γ = C P C V = C V + R = q = 2 γ 1 = 2 S gas = dw = W isotermico

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "γ = C P C V = C V + R = q = 2 γ 1 = 2 S gas = dw = W isotermico"

Transcrição

1 Q1 Um clndro feto de materal com alta condutvdade térmca e de capacdade térmca desprezível possu um êmbolo móvel de massa desprezível ncalmente fxo por um pno. O rao nterno do clndro é r = 10 cm, a altura ncal do êmbolo é h = 10 cm e contém gás hdrogêno H 2 a 27 C e 1,2 atm. Meddas anterores fetas com o gás à mesma temperatura ndcaram valores do expoente adabátco γ = 1, 4. O clndro é colocado em contato com a atmosfera à temperatura ambente de 27 C ao mesmo tempo em que o pno do êmbolo é removdo de forma a mover-se sem atrto ao longo do exo do clndro. O gás sofre então uma expansão muto lenta até que a pressão nterna do gás se guala à pressão atmosférca. ome como estado termodnâmco ncal aquele ocupado pelo gás no momento em que o clndro é colocado em contado com a atmosfera e como estado fnal aquele ocupado pelo gás ao fnal da expansão. a 0,5 Quas os graus de lberdade da molécula de H 2 que foram exctados no processo? Justfque claramente a sua resposta. b 1,5 Calcule a varação de entropa do gás no nteror do clndro e da atmosfera no processo que lga os estados termodnâmcos ncal e fnal do gás; c 0,5 Faça uma análse da varação de entropa do sstema gás + atmosfera e dscuta a natureza do processo em questão quanto a reversbldade ou rreversbldade. SOLUÇÃO Q1 a Pela defnção do expoente adabátco: γ = C P C V = C V + C V, e usando o fato de que a capacdade térmca molar a volume constante depende do número de graus de lberdade q, C V = du mol d = q 2, temos γ = q + 2 q = q = 2 γ 1 = 2 0, 4 = 5 = 3 + 2, em que 3 graus de lberdade correspondem ao movmento de translação do centro de massa das moléculas de H 2 e 2 graus ao movmento de rotação em torno de 2 exos perpendculares entre s e à lnha que une os 2 átomos de hdrogêno. b A varação de entropa do gás é dada por: S gas = e como o processo se realza à temperatura constante gás e atmosfera se encontram à mesma temperatura, não há varação de energa nterna do gás du = dq dw = 0, logo S gas = 1 f dw = W sotermco f dq, = n ln Vf V p = n ln, p f onde na últma passagem usou-se o fato de que num processo sotérmco p V = p f V f. usando a equação de estado de gás deal, podemos escrever n = pv = pπr2 h : S gas = 1, N/m 2 π 10 2 m 2 0, 1 m ln1, K = 0, 23 J /K Por fm,

2 A atmosfera pode ser consderada como um reservatóro térmco, fornecendo calor sem que sua temperatura vare, logo sua varação de entropa é dada: S atm = Q = W sotermco = S gas = 0, 23 J /K, em que o snal negatvo do calor ndca que a atmosfera cede essa energa ao gás. c A varação de entropa do unverso termodnâmco gás + atmosfera é então nula, e como esse sstema pode ser consderado como em solamento térmco, o processo em questão é reversível, como era de se esperar já que se trata da expansão lenta de um gás em contato com um reservatóro à mesma temperatura, ou seja, um processo sotérmco através de uma sucessão de estado de equlíbro. Dessa forma, um agente externo, aplcando uma força sobre o êmbolo de modo a movê-lo lentamente, é capaz de comprmr sotérmcamente o gás a fazendo-o retornar ao mesmo estado termodnâmco ncal, ou seja, volume V e pressão p.

3 Q2 Um mol de um gás monoatômco deal realza o cclo mostrado na fgura. O processo A B é uma expansão sotérmca reversível. São conhecdas P C e V C e sabe-se que P A = 5P C e V B = 5V C. Calcule: a 0,7 o trabalho líqudo feto pelo gás; b 0,8 o calor recebdo pelo gás em cada uma das etapas do cclo; c 0,5 o rendmento do cclo. d 0,5 Compare o rendmento do ítem c com o de uma máquna de Carnot operando entre as mesmas temperaturas. SOLUÇÃO Q2 a O trabalho líqudo é: b W = W AB + W BC + W CA = A ln VB V A + P C V C V B + 0, já que o trecho AB é sotérmco, BC é a sobárco e CA é socórco. Escrevendo todas as temperaturas e volumes em termos de P C e V C, temos A = 5P CV C = B, temos W = 5 ln 5 4P C V C Q AB = W AB = ln VB V A Q BC = C P C B = 5 2 PC V C Q CA = C V A C = 3 2 5PC V C = 5 ln 5P C V C 5P CV C = 10P C V C P CV C = 6P C V C, onde usou-se que as capacdades térmcas molares a volume C V e a pressão C P constantes de um gás deal monoatômco são C V = 3/2 e C P = 5/2, respectvamente. c A efcênca do cclo é dada por η = W Q recebdo = 1 Q ceddo Q recebdo = 1 Q BC, Q CA + QAB onde deve-se tomar cudado com o snal dos calores, já que em nossa convensão, calor que sa do sstema como Q BC é negatvo. Logo η = , 288 = 28, 8% ln 5 A efcênca de uma máquna de Carnot operando entre as mesmas temperaturas extremas F = C e Q = A = B depende apenas de F e Q η Carnot = 1 F = 1 1 = 80% > η. Q 5 Como era de se esperar, a máquna de Carnot é mas efcente que a máquna operando pelo cclo acma. Dadas as temperaturas da fonte fra e da fonte quente, a 2a Le da ermodnâmca mpede que se obtenha uma máquna mas efcente que a de Carnot operando entre essas duas temperaturas.

