Fone:

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Fone:"

Transcrição

1 Prof. Valdr Gumarães Físca para Engenhara FEP111 ( ) 1º Semestre de 013 nsttuto de Físca- Unversdade de São Paulo Aula 8 Rotação, momento nérca e torque Professor: Valdr Gumarães E-mal: Fone:

2 Prof. Valdr Gumarães Varáves da rotação Neste tópco, trataremos da rotação em torno de um exo fxo no espaço, ou em torno de um exo que se move sem alterar sua dreção no espaço. Corpo Rígdo Exo Fxo Exo de Rotação

3 Prof. Valdr Gumarães Posção angular Seja um corpo rígdo de massa M, que gra em torno de um exo fxo. Cada ponto deste corpo descreve um círculo, cujo rao r é a dstânca entre o ponto e o exo de rotação. A posção angular dessa reta é o ângulo que a reta de referênca faz com a reta fxa. O ângulo é meddo em radandos. Deslocamento angular 1 É postvo no sentdo ant-horáro. Quando o corpo gra de um ângulo dθ, o ponto descreve um arco de comprmento ds ds rd

4 Prof. Valdr Gumarães Velocdade angular A taxa de varação do ângulo é a mesma para todas as posções no corpo e é chamada de velocdade angular ω. Para os valores médos temos: velocdade angular nstantânea S r ds dt ds v r rd dt rd Dvdndo-se por t r d dt d dt v r med t

5 Aceleração angular Prof. Valdr Gumarães Analogamente, a taxa de varação da velocdade angular é a mesma para todas as posções no corpo e é chamada de aceleração angular α. d dt d dt Se α é constante: 0 t t t 0

6 Exemplo Um CD gra, do repouso até 500 rpm, em 5,5 s. (a) Qual a aceleração angular (suposta constante)? (b) Quantas voltas o dsco dá em 5,5 s? (c) Qual a dstânca percorrda por um ponto a 6,0 cm do centro, nestes 5,5 s? (a) (b) 500rpm 500 / 60 5, 36rad 0 t 5,36 0 5, t t ,5(5,5) 9,5rad / s Prof. Valdr Gumarães s 143,7rad =,9 voltas (c) S r 0,06143,7 8, 6m

7 ds Acelerações e velocdades angulares Já vmos que: rd v r Analogamente, para a aceleração tangencal Prof. Valdr Gumarães v r temos: a t dv dt t r t d dt a t r Mas, como o movmento é crcular, exste uma aceleração centrípeta a c v r t t ( rt) r t ac r t

8 Prof. Valdr Gumarães velocdade angular é uma grandeza vetoral

9 Prof. Valdr Gumarães Energa Cnétca Rotaconal A energa cnétca de um corpo rígdo que gra em torno de um exo fxo é a soma das energas cnétcas das partículas ndvduas que consttuem o corpo. Para a esma partícula, de massa m e velocdade v, temos: 1 K mv Somando todas as partes, obtemos a energa cnétca do corpo: K 1 m v 1 1 m r mr momento de nérca () m r Energa Cnétca Rotaconal K 1

10 Prof. Valdr Gumarães Exemplo Um corpo consste de 4 partículas pontuas, com massas m, lgadas por hastes sem massa. O sstema gra com velocdade angular ω em torno do centro do corpo. (a)determne o momento de nérca do corpo. (b)determne a energa cnétca do corpo. m r 4ma Energa Cnétca Rotaconal K 1 Repetr os cálculos para a confguração ao lado. m r m a 8ma 1 K K 4ma K ma

11 Prof. Valdr Gumarães Cálculos do Momento de nérca Para sstemas dscretos: m r Corpos contínuos Se subdvdrmos o corpo em pequenas porções, no lmte quando a massa de cada porção va a zero, a somatóra acma se transforma na ntegral: r dm Onde r é a dstânca ao exo, de cada parcela dm do corpo.

12 Prof. Valdr Gumarães Momento de nérca de uma barra Barra fna de comprmento e massa M, Momento de nérca em relação ao exo que passa por sua extremdade. r dm Um pedaço dm da barra, stuado na posção x, ocupa uma extensão dx da barra. Consderando a densdade lnear de massa λ. M M dm dx r x M dx M M M x M M x dx x dx

13 Prof. Valdr Gumarães exo no centro da barra. dm r / / / / dx x M dx M x 1 3 / 3 / 3 / / / 3 M M M x M Momento de nérca de uma barra dx M dx dm r x

14 Prof. Valdr Gumarães Momento de nérca de um anel Calcule o momento de nérca de um anel crcular de rao R e massa M, em relação ao exo que passa perpendcularmente por seu centro. r dm Todos os pedaços dm do anel, estão stuados a uma mesma dstânca R do exo. R dm R dm MR

15 Momento de nérca de um dsco Calcule o momento de nérca de um dsco homogêneo de rao R e massa M, em relação ao exo que passa perpendcularmente por seu centro. r dm Prof. Valdr Gumarães Podemos subdvdr o dsco em uma sére de anés concentrcos. Cada anel tem uma massa dm, rao r e espessura dr. Consderando a densdade superfcal de massa σ. M r dm dr r M R M dm R rdr R 0 R 4 4 M M 3 M r M R MR r rdr r dr R R R 4 R 4 0 R 0

16 Prof. Valdr Gumarães Momento de nérca de um clndro momento de nérca de um clndro macço homogêneo de rao R e massa M, em relação ao seu exo. r dm Podemos subdvdr o clndro em uma sére de dscos paralelos. Como todos os dscos são equvalentes, podemos consderar o momento de nérca do clndro como gual ao dos dscos. MR

17 Alguns momentos de nérca Prof. Valdr Gumarães

18 Prof. Valdr Gumarães Teorema dos Exos Paralelos Este teorema permte que se calcule o momento de nérca de um corpo de massa M em relação a um exo qualquer, a partr do seu valor para o centro de massa, sabendo-se a dstânca h entre os dos exos. r dm cm Mh

19 Prof. Valdr Gumarães Exemplo: CM M 1 h cm Mh M 1 M M 3

20 Prof. Valdr Gumarães Demonstração do Teorema dos Exos Paralelos Vamos calcular a energa cnétca de rotação para o exo paralelo do corpo de massa M ao lado, quando grando com velocdade ω. K 1 A energa cnétca de rotação um corpo pode ser escrta como a energa cnétca de rotação em relação ao CM mas a energa de translação do CM. 1 K 1 K rotação K CM 1 1 cm cm Mvcm translaçao CM

21 Prof. Valdr Gumarães Demonstração do Teorema dos Exos Paralelos cm cm Mv cm Mas, v cm h e cm 1 1 cm 1 Mh cm Mh

22 Teorema dos Exos Paralelos Prof. Valdr Gumarães Vamos calcular o momento de nérca do corpo ao lado. Mas ncalmente, calcularemos o momento de nérca de uma espra de massa m e rao R, através do exo que passa por seu cento de massa. m R dm dl m R Rd / / m mr mr 4 ( Rcos ) Rd (cos ) d cm R 0 0

