da ermodinâmica Neste capítulo, vamos introduzir a segunda lei da termodinâmica. Os seguintes tópicos serão abordados: Processos reversíveis Entropia O Motor de Carnot

Leia mais

Cap. 20 A Entropia e a Segunda Lei da Termodinâmica

Cap. 20 A Entropia e a Segunda Lei da Termodinâmica Cap. 20 A Entropia e a Segunda Lei da Processos Irreversíveis e Entropia; Variação de Entropia; A Segunda Lei da ; Entropia no Mundo Real: Máquinas Térmicas; Entropia no Mundo Real: Refrigeradores; Eficiência

Leia mais

3. CIRCUITOS COM AMPOP S UTILIZADOS NOS SAPS

3. CIRCUITOS COM AMPOP S UTILIZADOS NOS SAPS 3 CICUITOS COM AMPOP S UTILIZADOS NOS SAPS 3. CICUITOS COM AMPOP S UTILIZADOS NOS SAPS - 3. - 3. Introdução Numa prmera fase, apresenta-se os crcutos somadores e subtractores utlzados nos blocos de entrada

Leia mais

Capítulo 30: Indução e Indutância

Capítulo 30: Indução e Indutância Capítulo 3: Indução e Indutânca Índce Fatos xpermentas; A e de Faraday; A e de enz; Indução e Tranferênca de nerga; Campos létrcos Induzdos; Indutores e Indutânca; Auto-ndução; Crcuto ; nerga Armazenada

Leia mais

CAPÍTULO II 1ª LEI DA TERMODINÂMICA

CAPÍTULO II 1ª LEI DA TERMODINÂMICA APÍULO II - 1ª Le da ermodnâmca 1 APÍULO II 1ª LEI DA ERMODINÂMIA Introdução A ermodnâmca Químca é uma cênca nterdsclnar, que estuda as transormações de energa, e a sua relação com a estrutura da matéra.

Leia mais

Condições de equilíbrio

Condições de equilíbrio UFABC - BC0205 Princípios de Termodinâmica - Curso 2015.2 Prof. Germán Lugones CAPÍTULO 2 Condições de equilíbrio Paul Klee, Highways and Byways (1929) Parâmetros intensivos Diferenciando a equação fundamental

Leia mais

4 Autovetores e autovalores de um operador hermiteano

4 Autovetores e autovalores de um operador hermiteano T (ψ) j = ψ j ˆT ψ = k ψ j ˆT φ k S k = k,l ψ j φ l T (φ) S k = k,l φ l ψ j T (φ) S k = k,l SljT (φ) S k. Após todos esses passos vemos que T (ψ) j = k,l S jl T (φ) S k ou, em termos matrcas T (ψ) = S

Leia mais

Capítulo 26: Corrente e Resistência

Capítulo 26: Corrente e Resistência Capítulo 6: Corrente e esstênca Cap. 6: Corrente e esstênca Índce Corrente Elétrca Densdade de Corrente Elétrca esstênca e esstvdade Le de Ohm Uma Vsão Mcroscópca da Le de Ohm Potênca em Crcutos Elétrcos

Leia mais

Ruído. SEL 371 Sistemas de comunicação. Amílcar Careli César Departamento de Engenharia Elétrica da EESC-USP

Ruído. SEL 371 Sistemas de comunicação. Amílcar Careli César Departamento de Engenharia Elétrica da EESC-USP Ruído SEL 371 Sstemas de comuncação Amílcar Carel César Departamento de Engenhara Elétrca da EESC-USP Atenção! Este materal ddátco é planejado para servr de apoo às aulas de SEL-371 Sstemas de comuncação,

Leia mais

Eletroforese. Para que uma partícula se mova é necessário que possua carga elétrica livre, isto é, excesso ou diferença de elétrons.

Eletroforese. Para que uma partícula se mova é necessário que possua carga elétrica livre, isto é, excesso ou diferença de elétrons. Eletroforese 1 Eletroforese É um processo que consste na separação dos componentes de um sstema através da aplcação de um campo elétrco. É usado para separar e analsar bomoléculas. Prncípo: Substâncas

Leia mais

D = POLINÔMIO INTERPOLADOR DE NEWTON 1) DIFERENÇAS DIVIDIDAS 1.1) DIFERENÇAS DIVIDIDAS ORDINÁRIAS (D) Sejam n+1 pontos de uma função y = f(x):

D = POLINÔMIO INTERPOLADOR DE NEWTON 1) DIFERENÇAS DIVIDIDAS 1.1) DIFERENÇAS DIVIDIDAS ORDINÁRIAS (D) Sejam n+1 pontos de uma função y = f(x): POLINÔMIO INTERPOLAOR E NEWTON ) IFERENÇAS IVIIAS.) IFERENÇAS IVIIAS ORINÁRIAS () Sejam n pontos de uma função f():... n f( )... n - ferença dvdda de ordem zero: n n M - ferença dvdda de ordem um: M M

Leia mais

CARGA E DESCARGA DE UM CAPACITOR

CARGA E DESCARGA DE UM CAPACITOR EXPEIÊNCIA 06 CAGA E DESCAGA DE UM CAPACITO 1. OBJETIVOS a) Levantar, em um crcuto C, curvas de tensão no resstor e no capactor em função do tempo, durante a carga do capactor. b) Levantar, no mesmo crcuto

Leia mais

7 - Distribuição de Freqüências

7 - Distribuição de Freqüências 7 - Dstrbução de Freqüêncas 7.1 Introdução Em mutas áreas há uma grande quantdade de nformações numércas que precsam ser dvulgadas de forma resumda. O método mas comum de resumr estes dados numércos consste

Leia mais

Trocas radiativas entre superfícies: recintos fechados com meio não participativo

Trocas radiativas entre superfícies: recintos fechados com meio não participativo Trocas radatvas entre superfíces: recntos fechados com meo não partcpatvo Concetos báscos Recnto fechado consste de ou mas superfíces que englobam uma regão do espaço (tpcamente preenchda com gás) e que

Leia mais