4 SOLUÇÃO Q3 Q3 2,5 Um gás de moléculas datômcas rígdas.e., cujo espaçamento nter-atômco não pode varar está ncalmente nas condções normas de temperatura e pressão CNP. O gás é então comprmdo adabatcamente até que seu volume ncal é reduzdo por um fator f = 5. Determne a energa cnétca méda de rotação de uma molécula no estado fnal tomado como um estado de equlíbro, assm como a velocdade angular méda de rotação no mesmo estado, adotando como momento de nérca em relação a um exo passando pelo seu centro de massa e perperdcular à lnha que une os átomos I = 2, g cm 2. a Numa compressão adabátca, temos a segunte relação entre temperatura e volume V γ 1 = cte = γ 1 f V =. V f No estado fnal de equlíbro, as moléculas podem transladar e grar, de forma que aplcando o eorema da Equpartção da Energa a esse estado, sabemos que a energa méda por molécula e por grau de lberade é k B /2. Para os graus de lberdade de rotação em torno de 2 exos perpendculares entre s 1 e 2 e ao exo que une os 2 átomos, a energa cnétca méda de rotação é a soma das energas cnétcas médas < τ 1 > e < τ 2 >: < τ >=< τ 1 > + < τ 2 >= 1 2 I < ω2 1 > I < ω2 2 >= I < ω 2 >= 1 2 k B f k B f = k B f, onde usou-se que ω 2 = ω ω 2 2. Então, [ ] γ 1 V < τ >= k B f = k B = 1, J/K 5 2/5 273 K = 7, J, V f já que graus de lberdade são exctados no estado fnal γ = q+2 q = 7 5. A velocdde angular de rotação méda é então: < ω 2 >= < τ > I = 7, J 2, kg m 2 34, rad /s 2 = < ω > 5, rad/s

5 SOLUÇÃO Q4 Q4 Um mol de gás deal com capacdade térmca molar C V sofre um processo em que a entropa S vara com a temperatura na forma S = α, onde α é uma constante. A temperatura do gás vara de a 2. Calcule em função de α, C V, e 2 : a 1,5 a quantdade de calor transferda ao gás no processo; b 1,0 o trabalho realzado pelo gás. a O calor transferdo ao gás é Q = f Q = 2 ds = 2 dq. Lembrado-se de que dq = ds, temos ds d d = 2 [ ] α 2 d = α 2 d = α ln b Pela prmera le da ermodnâmca U = Q W e, além dsso, sabemos que U = C V = C V 2, logo 2 W = Q U = α ln C V 2 2

Física 10 Questões [Difícil]

Física 10 Questões [Difícil] Físca Questões [Dfícl] - (UF MG) Um líqudo encontra-se, ncalmente, à temperatura T o, pressão P o e volume o, em um recpente fechado e solado termcamente do ambente, conforme lustra a fgura ao lado. Após

Leia mais

Nenhum desses processos violaria a Lei de Conservação de Energia se ocorresse no sentido inverso.

Nenhum desses processos violaria a Lei de Conservação de Energia se ocorresse no sentido inverso. SEGUNDA LEI E ENROPIA Processos rreversíves e entroa Alguns rocessos termodnâmcos num só sentdo. Exemlos: - grão de mlho se transformando em oca; - caneca de café esfrando - exansão lvre de um gás. ocorrem

Leia mais

AULA 10 Entropia e a Segunda Lei da Termodinâmica

AULA 10 Entropia e a Segunda Lei da Termodinâmica UFABC - BC0205 - Prof. Germán Lugones AULA 10 Entropa e a Segunda Le da ermodnâmca Sad Carnot [1796-1832] R. Clausus [1822-1888] W. homson (Lord Kelvn) [1824-1907] Quando um saco de ppocas é aquecdo em

Leia mais

F-128 Física Geral I. Aula exploratória-10b UNICAMP IFGW

F-128 Física Geral I. Aula exploratória-10b UNICAMP IFGW F-18 Físca Geral I Aula exploratóra-10b UNICAMP IFGW username@f.uncamp.br O teorema dos exos paralelos Se conhecermos o momento de nérca I CM de um corpo em relação a um exo que passa pelo seu centro de

Leia mais

Capítulo 19. A teoria cinética dos gases

Capítulo 19. A teoria cinética dos gases Capítulo 19 A teora cnétca dos gases Neste capítulo, a ntroduzr a teora cnétca dos gases que relacona o momento dos átomos e moléculas com olume, pressão e temperatura do gás. Os seguntes tópcos serão

Leia mais

DISPONIBILIDADE DE ENERGIA

DISPONIBILIDADE DE ENERGIA Notas de Físca II Pros Amaur e Rcardo DISPONIBILIDADE DE ENERGIA Neste capítulo será estudado a Segunda Le da ermodnâmca sob város aspectos: ecênca e otmzação de máunas térmcas, rergeradores e entropa.

Leia mais

Corolário do Teorema de Carnot ou Segundo Teorema de Carnot

Corolário do Teorema de Carnot ou Segundo Teorema de Carnot eorema de Carnot De todas as máqunas térmcas que unconam entre duas determnadas ontes de calor, a que tem rendmento máxmo é a máquna de Carnot. * * * * * e > Fr. Coroláro do eorema de Carnot ou Seundo

Leia mais

Física Geral I - F Aula 12 Momento Angular e sua Conservação. 2º semestre, 2012

Física Geral I - F Aula 12 Momento Angular e sua Conservação. 2º semestre, 2012 Físca Geral I - F -18 Aula 1 Momento Angular e sua Conservação º semestre, 01 Momento Angular Como vmos anterormente, as varáves angulares de um corpo rígdo grando em torno de um exo fxo têm sempre correspondentes

Leia mais

4 Sistemas de partículas

4 Sistemas de partículas 4 Sstemas de partículas Nota: será feta a segunte convenção: uma letra em bold representa um vector,.e. b b Nesta secção estudaremos a generalzação das les de Newton a um sstema de váras partículas e as

Leia mais

Cálculo de variações de entropia

Cálculo de variações de entropia álculo de varações de entropa I stema de um corpo em nteracção com uma onte de calor quecmento rreversível, a volume constante m, c c onte F F onte onte entropa é uma unção de estado e a sua varação é

Leia mais

18 e 20/Abr/2016 Aulas 12 e 13. Introdução à Física Estatística Postulados Equilíbrio térmico Função de Partição; propriedades termodinâmicas

18 e 20/Abr/2016 Aulas 12 e 13. Introdução à Física Estatística Postulados Equilíbrio térmico Função de Partição; propriedades termodinâmicas 01/Abr/2016 Aula 11 Potencas termodnâmcos Energa nterna total Entalpa Energas lvres de Helmholtz e de Gbbs Relações de Maxwell 18 e 20/Abr/2016 Aulas 12 e 13 Introdução à Físca Estatístca Postulados Equlíbro

