CAPITULO II - FORMULAÇAO MATEMATICA

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "CAPITULO II - FORMULAÇAO MATEMATICA"

Transcrição

1 CAPITULO II - FORMULAÇAO MATEMATICA II.1. HIPOTESES BASICAS A modelagem aqu empregada está baseado nas seguntes hpóteses smplfcadoras : - Regme permanente; - Ausênca de forças de campo; - Ausênca de trabalho de exo; - Sstema adabátco; - Ausênca de forças vscosas; - Gás perfeto; - Ausênca de dfusão molecular; - Equlíbro térmco entre as espéces químcas. Deve-se lembrar que as concentrações das espéces químcas varam ao longo do escoamento, devdo as reações químcas. Portanto, a le de conservação de massa deve ser 9

2 aplcada a cada espéce químca presente no escoamento, levando-se em conta as velocdades fntas das reações. As representações matemátcas desta afrmação e das hpótese serão apresentadas nos tens seguntes. Deve-se atentar que não fo necessáro consderar o escoamento como soentrópco, como ocorre para o caso do escoamento congelado (sem reação químca) ou para o caso de escoamento em equlíbro químco (velocdades de reações nfntas). Consequentemente, o escoamento em não-equlíbro apresenta uma varação de entropa ao longo do campo de escoamento, seja este consderado un ou bdmensonal. II.2. MODELAGEM TERMOQUIMICA Cada espéce químca exstente no escoamento fo consderada como sendo um gás perfeto. Suas propredades termodnâmcas (calor específco, entalpa e entropa) foram determnadas através de polnômos ajustados a dados catalogados pela JANNAF (uma comssão mltar norteamercana). Os coefcentes foram ncalmente 17 calculados por Gordon et McBrde. As tabelas JANNAF são atualzadas perodcamente com base em novos dados expermentas, através do Journal of Physcal and Chemcal Reference Data. Neste trabalho foram usados os coefcentes 17 publcados por Gordon et McBrde, pos estes apresentam anda um bom ajuste quando comparados à tabelas atualzadas 9 publcadas por Chase. 10

3 trabalho : Os seguntes polnômos são usados nos cálculos deste cp R = a + a T + a T + a T + a T (1) o h a a a a a = a + T + T + T + T + 1 RT T (2) o s a a a = a ln T + a T + T + T + T + a (3) R Pode-se ver que as equações (2) e (3) são resultados da ntegração do polnômo da equação (1) conforme a defnção termodnâmca de entalpa e de entropa. T o 0 h = cp dt + h (4),T T o 0 T o dt 0 s = cp + s (5) T,T T 0 Sendo a temperatura de referênca (T ) gual a 298,15 K 0 o e a entropa calculada para 1 atmosfera (sobrescrto ). Neste trabalho, os valores destas propredades foram calculados por undade de massa. Exstem dos grupos de coefcentes para cada espéce consderada, que correspondem a duas faxas de temperatura dstntas. Este procedmento é para se obter uma melhor precsão do ajuste polnomal. As propredades da mstura dos gases foram calculadas através da equação do gás deal, aplcada a cada espéce o 11

4 químca. Assm tem-se, P = RT (6) onde, n R = C R (7) =1 R R = (8) M também tem-se, n cp = C cp (9) f =1 cp = f (10) f cp - R f Com sto, pode-se defnr duas propredades do escoamento, a = RT (11) f f M = V (12) f a f O subescrto "f" sgnfca congelado ("frozen") e ndca que os valores das propredades são relatvas a uma dada composção exstente no ponto de cálculo. As concentrações das espéces químcas usadas no equaconamento e durante o cálculo numérco estão expressas em termos de frações másscas, para facltar a compatbldade dmensonal de cada um dos termos do sstema de equações. Contudo, todos os gráfcos de resultados 12

5 apresentam as concentrações em termos de frações molares, que é uma undade mas adequada para a compreensão físca dos efetos das reações químca sobre o sstema. A fração mássca é defnda como : m C = = (13) m E a fração molar é defnda como : N M X = = C (14) N M onde, n M = X M (15) =1 A constante de equlíbro para a reação de formação de cada espéce químca é necessára para o cálculo da constante de equlíbro de cada uma das reações elementares do mecansmo cnétco. Para sto, prmeramente calcula-se o valor da energa lvre de Gbbs de cada espéce presente. o o o g = h - T s (16) A reação de formação de um mol de uma espéce químca (A ) pode ser escrta de uma forma generalzada : n n A A (17) f f =1 =1 13

6 Então a constante de equlíbro pode ser calculada do segunte modo : o - g ln K = (18) pf RT onde, n o o o g = g - g (19) f f =1 Deve-se lembrar que para elementos químcos em seu estado natural (H, O, F, etc) e em condções padrões 2 2 (298,15 K e 1 atm), a constante de equlíbro de sua reação de formação é nula. Este procedmento resultou no uso de mas um arquvo de dados onde estão lstadas todas as reações de formação das espéces químcas consderadas. Outra manera possível de se calcular a constante de equlíbro para cada espéce químca é realzar prevamente o cálculo descrto acma para váras temperaturas, dentro da faxa de valdade dos dados termodnâmcos. Com a tabela resultante, pode-se ajustar uma função tpo Arrhenus, determnando os seus coefcentes. c T K = b T a exp (20) pf 11 No trabalho de Cohen et Westberg são apresentados ajustes deste tpo para algumas reações químcas à alta temperatura. Apesar deste últmo procedmento ser mas efcente, computaconalmente falando, ele não fo utlzado nesta tese. 14

7 II.3. MODELAGEM DA CINETICA QUIMICA Para uma mstura de n espéces químcas (A ), onde ocorrem smultâneamente m reações, a equação geral que representa todas as reações do mecansmo cnétco é : n K n fj A A (j = 1,...,m) (21) j j =1 K =1 bj Os coefcentes e são os coefcentes j j estequométrcos dos reagentes e dos produtos, respectvamente, e K e K representam as constantes de fj bj velocdade da reação j no sentdo dreto e no sentdo nverso, respectvamente. O sentdo dreto de uma reação é defndo, por convenção, como sendo da esquerda para a dreta. As espéces químcas a esquerda da reação são chamadas reagentes e as posconadas a dreta são os produtos. O mecansmo cnétco é composto de uma sére de reações químcas elementares que descrevem o fenômeno físco de alteração nas concentrações das espéces químcas com o tempo. Um dado mecansmo não é uma complação de todas as reações possíves entre as espéces químcas presentes, na verdade, ele representa as reações mas sgnfcatvas que controlam o fenômeno físco. Portanto, modelos que usam uma nfndade de reações para descrever um dado sstema podem 15