23 Teorema dos Exos Paralelos Prof. Valdr Gumarães Vamos calcular o momento de nérca do corpo ao lado. Mas ncalmente, calcularemos o momento de nérca de uma espra de massa m e rao R, através do exo que passa por seu cento de massa. m R dm dl m R Rd 4 / 0 ( Rcos ) m R Rd mr / 0 (cos ) d mr cm Mas, se esta espra estver com seu exo a uma dstânca l do exo prncpal, ela contrburá para o momento de nérca total, com M M dm dl dl R d dml d dm R / / Mdl R M dl l MR M 1 M dl l

24 Exemplo Prof. Valdr Gumarães Uma barra de comprmento e massa M, artculada em sua extremdade, é largada do repouso, da posção horzontal. Determne: (a) a sua velocdade angular, na posção vertcal M 3 U 0 U f Mgy cm Mg( Consderando o sstema como sendo consttuído pela barra, pvô e a Terra, temos conservação da energa mecânca, então K U K f U f ) 1 0 Mgy cm 1 M 0 Mg 3 3g

25 Prof. Valdr Gumarães (b) a força exercda pelo pvô sobre a barra (barra na vertcal). F 0 Mg Ma c M F 0 M g 3g 5Mg (c) a velocdade angular ncal necessára para a barra chegar até uma posção vertcal superor. K U K f U f 1 M Mg( 3 1 Mgycm ) 0 0 3g

26 Prof. Valdr Gumarães Um objeto de massa m está suspenso por um fo de massa m corda que fo enrolado na pola, que tem rao R e massa m r. Suponha que toda a massa da pola esteja em sua borda e que no nstante ncal o corpo esteja em repouso e o fo enrolado. Determne qual a velocdade do corpo quando ele tver caído de uma dstânca d. conservação da energa mecânca K U 0 Com: 1 K f U m 1 f pola m R corda v 1 mv m * corda mg( d) m d m corda * corda g( d / ) U 0 d v (m ( m corda mcordad ) gd m m ) pola U f mg( d)

27 Prof. Valdr Gumarães Torque Já vmos a Segunda e de Newton, onde a resultante das forças externas provoca a aceleração do centro de massa de sstemas. Porém, quando a lnha de ação das forças externas não passa pelo centro de massa, temos um segundo efeto, que é a rotação do sstema. Esta rotação é acelerada. Assm, temos o equvalente à Segunda e de Newton, para a rotação.

28 Prof. Valdr Gumarães Consdere uma partícula de massa m, presa a uma barra de comprmento r. Uma força F é aplcada à partícula, como na fgura. Para a componente tangencal da força, temos: Ft ma t Onde, F t Fsen a t r Usando-se que a equação por r, temos: rf t mr e multplcando Torque em relação ao exo de rotação A mr

29 Prof. Valdr Gumarães Um corpo rígdo que gra em torno de um exo fxo é uma coleção de partículas, com as mesmas velocdade e aceleração angulares. m r Somando sobre todas as partículas do corpo, temos: mr ( mr ) Para corpos extensos: d r dm ( r dm) ext res Segunda e de Newton para a rotação

30 Prof. Valdr Gumarães Para rotações, o que nos nteressa são as componentes tangencas da força ou da alavanca. l é o braço de alavanca (dstânca entre a lnha de ação da força e o exo de rotação nha de ação da força Fl F r sn ou r F t F sn r F r sn Torque postvo sentdo ant-horáro (aumento do ângulo)

31 Consdere um corpo extenso de massa M, apoado pelo exo A e submetdo à força gravtaconal. Prof. Valdr Gumarães O torque sobre cada partícula consttunte será: Fr m gx O torque total sobre o corpo será a soma dos torques sobre todas as partículas consttuntes ext res m gx ( m x ) g Mx cm g Px cm x cm m1 x m 1 1 m m x m x M

32 Exemplo Prof. Valdr Gumarães Uma bccleta ergométrca possu uma roda com grande massa (,4 kg) e rao R= 35 cm. Aplca-se uma força de 18 N a uma dstânca de 7 cm do exo da roda. Após 5 s, qual é a velocdade angular da roda? 0 t t ext Fr res R 0.35m r 0.07m Fr Fr MR t Fr t 5 MR,4 (0.35) Momento de nérca de um anel, com exo de rotação no centro. 1rad / s MR

33 Prof. Valdr Gumarães Jogo de Snuca Um taco atnge uma bola de blhar em um ponto a uma dstânca d acma do centro da bola. Determne o valor de d para que a bola role, sem deslzar. esfera ( /5) MR F d Vamos aplcar a Segunda e de Newton à bola (rotação e translação). (o peso e a normal na bola, não geram torque) ext Fd F F ma cm a cm m Fd rotação Com Translação a cm R F m R Fd d mr ( / 5) mr mr d R 5

34 Prof. Valdr Gumarães

F-128 Física Geral I. Aula exploratória-11b UNICAMP IFGW

F-128 Física Geral I. Aula exploratória-11b UNICAMP IFGW F-18 Físca Geral I Aula exploratóra-11b UNICAMP IFGW username@f.uncamp.br Momento Angular = r p O momento angular de uma partícula de momento em relação ao ponto O é: p (Note que a partícula não precsa

Leia mais

Física I. Aula 9 Rotação, momento inércia e torque

Física I. Aula 9 Rotação, momento inércia e torque Físca º Semeste de 01 nsttuto de Físca- Unvesdade de São Paulo Aula 9 Rotação, momento néca e toque Pofesso: Vald Gumaães E-mal: valdg@f.usp.b Fone: 091.7104 Vaáves da otação Neste tópco, tataemos da otação

Leia mais

Dinâmica do Movimento de Rotação

Dinâmica do Movimento de Rotação Dnâmca do Movmento de Rotação - ntrodução Neste Capítulo vamos defnr uma nova grandeza físca, o torque, que descreve a ação gratóra ou o efeto de rotação de uma força. Verfcaremos que o torque efetvo que

Leia mais

F-128 Física Geral I. Aula exploratória-10b UNICAMP IFGW

F-128 Física Geral I. Aula exploratória-10b UNICAMP IFGW F-18 Físca Geral I Aula exploratóra-10b UNICAMP IFGW username@f.uncamp.br O teorema dos exos paralelos Se conhecermos o momento de nérca I CM de um corpo em relação a um exo que passa pelo seu centro de

Leia mais

Física I para Oceanografia FEP111 ( ) Aula 10 Rolamento e momento angular

Física I para Oceanografia FEP111 ( ) Aula 10 Rolamento e momento angular Físca para Oceanograa FEP (4300) º Semestre de 0 nsttuto de Físca- Unversdade de São Paulo Aula 0 olamento e momento angular Proessor: Valdr Gumarães E-mal: valdr.gumaraes@usp.br Fone: 309.704 olamento

Leia mais

Física Geral I - F Aula 12 Momento Angular e sua Conservação. 2º semestre, 2012

Física Geral I - F Aula 12 Momento Angular e sua Conservação. 2º semestre, 2012 Físca Geral I - F -18 Aula 1 Momento Angular e sua Conservação º semestre, 01 Momento Angular Como vmos anterormente, as varáves angulares de um corpo rígdo grando em torno de um exo fxo têm sempre correspondentes

Leia mais

S.A. 1. 2002; TIPLER, P. A.; MOSCA, G.