Leia mais

F-128 Física Geral I. Aula exploratória-11b UNICAMP IFGW

F-128 Física Geral I. Aula exploratória-11b UNICAMP IFGW F-18 Físca Geral I Aula exploratóra-11b UNICAMP IFGW username@f.uncamp.br Momento Angular = r p O momento angular de uma partícula de momento em relação ao ponto O é: p (Note que a partícula não precsa

Leia mais

Teoria Cinética dos Gases

Teoria Cinética dos Gases Cap 19: Teora Cnétca dos Gases - Prof. Wladmr 1 Teora Cnétca dos Gases 19.1 Introdução Um gás consste em átomos que preenchem o volume de seu recpente. As varáves volume, pressão e temperatura, são conseqüêncas

Leia mais

QiD 6 3ª SÉRIE/PRÉ - VESTIBULAR PARTE 3 QUÍMICA

QiD 6 3ª SÉRIE/PRÉ - VESTIBULAR PARTE 3 QUÍMICA PARA A VALIDADE DO QD, AS RESPOSTAS DEVEM SER APRESENTADAS EM FOLHA PRÓPRIA, FORNECIDA PELO COLÉGIO, COM DESENVOLVIMENTO E SEMPRE A TINTA. TODAS AS QUESTÕES DE MÚLTIPLA ESCOLHA DEVEM SER JUSTIFICADAS.

Leia mais

1 Princípios da entropia e da energia

1 Princípios da entropia e da energia 1 Prncípos da entropa e da energa Das dscussões anterores vmos como o conceto de entropa fo dervado do conceto de temperatura. E esta últma uma conseqüênca da le zero da termodnâmca. Dentro da nossa descrção

Leia mais

CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES

CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES 2012 1 a QUESTÃO Valor: 1,00 Sentdo de rotaçãoo do corpo y orça 30 º x orça solo Um corpo de 4 kg está preso a um o e descreve

Leia mais

3. Um protão move-se numa órbita circular de raio 14 cm quando se encontra. b) Qual o valor da velocidade linear e da frequência ciclotrónica do

3. Um protão move-se numa órbita circular de raio 14 cm quando se encontra. b) Qual o valor da velocidade linear e da frequência ciclotrónica do Electromagnetsmo e Óptca Prmero Semestre 007 Sére. O campo magnétco numa dada regão do espaço é dado por B = 4 e x + e y (Tesla. Um electrão (q e =.6 0 9 C entra nesta regão com velocdade v = e x + 3 e

Leia mais

Problemas Propostos. Frações mássicas, volúmicas ou molares. Estequiometria.

Problemas Propostos. Frações mássicas, volúmicas ou molares. Estequiometria. Elementos de Engenhara Químca I II. Frações e Estequometra (problemas resolvdos) Problemas Propostos. Frações másscas, volúmcas ou molares. Estequometra.. Em 5 moles de Benzeno (C 6 H 6 ) quanto é que

Leia mais

F r. PASES 2 a ETAPA TRIÊNIO o DIA GAB. 1 5 FÍSICA QUESTÕES DE 11 A 20

F r. PASES 2 a ETAPA TRIÊNIO o DIA GAB. 1 5 FÍSICA QUESTÕES DE 11 A 20 PSES 2 a ETP TRIÊNIO 2004-2006 1 o DI G. 1 5 FÍSI QUESTÕES DE 11 20 11. onsdere um sstema consttuído por duas partículas. Uma das partículas está ncalmente se movendo e colde nelastcamente com a outra

Leia mais

Dinâmica do Movimento de Rotação

Dinâmica do Movimento de Rotação Dnâmca do Movmento de Rotação - ntrodução Neste Capítulo vamos defnr uma nova grandeza físca, o torque, que descreve a ação gratóra ou o efeto de rotação de uma força. Verfcaremos que o torque efetvo que

Leia mais

Mecânica Estatística. - Leis da Física Macroscópica - Propriedades dos sistemas macroscópicos

Mecânica Estatística. - Leis da Física Macroscópica - Propriedades dos sistemas macroscópicos Mecânca Estatístca Tal como a Termodnâmca Clássca, também a Mecânca Estatístca se dedca ao estudo das propredades físcas dos sstemas macroscópcos. Tratase de sstemas com um número muto elevado de partículas

Leia mais

FÍSICO-QUÍMICA I Termodinâmica do Equilíbrio

FÍSICO-QUÍMICA I Termodinâmica do Equilíbrio UNIVERSIDADE FEDERAL DE MINAS GERAIS Departamento de Químca, ICEx, Setor de Físco-Químca FÍSICO-QUÍMICA I Termodnâmca do Equlíbro Prof. Wellngton Ferrera de MAGALHÃES, Departamento de Químca, e-mal: welmag@ufmg.br

Leia mais

Expansão livre de um gás ideal

Expansão livre de um gás ideal Expansão lvre de um gás deal (processo não quase-estátco, logo, rreversível) W=0 na expansão lvre (P e = 0) Paredes adabátcas a separar o gás das vznhanças Q = 0 ª Le U gás = Q + W = 0 U = U Para um gás

Leia mais

CQ110 : Princípios de FQ

CQ110 : Princípios de FQ CQ 110 Prncípos de Físco Químca Curso: Farmáca Prof. Dr. Marco Vdott mvdott@ufpr.br 1 soluções eletrolítcas Qual a dferença entre uma solução 1,0 mol L -1 de glcose e outra de NaCl de mesma concentração?

Leia mais

LISTA de GASES e TERMODINÂMICA PROFESSOR ANDRÉ

LISTA de GASES e TERMODINÂMICA PROFESSOR ANDRÉ LISTA de GASES e TERMODINÂMICA PROFESSOR ANDRÉ 1. (Ug 01)O ntrogêno líqudo é requentemente utlzado em sstemas crogêncos, para trabalhar a baxas temperaturas. A gura a segur lustra um reservatóro de 100

Leia mais

1 P r o j e t o F u t u r o M i l i t a r w w w. f u t u r o m i l i t a r. c o m. b r

1 P r o j e t o F u t u r o M i l i t a r w w w. f u t u r o m i l i t a r. c o m. b r F Físca 1998 1. Um certo calorímetro contém 80 gramas de água à temperatura de 15 O C. dconando-se à água do calorímetro 40 gramas de água a 50 O C, observa-se que a temperatura do sstema, ao ser atngdo