8 dar resultados semelhantes a modelos com poucas, mas mportantes, reações químcas. O uso de reações elementares, ou seja, reações que obedecem a le de ação das massas, tem como objetvo generalzar o equaconamento do termo fonte, que nforma a taxa de aparecmento ou de desaparecmento de uma dada espéce químca. Contudo, para sstema mas complexos, como por exemplo combustão de hdrocarbonetos, poderam ser usadas reações não-elementares desde que o equaconamento do termo fonte fosse modfcado, tornando-o partcular para o sstema estudado. Deve-se observar que uma reação não-elementar representa o efeto global de uma seqüênca de reações elementares, baseado no fato de que duas ou mas destas produzem espéces ntermedáras em quantdades desprezíves, não-detectáves. Neste trabalho as reações químcas são consderadas em não-equlíbro, ou seja, exste uma taxa de aparecmento ou desaparecmento para cada espéce químca presente no escoamento. O termo fonte mede esta taxa para a espéce e é uma função das seguntes grandezas : = (P,,C ) (22) A dedução a segur vale para uma mstura reatva de gases perfetos e um mecansmo cnétco baseado em reações elementares. 16

9 46 A le de ação das massas pode ser enuncada da segunte forma : "A velocdade com a qual uma reaçao elementar ocorre é proporconal ao produto das concentraçoes molares dos reagentes elevados a uma potênca gual ao seu coefcente estequométrco na equaçao da reaçao." Esta le resulta na segunte representação matemátca para a taxa líquda de geração da espéce pela reação j. Deve-se notar que fo levado em conta a reação no sentdo dreto bem como no sentdo nverso. d[a ] n n j j j = K [A ] - K [A ] (23) j fj bj dt =1 =1 onde, j j j = - (24) representa a varação do coefcente estequométrco entre produtos e reagentes para a espéce na reação j. [A ] é a concentração molar (no. de moles/volume) da espéce químca, defnda da segunte forma : N C M M [A ] = = = (25) 17

10 Mudando as undades de d[a ] /dt (no. de moles/volume/tempo) j para uma base de massa, temos : d[a ] = j M (j = 1,...,m) (26) j dt Somando as taxas de geração da espéce para todas as m reações do mecansmo e usando as equação 23 e 25, temos : m n C j n C j = M K - K (27) j fj bj =1 M =1 M j=1 A equação (27) defne o termo fonte ( em massa/volume/tempo) para a espéce químca numa mstura reatva de gases. Como K e K são funções da fj bj temperatura, a equação (22) fo confrmada. As constantes de velocdade da reação K f e K podem ser b calculadas, em função da temperatura, através da le de Arrhenus (1899) modfcada : E RT K = T exp - (28) onde, e E são constantes, sendo E a energa de atvação necessára para a reação ocorrer. As constantes de velocdade para um sentdo da reação são determnadas expermentalmente da forma descrta por 20 Halstead et Jenkns, por exemplo. Nesta classe de 18

11 trabalhos são encontrados os valores das constantes da equação de Arrhenus. Contudo, devdo as extremas dfculdades expermentas, exstem dscrepâncas sgnfcatvas entre resultados de dferentes trabalhos. Assm, como ocorre com os dados termodnâmcos a alta temperatura, as fontes devem ser escolhdas com crtéro. Entretanto, os dados de cnétca químca são bem escassos e não exste um trabalho de coleta e análse contínua como o realzado pela JANNAF. Nesta tese os dados foram provenentes da revsta Journal of Physcal and Chemcal 11 Reference Data (Cohen et Westberg ) e de outras complações de reações a alta temperatura (Frost et Pearson, Gold, Jensen et Kurzus e Sarner ). Foram retradas da lteratura as constantes de velocdade de reação no sentdo dreto (K ). Para o sentdo f nverso a constante de velocdade fo calculada através da segunte relação provenente da defnção de equlíbro químco. K - fj j K bj pj = K RT (29) onde, n = - (30) j j j =1 representa a varação total entre os coefcentes 19

12 estequométrcos (número de moles) dos produtos e dos reagentes na reação j. A constante de equlíbro para a reação j (K ) fo pj calculada a partr das constantes de equlíbro das reações de formação de cada espéce químca (K ) na reação j. pf Assm, n ln K = ln K (31) pj j pf =1 Outro ponto mportante no cálculo das constantes de velocdade são as undades usadas. Como o número de espéces químcas envolvdas e seus coefcentes estequométrcos mudam de reação para reação, as undades das constantes de velocdade também são mutáves em termos de potênca. Neste trabalho todas estas constantes foram tratadas usando as seguntes undades : centímetros, mol, Kelvn e segundo. A passagem para o sstema SI fo feta quando do cálculo das equações (29) e (27) por meo de constantes de conversão. Em geral, os mecansmos cnétcos envolvem dos tpos de reações, as de dssocação e as de dupla troca, exemplfcadas abaxo. H + M 2H + M 2 2 H + HF H + F (Dssocação) (Dupla Troca) As reações de dupla troca são tratadas matematcamente pelas equações deste tem sem nenhum cudado especal. O 20

13 contráro ocorre com as equações de dssocação, pos estas envolvem um tercero corpo (M). No exemplo acma, a molécula de H deve coldr com um tercero corpo M, que possu 2 energa relatva sufcente para quebrá-la em dos átomos de H. Este tercero corpo pode ser qualquer outra das espéces químcas presentes no escoamento e permanece qumcamente nalterado durante a colsão. Quando do cálculo do termo fonte, equação (27), um valor de concentração deve ser atrbuído ao tercero corpo para que o equaconamento seja fscamente coerente. O modelo adotado neste trabalho usa o conceto de efcênca do tercero corpo, onde para cada espéce químca, presente na reação j, é atrbuído um fator que aplcado sobre a concentração da espéce ndca qual a ação desta sobre uma velocdade méda de reação, retrada da lteratura. Portanto, uma dada espéce químca pode dobrar a velocdade de uma reação de dssocação, enquanto outra pode não contrbur sgnfcatvamente para a ocorrênca desta. Porém, não são dsponíves na lteratura nformações sobre a efcênca de dferentes moléculas sobre uma reação de dssocação. Em geral, as meddas expermentas referem-se a espéces nertes (Ar, N, He) como tercero corpo que podem 2 não estar presentes no escoamento estudado. A solução encontrada fo utlzar uma velocdade de dssocação méda entre dferentes terceros corpos e consderar que todas as espéces químcas presentes possuem efcênca gual a undade. Isto sgnfca que a concentração do tercero corpo 21

14 é gual a concentração total de moléculas exstentes no escoamento (fração molar gual a undade). Este procedmento fo adotado por Momtchloff et al, Sarl et al e 43 Westenberg et Favn. O modelo de efcênca do tercero 29 corpo fo apresentado no trabalho de Penny et al e usado por Kacynsk et al, Pavl et al e Smth et al em seus trabalhos de valdação do programa de Nckerson et 24,28,38 al. Nesta tese, apesar das efcêncas serem consderadas guas a undade, fo mplementado a possbldade de uso de dferentes valores. Portanto, a concentração molar do tercero corpo [M] nas equações de dssocação fo calculada do segunte modo : n C [M] = f (32) j M =1 onde, f é a efcênca de tercero corpo da espéce na j reação de dssocação j. Deve-se lembrar que para o cálculo das constantes de equlíbro das reações, o corpo M não deve ser consderado, pos sua varação de número de moles entre produtos e reagentes é nula. 22

15 Para maores detalhes sobre a físca das reações 14 químcas ver o lvro de Frost et Pearson onde é apresentada uma dscussão detalhada sobre cnétca químca sob a ótca da teora cnétca dos gases. 23

CQ110 : Princípios de FQ

CQ110 : Princípios de FQ CQ 110 Prncípos de Físco Químca Curso: Farmáca Prof. Dr. Marco Vdott mvdott@ufpr.br 1 soluções eletrolítcas Qual a dferença entre uma solução 1,0 mol L -1 de glcose e outra de NaCl de mesma concentração?