S.A. 1. 2002; TIPLER, P. A.; MOSCA, G. Rotação Nota Alguns sldes, fguras e exercícos pertencem às seguntes referêncas: HALLIDAY, D., RESNICK, R., WALKER, J. Fundamentos da Físca. V 1. 4a.Edção. Ed. Lvro Técnco Centífco S.A. 00; TIPLER, P. A.;

Leia mais

Capítulo 9 Rotação de corpos rígidos

Capítulo 9 Rotação de corpos rígidos Capítulo 9 Rotação de corpos rígdos Defnção de corpo rígdo (CR): um sstema de partículas especal, cuja estrutura é rígda, sto é, cuja forma não muda, para o qual duas partes sempre estão gualmente dstantes

Leia mais

Robótica. Prof. Reinaldo Bianchi Centro Universitário FEI 2016

Robótica. Prof. Reinaldo Bianchi Centro Universitário FEI 2016 Robótca Prof. Renaldo Banch Centro Unverstáro FEI 2016 6 a Aula IECAT Objetvos desta aula Momentos Lneares, angulares e de Inérca. Estátca de manpuladores: Propagação de forças e torques. Dnâmca de manpuladores:

Leia mais

Consideraremos agora, uma de cada vez, as equivalentes angulares das grandezas de posição, deslocamento, velocidade e aceleração.

Consideraremos agora, uma de cada vez, as equivalentes angulares das grandezas de posição, deslocamento, velocidade e aceleração. CAPÍTULO 5 77 5.1 Introdução A cnemátca dos corpos rígdos trata dos movmentos de translação e rotação. No movmento de translação pura todas as partes de um corpo sofrem o mesmo deslocamento lnear. Por

Leia mais

3. Um protão move-se numa órbita circular de raio 14 cm quando se encontra. b) Qual o valor da velocidade linear e da frequência ciclotrónica do

3. Um protão move-se numa órbita circular de raio 14 cm quando se encontra. b) Qual o valor da velocidade linear e da frequência ciclotrónica do Electromagnetsmo e Óptca Prmero Semestre 007 Sére. O campo magnétco numa dada regão do espaço é dado por B = 4 e x + e y (Tesla. Um electrão (q e =.6 0 9 C entra nesta regão com velocdade v = e x + 3 e

Leia mais

4 Sistemas de partículas

4 Sistemas de partículas 4 Sstemas de partículas Nota: será feta a segunte convenção: uma letra em bold representa um vector,.e. b b Nesta secção estudaremos a generalzação das les de Newton a um sstema de váras partículas e as

Leia mais

Capítulo 24: Potencial Elétrico

Capítulo 24: Potencial Elétrico Capítulo 24: Potencal Energa Potencal Elétrca Potencal Superfíces Equpotencas Cálculo do Potencal a Partr do Campo Potencal Produzdo por uma Carga Pontual Potencal Produzdo por um Grupo de Cargas Pontuas

Leia mais

Física I p/ IO FEP111 ( )

Física I p/ IO FEP111 ( ) ísca I p/ IO EP (4300) º Semestre de 00 Insttuto de ísca Unversdade de São Paulo Proessor: Antono Domngues dos Santos E-mal: adsantos@.usp.br one: 309.6886 4 e 6 de setembro Trabalho e Energa Cnétca º

Leia mais

Deslocamento, velocidade e aceleração angular. s r

Deslocamento, velocidade e aceleração angular. s r Rotação Deslocamento, velocidade e aceleração angular s r s r O comprimento de uma circunferência é πr que corresponde um ângulo de π rad (uma revolução) ( rad) (deg ou graus) 180 Exemplo 0 60 3 rad Porque

Leia mais

Referências bibliográficas: H. 31-5, 31-6 S. 29-7, 29-8 T Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Física

Referências bibliográficas: H. 31-5, 31-6 S. 29-7, 29-8 T Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Física Unversdade Federal do Paraná Setor de êncas Exatas epartamento de Físca Físca III Prof. r. Rcardo Luz Vana Referêncas bblográfcas: H. 31-5, 31-6 S. 9-7, 9-8 T. 5-4 ula - Le de mpère ndré Mare mpère (*

Leia mais

Física I. Aula 5 Energia Potencial e Conservação de energia

Física I. Aula 5 Energia Potencial e Conservação de energia ísca I º Semestre de 3 Insttuto de ísca- Unversdade de São Paulo Aula 5 Energa Potencal e Conservação de energa Proessor: Valdr Gumarães E-mal: valdrg@.usp.br one: 39.74 Energa Potencal O trabalho está

Leia mais

Trabalho e Energia. Definimos o trabalho W realizado pela força sobre uma partícula como o produto escalar da força pelo deslocamento.

Trabalho e Energia. Definimos o trabalho W realizado pela força sobre uma partícula como o produto escalar da força pelo deslocamento. Trabalho e Energa Podemos denr trabalho como a capacdade de produzr energa. Se uma orça eecutou um trabalho sobre um corpo ele aumentou a energa desse corpo de. 1 OBS: Quando estudamos vetores vmos que

Leia mais

Laboratório de Mecânica Aplicada I Estática: Roldanas e Equilíbrio de Momentos

Laboratório de Mecânica Aplicada I Estática: Roldanas e Equilíbrio de Momentos Laboratóro de Mecânca Aplcada I Estátca: Roldanas e Equlíbro de Momentos 1 Introdução O conhecmento das condções de equlíbro de um corpo é mprescndível em númeras stuações. Por exemplo, o estudo do equlíbro

Leia mais

Prof. Anderson Coser Gaudio Departamento de Física Centro de Ciências Exatas Universidade Federal do Espírito Santo

Prof. Anderson Coser Gaudio Departamento de Física Centro de Ciências Exatas Universidade Federal do Espírito Santo POLEMS ESOLVDOS DE FÍSC Prof. nderson Coser Gaudo Departamento de Físca Centro de Cêncas Eatas Unversdade Federal do Espírto Santo http://www.cce.ufes.br/anderson anderson@npd.ufes.br Últma atualação:

Leia mais

INTRODUÇÃO À ASTROFÍSICA

INTRODUÇÃO À ASTROFÍSICA Introdução à Astrofísca INTRODUÇÃO À ASTROFÍSICA LIÇÃO 7: A MECÂNICA CELESTE Lção 6 A Mecânca Celeste O que vmos até agora fo um panorama da hstóra da astronoma. Porém, esse curso não pretende ser de dvulgação

Leia mais

CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES

CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES 2012 1 a QUESTÃO Valor: 1,00 Sentdo de rotaçãoo do corpo y orça 30 º x orça solo Um corpo de 4 kg está preso a um o e descreve