Leia mais

Universidade de São Paulo Instituto de Física

Universidade de São Paulo Instituto de Física Universidade de São Paulo Instituto de Física FEP - FÍSICA II para o Instituto Oceanográfico º Semestre de 009 Sexta Lista de Exercícios a. Lei da Termodinâmica e Teoria Cinética dos Gases ) Uma máquina

Leia mais

INTRODUÇÃO À ASTROFÍSICA

INTRODUÇÃO À ASTROFÍSICA Introdução à Astrofísca INTRODUÇÃO À ASTROFÍSICA LIÇÃO 7: A MECÂNICA CELESTE Lção 6 A Mecânca Celeste O que vmos até agora fo um panorama da hstóra da astronoma. Porém, esse curso não pretende ser de dvulgação

Leia mais

Fone:

Fone: Prof. Valdr Gumarães Físca para Engenhara FEP111 (4300111) 1º Semestre de 013 nsttuto de Físca- Unversdade de São Paulo Aula 8 Rotação, momento nérca e torque Professor: Valdr Gumarães E-mal: valdrg@f.usp.br

Leia mais

Capítulo 24: Potencial Elétrico

Capítulo 24: Potencial Elétrico Capítulo 24: Potencal Energa Potencal Elétrca Potencal Superfíces Equpotencas Cálculo do Potencal a Partr do Campo Potencal Produzdo por uma Carga Pontual Potencal Produzdo por um Grupo de Cargas Pontuas

Leia mais

Física I LEC+LET Guias de Laboratório 2ª Parte

Física I LEC+LET Guias de Laboratório 2ª Parte Físca I LEC+LET Guas de Laboratóro 2ª Parte 2002/2003 Experênca 3 Expansão lnear de sóldos. Determnação de coefcentes de expansão térmca de dferentes substâncas Resumo Grupo: Turno: ª Fera h Curso: Nome

Leia mais

Conhecimentos Específicos

Conhecimentos Específicos PROCESSO SELETIVO 010 13/1/009 INSTRUÇÕES 1. Confra, abaxo, o seu número de nscrção, turma e nome. Assne no local ndcado. Conhecmentos Específcos. Aguarde autorzação para abrr o caderno de prova. Antes

Leia mais

Física C Intensivo V. 2

Física C Intensivo V. 2 Físca C Intensvo V Exercícos 01) C De acordo com as propredades de assocação de resstores em sére, temos: V AC = V AB = V BC e AC = AB = BC Então, calculando a corrente elétrca equvalente, temos: VAC 6

Leia mais

Consideraremos agora, uma de cada vez, as equivalentes angulares das grandezas de posição, deslocamento, velocidade e aceleração.

Consideraremos agora, uma de cada vez, as equivalentes angulares das grandezas de posição, deslocamento, velocidade e aceleração. CAPÍTULO 5 77 5.1 Introdução A cnemátca dos corpos rígdos trata dos movmentos de translação e rotação. No movmento de translação pura todas as partes de um corpo sofrem o mesmo deslocamento lnear. Por

Leia mais

CAPITULO II - FORMULAÇAO MATEMATICA

CAPITULO II - FORMULAÇAO MATEMATICA CAPITULO II - FORMULAÇAO MATEMATICA II.1. HIPOTESES BASICAS A modelagem aqu empregada está baseado nas seguntes hpóteses smplfcadoras : - Regme permanente; - Ausênca de forças de campo; - Ausênca de trabalho

Leia mais

Física I para Oceanografia FEP111 ( ) Aula 10 Rolamento e momento angular

Física I para Oceanografia FEP111 ( ) Aula 10 Rolamento e momento angular Físca para Oceanograa FEP (4300) º Semestre de 0 nsttuto de Físca- Unversdade de São Paulo Aula 0 olamento e momento angular Proessor: Valdr Gumarães E-mal: valdr.gumaraes@usp.br Fone: 309.704 olamento

Leia mais

Segunda Lei da Termodinâmica, Entropia e Máquinas Térmicas Biblografia: Halliday, Resnick e Walker, vol 2, cap20 8 a Ed, vol2

Segunda Lei da Termodinâmica, Entropia e Máquinas Térmicas Biblografia: Halliday, Resnick e Walker, vol 2, cap20 8 a Ed, vol2 Segunda Lei da Termodinâmica, Entropia e Máquinas Térmicas Biblografia: Halliday, Resnick e Walker, vol 2, cap20 8 a Ed, vol2 O tempo tem um sentido, que é aquele no qual envelhecemos.! Na natureza, os

Leia mais

Experiência V (aulas 08 e 09) Curvas características

Experiência V (aulas 08 e 09) Curvas características Experênca (aulas 08 e 09) Curvas característcas 1. Objetvos 2. Introdução 3. Procedmento expermental 4. Análse de dados 5. Referêncas 1. Objetvos Como no expermento anteror, remos estudar a adequação de

Leia mais

FUNDAMENTOS DE ROBÓTICA. Modelo Cinemático de Robôs Manipuladores

FUNDAMENTOS DE ROBÓTICA. Modelo Cinemático de Robôs Manipuladores FUNDMENTOS DE ROBÓTIC Modelo Cnemátco de Robôs Manpuladores Modelo Cnemátco de Robôs Manpuladores Introdução Modelo Cnemátco Dreto Modelo Cnemátco de um Robô de GDL Representação de Denavt-Hartenberg Exemplos

Leia mais

Aula 7: Circuitos. Curso de Física Geral III F-328 1º semestre, 2014

Aula 7: Circuitos. Curso de Física Geral III F-328 1º semestre, 2014 Aula 7: Crcutos Curso de Físca Geral III F-38 º semestre, 04 Ponto essencal Para resolver um crcuto de corrente contínua, é precso entender se as cargas estão ganhando ou perdendo energa potencal elétrca

Leia mais

TERMODINÂMICA QUÍMICA

TERMODINÂMICA QUÍMICA TERMODIÂMICA QUÍMICA Fabano A.. Fernandes Sandro M. zzo Deovaldo Moraes Jr. a Edção 006 SUMÁRIO. ITRODUÇÃO À TERMODIÂMICA.. Introdução.. Defnção e Importânca.3. aráves Termodnâmcas.3.. Temperatura.3..

