Para cada um dos experimentos abaixo, descreva o espaço amostral e dê o número de seus elementos.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Para cada um dos experimentos abaixo, descreva o espaço amostral e dê o número de seus elementos."

Transcrição

1 1 Exercício 1 Para cada um dos experimentos abaixo, descreva o espaço amostral e dê o número de seus elementos. (a) Numa linha de produção conta-se o número de peças defeituosas num intervalo de uma hora. (b) Um fichário com dez nomes contém três nomes de mulheres. Seleciona-se ficha após ficha, até o último nome de mulher ser selecionado, e anota-se o número de fichas selecionadas. (c) De uma população de diabéticos, três pessoas são selecionadas ao acaso com reposição e anota-se o sexo de cada um delas. (d) Uma amostra de água é retirada de um rio e observa-se a concentração de oxigênio dissolvido na água (mg/ml). (e) De um grupo de cinco pessoas A, B, C, D, E, sorteiam-se duas, uma após outra, com reposição, e anota-se a configuração formada. (f) Como ficaria o espaço amostral do item (e) se as retiradas fossem sem reposição? (a) Ω = {0, 1, 2, } (b) Ω={3,4,5,6,7,8,9,10}, 8 elementos. (c) Ω={FFF, FFM, FMF, MFF, FMM, MFM, MMF, MMM}, onde F representa o sexo feminino e M o masculino. 8 elementos (d) Ω={c : c 0}, tal que c é a concentração de oxigênio dissolvido na água (mg/ml). (e) Ω={AA, AB, AC, AD, AE, BA, BB, BC, BD, BE, CA, CB, CC, CD, CE, DA, DB, DC, DD, DE, EA, EB, EC, ED, EE.}, 25 elementos (f) Ω={AB, AC, AD, AE, BA, BC, BD, BE, CA, CB, CD, CE, DA, DB, DC, DE, EA, EB, EC, ED.}, 20 elementos. Exercício 2 De uma urna contendo 5 bolas brancas e 3 bolas pretas retiramos duas bolas aleatoriamente. Sejam os eventos: A: A primeira retirada resulta em bola branca; B: A segunda retirada resulta em bola branca. Se as retiradas são sem reposição, verifique se as afirmações abaixo são falsas. (a) = P(B); (b) A e B são independentes.

2 2 : Note que, Tabela 1: Probablidade 5 BB = 20 3 PB = 15 5 BP = 15 3 PP = 6 a) Defina, C: A primeira retirada resulta em bola preta. P(B) = P(B A) + P(B C) = = = 35 = 5 8 = Portanto, = P(B) e a afirmação não é falsa. b) Do item anterior P(B) = 5 8. Como, P(B A) = 4 7 então, P(B) P(B A) e portanto a afirmação que A e B são independentes é falsa. Exercício 3 Considere que as probabilidades relacionadas aos eventos G: gostar de gatos e A: gostar de cachorros sejam P(G) = 1/4; P(A G) = 1/2 e P(G A) = 1/4. Responda: (a) Os eventos G e A são mutuamente exclusivos? Justifique. (b) Os eventos G e A são independentes? Justifique. (c) Calcule a probabilidade de não gostar de gatos dado que gosta de cachorros. (d) Calcule a probabilidade de não gostar de gatos e não gostar de cachorros. : a) Observe que P(A G) = P(A G)P(G) = = De modo que, A G. Portanto, A e G não são mutuamente exclusivos. b) Note que, = P(A G) P(G A) = 1/8 1/4 = 1 2 > 0. Temos, P(G A) = P(G), > 0, logo G e A são independentes.