Leia mais

γ = C P C V = C V + R = q = 2 γ 1 = 2 S gas = dw = W isotermico

γ = C P C V = C V + R = q = 2 γ 1 = 2 S gas = dw = W isotermico Q1 Um clndro feto de materal com alta condutvdade térmca e de capacdade térmca desprezível possu um êmbolo móvel de massa desprezível ncalmente fxo por um pno. O rao nterno do clndro é r = 10 cm, a altura

Leia mais

18 e 20/Abr/2016 Aulas 12 e 13. Introdução à Física Estatística Postulados Equilíbrio térmico Função de Partição; propriedades termodinâmicas

18 e 20/Abr/2016 Aulas 12 e 13. Introdução à Física Estatística Postulados Equilíbrio térmico Função de Partição; propriedades termodinâmicas 01/Abr/2016 Aula 11 Potencas termodnâmcos Energa nterna total Entalpa Energas lvres de Helmholtz e de Gbbs Relações de Maxwell 18 e 20/Abr/2016 Aulas 12 e 13 Introdução à Físca Estatístca Postulados Equlíbro

Leia mais

AULA 10 Entropia e a Segunda Lei da Termodinâmica

AULA 10 Entropia e a Segunda Lei da Termodinâmica UFABC - BC0205 - Prof. Germán Lugones AULA 10 Entropa e a Segunda Le da ermodnâmca Sad Carnot [1796-1832] R. Clausus [1822-1888] W. homson (Lord Kelvn) [1824-1907] Quando um saco de ppocas é aquecdo em

Leia mais

Critério de Equilíbrio

Critério de Equilíbrio Crtéro de Equlíbro ara um sstema echado onde exstem ases em equlíbro, o crtéro geral de equlíbro de ases mpõe que o potencal químco de cada espéce presente seja gual em todas as ases. α β π µ = µ = K=

Leia mais

CQ110 : Princípios de FQ

CQ110 : Princípios de FQ CQ110 : Prncípos de FQ CQ 110 Prncípos de Físco Químca Curso: Farmáca Prof. Dr. Marco Vdott mvdott@ufpr.br Potencal químco, m potencal químco CQ110 : Prncípos de FQ Propredades termodnâmcas das soluções

Leia mais

Experiência V (aulas 08 e 09) Curvas características

Experiência V (aulas 08 e 09) Curvas características Experênca (aulas 08 e 09) Curvas característcas 1. Objetvos 2. Introdução 3. Procedmento expermental 4. Análse de dados 5. Referêncas 1. Objetvos Como no expermento anteror, remos estudar a adequação de

Leia mais

Apêndice B Frações mássicas, molares e volúmicas. Estequiometria.

Apêndice B Frações mássicas, molares e volúmicas. Estequiometria. Elementos de Engenhara Químca I Apêndce B Apêndce B Frações másscas, molares e volúmcas. Estequometra. O engenhero químco lda constantemente com msturas de compostos químcos em stuações que mporta caracterzar

Leia mais

Problemas Propostos. Frações mássicas, volúmicas ou molares. Estequiometria.

Problemas Propostos. Frações mássicas, volúmicas ou molares. Estequiometria. Elementos de Engenhara Químca I II. Frações e Estequometra (problemas resolvdos) Problemas Propostos. Frações másscas, volúmcas ou molares. Estequometra.. Em 5 moles de Benzeno (C 6 H 6 ) quanto é que

Leia mais

2 Incerteza de medição

2 Incerteza de medição 2 Incerteza de medção Toda medção envolve ensaos, ajustes, condconamentos e a observação de ndcações em um nstrumento. Este conhecmento é utlzado para obter o valor de uma grandeza (mensurando) a partr

Leia mais

Laboratório de Mecânica Aplicada I Estática: Roldanas e Equilíbrio de Momentos

Laboratório de Mecânica Aplicada I Estática: Roldanas e Equilíbrio de Momentos Laboratóro de Mecânca Aplcada I Estátca: Roldanas e Equlíbro de Momentos 1 Introdução O conhecmento das condções de equlíbro de um corpo é mprescndível em númeras stuações. Por exemplo, o estudo do equlíbro

Leia mais

Mecânica Estatística. - Leis da Física Macroscópica - Propriedades dos sistemas macroscópicos

Mecânica Estatística. - Leis da Física Macroscópica - Propriedades dos sistemas macroscópicos Mecânca Estatístca Tal como a Termodnâmca Clássca, também a Mecânca Estatístca se dedca ao estudo das propredades físcas dos sstemas macroscópcos. Tratase de sstemas com um número muto elevado de partículas

Leia mais

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma Capítulo 8 Dferencação Numérca Quase todos os métodos numércos utlzados atualmente para obtenção de soluções de equações erencas ordnáras e parcas utlzam algum tpo de aproxmação para as dervadas contínuas

Leia mais

COMBUSTÍVEIS E COMBUSTÃO

COMBUSTÍVEIS E COMBUSTÃO COMBUSTÍVEIS E COMBUSTÃO PROF. RAMÓN SILVA Engenhara de Energa Dourados MS - 2013 CHAMAS DIFUSIVAS 2 INTRODUÇÃO Chamas de dfusão turbulentas tpo jato de gás são bastante comuns em aplcações ndustras. Há

Leia mais

7 - Distribuição de Freqüências

7 - Distribuição de Freqüências 7 - Dstrbução de Freqüêncas 7.1 Introdução Em mutas áreas há uma grande quantdade de nformações numércas que precsam ser dvulgadas de forma resumda. O método mas comum de resumr estes dados numércos consste

Leia mais

8. Estudo da não-idealidade da fase líquida

8. Estudo da não-idealidade da fase líquida PQI 58 Fundamentos de Processos em Engenhara Químca II 009 8. Estudo da não-dealdade da fase líquda Assuntos. A le de Raoult. Defnção de atvdade 3. Convenções assmétrcas e a le de Henry 4. Exercícos 8..

Leia mais

Algarismos Significativos Propagação de Erros ou Desvios

Algarismos Significativos Propagação de Erros ou Desvios Algarsmos Sgnfcatvos Propagação de Erros ou Desvos L1 = 1,35 cm; L = 1,3 cm; L3 = 1,30 cm L4 = 1,4 cm; L5 = 1,7 cm. Qual destas meddas está correta? Qual apresenta algarsmos com sgnfcado? O nstrumento

Leia mais

2 Principio do Trabalho Virtual (PTV)

2 Principio do Trabalho Virtual (PTV) Prncpo do Trabalho rtual (PT)..Contnuo com mcroestrutura Na teora que leva em consderação a mcroestrutura do materal, cada partícula anda é representada por um ponto P, conforme Fgura. Porém suas propredades

Leia mais

Resistores. antes de estudar o capítulo PARTE I

Resistores. antes de estudar o capítulo PARTE I PARTE I Undade B 6 capítulo Resstores seções: 61 Consderações ncas 62 Resstênca elétrca Le de Ohm 63 Le de Joule 64 Resstvdade antes de estudar o capítulo Veja nesta tabela os temas prncpas do capítulo

Leia mais

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência.