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1 FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1 Nome Nº Turma: Data: / / Professor 10.º Ano Classfcação Apresente o seu racocíno de forma clara, ndcando todos os cálculos que tver de efetuar e todas

Leia mais

Termodinâmica e Termoquímica

Termodinâmica e Termoquímica Termodnâmca e Termoquímca Introdução A cênca que trata da energa e suas transformações é conhecda como termodnâmca. A termodnâmca fo a mola mestra para a revolução ndustral, portanto o estudo e compreensão

Leia mais

Cap. 6 - Energia Potencial e Conservação da Energia Mecânica

Cap. 6 - Energia Potencial e Conservação da Energia Mecânica Unversdade Federal do Ro de Janero Insttuto de Físca Físca I IGM1 014/1 Cap. 6 - Energa Potencal e Conservação da Energa Mecânca Prof. Elvs Soares 1 Energa Potencal A energa potencal é o nome dado a forma

Leia mais

Instituto de Física de São Carlos-USP. Licenciatura em Ciências Exatas. Laboratório de Física B - SLC0569. Volume 2: Ondas, Fluidos, Calor

Instituto de Física de São Carlos-USP. Licenciatura em Ciências Exatas. Laboratório de Física B - SLC0569. Volume 2: Ondas, Fluidos, Calor Insttuto de Físca de São Carlos-USP Lcencatura em Cêncas Exatas Laboratóro de Físca B - SLC0569 Volume : Ondas, Fludos, Calor Ano 009 1 Lcencatura em Cêncas Exatas IFSC - USP Laboratóro de Físca B (SLC0569)

Leia mais

Capítulo 9 Rotação de corpos rígidos

Capítulo 9 Rotação de corpos rígidos Capítulo 9 Rotação de corpos rígdos Defnção de corpo rígdo (CR): um sstema de partículas especal, cuja estrutura é rígda, sto é, cuja forma não muda, para o qual duas partes sempre estão gualmente dstantes

Leia mais

EXERCÍCIOS DE RECUPERAÇÃO PARALELA 4º BIMESTRE

EXERCÍCIOS DE RECUPERAÇÃO PARALELA 4º BIMESTRE EXERCÍCIOS DE RECUERAÇÃO ARALELA 4º BIMESTRE NOME Nº SÉRIE : 2º EM DATA : / / BIMESTRE 4º ROFESSOR: Renato DISCILINA: Físca 1 VISTO COORDENAÇÃO ORIENTAÇÕES: 1. O trabalho deverá ser feto em papel almaço

Leia mais

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos Curso de extensão, MMQ IFUSP, feverero/4 Alguns exercíco báscos I Exercícos (MMQ) Uma grandeza cujo valor verdadero x é desconhecdo, fo medda três vezes, com procedmentos expermentas dêntcos e, portanto,

Leia mais

CQ110 : Princípios de FQ

CQ110 : Princípios de FQ CQ110 : Prncípos de FQ CQ 110 Prncípos de Físco Químca Curso: Farmáca Prof. Dr. Marco Vdott mvdott@ufpr.br Potencal químco, m potencal químco CQ110 : Prncípos de FQ Propredades termodnâmcas das soluções

Leia mais

Q T = T Q T = T Q T. ds = (4.8)

Q T = T Q T = T Q T. ds = (4.8) 4.5 Entropa O prncípo zero da termodnâmca envolve o conceto de temperatura e o prmero prncípo envolve o conceto de energa nterna. temperatura e a energa nterna são ambas varáves de estado; sto é, podem

Leia mais

Laboratório de Mecânica Aplicada I Estática: Roldanas e Equilíbrio de Momentos

Laboratório de Mecânica Aplicada I Estática: Roldanas e Equilíbrio de Momentos Laboratóro de Mecânca Aplcada I Estátca: Roldanas e Equlíbro de Momentos 1 Introdução O conhecmento das condções de equlíbro de um corpo é mprescndível em númeras stuações. Por exemplo, o estudo do equlíbro

Leia mais

AMPLIAÇÃO DE ESCALA. Adimensionais: dq dq dqs. dt dt dt. Reynolds. Número de Potência. Número de Froude

AMPLIAÇÃO DE ESCALA. Adimensionais: dq dq dqs. dt dt dt. Reynolds. Número de Potência. Número de Froude AMPLIAÇÃO E ESCALA Admensonas: Reynolds Re ρ N /μ Número de Potênca dq dq dqs o dqv Número de Froude Fr N / g AMPLIAÇÃO E ESCALA COMO CORRELACIONAR k L a com potênca de agtação? Os japoneses propões aquecer

Leia mais

2 Principio do Trabalho Virtual (PTV)

2 Principio do Trabalho Virtual (PTV) Prncpo do Trabalho rtual (PT)..Contnuo com mcroestrutura Na teora que leva em consderação a mcroestrutura do materal, cada partícula anda é representada por um ponto P, conforme Fgura. Porém suas propredades

Leia mais

Termodinâmica Exercícios resolvidos Quasar. Termodinâmica. Exercícios resolvidos

Termodinâmica Exercícios resolvidos Quasar. Termodinâmica. Exercícios resolvidos erodnâca Exercícos resolvdos Quasar erodnâca Exercícos resolvdos. Gases peretos Cp e Cv a) Mostre que a relação entre o calor especíco olar a pressão constante Cp e a volue constante Cv é dada por Cp Cv

Leia mais

2/Mar/2016 Aula 4. 26/Fev/2016 Aula 3

2/Mar/2016 Aula 4. 26/Fev/2016 Aula 3 6/Fev/016 Aula 3 Calor e Primeira Lei da Termodinâmica Calor e energia térmica Capacidade calorífica e calor específico Calor latente Diagrama de fases para a água Primeira Lei da Termodinâmica Trabalho

Leia mais

1ª e 2ª leis da termodinâmica

1ª e 2ª leis da termodinâmica 1ª e 2ª les da termodnâmca 1ª Le da Termodnâmca Le de Conservação da Energa 2ª Le da Termodnâmca Restrnge o tpo de conversões energétcas nos processos termodnâmcos Formalza os concetos de processos reversíves

Leia mais

Curso de Circuitos Elétricos 2 a. Edição, L.Q. Orsini D. Consonni, Editora Edgard Blücher Ltda. Volume I Errata

Curso de Circuitos Elétricos 2 a. Edição, L.Q. Orsini D. Consonni, Editora Edgard Blücher Ltda. Volume I Errata Curso de Crcutos Elétrcos a Edção, Q rsn D Consonn, Edtora Edgard Blücher tda Pág5 Equação (5): dw( t) v( t) = dq( t) Pág5 no parágrafo após equação (36): Volume I Errata, caso em que não há energa ncal

Leia mais

Aula 6: Corrente e resistência

Aula 6: Corrente e resistência Aula 6: Corrente e resstênca Físca Geral III F-328 1º Semestre 2014 F328 1S2014 1 Corrente elétrca Uma corrente elétrca é um movmento ordenado de cargas elétrcas. Um crcuto condutor solado, como na Fg.