3 3 c) Defina o evento, G c ={Não gostar de gatos.} Resultado 1 Se A e G são independentes, > 0 então A e G c são independentes. De fato, P(G c A) = P(A Gc ) = P(A G) = P(G) = 1 P(G) = P(G c ) Note item (b) vimos que A e G são independentes, portanto, do resultado anterior segue que G c e A também são independentes e assim, P(G c A) = P(G c ) = 1 P(G) = = 3 4. d) Defina o evento, A c ={Não gostar de cachorros.} Como os eventos A e G c são independentes (item c) segue que A c e G c também são independentes e assim, P(A c G c ) = P(A c )P(G c ) = (1 )(1 P(G)) = = 3 8 Outra forma, P(A c G c ) = 1 P((A c G c ) c ) = 1 P(A G) = 1 ( + P(G) P(A G)) = 1 (1/4 + 1/2 1/8) = 3/8. Uma vez que A e G são independentes (como visto anteriormente) e temos que P(A G) = P(G) = 1/8. Exercício 4 Os estudantes da Universidade, cuja área de estudo e sexo foram registradas, responderam à seguinte questão: Você é a favor, contrário, ou não tem opinião sobre a democratização do acesso à Universidade para estudantes da Escola Pública? Os resumos das respostas estão no quadro: Tabela 2: Valores Ordenados das despesas fixas e pessoais em cada departamento. Área Sexo Opinião Sim não nto Exatas masc fem Humanas masc fem Biológicas masc fem Se dentre os alunos escolhemos um aleatoriamente, qual é a probabilidade de: (a) Ser do sexo feminino e ser favorável; (b) Ser contrário, sabendo-se que é da área das exatas; (c) Ser do sexo feminino e da área das biológicas, sabendo-se que não tem opinião.

4 4 O espaço amostral é dado por, Ω={10000 estudantes da universidade.} a) Defina os eventos, F={O estudante entrevistado é do sexo feminino}, S={O estudante entrevistado é favorável a democratização do acesso à universidade para estudantes da escola pública.} P(F S) = = 970 = 0, b) Defina os eventos, E={O estudante entrevistado é da área de exatas}, C={O estudante entrevistado é contrário democratização do acesso à universidade para estudantes da escola pública.} P(C E) = P(C E) P(E) = 1500/ /10000 = = c) Defina os eventos, B={O estudante entrevistado é da área de biológicos}, N={O estudante entrevistado não tem opinião} P(F B N) = P(F B N) P(N) = 430/ /10000 = = Exercício 5 Em um bairro existem três empresas de TV a cabo e 20 mil residências. A empresa TA tem 2100 assinantes, a TB tem 1850 e a empresa TC tem 2600 assinantes, sendo que algumas residências em condomínios subscrevem aos serviços de mais de uma empresa. Assim, temos 420 residências que são assinantes de TA e TB, 120 de TA e TC, 180 de TB e TC e 30 que são assinantes das três empresas. Se uma residência desse bairro é sorteada ao acaso, qual é a probabilidade de: (a) Ser assinante somente da empresa TA? (b) Assinar pelo menos uma delas? (c) Não ser assinante de TV a cabo? O espaço amostral é dado por, Ω={ residências de um bairro.} Defina os eventos, A={A residência é assinante da empresa TA}, B={A residência é assinante da empresa TB}, C={A residência é assinante da empresa TC}, N={A residência não é assinante de nenhuma empresa}.

5 5 a) A probabilidade de ser assinante somente da empresa TA é dada por, P(A B c C c ) = P(A B) P(A C) + P(A B C) = = 1590 = 0, b) A probabilidade de ser assinante de pelo menos uma das empresas é:. P(A B C) = + P(B) + P(C) P(A B) P(A C) P(B C) +P(A B C) = = 5860 = 0, 293 c) A probabilidade de não ser assinante de tv a cabo: P(N) = 1 P(TA TB TC) = 5860 = = 0, 707. Observação: Total de assinantes só da empresa TA: 1590; total de assinantes somente da empresa TB: 1280; total de assinantes somente da empresa TC: 2330; total de assinantes somente das empresas TA e TB: 390, total de assinantes somente das empresas TA e TC: 90, total de assinantes somente das empresas TC e TB 150.

Para cada um dos experimentos abaixo, descreva o espaço amostral e dê o número de seus elementos.

Para cada um dos experimentos abaixo, descreva o espaço amostral e dê o número de seus elementos. 1 Exercício 1 Para cada um dos experimentos abaixo, descreva o espaço amostral e dê o número de seus elementos. (a) Numa linha de produção conta-se o número de peças defeituosas num intervalo de uma hora.

Leia mais

MAE0219 Introdução à Probabilidade e Estatística I

MAE0219 Introdução à Probabilidade e Estatística I Exercício 1 Para cada um dos experimentos abaixo, descreva o espaço amostral e dê o número de seus elementos. (a) Numa linha de produção conta-se o número de peças defeituosas num intervalo de uma hora.