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência. MODELO DE REGRESSÃO DE COX Os modelos de regressão paramétrcos vstos anterormente exgem que se suponha uma dstrbução estatístca para o tempo de sobrevvênca. Contudo esta suposção, caso não sea adequada,

Leia mais

Física 10 Questões [Difícil]

Física 10 Questões [Difícil] Físca Questões [Dfícl] - (UF MG) Um líqudo encontra-se, ncalmente, à temperatura T o, pressão P o e volume o, em um recpente fechado e solado termcamente do ambente, conforme lustra a fgura ao lado. Após

Leia mais

V.1. Introdução. Reações Químicas.

V.1. Introdução. Reações Químicas. V.1. Introdução. Reações Químcas. V. Balanços Materas a Processos com Reação Químca Uma equação químca acertada ornece muta normação. Por exemplo, a reação de síntese do metanol: CO (g) + 3H (g) CH 3 OH

Leia mais

COMBUSTÃO. A termodinâmica permite um estudo elementar de combustão através da termoquímica.

COMBUSTÃO. A termodinâmica permite um estudo elementar de combustão através da termoquímica. COMBUSTÃO A termodnâmca permte um estudo elementar de combustão através da termoquímca. Aplcação de balanço de massa e energa (1º le) e de defenção de condções de equlíbro e sentdo de evoluções termodnâmcas

Leia mais

Eletromagnetismo Aplicado

Eletromagnetismo Aplicado letromagnetsmo Aplcado Undade 5 Propagação de Ondas letromagnétcas em Meos Ilmtados e Polaração Prof. Marcos V. T. Heckler Propagação de Ondas letromagnétcas e Polaração 1 Conteúdo Defnções e parâmetros

Leia mais

SÉRIE DE PROBLEMAS: CIRCUITOS DE ARITMÉTICA BINÁRIA. CIRCUITOS ITERATIVOS.

SÉRIE DE PROBLEMAS: CIRCUITOS DE ARITMÉTICA BINÁRIA. CIRCUITOS ITERATIVOS. I 1. Demonstre que o crcuto da Fg. 1 é um half-adder (semsomador), em que A e B são os bts que se pretendem somar, S é o bt soma e C out é o bt de transporte (carry out). Fg. 1 2. (Taub_5.4-1) O full-adder

Leia mais

CORRELAÇÃO E REGRESSÃO

CORRELAÇÃO E REGRESSÃO CORRELAÇÃO E REGRESSÃO Constata-se, freqüentemente, a estênca de uma relação entre duas (ou mas) varáves. Se tal relação é de natureza quanttatva, a correlação é o nstrumento adequado para descobrr e medr

Leia mais

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação Mnstéro da Educação Insttuto Naconal de Estudos e Pesqusas Educaconas Aníso Texera Cálculo do Conceto Prelmnar de Cursos de Graduação Nota Técnca Nesta nota técnca são descrtos os procedmentos utlzados

Leia mais

4 Sistemas de partículas

4 Sistemas de partículas 4 Sstemas de partículas Nota: será feta a segunte convenção: uma letra em bold representa um vector,.e. b b Nesta secção estudaremos a generalzação das les de Newton a um sstema de váras partículas e as

Leia mais

RISCO. Investimento inicial $ $ Taxa de retorno anual Pessimista 13% 7% Mais provável 15% 15% Otimista 17% 23% Faixa 4% 16%

RISCO. Investimento inicial $ $ Taxa de retorno anual Pessimista 13% 7% Mais provável 15% 15% Otimista 17% 23% Faixa 4% 16% Análse de Rsco 1 RISCO Rsco possbldade de perda. Quanto maor a possbldade, maor o rsco. Exemplo: Empresa X va receber $ 1.000 de uros em 30 das com títulos do governo. A empresa Y pode receber entre $

Leia mais

Medidas e resultados em um experimento.

Medidas e resultados em um experimento. Meddas e resultados em um expermento. I- Introdução O estudo de um fenômeno natural do ponto de vsta expermental envolve algumas etapas que, mutas vezes, necesstam de uma elaboração préva de uma seqüênca

Leia mais

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012

Notas Processos estocásticos. Nestor Caticha 23 de abril de 2012 Notas Processos estocástcos Nestor Catcha 23 de abrl de 2012 notas processos estocástcos 2 O Teorema de Perron Frobenus para matrzes de Markov Consdere um processo estocástco representado por um conunto

Leia mais

ESCOAMENTO TRIFÁSICO NÃO-ISOTÉRMICO EM DUTO VERTICAL COM VAZAMENTO VIA CFX: ANÁLISE DA INFLUÊNCIA DA RUGOSIDADE DA PAREDE DO DUTO

ESCOAMENTO TRIFÁSICO NÃO-ISOTÉRMICO EM DUTO VERTICAL COM VAZAMENTO VIA CFX: ANÁLISE DA INFLUÊNCIA DA RUGOSIDADE DA PAREDE DO DUTO ESCOAMENTO TRIFÁSICO NÃO-ISOTÉRMICO EM DUTO VERTICAL COM VAZAMENTO VIA CFX: ANÁLISE DA INFLUÊNCIA DA RUGOSIDADE DA PAREDE DO DUTO W. R. G. SANTOS 1, H. G. ALVES 2, S. R. FARIAS NETO 3 e A. G. B. LIMA 4

Leia mais

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha)

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha) Estatístca p/ Admnstração II - Profª Ana Cláuda Melo Undade : Probabldade Aula: 3 Varável Aleatóra. Varáves Aleatóras Ao descrever um espaço amostral de um expermento, não especfcamos que um resultado

Leia mais

Diferença entre a classificação do PIB per capita e a classificação do IDH

Diferença entre a classificação do PIB per capita e a classificação do IDH Curso Bem Estar Socal Marcelo Ner - www.fgv.br/cps Metas Socas Entre as mutas questões decorrentes da déa de se mplementar uma proposta de metas socas temos: Qual a justfcatva econômca para a exstênca

Leia mais

2ª PARTE Estudo do choque elástico e inelástico.