Leia mais

Trabalho e Energia. Definimos o trabalho W realizado pela força sobre uma partícula como o produto escalar da força pelo deslocamento.

Trabalho e Energia. Definimos o trabalho W realizado pela força sobre uma partícula como o produto escalar da força pelo deslocamento. Trabalho e Energa Podemos denr trabalho como a capacdade de produzr energa. Se uma orça eecutou um trabalho sobre um corpo ele aumentou a energa desse corpo de. 1 OBS: Quando estudamos vetores vmos que

Leia mais

S.A. 1. 2002; TIPLER, P. A.; MOSCA, G.

S.A. 1. 2002; TIPLER, P. A.; MOSCA, G. Rotação Nota Alguns sldes, fguras e exercícos pertencem às seguntes referêncas: HALLIDAY, D., RESNICK, R., WALKER, J. Fundamentos da Físca. V 1. 4a.Edção. Ed. Lvro Técnco Centífco S.A. 00; TIPLER, P. A.;

Leia mais

Na figura, são dados os vetores a, b e c.

Na figura, são dados os vetores a, b e c. 46 b FÍSICA a fgura, são dados os vetores a, b e c. u a b c Sendo u a undade de medda do módulo desses vetores, pode-se afrmar que o vetor d = a b + c tem módulo a) 2u, e sua orentação é vertcal, para

Leia mais

Critério de Equilíbrio

Critério de Equilíbrio Crtéro de Equlíbro ara um sstema echado onde exstem ases em equlíbro, o crtéro geral de equlíbro de ases mpõe que o potencal químco de cada espéce presente seja gual em todas as ases. α β π µ = µ = K=

Leia mais

Aula 10: Corrente elétrica

Aula 10: Corrente elétrica Unversdade Federal do Paraná Setor de Cêncas Exatas Departamento de Físca Físca III Prof. Dr. Rcardo Luz Vana Referêncas bblográfcas: H. 28-2, 28-3, 28-4, 28-5 S. 26-2, 26-3, 26-4 T. 22-1, 22-2 Aula 10:

Leia mais

Sinais Luminosos 2- CONCEITOS BÁSICOS PARA DIMENSIONAMENTO DE SINAIS LUMINOSOS.

Sinais Luminosos 2- CONCEITOS BÁSICOS PARA DIMENSIONAMENTO DE SINAIS LUMINOSOS. Snas Lumnosos 1-Os prmeros snas lumnosos Os snas lumnosos em cruzamentos surgem pela prmera vez em Londres (Westmnster), no ano de 1868, com um comando manual e com os semáforos a funconarem a gás. Só

Leia mais

A) 2,5 B) 4 C) 5 D) 7,5 E) 10

A) 2,5 B) 4 C) 5 D) 7,5 E) 10 1-Uma massa gasosa, inicialmente num estado A, sofre duas transformações sucessivas e passa para um estado C. A partir do estado A esse gás sofre uma transformação isobárica e passa para o estado B. A

Leia mais

(note que não precisa de resolver a equação do movimento para responder a esta questão).

(note que não precisa de resolver a equação do movimento para responder a esta questão). Mestrado Integrado em Engenhara Aeroespacal Mecânca e Ondas 1º Ano -º Semestre 1º Teste 31/03/014 18:00h Duração do teste: 1:30h Lea o enuncado com atenção. Justfque todas as respostas. Identfque e numere

Leia mais

CADERNO DE QUESTÕES PROVA DE CONHECIMENTOS EM QUÍMICA PARA INGRESSO NA PÓS-GRADUAÇÃO (MESTRADO) DO DQ/UFMG NO 1º SEMESTRE DE 2013

CADERNO DE QUESTÕES PROVA DE CONHECIMENTOS EM QUÍMICA PARA INGRESSO NA PÓS-GRADUAÇÃO (MESTRADO) DO DQ/UFMG NO 1º SEMESTRE DE 2013 UNIVERSIDADE FEDERAL DE MINAS GERAIS Insttuto de Cêncas Exatas - ICEx Departamento de Químca Av. Pres. Antôno Carlos, 6627, Pampulha 31270-901 - Belo Horzonte, MG, Brasl Códgo: CADERNO DE QUESÕES PROVA

Leia mais

Figura 1.9. Modelo estrutural corpo for suficientemente pequena quando comparada

Figura 1.9. Modelo estrutural corpo for suficientemente pequena quando comparada 1.5 Expansão Térmca de Sóldos e íqudos Nossa dscussão sobre o termómetro de líqudo emprega uma das mudanças mas bem conhecdas que ocorrem na maora das substâncas: quando a temperatura aumenta, o volume

Leia mais

ELETRICIDADE E MAGNETISMO

ELETRICIDADE E MAGNETISMO PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE MATEMÁTICA E FÍSICA Professor: Renato Mederos ELETRICIDADE E MAGNETISMO NOTA DE AULA III Goâna - 2014 CORRENTE ELÉTRICA Estudamos anterormente

Leia mais

INTRODUÇÃO SISTEMAS. O que é sistema? O que é um sistema de controle? O aspecto importante de um sistema é a relação entre as entradas e a saída

INTRODUÇÃO SISTEMAS. O que é sistema? O que é um sistema de controle? O aspecto importante de um sistema é a relação entre as entradas e a saída INTRODUÇÃO O que é sstema? O que é um sstema de controle? SISTEMAS O aspecto mportante de um sstema é a relação entre as entradas e a saída Entrada Usna (a) Saída combustível eletrcdade Sstemas: a) uma

Leia mais

2. Introdução à Condução de Calor (Difusão de Calor)

2. Introdução à Condução de Calor (Difusão de Calor) 7. Introdução à Condução de Calor (Dfusão de Calor) Neste tem serão apresentados os processos de dfusão e convecção de grandezas físcas. presenta-se uma dedução das equações geras de balanço un e trdmensonal.