Leia mais

5) Qual a probabilidade de sair um ás de ouros quando retiramos uma carta de um baralho de 52 cartas?

5) Qual a probabilidade de sair um ás de ouros quando retiramos uma carta de um baralho de 52 cartas? TERCEIRA LISTA DE EXERCÍCIOS DE PROBABILIDADE CURSO: MATEMÁTICA PROF. LUIZ CELONI 1) Dê um espaço amostral para cada experimento abaixo. a) Uma urna contém bolas vermelhas (V), bolas brancas (B) e bolas

Leia mais

MAE116 - Noções de Estatística Grupo A - 1 semestre de 2015

MAE116 - Noções de Estatística Grupo A - 1 semestre de 2015 MAE116 - Noções de Estatística Grupo A - 1 semestre de 2015 Gabarito Lista 4 - Probabilidade - CASA Exercício 1. (2 pontos) Para cada um dos experimentos abaixo, descreva o espaço amostral e apresente

Leia mais

Aula 02: Probabilidade

Aula 02: Probabilidade ITA - Laboratório rio de Guerra Eletrônica EENEM 2008 Estatística stica e Probabilidade Aula 02: Probabilidade população probabilidade (dedução) inferência estatística stica (indução) amostra Definições

Leia mais

PROBABILIDADE: DIAGRAMAS DE ÁRVORES

PROBABILIDADE: DIAGRAMAS DE ÁRVORES PROBABILIDADE: DIAGRAMAS DE ÁRVORES Enunciados dos problemas Ana Maria Lima de Farias Departamento de Estatística (GET/UFF) 1. Na gincana anual do Colégio Universitário, 60% dos alunos presentes são do

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA

ESCOLA SUPERIOR DE TECNOLOGIA Departamento Matemática Curso Engenharia Civil 1º Semestre 2º Folha Nº1 1. Ao dar ordem de compra de um computador é necessário especificar, em relação ao seu sistema, a memória (1, 2 ou 3Gb) e capacidade

Leia mais

MAE 0219 - Introdução à Probabilidade e Estatística Lista 3

MAE 0219 - Introdução à Probabilidade e Estatística Lista 3 MAE 0219 - Introdução à Probabilidade e Estatística Lista 3 Professores: Pedro Morettin & Chang Chiann 1. Defina um espaço amostral para cada um dos seguintes experimentos aleatórios: (a) Lançamento de

Leia mais

Caique Tavares. Probabilidade Parte 1

Caique Tavares. Probabilidade Parte 1 Caique Tavares Probabilidade Parte 1 Probabilidade: A teoria das probabilidades é um ramo da Matemática que cria, elabora e pesquisa modelos para estudar experimentos ou fenômenos aleatórios. Principais

Leia mais

HEP-5800 BIOESTATÍSTICA

HEP-5800 BIOESTATÍSTICA HEP-5800 BIOESTATÍSTICA UNIDADE III INFERÊNCIA ESTATÍSTICA : AMOSTRAGEM PROBABILÍSTICA, DISTRIBUIÇÃO AMOSTRAL, INTERVALOS DE CONFIANÇA. Nilza Nunes da Silva Regina T. I. Bernal 2 1. AMOSTRAGEM PROBABILISTICA

Leia mais

ESTATÍSTICA I LISTA DE EXERCÍCIOS 2 GABARITO

ESTATÍSTICA I LISTA DE EXERCÍCIOS 2 GABARITO ESTATÍSTICA I LISTA DE EXERCÍCIOS 2 GABARITO 1. (Magalhães e Lima, pg 40) Para cada um dos casos abaixo, escreva o espaço amostral correspondente e conte seus elementos: (a) Uma moeda é lançada duas vezes

Leia mais

Aula 5 Probabilidade conceitos básicos

Aula 5 Probabilidade conceitos básicos AULA 5 Aula 5 Probabilidade conceitos básicos Nesta aula, você aprenderá os conceitos de: experimento aleatório; espaço amostral; evento aleatório e também as operações que podem ser feitas com os eventos