Leia mais

Mecânica. Sistemas de Partículas

Mecânica. Sistemas de Partículas Mecânca Sstemas de Partículas Mecânca» Sstemas de Partículas Introdução A dnâmca newtonana estudada até aqu fo utlzada no entendmento e nas prevsões do movmento de objetos puntformes. Objetos dealzados,

Leia mais

CONSERVAÇÃO DO MOMENTO ANGULAR

CONSERVAÇÃO DO MOMENTO ANGULAR Aula 9 CONSEVAÇÃO DO MOMENTO ANGULA META ntroduzr a tercera grande le de conservação da mecânca, que é a le de Conservação do Momento Angular. Mostrar como resolver os problemas de cnemátca e dnâmca envolvendo

Leia mais

Universidade Salvador UNIFACS Cursos de Engenharia Cálculo IV Profa: Ilka Rebouças Freire. Integrais Múltiplas

Universidade Salvador UNIFACS Cursos de Engenharia Cálculo IV Profa: Ilka Rebouças Freire. Integrais Múltiplas Unversdade Salvador UNIFACS Cursos de Engenhara Cálculo IV Profa: Ilka ebouças Frere Integras Múltplas Texto 3: A Integral Dupla em Coordenadas Polares Coordenadas Polares Introduzremos agora um novo sstema

Leia mais

MECÂNICA CLÁSSICA. AULA N o 7. Teorema de Liouville Fluxo no Espaço de Fases Sistemas Caóticos Lagrangeano com Potencial Vetor

MECÂNICA CLÁSSICA. AULA N o 7. Teorema de Liouville Fluxo no Espaço de Fases Sistemas Caóticos Lagrangeano com Potencial Vetor 1 MECÂNICA CLÁSSICA AULA N o 7 Teorema de Louvlle Fluo no Espaço de Fases Sstemas Caótcos Lagrangeano com Potencal Vetor Voltando mas uma ve ao assunto das les admssíves na Físca, acrescentamos que, nos

Leia mais

F r. PASES 2 a ETAPA TRIÊNIO o DIA GAB. 1 5 FÍSICA QUESTÕES DE 11 A 20

F r. PASES 2 a ETAPA TRIÊNIO o DIA GAB. 1 5 FÍSICA QUESTÕES DE 11 A 20 PSES 2 a ETP TRIÊNIO 2004-2006 1 o DI G. 1 5 FÍSI QUESTÕES DE 11 20 11. onsdere um sstema consttuído por duas partículas. Uma das partículas está ncalmente se movendo e colde nelastcamente com a outra

Leia mais

FEP Física para Engenharia II. Prova P1 - Gabarito

FEP Física para Engenharia II. Prova P1 - Gabarito FEP2196 - Física para Engenharia II Prova P1 - Gabarito 1. Um cilindro de massa M e raio R rola sem deslizar no interior de um cilindro de raio 2R mantido fixo. O cilindro menor é solto a partir do repouso

Leia mais

Física. Setor A. Índice-controle de Estudo. Prof.: Aula 37 (pág. 88) AD TM TC. Aula 38 (pág. 88) AD TM TC. Aula 39 (pág.

Física. Setor A. Índice-controle de Estudo. Prof.: Aula 37 (pág. 88) AD TM TC. Aula 38 (pág. 88) AD TM TC. Aula 39 (pág. ísca Setor Prof.: Índce-controle de Estudo ula 37 (pág. 88) D TM TC ula 38 (pág. 88) D TM TC ula 39 (pág. 88) D TM TC ula 40 (pág. 91) D TM TC ula 41 (pág. 94) D TM TC ula 42 (pág. 94) D TM TC ula 43 (pág.

Leia mais

Capítulo 9. Colisões. Recursos com copyright incluídos nesta apresentação:

Capítulo 9. Colisões. Recursos com copyright incluídos nesta apresentação: Capítulo 9 Colsões Recursos com copyrght ncluídos nesta apresentação: http://phet.colorado.edu Denremos colsão como uma nteração com duração lmtada entre dos corpos. Em uma colsão, a orça externa resultante

Leia mais

Física. Física Módulo 1. Sistemas de Partículas e Centro de Massa. Quantidade de movimento (momento) Conservação do momento linear

Física. Física Módulo 1. Sistemas de Partículas e Centro de Massa. Quantidade de movimento (momento) Conservação do momento linear Físca Módulo 1 Ssteas de Partículas e Centro de Massa Quantdade de ovento (oento) Conservação do oento lnear Partículas e ssteas de Partículas Átoos, Bolnhas de gude, Carros e até Planetas... Até agora,

Leia mais

Cap. 6 - Energia Potencial e Conservação da Energia Mecânica

Cap. 6 - Energia Potencial e Conservação da Energia Mecânica Unversdade Federal do Ro de Janero Insttuto de Físca Físca I IGM1 014/1 Cap. 6 - Energa Potencal e Conservação da Energa Mecânca Prof. Elvs Soares 1 Energa Potencal A energa potencal é o nome dado a forma

Leia mais

Aula 6: Corrente e resistência

Aula 6: Corrente e resistência Aula 6: Corrente e resstênca Físca Geral III F-328 1º Semestre 2014 F328 1S2014 1 Corrente elétrca Uma corrente elétrca é um movmento ordenado de cargas elétrcas. Um crcuto condutor solado, como na Fg.

Leia mais

Física I para Engenharia. Aula 5 Trabalho Energia Potencial

Física I para Engenharia. Aula 5 Trabalho Energia Potencial ísca I para Engenhara º Semestre de 4 Insttuto de ísca- Unversdade de São Paulo Aula 5 Trabalho Energa Potencal Proessor: Valdr Gumarães E-mal: valdrg@.usp.br Trabalho realzado por uma orça constante

Leia mais

EXERCÍCIOS DE RECUPERAÇÃO PARALELA 4º BIMESTRE

EXERCÍCIOS DE RECUPERAÇÃO PARALELA 4º BIMESTRE EXERCÍCIOS DE RECUERAÇÃO ARALELA 4º BIMESTRE NOME Nº SÉRIE : 2º EM DATA : / / BIMESTRE 4º ROFESSOR: Renato DISCILINA: Físca 1 VISTO COORDENAÇÃO ORIENTAÇÕES: 1. O trabalho deverá ser feto em papel almaço

Leia mais

Translação e Rotação Energia cinética de rotação Momentum de Inércia Torque. Física Geral I ( ) - Capítulo 07. I. Paulino*

Translação e Rotação Energia cinética de rotação Momentum de Inércia Torque. Física Geral I ( ) - Capítulo 07. I. Paulino* ROTAÇÃO Física Geral I (1108030) - Capítulo 07 I. Paulino* *UAF/CCT/UFCG - Brasil 2012.2 1 / 25 Translação e Rotação Sumário Definições, variáveis da rotação e notação vetorial Rotação com aceleração angular

Leia mais

2010 The McGraw-Hill Companies, Inc. All rights reserved. Prof.: Anastácio Pinto Gonçalves Filho

2010 The McGraw-Hill Companies, Inc. All rights reserved. Prof.: Anastácio Pinto Gonçalves Filho rof.: nastáco nto Gonçalves lho Introdução Nem sempre é possível tratar um corpo como uma únca partícula. Em geral, o tamanho do corpo e os pontos de aplcação específcos de cada uma das forças que nele

Leia mais

(note que não precisa de resolver a equação do movimento para responder a esta questão).