Leia mais

CAPÍTULO II 1ª LEI DA TERMODINÂMICA

CAPÍTULO II 1ª LEI DA TERMODINÂMICA APÍULO II - 1ª Le da ermodnâmca 1 APÍULO II 1ª LEI DA ERMODINÂMIA Introdução A ermodnâmca Químca é uma cênca nterdsclnar, que estuda as transormações de energa, e a sua relação com a estrutura da matéra.

Leia mais

Aula 3 - Classificação de sinais

Aula 3 - Classificação de sinais Processamento Dgtal de Snas Aula 3 Professor Marco Esencraft feverero 0 Aula 3 - Classfcação de snas Bblografa OPPENHEIM, AV; WILLSKY, A S Snas e Sstemas, a edção, Pearson, 00 ISBN 9788576055044 Págnas

Leia mais

Indutores ou bobinas: criam campos magnéticos numa dada região do circuito.

Indutores ou bobinas: criam campos magnéticos numa dada região do circuito. Unversdade Federal do Paraná Setor de Cêncas Exatas Departamento de Físca Físca III - Prof. Dr. Rcardo Luz Vana Referêncas bblográfcas: H. 33-2, 33-3, 33-4, 33-5, 33-6 S. 31-3, 31-4, 31-5 T. 26-7, 26-8,

Leia mais

CORRELAÇÃO E REGRESSÃO

CORRELAÇÃO E REGRESSÃO CORRELAÇÃO E REGRESSÃO Constata-se, freqüentemente, a estênca de uma relação entre duas (ou mas) varáves. Se tal relação é de natureza quanttatva, a correlação é o nstrumento adequado para descobrr e medr

Leia mais

Universidade São Judas Tadeu Faculdade de Tecnologia e Ciências Exatas Cursos de Engenharia

Universidade São Judas Tadeu Faculdade de Tecnologia e Ciências Exatas Cursos de Engenharia Unversdade São Judas Tadeu Faculdade de Tecnologa e Cêncas Exatas Cursos de Engenhara Laboratóro de Físca Mesa de Forças Autor: Prof. Luz de Olvera Xaver F r = + = F1 + F + F1. F.cosα = ϕ β α BANCADA:

Leia mais

Unidade II 1. Estudo dos gases e primeira Lei da Termodinâmica

Unidade II 1. Estudo dos gases e primeira Lei da Termodinâmica Governo do Estado do Ro Grande do Norte Secretara de Estado da Educação e da Cultura - SEEC UNIERSIDADE DO ESTADO DO RIO GRANDE DO NORTE - UERN Pró-Retora de Ensno de Graduação PROEG Home Page: http://www.uern.br

Leia mais

Matemática. Veículo A. Veículo B. Os gráficos das funções interceptam-se quando 50t = 80t

Matemática. Veículo A. Veículo B. Os gráficos das funções interceptam-se quando 50t = 80t Matemátca 0 Dos veículos, A e B, partem de um ponto de uma estrada, em sentdos opostos e com velocdades constantes de 50km/h e 70km/h, respectvamente Após uma hora, o veículo B retorna e, medatamente,

Leia mais

UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena EEL

UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena EEL UNIVERSIDADE DE SÃO PAULO Escola de Engenhara de Lorena EEL LOB1053 - FÍSICA III Prof. Dr. Durval Rodrgues Junor Departamento de Engenhara de Materas (DEMAR) Escola de Engenhara de Lorena (EEL) Unversdade

Leia mais

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012 Notas Processos estocástcos Nestor Catcha 23 de abrl de 2012 notas processos estocástcos 2 O Teorema de Perron Frobenus para matrzes de Markov Consdere um processo estocástco representado por um conunto

Leia mais

Capítulo 16: Equilíbrio Geral e Eficiência Econômica

Capítulo 16: Equilíbrio Geral e Eficiência Econômica Capítulo 6: Equlíbro Geral e Efcênca Econômca Pndck & Rubnfeld, Capítulo 6, Equlíbro Geral::EXERCÍCIOS. Em uma análse de trocas entre duas pessoas, suponha que ambas possuam dêntcas preferêncas. A curva

Leia mais

Primeira Lei da Termodinâmica

Primeira Lei da Termodinâmica Físico-Química I Profa. Dra. Carla Dalmolin Primeira Lei da Termodinâmica Definição de energia, calor e trabalho Trocas térmicas Entalpia e termoquímica Termodinâmica Estudo das transformações de energia

Leia mais

Sistemas Robóticos. Sumário. Introdução. Introdução. Navegação. Introdução Onde estou? Para onde vou? Como vou lá chegar?

Sistemas Robóticos. Sumário. Introdução. Introdução. Navegação. Introdução Onde estou? Para onde vou? Como vou lá chegar? Sumáro Sstemas Robótcos Navegação Introdução Onde estou? Para onde vou? Como vou lá chegar? Carlos Carreto Curso de Engenhara Informátca Ano lectvo 2003/2004 Escola Superor de Tecnologa e Gestão da Guarda

Leia mais

Capítulo 3-1. A 2ª Lei da Termodinâmica

Capítulo 3-1. A 2ª Lei da Termodinâmica Capítulo 3-1. A 2ª Le da ermodnâma Baseado no lvro: Atkns Pysal Cemstry Egt Edton Peter Atkns Julo de Paula 29-04-2007 Mara da Coneção Pava 1 A segunda le da termodnâma é baseada na experêna umana. odos

Leia mais

Exercícios de Física. Prof. Panosso. Fontes de campo magnético

Exercícios de Física. Prof. Panosso. Fontes de campo magnético 1) A fgura mostra um prego de ferro envolto por um fo fno de cobre esmaltado, enrolado mutas vezes ao seu redor. O conjunto pode ser consderado um eletroímã quando as extremdades do fo são conectadas aos

Leia mais

CAPÍTULO 5: CÁLCULOS DE EQUILÍBRIO DE FASES. Critério de equilíbrio. O problema geral do equilíbrio líquido-vapor. Capítulo 1. f = P dp.