Leia mais

PESQUISA DE OPINIÃO PÚBLICA

PESQUISA DE OPINIÃO PÚBLICA PESQUISA DE OPINIÃO PÚBLICA SOBRE TRANSGÊNICOS DEZEMBRO 2002 OPP 573 ESPECIFICAÇÕES TÉCNICAS DA PESQUISA OBJETIVO LOCAL - Levantar junto a população da área em estudo opiniões sobre os transgênicos. -

Leia mais

PESQUISA DE OPINIÃO PÚBLICA SOBRE O GOVERNO FEDERAL

PESQUISA DE OPINIÃO PÚBLICA SOBRE O GOVERNO FEDERAL PESQUISA DE OPINIÃO PÚBLICA SOBRE O GOVERNO FEDERAL OUTUBRO DE 2013 JOB1642 ESPECIFICAÇÕES TÉCNICAS DA PESQUISA OBJETIVO LOCAL O principal objetivo desse projeto é monitorar a administração do Governo

Leia mais

PROBABILIDADE. Aula 2 Probabilidade Básica. Fernando Arbache

PROBABILIDADE. Aula 2 Probabilidade Básica. Fernando Arbache PROBABILIDADE Aula 2 Probabilidade Básica Fernando Arbache Probabilidade Medida da incerteza associada aos resultados do experimento aleatório Deve fornecer a informação de quão verossímil é a ocorrência

Leia mais

PROBABILIDADES: EXPERIMENTOS ALEATÓRIOS E DETERMINÍSTICOS, ESPAÇO AMOSTRAL, PRINCIPAIS EVENTOS, TEOREMA DA SOMA E TEOREMA DO PRODUTO

PROBABILIDADES: EXPERIMENTOS ALEATÓRIOS E DETERMINÍSTICOS, ESPAÇO AMOSTRAL, PRINCIPAIS EVENTOS, TEOREMA DA SOMA E TEOREMA DO PRODUTO PROBABILIDADES: EXPERIMENTOS ALEATÓRIOS E DETERMINÍSTICOS, ESPAÇO AMOSTRAL, PRINCIPAIS EVENTOS, TEOREMA DA SOMA E TEOREMA DO PRODUTO META Trabalhar o que sejam experimentos aleatórios, visto que estes

Leia mais

Prof. Luiz Alexandre Peternelli

Prof. Luiz Alexandre Peternelli Exercícios propostos 1. Numa prova há 7 questões do tipo verdadeiro-falso ( V ou F ). Calcule a probabilidade de acertarmos todas as 7 questões se: a) Escolhermos aleatoriamente as 7 respostas. b) Escolhermos

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. Questão 4. alternativa A. alternativa E. alternativa E

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. Questão 4. alternativa A. alternativa E. alternativa E Questão TIPO DE PROVA: A Uma empresa entrevistou k candidatos a um determinadoempregoerejeitouumnúmerode candidatos igual a 5 vezes o número de candidatos aceitos. Um possível valor para k é: a) 56 b)

Leia mais

PESQUISA DE OPINIÃO PÚBLICA

PESQUISA DE OPINIÃO PÚBLICA PESQUISA DE OPINIÃO PÚBLICA SOBRE TORCIDAS NOVEMBRO/ DEZEMBRO 2003 OPP 231 OBJETIVO LOCAL ESPECIFICAÇÕES TÉCNICAS DA PESQUISA - Levantar junto a população da área em estudo opiniões relacionadas a torcidas

Leia mais

UNIVERSIDADE FEDERAL DE VIÇOSA Centro de Ciências Exatas Departamento de Matemática

UNIVERSIDADE FEDERAL DE VIÇOSA Centro de Ciências Exatas Departamento de Matemática UNIVERSIDADE FEDERAL DE VIÇOSA Centro de Ciências Exatas Departamento de Matemática 1 a Lista - MAT 17 - Introdução à Álgebra Linear II/2004 1 Considere as matrizes A, B, C, D e E com respectivas ordens,

Leia mais

MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO ESCOLHA A ÚNICA ALTERNATIVA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES

MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO ESCOLHA A ÚNICA ALTERNATIVA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES MINISTÉRIO DA DEFESA EXÉRCITO BRASILEIRO DECEx DEPA COLÉGIO MILITAR DO RIO DE JANEIRO (Casa de Thomaz Coelho/1889 9º Ano SubSeção de Matemática 1 a PARTE Múltipla Escolha Álgebra e Geometria ESCOLHA A