(note que não precisa de resolver a equação do movimento para responder a esta questão). Mestrado Integrado em Engenhara Aeroespacal Mecânca e Ondas 1º Ano -º Semestre 1º Teste 31/03/014 18:00h Duração do teste: 1:30h Lea o enuncado com atenção. Justfque todas as respostas. Identfque e numere

Leia mais

1 P r o j e t o F u t u r o M i l i t a r w w w. f u t u r o m i l i t a r. c o m. b r

1 P r o j e t o F u t u r o M i l i t a r w w w. f u t u r o m i l i t a r. c o m. b r F Físca 1998 1. Um certo calorímetro contém 80 gramas de água à temperatura de 15 O C. dconando-se à água do calorímetro 40 gramas de água a 50 O C, observa-se que a temperatura do sstema, ao ser atngdo

Leia mais

UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena EEL

UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena EEL UNIVERSIDADE DE SÃO PAULO Escola de Engenhara de Lorena EEL LOB1053 - FÍSICA III Prof. Dr. Durval Rodrgues Junor Departamento de Engenhara de Materas (DEMAR) Escola de Engenhara de Lorena (EEL) Unversdade

Leia mais

Capítulo 30: Indução e Indutância

Capítulo 30: Indução e Indutância Capítulo 3: Indução e Indutânca Índce Fatos xpermentas; A e de Faraday; A e de enz; Indução e Tranferênca de nerga; Campos létrcos Induzdos; Indutores e Indutânca; Auto-ndução; Crcuto ; nerga Armazenada

Leia mais

γ = C P C V = C V + R = q = 2 γ 1 = 2 S gas = dw = W isotermico

γ = C P C V = C V + R = q = 2 γ 1 = 2 S gas = dw = W isotermico Q1 Um clndro feto de materal com alta condutvdade térmca e de capacdade térmca desprezível possu um êmbolo móvel de massa desprezível ncalmente fxo por um pno. O rao nterno do clndro é r = 10 cm, a altura

Leia mais

d) [1,0 pt.] Determine a velocidade v(t) do segundo corpo, depois do choque, em relação à origem O do sistema de coordenadas mostrado na figura.

d) [1,0 pt.] Determine a velocidade v(t) do segundo corpo, depois do choque, em relação à origem O do sistema de coordenadas mostrado na figura. 1) Uma barra delgada homogênea de comprimento L e massa M está inicialmente em repouso como mostra a figura. Preso a uma de suas extremidades há um objeto de massa m e dimensões desprezíveis. Um segundo

Leia mais

Órion MARATONA UFG FÍSICA. (Leonardo) NOME: Lista 03

Órion MARATONA UFG FÍSICA. (Leonardo) NOME: Lista 03 Óron ARATOA UFG FÍSICA (Leonardo) O: Lsta 03 01 - (FABC) A fgura representa um longo fo retlíneo percorrdo por uma corrente elétrca de ntensdade = 4mA. Podemos afrmar que a ntensdade do campo magnétco

Leia mais

Matemática. Veículo A. Veículo B. Os gráficos das funções interceptam-se quando 50t = 80t

Matemática. Veículo A. Veículo B. Os gráficos das funções interceptam-se quando 50t = 80t Matemátca 0 Dos veículos, A e B, partem de um ponto de uma estrada, em sentdos opostos e com velocdades constantes de 50km/h e 70km/h, respectvamente Após uma hora, o veículo B retorna e, medatamente,

Leia mais

Física. Física Módulo 1 Vetores, escalares e movimento em 2-D

Física. Física Módulo 1 Vetores, escalares e movimento em 2-D Físca Módulo 1 Vetores, escalares e movmento em 2-D Vetores, Escalares... O que são? Para que servem? Por que aprender? Escalar Defnção: Escalar Grandea sem dreção assocada. Eemplos: Massa de uma bola,

Leia mais

As variáveis de rotação

As variáveis de rotação Capítulo 10 Rotação Neste capítulo vamos estudar o movimento de rotação de corpos rígidos sobre um eixo fixo. Para descrever esse tipo de movimento, vamos introduzir os seguintes conceitos novos: -Deslocamento

Leia mais

Notas de Aula de Física

Notas de Aula de Física Versão prelmnar 7 de setembro de Notas de Aula de Físca 7. TRABAO E ENERGIA CINÉTICA... MOVIMENTO EM UMA DIMENSÃO COM FORÇA CONSTANTE... TRABAO EXECUTADO POR UMA FORÇA VARIÁVE... Análse undmensonal...

Leia mais

Curvas Horizontais e Verticais

Curvas Horizontais e Verticais Insttução: Faculdade de Tecnologa e Cêncas Professor: Dego Queroz de Sousa Dscplna: Topografa Curvas Horzontas e ertcas 1. Introdução Exstem dversas ocasões na engenhara em que os projetos são desenvolvs

Leia mais

G3 FIS /06/2013 MECÂNICA NEWTONIANA B NOME:

G3 FIS /06/2013 MECÂNICA NEWTONIANA B NOME: G3 FIS1026 17/06/2013 MECÂNICA NEWTONIANA B NOME: Matrícula: TURMA: QUESTÃO VALOR GRAU REVISÃO 1 3,0 2 3,5 3 3,5 Total 10,0 Dados: g = 10 m/s 2 ; Sistema de coordenadas y α constante: Δω = αt; Δθ = ω 0

Leia mais

Equações de Movimento

Equações de Movimento Euações de Movmento Vbrações e Ruído (0375) 06 Departamento de Cêncas Aeroespacas Tópcos Abordagem Newtonana. Prncípo de d Alembert. Abordagem energétca. Prncípo dos trabalhos vrtuas. Euações de Lagrange.

Leia mais

Mecânica Geral Aula 03- Momento de Inércia Bibliografia e Figuras: Halliday, Resnick e Walker, vol 1, 8a Ed. LTC Tipler e Mosca, vol 1, 6a Ed.

Mecânica Geral Aula 03- Momento de Inércia Bibliografia e Figuras: Halliday, Resnick e Walker, vol 1, 8a Ed. LTC Tipler e Mosca, vol 1, 6a Ed. Mecânica Geral Aula 03- Momento de Inércia Bibliografia e Figuras: Halliday, Resnick e Walker, vol 1, 8a Ed. LTC Tipler e Mosca, vol 1, 6a Ed. Prof. Ettore Baldini-Neto baldini@uninove.br Nas aulas anteriores

Leia mais

Aula 10: Corrente elétrica

Aula 10: Corrente elétrica Unversdade Federal do Paraná Setor de Cêncas Exatas Departamento de Físca Físca III Prof. Dr. Rcardo Luz Vana Referêncas bblográfcas: H. 28-2, 28-3, 28-4, 28-5 S. 26-2, 26-3, 26-4 T. 22-1, 22-2 Aula 10:

Leia mais

2ª PARTE Estudo do choque elástico e inelástico.