CAPÍTULO 5: CÁLCULOS DE EQUILÍBRIO DE FASES. Critério de equilíbrio. O problema geral do equilíbrio líquido-vapor. Capítulo 1. f = P dp. rofª Drª Geormenny R, Santos CAÍTULO 5: CÁLCULOS DE EQUILÍBRIO DE FASES O problema geral do equlíbro líqudo-vapor Crtéro de equlíbro Capítulo T T ( α ) ( β ) ( α ) ( β ) ( α ) ( β ) µ µ T T ( α ) ( β )

Leia mais

Física I p/ IO FEP111 ( )

Física I p/ IO FEP111 ( ) ísca I p/ IO EP (4300) º Semestre de 00 Insttuto de ísca Unversdade de São Paulo Proessor: Antono Domngues dos Santos E-mal: adsantos@.usp.br one: 309.6886 4 e 6 de setembro Trabalho e Energa Cnétca º

Leia mais

EXPANSÃO TÉRMICA DOS LÍQUIDOS

EXPANSÃO TÉRMICA DOS LÍQUIDOS Físca II Protocolos das Aulas Prátcas 01 DF - Unversdade do Algarve EXPANSÃO ÉRMICA DOS ÍQUIDOS 1 Resumo Estuda-se a expansão térmca da água destlada e do glcerol utlzando um pcnómetro. Ao aquecer-se,

Leia mais

Alunos(as) que não fizeram a P2, só devem resolver as questões 5, 6, 7 e 8 (P2)

Alunos(as) que não fizeram a P2, só devem resolver as questões 5, 6, 7 e 8 (P2) ATENÇÃO: Alunosas que não fizeram a P, só devem resolver as questões,, 3 e 4 P Alunosas que não fizeram a P, só devem resolver as questões 5, 6, 7 e 8 P Alunosas que fizeram P e P, só devem resolver as

Leia mais

IMPLEMENTAÇÃO DO MÉTODO DE FATORAÇÃO DE INTEIROS CRIVO QUADRÁTICO

IMPLEMENTAÇÃO DO MÉTODO DE FATORAÇÃO DE INTEIROS CRIVO QUADRÁTICO IMPLEMENTAÇÃO DO MÉTODO DE FATORAÇÃO DE INTEIROS CRIVO QUADRÁTICO Alne de Paula Sanches 1 ; Adrana Betâna de Paula Molgora 1 Estudante do Curso de Cênca da Computação da UEMS, Undade Unverstára de Dourados;

Leia mais

Robótica. Prof. Reinaldo Bianchi Centro Universitário FEI 2016

Robótica. Prof. Reinaldo Bianchi Centro Universitário FEI 2016 Robótca Prof. Renaldo Banch Centro Unverstáro FEI 2016 6 a Aula IECAT Objetvos desta aula Momentos Lneares, angulares e de Inérca. Estátca de manpuladores: Propagação de forças e torques. Dnâmca de manpuladores:

Leia mais

Mecânica. Sistemas de Partículas

Mecânica. Sistemas de Partículas Mecânca Sstemas de Partículas Mecânca» Sstemas de Partículas Introdução A dnâmca newtonana estudada até aqu fo utlzada no entendmento e nas prevsões do movmento de objetos puntformes. Objetos dealzados,

Leia mais

F-328 Física Geral III

F-328 Física Geral III F-328 Físca Geral III Aula exploratóra- 06 UNICAMP IFGW username@f.uncamp.br F328 2 o Semestre de 2013 1 Corrente elétrca e resstênca Defnção de corrente: Δq = dq = t+δt Undade de corrente: 1 Ampère =

Leia mais

VIBRAÇÕES DE MOLÉCULAS POLIATÔMICAS

VIBRAÇÕES DE MOLÉCULAS POLIATÔMICAS VIBRAÇÕES DE MOLÉCULAS POLIATÔMICAS Prof. Harley P. Martns Flho Movmentos nucleares Possbldades de movmentação nuclear na molécula de H 2 O: z O x O O y O z H1 z H2 H 1 y H1 H 2 y H2 x H1 x H2 Para descrção

Leia mais

Capítulo 9. Colisões. Recursos com copyright incluídos nesta apresentação:

Capítulo 9. Colisões. Recursos com copyright incluídos nesta apresentação: Capítulo 9 Colsões Recursos com copyrght ncluídos nesta apresentação: http://phet.colorado.edu Denremos colsão como uma nteração com duração lmtada entre dos corpos. Em uma colsão, a orça externa resultante

Leia mais

8. Estudo da não-idealidade da fase líquida

8. Estudo da não-idealidade da fase líquida PQI 58 Fundamentos de Processos em Engenhara Químca II 009 8. Estudo da não-dealdade da fase líquda Assuntos. A le de Raoult. Defnção de atvdade 3. Convenções assmétrcas e a le de Henry 4. Exercícos 8..

Leia mais

GRANDEZAS ELÉTRICAS CONCEITOS BÁSICOS

GRANDEZAS ELÉTRICAS CONCEITOS BÁSICOS MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA CAMPUS DE SÃO JOSÉ CURSO TÉCNICO INTEGRADO EM TELECOMUNICAÇÕES

Leia mais

.FL COMPLEMENTOS DE MECÂNICA. Mecânica. Recuperação de doentes com dificuldades motoras. Desempenho de atletas

.FL COMPLEMENTOS DE MECÂNICA. Mecânica. Recuperação de doentes com dificuldades motoras. Desempenho de atletas COMPLEMENTOS DE MECÂNICA Recuperação e oentes com fculaes motoras Mecânca Desempenho e atletas Construção e prótese e outros spostvos CORPOS EM EQUILÍBRIO A prmera conção e equlíbro e um corpo correspone

Leia mais

Ruído. SEL 371 Sistemas de comunicação. Amílcar Careli César Departamento de Engenharia Elétrica da EESC-USP

Ruído. SEL 371 Sistemas de comunicação. Amílcar Careli César Departamento de Engenharia Elétrica da EESC-USP Ruído SEL 371 Sstemas de comuncação Amílcar Carel César Departamento de Engenhara Elétrca da EESC-USP Atenção! Este materal ddátco é planejado para servr de apoo às aulas de SEL-371 Sstemas de comuncação,

Leia mais

TERMODINÂMICA. Módulo 6 1ª Lei da Termodinâmica Módulo 7 2ª Lei da Termodinâmica

TERMODINÂMICA. Módulo 6 1ª Lei da Termodinâmica Módulo 7 2ª Lei da Termodinâmica TERMODINÂMICA Módulo 6 1ª Lei da Termodinâmica Módulo 7 ª Lei da Termodinâmica 1) Trabalho de um gás () p F A Para F = cte: F p. A F d cos F = cte. p Ad V Variação de Volume d V Ad p = cte. p V Para p

Leia mais