2ª PARTE Estudo do choque elástico e inelástico. 2ª PARTE Estudo do choque elástco e nelástco. Introdução Consderemos dos corpos de massas m 1 e m 2, anmados de velocdades v 1 e v 2, respectvamente, movmentando-se em rota de colsão. Na colsão, os corpos

Leia mais

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos

Curso de extensão, MMQ IFUSP, fevereiro/2014. Alguns exercício básicos Curso de extensão, MMQ IFUSP, feverero/4 Alguns exercíco báscos I Exercícos (MMQ) Uma grandeza cujo valor verdadero x é desconhecdo, fo medda três vezes, com procedmentos expermentas dêntcos e, portanto,

Leia mais

Expansão livre de um gás ideal

Expansão livre de um gás ideal Expansão lvre de um gás deal (processo não quase-estátco, logo, rreversível) W=0 na expansão lvre (P e = 0) Paredes adabátcas a separar o gás das vznhanças Q = 0 ª Le U gás = Q + W = 0 U = U Para um gás

Leia mais

R X. X(s) Y Y(s) Variáveis aleatórias discretas bidimensionais

R X. X(s) Y Y(s) Variáveis aleatórias discretas bidimensionais 30 Varáves aleatóras bdmensonas Sea ε uma experênca aleatóra e S um espaço amostral assocado a essa experênca. Seam X X(s) e Y Y(s) duas funções cada uma assocando um número real a cada resultado s S.

Leia mais

Estatística II Antonio Roque Aula 18. Regressão Linear

Estatística II Antonio Roque Aula 18. Regressão Linear Estatístca II Antono Roque Aula 18 Regressão Lnear Quando se consderam duas varáves aleatóras ao mesmo tempo, X e Y, as técncas estatístcas aplcadas são as de regressão e correlação. As duas técncas estão

Leia mais

MODELO RECEPTOR MODELO RECEPTOR MODELO RECEPTOR. Princípio do modelo:

MODELO RECEPTOR MODELO RECEPTOR MODELO RECEPTOR. Princípio do modelo: MODELO RECEPTOR Não modela a dspersão do contamnante. MODELO RECEPTOR Prncípo do modelo: Atacar o problema de dentfcação da contrbução da fonte em ordem nversa, partndo da concentração do contamnante no

Leia mais

FÍSICO-QUÍMICA I Termodinâmica do Equilíbrio

FÍSICO-QUÍMICA I Termodinâmica do Equilíbrio UNIVERSIDADE FEDERAL DE MINAS GERAIS Departamento de Químca, ICEx, Setor de Físco-Químca FÍSICO-QUÍMICA I Termodnâmca do Equlíbro Prof. Wellngton Ferrera de MAGALHÃES, Departamento de Químca, e-mal: welmag@ufmg.br

Leia mais

Termodinâmica e Termoquímica

Termodinâmica e Termoquímica Termodnâmca e Termoquímca Introdução A cênca que trata da energa e suas transformações é conhecda como termodnâmca. A termodnâmca fo a mola mestra para a revolução ndustral, portanto o estudo e compreensão

Leia mais

Robótica. Prof. Reinaldo Bianchi Centro Universitário FEI 2016

Robótica. Prof. Reinaldo Bianchi Centro Universitário FEI 2016 Robótca Prof. Renaldo Banch Centro Unverstáro FEI 2016 6 a Aula IECAT Objetvos desta aula Momentos Lneares, angulares e de Inérca. Estátca de manpuladores: Propagação de forças e torques. Dnâmca de manpuladores:

Leia mais

Procedimento Recursivo do Método dos Elementos de Contorno Aplicado em Problemas de Poisson

Procedimento Recursivo do Método dos Elementos de Contorno Aplicado em Problemas de Poisson Trabalho apresentado no III CMAC - SE, Vtóra-ES, 015. Proceedng Seres of the Brazlan Socety of Computatonal and Appled Mathematcs Procedmento Recursvo do Método dos Elementos de Contorno Aplcado em Problemas

Leia mais

4 Análise termoeconômica

4 Análise termoeconômica 4 Análse termoeconômca Os capítulos precedentes abordaram questões emnentemente térmcas da aplcação de nanofludos em sstemas ndretos de refrgeração. Ao tratar das magntudes relatvas e da natureza das componentes

Leia mais

CÁLCULO DE VISCOSIDADE DE LÍQUIDOS COM A EDE CUBIC- PLUS-ASSOCIATION INCORPORADA AO MODELO EYRING

CÁLCULO DE VISCOSIDADE DE LÍQUIDOS COM A EDE CUBIC- PLUS-ASSOCIATION INCORPORADA AO MODELO EYRING CÁLCULO DE VISCOSIDADE DE LÍQUIDOS COM A EDE CUBIC- PLUS-ASSOCIATION INCORPORADA AO MODELO EYRING I. Q. MATOS 1, J. P. L. SANTOS 1 e G. F. SILVA 1 1 Unversdade Federal de Sergpe, Departamento de Engenhara

Leia mais

CORRELAÇÃO DO EQUILÍBRIO DE FASES DO SISTEMA MULTICOMPONENTE ÉSTERES ETÍLICOS DO ÓLEO DE MURUMURU/DIÓXIDO DE CARBONO COM A EQUAÇÃO SRK

CORRELAÇÃO DO EQUILÍBRIO DE FASES DO SISTEMA MULTICOMPONENTE ÉSTERES ETÍLICOS DO ÓLEO DE MURUMURU/DIÓXIDO DE CARBONO COM A EQUAÇÃO SRK CORRELAÇÃO DO EQUILÍBRIO DE FASES DO SISTEMA MULTICOMPONENTE ÉSTERES ETÍLICOS DO ÓLEO DE MURUMURU/DIÓXIDO DE CARBONO COM A EQUAÇÃO SRK Welsson de Araújo SILVA PRODERNA/ITEC/UFPA waslva89@hotmal.com Fernando

Leia mais

Resolução das Questões Objetivas

Resolução das Questões Objetivas COMISSÃO PERMANENTE DE SELEÇÃO COPESE PRÓ-REITORIA DE GRADUAÇÃO PROGRAD CONCURSO PISM III - TRIÊNIO 2008-2010 Prova de Matemátca Resolução das Questões Objetvas São apresentadas abaxo possíves soluções

Leia mais

Coeficiente de Partição

Coeficiente de Partição Físco-Químca Expermental Coefcente de Partção 1. Introdução Suponha dos solventes A e B, parcalmente mscíves à temperatura T, formando as fases α (uma solução dluída de B na fase A) e β (uma solução dluída

Leia mais

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma.

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma. UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS EXATAS DEPARTAMENTO DE FÍSICA AV. FERNANDO FERRARI, 514 - GOIABEIRAS 29075-910 VITÓRIA - ES PROF. ANDERSON COSER GAUDIO FONE: 4009.7820 FAX: 4009.2823

Leia mais

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF)

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF) PMR 40 - Mecânca Computaconal CAPÍTULO VI Introdução ao Método de Elementos Fntos (MEF). Formulação Teórca - MEF em uma dmensão Consderemos a equação abao que representa a dstrbução de temperatura na barra

Leia mais

ANÁLISE DAS TENSÕES TÉRMICAS EM MATERIAIS CERÂMICOS. Palavras-chave: Tensões térmicas, Propriedades variáveis, Condução de calor, GITT

ANÁLISE DAS TENSÕES TÉRMICAS EM MATERIAIS CERÂMICOS. Palavras-chave: Tensões térmicas, Propriedades variáveis, Condução de calor, GITT ANÁLISE DAS TENSÕES TÉRMICAS EM MATERIAIS CERÂMICOS Dnz, L.S. Santos, C.A.C. Lma, J.A. Unversdade Federal da Paraíba Laboratóro de Energa Solar LES/DTM/CT/UFPB 5859-9 - João Pessoa - PB, Brasl e-mal: cabral@les.ufpb.br