2ª PARTE Estudo do choque elástico e inelástico. 2ª PARTE Estudo do choque elástco e nelástco. Introdução Consderemos dos corpos de massas m 1 e m 2, anmados de velocdades v 1 e v 2, respectvamente, movmentando-se em rota de colsão. Na colsão, os corpos

Leia mais

Capítulo 26: Corrente e Resistência

Capítulo 26: Corrente e Resistência Capítulo 6: Corrente e esstênca Cap. 6: Corrente e esstênca Índce Corrente Elétrca Densdade de Corrente Elétrca esstênca e esstvdade Le de Ohm Uma Vsão Mcroscópca da Le de Ohm Potênca em Crcutos Elétrcos

Leia mais

2 - Análise de circuitos em corrente contínua

2 - Análise de circuitos em corrente contínua - Análse de crcutos em corrente contínua.-corrente eléctrca.-le de Ohm.3-Sentdos da corrente: real e convenconal.4-fontes ndependentes e fontes dependentes.5-assocação de resstêncas; Dvsores de tensão;

Leia mais

Profº Carlos Alberto

Profº Carlos Alberto Rotação Disciplina: Mecânica Básica Professor: Carlos Alberto Objetivos de aprendizagem Ao estudar este capítulo você aprenderá: Como descrever a rotação de um corpo rígido em termos da coordenada angular,

Leia mais

Vibrações e Dinâmica das Máquinas Aula - Cinemática. Professor: Gustavo Silva

Vibrações e Dinâmica das Máquinas Aula - Cinemática. Professor: Gustavo Silva Vibrações e Dinâmica das Máquinas Aula - Cinemática Professor: Gustavo Silva 1 Cinemática do Movimento Plano de um Corpo Rígido 1 Movimento de um corpo rígido; 2 Translação; 3 Rotação em torno de um eixo

Leia mais

Considerando a variação temporal do momento angular de um corpo rígido que gira ao redor de um eixo fixo, temos:

Considerando a variação temporal do momento angular de um corpo rígido que gira ao redor de um eixo fixo, temos: Segunda Lei de Newton para Rotações Considerando a variação temporal do momento angular de um corpo rígido que gira ao redor de um eixo fixo, temos: L t = I ω t e como L/ t = τ EXT e ω/ t = α, em que α

Leia mais

Física I para Engenharia IFUSP P3-18/07/2014

Física I para Engenharia IFUSP P3-18/07/2014 Física I para Engenharia IFUSP - 43195 P3-18/0/014 A prova tem duração de 10 minutos. Resolva cada questão na folha correspondente. Use o verso se necessário. Escreva de forma legível, a lápis ou tinta.

Leia mais

Aula da prática 8 Colisões em uma dimensão. Prof. Paulo Vitor de Morais

Aula da prática 8 Colisões em uma dimensão. Prof. Paulo Vitor de Morais Aula da prática 8 Colisões em uma dimensão Prof. Paulo Vitor de Morais O que é Energia? De forma simplificada: Energia é uma grandeza escalar associada ao estado de um ou mais objetos! Também podemos dizer

Leia mais

Universidade São Judas Tadeu Faculdade de Tecnologia e Ciências Exatas Cursos de Engenharia

Universidade São Judas Tadeu Faculdade de Tecnologia e Ciências Exatas Cursos de Engenharia Unversdade São Judas Tadeu Faculdade de Tecnologa e Cêncas Exatas Cursos de Engenhara Laboratóro de Físca Mesa de Forças Autor: Prof. Luz de Olvera Xaver F r = + = F1 + F + F1. F.cosα = ϕ β α BANCADA:

Leia mais

Halliday & Resnick Fundamentos de Física

Halliday & Resnick Fundamentos de Física Halliday & Resnick Fundamentos de Física Mecânica Volume 1 www.grupogen.com.br http://gen-io.grupogen.com.br O GEN Grupo Editorial Nacional reúne as editoras Guanabara Koogan, Santos, Roca, AC Farmacêutica,

Leia mais

lb d pol Para o trecho CB temos: pol Resposta: A tensão de cisalhamento no trecho AC é de 27,2 ksi e no trecho CB é de 10,9 ksi.

lb d pol Para o trecho CB temos: pol Resposta: A tensão de cisalhamento no trecho AC é de 27,2 ksi e no trecho CB é de 10,9 ksi. 1) O exo macço de 1,5 de dâmetro é usado para transmtr os torques aplcados às engrenagens. Determnar a tensão de csalhamento desenvolvda nos trechos AC e CB do exo. Para o trecho AC temos: T 1500.pés 1500

Leia mais

Física I para a Escola Politécnica ( ) - P3 (07/07/2017)

Física I para a Escola Politécnica ( ) - P3 (07/07/2017) Física I para a Escola Politécnica (433101) - P3 (07/07/017) [0000]-p1/9 QUESTÕES DE MÚLTIPLA-ESCOLHA (1-4) (1) [1,0] Uma bola de sinuca de raio r rola sem deslizar do topo de um domo esférico com raio

Leia mais

Indutores ou bobinas: criam campos magnéticos numa dada região do circuito.

Indutores ou bobinas: criam campos magnéticos numa dada região do circuito. Unversdade Federal do Paraná Setor de Cêncas Exatas Departamento de Físca Físca III - Prof. Dr. Rcardo Luz Vana Referêncas bblográfcas: H. 33-2, 33-3, 33-4, 33-5, 33-6 S. 31-3, 31-4, 31-5 T. 26-7, 26-8,

Leia mais

1. Movimento Harmônico Simples

1. Movimento Harmônico Simples Física Oscilações 1. Movimento Harmônico Simples Vamos analisar inicialmente a situação em que há um corpo de massa m, preso a uma mola de constante elástica K que realiza oscilações em torno de seu ponto

Leia mais

Curso Física 1. Aula Dinâmica de Rotação de um Corpo Rígido

Curso Física 1. Aula Dinâmica de Rotação de um Corpo Rígido Curso Física Aula - 8 Dinâmica de Rotação de um Corpo Rígido Torque, Definição: Torque,, é a tendência de uma força causar rotação num objeto ao redor de um determinado eixo. Seja F uma força agindo

Leia mais

Conhecimentos Específicos

Conhecimentos Específicos PROCESSO SELETIVO 010 13/1/009 INSTRUÇÕES 1. Confra, abaxo, o seu número de nscrção, turma e nome. Assne no local ndcado. Conhecmentos Específcos. Aguarde autorzação para abrr o caderno de prova. Antes

Leia mais

Física Geral I - F Aula 13 Conservação do Momento Angular e Rolamento. 2 0 semestre, 2010