Leia mais

1.2. PROBABILIDADE CLÁSSICA 7

1.2. PROBABILIDADE CLÁSSICA 7 1.2. PROBABILIDADE CLÁSSICA 7 1.2.3 Combinações e Permutações Esta seção explicam-se as noções básicas de análise combinatória e se desenvolve o fundo probabilística correspondente. Muitos problemas da

Leia mais

Bom serviço dentro da garantia Serviço deficiente dentro da garantia Vendedores de determinada marca de pneus 64 16

Bom serviço dentro da garantia Serviço deficiente dentro da garantia Vendedores de determinada marca de pneus 64 16 Lista de Probabilidade Básica com gabarito 1. Considere a experiência que consiste em pesquisar famílias com três crianças, em relação ao sexo das mesmas, segundo a ordem de nascimento. (a)determine o

Leia mais

Teoria das Probabilidades I. Ana Maria Lima de Farias Universidade Federal Fluminense

Teoria das Probabilidades I. Ana Maria Lima de Farias Universidade Federal Fluminense Teoria das Probabilidades I Ana Maria Lima de Farias Universidade Federal Fluminense Conteúdo 1 Probabilidade - Conceitos Básicos 1 1.1 Introdução....................................... 1 1.2 Experimento

Leia mais

VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL

VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL 1 Variável Aleatória Uma função X que associa a cada elemento w do espaço amostral W um valor x R é denominada uma variável aleatória. Experimento: jogar 1 dado

Leia mais

Lista de Exercícios de Geometria

Lista de Exercícios de Geometria Núcleo Básico de Engenharias Geometria - Geometria Analítica Professor Julierme Oliveira Lista de Exercícios de Geometria Primeira Parte: VETORES 1. Sejam os pontos A(0,0), B(1,0), C(0,1), D(-,3), E(4,-5)

Leia mais

Introdução aos Processos Estocásticos - Independência

Introdução aos Processos Estocásticos - Independência Introdução aos Processos Estocásticos - Independência Eduardo M. A. M. Mendes DELT - UFMG Programa de Pós-Graduação em Engenharia Elétrica Universidade Federal de Minas Gerais emmendes@cpdee.ufmg.br Eduardo

Leia mais

OB e. BC, entãoa, B, C e D são vértices de um paralelogramo; ( ) Três vetores LD são sempre colineares.

OB e. BC, entãoa, B, C e D são vértices de um paralelogramo; ( ) Três vetores LD são sempre colineares. 1.1 Classifique as afirmações em verdadeiras ou falsas, justificando sua resposta. ( ) AB = CD A = C e B = D; ( ) Se AB CD,entãoAC BD eosvetores AC e BD são iguais; ( ) Se a e b são LD, então a e b têm

Leia mais

Probabilidade é o quociente entre o número de casos favoráveis e o número de casos possíveis em um dado experimento.

Probabilidade é o quociente entre o número de casos favoráveis e o número de casos possíveis em um dado experimento. Probabilidade é o quociente entre o número de casos favoráveis e o número de casos possíveis em um dado experimento. número de casos favoráveis probabilidade número de casos possíveis Nessa definição convém

Leia mais

1. Uma pesquisa de mercado sobre o consumo de três marcas A, B e C de um determinado produto apresentou os seguintes resultados:

1. Uma pesquisa de mercado sobre o consumo de três marcas A, B e C de um determinado produto apresentou os seguintes resultados: 1. Uma pesquisa de mercado sobre o consumo de três marcas A, B e C de um determinado produto apresentou os seguintes resultados: A - 48% A e B - 18% B - 45% B e C - 25% C - 50% A e C - 15% nenhuma das

Leia mais

Probabilidade - aula I

Probabilidade - aula I e 27 de Fevereiro de 2015 e e Experimentos Aleatórios e Objetivos Ao final deste capítulo você deve ser capaz de: Entender e descrever espaços amostrais e eventos para experimentos aleatórios. Interpretar

Leia mais

PROBABILIDADE PROPRIEDADES E AXIOMAS

PROBABILIDADE PROPRIEDADES E AXIOMAS PROBABILIDADE ESPAÇO AMOSTRAL É o conjunto de todos os possíveis resultados de um experimento aleatório. A este conjunto de elementos denominamos de espaço amostral ou conjunto universo, simbolizado por