Leia mais

5 Métodos de cálculo do limite de retenção em função da ruína e do capital inicial

5 Métodos de cálculo do limite de retenção em função da ruína e do capital inicial 5 Métodos de cálculo do lmte de retenção em função da ruína e do captal ncal Nesta dssertação serão utlzados dos métodos comparatvos de cálculo de lmte de retenção, onde ambos consderam a necessdade de

Leia mais

PLANILHAS EXCEL/VBA PARA PROBLEMAS ENVOLVENDO EQUILÍBRIO LÍQUIDO-VAPOR EM SISTEMAS BINÁRIOS

PLANILHAS EXCEL/VBA PARA PROBLEMAS ENVOLVENDO EQUILÍBRIO LÍQUIDO-VAPOR EM SISTEMAS BINÁRIOS PLANILHAS EXCEL/VBA PARA PROBLEMAS ENVOLVENDO EQUILÍBRIO LÍQUIDO-VAPOR EM SISTEMAS BINÁRIOS L. G. Olvera, J. K. S. Negreros, S. P. Nascmento, J. A. Cavalcante, N. A. Costa Unversdade Federal da Paraíba,

Leia mais

IMPLEMENTAÇÃO DO MÉTODO DE FATORAÇÃO DE INTEIROS CRIVO QUADRÁTICO

IMPLEMENTAÇÃO DO MÉTODO DE FATORAÇÃO DE INTEIROS CRIVO QUADRÁTICO IMPLEMENTAÇÃO DO MÉTODO DE FATORAÇÃO DE INTEIROS CRIVO QUADRÁTICO Alne de Paula Sanches 1 ; Adrana Betâna de Paula Molgora 1 Estudante do Curso de Cênca da Computação da UEMS, Undade Unverstára de Dourados;

Leia mais

Cap. 6 - Energia Potencial e Conservação da Energia Mecânica

Cap. 6 - Energia Potencial e Conservação da Energia Mecânica Unversdade Federal do Ro de Janero Insttuto de Físca Físca I IGM1 014/1 Cap. 6 - Energa Potencal e Conservação da Energa Mecânca Prof. Elvs Soares 1 Energa Potencal A energa potencal é o nome dado a forma

Leia mais

Caderno de Fórmulas. Notas Comerciais Cetip21

Caderno de Fórmulas. Notas Comerciais Cetip21 Notas Comercas Cetp21 Últma Atualzação: 22/12/2015 E ste Caderno tem por objetvo nformar aos usuáros a metodologa e os crtéros de precsão dos cálculos de valorzação de Notas Comercas. É acatado regstro

Leia mais

F r. PASES 2 a ETAPA TRIÊNIO o DIA GAB. 1 5 FÍSICA QUESTÕES DE 11 A 20

F r. PASES 2 a ETAPA TRIÊNIO o DIA GAB. 1 5 FÍSICA QUESTÕES DE 11 A 20 PSES 2 a ETP TRIÊNIO 2004-2006 1 o DI G. 1 5 FÍSI QUESTÕES DE 11 20 11. onsdere um sstema consttuído por duas partículas. Uma das partículas está ncalmente se movendo e colde nelastcamente com a outra

Leia mais

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média.

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média. Estatístca Dscplna de Estatístca 0/ Curso de Admnstração em Gestão Públca Profª. Me. Valéra Espíndola Lessa e-mal: lessavalera@gmal.com Meddas de Dspersão Indcam se os dados estão, ou não, prómos uns dos

Leia mais

Estudo quantitativo do processo de tomada de decisão de um projeto de melhoria da qualidade de ensino de graduação.

Estudo quantitativo do processo de tomada de decisão de um projeto de melhoria da qualidade de ensino de graduação. Estudo quanttatvo do processo de tomada de decsão de um projeto de melhora da qualdade de ensno de graduação. Rogéro de Melo Costa Pnto 1, Rafael Aparecdo Pres Espíndula 2, Arlndo José de Souza Júnor 1,

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1 FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1 Nome Nº Turma: Data: / / Professor 10.º Ano Classfcação Apresente o seu racocíno de forma clara, ndcando todos os cálculos que tver de efetuar e todas

Leia mais

NOTA II TABELAS E GRÁFICOS

NOTA II TABELAS E GRÁFICOS Depto de Físca/UFMG Laboratóro de Fundamentos de Físca NOTA II TABELAS E GRÁFICOS II.1 - TABELAS A manera mas adequada na apresentação de uma sére de meddas de um certo epermento é através de tabelas.

Leia mais

CONSISTÊNCIA TERMODINÂMICA DE DADOS EXPERIMENTAIS DE EQUILÍBRIO DE FASES EM SISTEMAS BINÁRIOS

CONSISTÊNCIA TERMODINÂMICA DE DADOS EXPERIMENTAIS DE EQUILÍBRIO DE FASES EM SISTEMAS BINÁRIOS CONSISTÊNCIA TERMODINÂMICA DE DADOS EXPERIMENTAIS DE EQUILÍBRIO DE FASES EM SISTEMAS BINÁRIOS J.F. GUIMARÃES 1, P.F. ARCE-CASTILLO 1 1 Unversdade de São Paulo, Escola de Engenhara de Lorena, Depto de Engenhara

Leia mais

UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR

UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR UNIVERSIDADE FEDERAL DE JUIZ DE FORA INSTITUTO DE CIÊNCIAS EATAS DEPARTAMENTO DE ESTATÍSTICA UMA ABORDAGEM ALTERNATIVA PARA O ENSINO DO MÉTODO DOS MÍNIMOS QUADRADOS NO NÍVEL MÉDIO E INÍCIO DO CURSO SUPERIOR

Leia mais

2 Lógica Fuzzy Introdução

2 Lógica Fuzzy Introdução 2 Lógca Fuzzy 2.. Introdução A lógca fuzzy é uma extensão da lógca booleana, ntroduzda pelo Dr. Loft Zadeh da Unversdade da Calfórna / Berkeley no ano 965. Fo desenvolvda para expressar o conceto de verdade

Leia mais

EXPANSÃO TÉRMICA DOS LÍQUIDOS

EXPANSÃO TÉRMICA DOS LÍQUIDOS Físca II Protocolos das Aulas Prátcas 01 DF - Unversdade do Algarve EXPANSÃO ÉRMICA DOS ÍQUIDOS 1 Resumo Estuda-se a expansão térmca da água destlada e do glcerol utlzando um pcnómetro. Ao aquecer-se,

Leia mais

Física C Intensivo V. 2

Física C Intensivo V. 2 Físca C Intensvo V Exercícos 01) C De acordo com as propredades de assocação de resstores em sére, temos: V AC = V AB = V BC e AC = AB = BC Então, calculando a corrente elétrca equvalente, temos: VAC 6

Leia mais

Análise Complexa Resolução de alguns exercícios do capítulo 1

Análise Complexa Resolução de alguns exercícios do capítulo 1 Análse Complexa Resolução de alguns exercícos do capítulo 1 1. Tem-se:. = (0, 1) = (0, 1) =. 3. Sejam a, b R. Então Exercíco nº1 = (0, 1).(0, 1) = (0.0 1.1, 0.1 + 1.0) = ( 1, 0) = 1. a + b = a b = a +

Leia mais

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas 3.6. Análse descrtva com dados agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas

Leia mais

Eletroquímica 2017/3. Professores: Renato Camargo Matos Hélio Ferreira dos Santos.