Física Geral I - F Aula 13 Conservação do Momento Angular e Rolamento. 2 0 semestre, 2010 Físca Geal - F -18 Aula 13 Consevação do Momento Angula e Rolamento 0 semeste, 010 Consevação do momento angula No sstema homem - haltees só há foças ntenas e, potanto: f f z constante ) ( f f Com a apoxmação

Leia mais

Análise Dinâmica de uma Viga de Euler-Bernoulli Submetida a Impacto no Centro após Queda Livre Através do Método de Diferenças Finitas

Análise Dinâmica de uma Viga de Euler-Bernoulli Submetida a Impacto no Centro após Queda Livre Através do Método de Diferenças Finitas Proceedng Seres of the Brazlan Socety of Appled and Computatonal Mathematcs, Vol. 4, N., 06. Trabalho apresentado no DINCON, Natal - RN, 05. Proceedng Seres of the Brazlan Socety of Computatonal and Appled

Leia mais

Exercícios de Física. Prof. Panosso. Fontes de campo magnético

Exercícios de Física. Prof. Panosso. Fontes de campo magnético 1) A fgura mostra um prego de ferro envolto por um fo fno de cobre esmaltado, enrolado mutas vezes ao seu redor. O conjunto pode ser consderado um eletroímã quando as extremdades do fo são conectadas aos

Leia mais

Física Geral I - F -128. Aula 14 Conservação do Momento Angular; Rolamento. 2º semestre, 2012

Física Geral I - F -128. Aula 14 Conservação do Momento Angular; Rolamento. 2º semestre, 2012 Físca Geral - F -18 Aula 14 Conservação do Momento Angular; Rolamento º semestre, 01 Cnemátca de Rotação Varáves Rotaconas Deslocamento angular: Δθ( t) θ( t+δt) θ( t) z Velocdade angular méda Δ ω θ Δt

Leia mais

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012 Notas Processos estocástcos Nestor Catcha 23 de abrl de 2012 notas processos estocástcos 2 O Teorema de Perron Frobenus para matrzes de Markov Consdere um processo estocástco representado por um conunto

Leia mais

Série IV - Momento Angular (Resoluções Sucintas)

Série IV - Momento Angular (Resoluções Sucintas) Mecânica e Ondas, 0 Semestre 006-007, LEIC Série IV - Momento Angular (Resoluções Sucintas) 1. O momento angular duma partícula em relação à origem é dado por: L = r p a) Uma vez que no movimento uniforme

Leia mais

Mecânica Geral II Notas de AULA 3 - Teoria Prof. Dr. Cláudio S. Sartori

Mecânica Geral II Notas de AULA 3 - Teoria Prof. Dr. Cláudio S. Sartori ecânca Geral II otas de UL 3 - Teora Prof. Dr. Cláudo S. Sartor QUILÍBRIO D PRTÍCUL. QUILÍBRIO D CORPOS RÍGIDOS. DIGR D CORPO LIVR. QUILÍBRIO D CORPOS RÍGIDOS 3 DISÕS. QUILÍBRIO D CORPOS RÍGIDOS SUBTIDOS

Leia mais

( ) F 1 pode ser deslocado de. M = r F. Mecânica Geral II Notas de AULA 2 - Teoria Prof. Dr. Cláudio S. Sartori. MOMENTO DE UM BINÁRIO.

( ) F 1 pode ser deslocado de. M = r F. Mecânica Geral II Notas de AULA 2 - Teoria Prof. Dr. Cláudio S. Sartori. MOMENTO DE UM BINÁRIO. ecânca Geral II otas de UL - Teora Prof. Dr. láudo S. Sartor ET DE U IÁI. Duas forças, que tenham o mesmo módulo e lnha de ação paralelas e sentdos opostos formam um bnáro. Decomposção de uma força dada

Leia mais

Física Geral I F Aula 3 Escalares e Vetores. Segundo semestre de 2009

Física Geral I F Aula 3 Escalares e Vetores. Segundo semestre de 2009 Físca Geral I F -128 ula 3 Escalares e Vetores Segundo semestre de 2009 Grandeas Escalares e Vetoras Uma grandea físca é um escalar quando pode ser caracterada apenas por um número, sem necessdade de assocar-lhe

Leia mais

F-328 Física Geral III

F-328 Física Geral III F-328 Físca Geral III Aula exploratóra- 06 UNICAMP IFGW username@f.uncamp.br F328 2 o Semestre de 2013 1 Corrente elétrca e resstênca Defnção de corrente: Δq = dq = t+δt Undade de corrente: 1 Ampère =

Leia mais

t sendo x o espaço percorrido em t segundos e v i a velocidade inicial. A - Uma partícula move-se ao longo da parábola 1 x , para x>0

t sendo x o espaço percorrido em t segundos e v i a velocidade inicial. A - Uma partícula move-se ao longo da parábola 1 x , para x>0 A- Um dado movmento no plano tem a segunte equação de movmento: r(t)=cos(t) u x +sn(t) u y em undades do Sstema Internaconal. a) Determnar a velocdade da partícula no nstante t=π segundos. b) Determnar

Leia mais

LISTA DE EXERCÍCIOS PARA P4

LISTA DE EXERCÍCIOS PARA P4 aculdade de Engenhara "Engenhero Celso Danel" Dscplna: ELETRICIDDE Cclo ásco LIST DE EXERCÍCIOS PR P4 ORMULÁRIO RESISTOR: (t) = I m.cos( [] (t) = R.I m.cos( (t) =.cos( (t) =.cos( [] R INDUTOR: (t) = I

Leia mais

Segunda Prova de Física I, Turma MAA+MAI 8h-10h, 30 de novembro de 2011

Segunda Prova de Física I, Turma MAA+MAI 8h-10h, 30 de novembro de 2011 Segunda Prova de Física I, Turma MAA+MAI 8h-10h, 30 de novembro de 2011 A vista da prova será feita na 2 a feira 5/12/2011, na sala de aula no horário de 8h-8h30. Primeira Questão No sistema de coordenadas

Leia mais

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos Curso de extensão, MMQ IFUSP, feverero/4 Alguns exercíco báscos I Exercícos (MMQ) Uma grandeza cujo valor verdadero x é desconhecdo, fo medda três vezes, com procedmentos expermentas dêntcos e, portanto,

Leia mais

Mecânica Geral 1 - Notas de Aula 2 Equilíbrio de Corpos Rígidos Centro de Massa Prof. Dr. Cláudio Sérgio Sartori.