Eletroquímica 2017/3. Professores: Renato Camargo Matos Hélio Ferreira dos Santos. Eletroquímca 2017/3 Professores: Renato Camargo Matos Hélo Ferrera dos Santos http://www.ufjf.br/nups/ Data Conteúdo 07/08 Estatístca aplcada à Químca Analítca Parte 2 14/08 Introdução à eletroquímca 21/08

Leia mais

1 Objetivo da experiência: Medir o módulo da aceleração da gravidade g no nosso laboratório com ajuda de um pêndulo simples.

1 Objetivo da experiência: Medir o módulo da aceleração da gravidade g no nosso laboratório com ajuda de um pêndulo simples. Departamento de Físca ICE/UFJF Laboratóro de Físca II Prátca : Medda da Aceleração da Gravdade Objetvo da experênca: Medr o módulo da aceleração da gravdade g no nosso laboratóro com ajuda de um pêndulo

Leia mais

ANÁLISE DA VARIÂNCIA DA REGRESSÃO

ANÁLISE DA VARIÂNCIA DA REGRESSÃO ANÁLISE DA VARIÂNCIA DA REGRESSÃO PROCEDIMENTO GERAL DE REGRESSÃO Em um modelo de análse de varânca, como no DIA, o fator em estudo pode ser quanttatvo ou qualtatvo. FATOR QUANTITATIVO: é aquele cujos

Leia mais

Atividade em Soluções Eletrolíticas

Atividade em Soluções Eletrolíticas Modelo de solução eletrolítca segundo Debye-Hückel. - A le lmte de Debye-Hückel (LLDH) tem o lmte que está em: I 0,01. log z.z A I 1/ valêncas do íons + e do eletrólto I 1 [ z b / b ] constante que depende

Leia mais

Atividade em Soluções Eletrolíticas

Atividade em Soluções Eletrolíticas Modelo de solução eletrolítca segundo Debye-Hückel. - A le lmte de Debye-Hückel (LLDH) tem o lmte que está em: I 0,01. log z.z A I 1/ valêncas do íons + e do eletrólto I 1 [ z b / b ] constante que depende

Leia mais

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão AULA 5.3. Afectação de Bens Públicos: a Condição de Samuelson

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão AULA 5.3. Afectação de Bens Públicos: a Condição de Samuelson Mcroeconoma II Cursos de Economa e de Matemátca Aplcada à Economa e Gestão AULA 5.3 Afectação de Bens Públcos: a Condção de Isabel Mendes 2007-2008 5/3/2008 Isabel Mendes/MICRO II 5.3 Afectação de Bens

Leia mais

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média.

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média. Estatístca Dscplna de Estatístca 0/ Curso Superor de tecnólogo em Gestão Ambental Profª. Me. Valéra Espíndola Lessa e-mal: lessavalera@gmal.com Meddas de Dspersão Indcam se os dados estão, ou não, prómos

Leia mais

INTRODUÇÃO À PROBABILIDADE. A probabilidade é uma medida da incerteza dos fenômenos. Traduz-se por um número real compreendido de 0 ( zero) e 1 ( um).

INTRODUÇÃO À PROBABILIDADE. A probabilidade é uma medida da incerteza dos fenômenos. Traduz-se por um número real compreendido de 0 ( zero) e 1 ( um). INTRODUÇÃO À PROILIDDE teora das probabldade nada mas é do que o bom senso transformado em cálculo probabldade é o suporte para os estudos de estatístca e expermentação. Exemplos: O problema da concdênca

Leia mais

CQ049 : FQ IV - Eletroquímica

CQ049 : FQ IV - Eletroquímica CQ049 FQ prof. Dr. Marco Vdott LEAP Laboratóro de Eletroquímca e Polímeros mvdott@ufpr.br Imagens de Rorschach A Eletroquímca pode ser dvdda em duas áreas: Iônca: Está relaconada com os íons em solução

Leia mais

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA CAPÍTULO DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA. A MÉDIA ARITMÉTICA OU PROMÉDIO Defnção: é gual a soma dos valores do grupo de dados dvdda pelo número de valores. X x Soma dos valores de x número de

Leia mais

Índices de Concentração 1

Índices de Concentração 1 Índces de Concentração Crstane Alkmn Junquera Schmdt arcos André de Lma 3 arço / 00 Este documento expressa as opnões pessoas dos autores e não reflete as posções ofcas da Secretara de Acompanhamento Econômco

Leia mais

Aula 6: Corrente e resistência

Aula 6: Corrente e resistência Aula 6: Corrente e resstênca Físca Geral III F-328 1º Semestre 2014 F328 1S2014 1 Corrente elétrca Uma corrente elétrca é um movmento ordenado de cargas elétrcas. Um crcuto condutor solado, como na Fg.

Leia mais

Modelo linear normal com erros heterocedásticos. O método de mínimos quadrados ponderados

Modelo linear normal com erros heterocedásticos. O método de mínimos quadrados ponderados Modelo lnear normal com erros heterocedástcos O método de mínmos quadrados ponderados Varâncas homogêneas Varâncas heterogêneas y y x x Fgura 1 Ilustração da dstrbução de uma varável aleatóra y (condconal

Leia mais

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 014 Estatístca Descrtva e Análse Exploratóra Etapas ncas. Utlzadas para descrever e resumr os dados. A dsponbldade de uma grande quantdade de dados e de

Leia mais

1. CORRELAÇÃO E REGRESSÃO LINEAR

1. CORRELAÇÃO E REGRESSÃO LINEAR 1 CORRELAÇÃO E REGREÃO LINEAR Quando deseja-se estudar se exste relação entre duas varáves quanttatvas, pode-se utlzar a ferramenta estatístca da Correlação Lnear mples de Pearson Quando essa correlação

Leia mais

Cálculo de variações de entropia

Cálculo de variações de entropia álculo de varações de entropa I stema de um corpo em nteracção com uma onte de calor quecmento rreversível, a volume constante m, c c onte F F onte onte entropa é uma unção de estado e a sua varação é

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Val, Dr. val@mat.ufrgs.br http://www.mat.ufrgs.br/~val/ É o grau de assocação entre duas ou mas varáves. Pode ser: correlaconal ou expermental. Prof. Lorí Val, Dr. UFRG Insttuto de Matemátca

Leia mais

Física I LEC+LET Guias de Laboratório 2ª Parte

Física I LEC+LET Guias de Laboratório 2ª Parte Físca I LEC+LET Guas de Laboratóro 2ª Parte 2002/2003 Experênca 3 Expansão lnear de sóldos. Determnação de coefcentes de expansão térmca de dferentes substâncas Resumo Grupo: Turno: ª Fera h Curso: Nome

Leia mais

Capítulo 16: Equilíbrio Geral e Eficiência Econômica

Capítulo 16: Equilíbrio Geral e Eficiência Econômica Capítulo 6: Equlíbro Geral e Efcênca Econômca Pndck & Rubnfeld, Capítulo 6, Equlíbro Geral::EXERCÍCIOS. Em uma análse de trocas entre duas pessoas, suponha que ambas possuam dêntcas preferêncas. A curva

Leia mais

Capítulo 26: Corrente e Resistência

Capítulo 26: Corrente e Resistência Capítulo 6: Corrente e esstênca Cap. 6: Corrente e esstênca Índce Corrente Elétrca Densdade de Corrente Elétrca esstênca e esstvdade Le de Ohm Uma Vsão Mcroscópca da Le de Ohm Potênca em Crcutos Elétrcos

Leia mais

Capítulo 3. Espécie 1 (Massa molar M 1 ) Espécie 2 (Massa molar M 2 ) Espécie 3 (Massa molar M 3 ) Espécie N (Massa molar M N )

Capítulo 3. Espécie 1 (Massa molar M 1 ) Espécie 2 (Massa molar M 2 ) Espécie 3 (Massa molar M 3 ) Espécie N (Massa molar M N ) Capítulo 3 COCETRAÇÕES, VELOCDADES E FLUXOS Antes de apresentarmos as equações fundamentas da dfusão de calor e massa, objetvo central dos Capítulos 4 e 5, é convenente ntroduzrmos concetos assocados ao

Leia mais

DEFINIÇÃO - MODELO LINEAR GENERALIZADO

DEFINIÇÃO - MODELO LINEAR GENERALIZADO DEFINIÇÃO - MODELO LINEAR GENERALIZADO 1 Um modelo lnear generalzado é defndo pelos seguntes três componentes: Componente aleatóro; Componente sstemátco; Função de lgação; Componente aleatóro: Um conjunto

Leia mais

MECÂNICA CLÁSSICA. AULA N o 7. Teorema de Liouville Fluxo no Espaço de Fases Sistemas Caóticos Lagrangeano com Potencial Vetor

MECÂNICA CLÁSSICA. AULA N o 7. Teorema de Liouville Fluxo no Espaço de Fases Sistemas Caóticos Lagrangeano com Potencial Vetor 1 MECÂNICA CLÁSSICA AULA N o 7 Teorema de Louvlle Fluo no Espaço de Fases Sstemas Caótcos Lagrangeano com Potencal Vetor Voltando mas uma ve ao assunto das les admssíves na Físca, acrescentamos que, nos

Leia mais

Nenhum desses processos violaria a Lei de Conservação de Energia se ocorresse no sentido inverso.

Nenhum desses processos violaria a Lei de Conservação de Energia se ocorresse no sentido inverso. SEGUNDA LEI E ENROPIA Processos rreversíves e entroa Alguns rocessos termodnâmcos num só sentdo. Exemlos: - grão de mlho se transformando em oca; - caneca de café esfrando - exansão lvre de um gás. ocorrem

Leia mais

DENSIDADE DE BIODIESEL EM FUNÇÃO DA TEMPERATURA: EXPERIMENTAL X PREDIÇÃO

DENSIDADE DE BIODIESEL EM FUNÇÃO DA TEMPERATURA: EXPERIMENTAL X PREDIÇÃO DENSIDADE DE BIODIESEL EM FUNÇÃO DA TEMPERATURA: EXPERIMENTAL X PREDIÇÃO A. M. M. BESSA 1 ; F. M. R. MESQUITA 1 ; F. R. DO CARMO 1 ; H.B.DE SANT ANA 1 E R.S.DE SANTIAGO-AGUIAR 1 1 Unversdade Federal do

Leia mais

AMPLIAÇÃO DE ESCALA. Adimensionais: dq dq dqs. dt dt dt. Reynolds. Número de Potência. Número de Froude

AMPLIAÇÃO DE ESCALA. Adimensionais: dq dq dqs. dt dt dt. Reynolds. Número de Potência. Número de Froude AMPLIAÇÃO E ESCALA Admensonas: Reynolds Re ρ N /μ Número de Potênca dq dq dqs o dqv Número de Froude Fr N / g AMPLIAÇÃO E ESCALA COMO CORRELACIONAR k L a com potênca de agtação? Os japoneses propões aquecer

Leia mais

AULA Espaços Vectoriais Estruturas Algébricas.

AULA Espaços Vectoriais Estruturas Algébricas. Note bem: a letura destes apontamentos não dspensa de modo algum a letura atenta da bblografa prncpal da cadera Chama-se a atenção para a mportânca do trabalho pessoal a realzar pelo aluno resolvendo os

Leia mais

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão AULA 5.4

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão AULA 5.4 Mcroeconoma II Cursos de Economa e de Matemátca Aplcada à Economa e Gestão AULA 5.4 Provsão de Bens Públcos de forma descentralzada: a solução de Lndahl Isabel Mendes 2007-2008 13-05-2008 Isabel Mendes/MICRO

Leia mais

DISTRIBUIÇÃO DA AÇÃO DO VENTO NOS ELEMENTOS DE CONTRAVENTAMENTO CONSIDERANDO O PAVIMENTO COMO DIAFRAGMA RÍGIDO: ANÁLISE SIMPLIFICADA E MATRICIAL

DISTRIBUIÇÃO DA AÇÃO DO VENTO NOS ELEMENTOS DE CONTRAVENTAMENTO CONSIDERANDO O PAVIMENTO COMO DIAFRAGMA RÍGIDO: ANÁLISE SIMPLIFICADA E MATRICIAL DISTRIBUIÇÃO DA AÇÃO DO VENTO NOS ELEMENTOS DE CONTRAVENTAMENTO CONSIDERANDO O PAVIMENTO COMO DIAFRAGMA RÍGIDO: ANÁLISE SIMPLIFICADA E MATRICIAL Dstrbuton of the wnd acton n the bracng elements consderng

Leia mais

Netuno 4. Manual do Usuário. Universidade Federal de Santa Catarina UFSC. Departamento de Engenharia Civil

Netuno 4. Manual do Usuário. Universidade Federal de Santa Catarina UFSC. Departamento de Engenharia Civil Unversdade Federal de Santa Catarna UFSC Departamento de Engenhara Cvl Laboratóro de Efcênca Energétca em Edfcações - LabEEE Netuno 4 Manual do Usuáro Enedr Ghs Marcelo Marcel Cordova Floranópols, Junho

Leia mais

Prof. Antônio Carlos Fontes dos Santos. Aula 1: Divisores de tensão e Resistência interna de uma fonte de tensão

Prof. Antônio Carlos Fontes dos Santos. Aula 1: Divisores de tensão e Resistência interna de uma fonte de tensão IF-UFRJ Elementos de Eletrônca Analógca Prof. Antôno Carlos Fontes dos Santos FIW362 Mestrado Profssonal em Ensno de Físca Aula 1: Dvsores de tensão e Resstênca nterna de uma fonte de tensão Este materal

Leia mais