Mecânica Geral 1 - Notas de Aula 2 Equilíbrio de Corpos Rígidos Centro de Massa Prof. Dr. Cláudio Sérgio Sartori. Mecânca Geral 1 - otas de ula Equlíbro de Corpos Rígdos Centro de Massa Estátca do ponto materal. Estátca do corpo rígdo. Les de ewton Introdução: dnâmca estuda a relação entre os movmentos e suas causas,

Leia mais

Lista 12: Rotação de corpos rígidos

Lista 12: Rotação de corpos rígidos Lista 12: Rotação de Corpos Rígidos Importante: i. Ler os enunciados com atenção. ii. Responder a questão de forma organizada, mostrando o seu raciocínio de forma coerente. iii. iv. Siga a estratégia para

Leia mais

Eletromagnetismo. Distribuição de grandezas físicas: conceitos gerais

Eletromagnetismo. Distribuição de grandezas físicas: conceitos gerais Eletromagnetsmo Dstrbução de grandezas físcas: concetos geras Eletromagnetsmo» Dstrbução de grandezas físcas: concetos geras 1 Introdução Pode-se caracterzar um problema típco do eletromagnetsmo como o

Leia mais

Teoria momento linear em voo horizontal. horizontal. Num helicóptero em voo horizontal o rotor move-se através do ar com uma componente. rotor.

Teoria momento linear em voo horizontal. horizontal. Num helicóptero em voo horizontal o rotor move-se através do ar com uma componente. rotor. Teora do momento lnear em voo horzontal Num helcóptero em voo horzontal o rotor move-se através do ar com uma componente da velocdade que é paralela ao plano do rotor. Dado que o rotor fornece a força

Leia mais

Física I para a Escola Politécnica ( ) - PSub (14/07/2017)

Física I para a Escola Politécnica ( ) - PSub (14/07/2017) [0000]-p1/8 QUESTÕES DE MÚLTIPLA-ESCOLHA (1-4) Respostas: z7ba: (1) E; () D; (3) C; (4) A; yy3: (1) D; () A; (3) E; (4) E; E1zy: (1) E; () A; (3) E; (4) E; zgxz: (1) B; () C; (3) B; (4) C; (1) [1,0] Um

Leia mais

14. Correntes Alternadas (baseado no Halliday, 4 a edição)

14. Correntes Alternadas (baseado no Halliday, 4 a edição) 14. orrentes Alternadas (baseado no Hallday, 4 a edção) Por que estudar orrentes Alternadas?.: a maora das casas, comérco, etc., são provdas de fação elétrca que conduz corrente alternada (A ou A em nglês):

Leia mais

Física I. 2º Semestre de Instituto de Física- Universidade de São Paulo. Aula 5 Trabalho e energia. Professor: Valdir Guimarães

Física I. 2º Semestre de Instituto de Física- Universidade de São Paulo. Aula 5 Trabalho e energia. Professor: Valdir Guimarães Físca I º Semesre de 03 Insuo de Físca- Unversdade de São Paulo Aula 5 Trabalho e energa Proessor: Valdr Gumarães E-mal: valdrg@.usp.br Fone: 309.704 Trabalho realzado por uma orça consane Derenemene

Leia mais

FIS-26 Resolução Lista-04 Lucas Galembeck 2013

FIS-26 Resolução Lista-04 Lucas Galembeck 2013 FIS-6 Resolução Lista-4 Lucas Galembeck 1 1. Um cordão é enrolado num pequeno cilindro homogêneo de massa M. Supondo que ele seja puxado por uma força F para frente, calcule a aceleração do cilindro e

Leia mais

Mecânica e Ondas FÍSICA. Semana 6 - Aula 6 Rotação. Rolamento (Forças com Rotação); Energia Cinética de Rotação

Mecânica e Ondas FÍSICA. Semana 6 - Aula 6 Rotação. Rolamento (Forças com Rotação); Energia Cinética de Rotação Mecânica e Ondas LERC Tagus ºSem 009/0 Prof. J. C. Fernandes http://mo-lerc-tagus.ist.utl.pt/ Mecânica e Ondas Semana 6 - Aula 6 Rotação Rolamento (Forças com Rotação); Energia Cinética de Rotação FÍSICA

Leia mais

Mecânica e Ondas. Docentes da disciplina: João Seixas e Mario J. Pinheiro MeMEC Departmento de Física e Instituto de Plasma e Fusão Nuclear,

Mecânica e Ondas. Docentes da disciplina: João Seixas e Mario J. Pinheiro MeMEC Departmento de Física e Instituto de Plasma e Fusão Nuclear, Mecânica e Ondas Série 5 Docentes da disciplina: João Seixas e Mario J. Pinheiro MeMEC Departmento de Física e Instituto de Plasma e Fusão Nuclear, Instituto Superior Técnico, Av. & 1049-001 Lisboa, Portugal

Leia mais

BCJ Lista de Exercícios 7

BCJ Lista de Exercícios 7 BCJ0204-2016.1 Lista de Exercícios 7 1. Um dos primeiros métodos para se medir a velocidade da luz utilizava a rotação de uma roda dentada com velocidade angular constante. Um feixe de luz passava através

Leia mais

Física. Setor B. Índice-controle de Estudo. Prof.: Aula 23 (pág. 86) AD TM TC. Aula 24 (pág. 87) AD TM TC. Aula 25 (pág.

Física. Setor B. Índice-controle de Estudo. Prof.: Aula 23 (pág. 86) AD TM TC. Aula 24 (pág. 87) AD TM TC. Aula 25 (pág. Físca Setor Prof.: Índce-controle de studo ula 23 (pág. 86) D TM TC ula 24 (pág. 87) D TM TC ula 25 (pág. 88) D TM TC ula 26 (pág. 89) D TM TC ula 27 (pág. 91) D TM TC ula 28 (pág. 91) D TM TC evsanglo

Leia mais

Covariância e Correlação Linear

Covariância e Correlação Linear TLF 00/ Cap. X Covarânca e correlação lnear Capítulo X Covarânca e Correlação Lnear 0.. Valor médo da grandeza (,) 0 0.. Covarânca na propagação de erros 03 0.3. Coecente de correlação lnear 05 Departamento

Leia mais

MOVIMENTO ROTACIONAL E MOMENTO DE INÉRCIA

MOVIMENTO ROTACIONAL E MOMENTO DE INÉRCIA MOVIMENTO ROTACIONAL E MOMENTO DE INÉRCIA 1.0 Definições Posição angular: utiliza-se uma medida de ângulo a partir de uma direção de referência. É conveniente representar a posição da partícula com suas

Leia mais

do Semi-Árido - UFERSA

do Semi-Árido - UFERSA Unversdade Federal Rural do Sem-Árdo - UFERSA Temperatura e Calor Subêna Karne de Mederos Mossoró, Outubro de 2009 Defnção: A Termodnâmca explca as prncpas propredades damatéra e a correlação entre estas

Leia mais

Resoluções dos testes propostos

Resoluções dos testes propostos da físca 3 Undade apítulo 15 Indução eletromagnétca esoluções dos testes propostos 1 T.372 esposta: d ob ação da força magnétca, elétrons se deslocam para a extremdade nferor da barra metálca. essa extremdade,

Leia mais

Lista 10: Momento Angular. Lista 10: Momento Angular

Lista 10: Momento Angular. Lista 10: Momento Angular Lista 10: Momento Angular NOME: Matrícula: Turma: Prof. : Importante: i. Ler os enunciados com atenção. ii. Responder a questão de forma organizada, mostrando o seu raciocínio de forma coerente. iii. Analisar

Leia mais