Leia mais

9A5&*86365 A 2A 5&*86"649A5458"

9A5&*86365 A 2A 5&*86649A5458 12345675689ABCD6756533ADCE9A56D5EF9A56 5 EAD5EF9A56 86 A C938 6 56C C9AC 4A56 B 54A861C7A5B5 C E9861953A CA9867C6 C3 2A3536 3A453!"6#2C3E$C36BC95A3638 9C65 EA6D5EF9A5 %"6 8 7A&$C367C6'5()598 6C656 A8 5&*867C6

Leia mais

2. Probabilidade. Aula 3

2. Probabilidade. Aula 3 Aula 3 2. Probabilidade 2-1 Espaços de amostragem e eventos 2-1.1 Experimentos randômicos 2-1.2 Espaços de amostragem 2-1.3 Eventos 2-2 Interpretações de probabilidade 2-2.1 Introdução 2-2.2 Axiomas de

Leia mais

Modelos não recorrentes RNA Feed-Forward: MLP - Backpropagation, RProp,CasCor (HiperPlanos) RBF Radial Basis Function (Clusters)

Modelos não recorrentes RNA Feed-Forward: MLP - Backpropagation, RProp,CasCor (HiperPlanos) RBF Radial Basis Function (Clusters) Modelos não recorrentes RNA Feed-Forward: MLP - Backpropagation, RProp,CasCor (HiperPlanos) RBF Radial Basis Function (Clusters) 2. Outros modelos Mapas de Kohonen SOM, SOFM (Self-Organizing Feature Maps)

Leia mais

Nome: N.º: Endereço: Data: Telefone: PARA QUEM CURSA O 9 Ọ ANO DO ENSINO FUNDAMENTAL EM 2016 Disciplina: MATEMÁTICA

Nome: N.º: Endereço: Data: Telefone:   PARA QUEM CURSA O 9 Ọ ANO DO ENSINO FUNDAMENTAL EM 2016 Disciplina: MATEMÁTICA Nome: N.º: Endereço: Data: Telefone: E-mail: Colégio PARA QUEM CURSA O 9 Ọ ANO DO ENSINO FUNDAMENTAL EM 06 Disciplina: MATEMÁTICA Prova: DESAFIO NOTA: QUESTÃO 6 Analise cada item com atenção: I. O antecedente

Leia mais

ESTATÍSTICA PARTE 1 OBJETIVO DA DISCIPLINA

ESTATÍSTICA PARTE 1 OBJETIVO DA DISCIPLINA ESTATÍSTICA PARTE 1 OBJETIVO DA DISCIPLINA Apresentar a Estatística no contexto do dia-a-dia e fazendo uso da planilha Excel. Espera-se que o estudante ao término do curso esteja apto a usar a planilha

Leia mais

Disciplina: Álgebra Linear - Engenharias ], C = Basta adicionar elemento a elemento de A e B que ocupam a mesma posição na matriz.

Disciplina: Álgebra Linear - Engenharias ], C = Basta adicionar elemento a elemento de A e B que ocupam a mesma posição na matriz. Universidade Federal de Goiás Campus Catalão Departamento de Matemática Disciplina: Álgebra Linear - Engenharias Professor: André Luiz Galdino Gabarito da 1 a Lista de Exercícios 1. Sejam Encontre: [ 1

Leia mais

PESQUISA DE OPINIÃO PÚBLICA

PESQUISA DE OPINIÃO PÚBLICA PESQUISA DE OPINIÃO PÚBLICA SOBRE ASSUNTOS POLÍTICOS/ ADMINISTRATIVOS MAIO DE 2006 OPP106 OBJETIVO LOCAL ESPECIFICAÇÕES TÉCNICAS DA PESQUISA Levantar junto aos eleitores da área em estudo opiniões relacionadas

Leia mais

Aula 8 Intervalos de confiança para proporções amostras grandes

Aula 8 Intervalos de confiança para proporções amostras grandes Aula 8 Intervalos de confiança para proporções amostras grandes Objetivos Na aula anterior, foram apresentadas as idéias básicas da estimação por intervalos de confiança. Para ilustrar o princípio utilizado

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA

ESCOLA SUPERIOR DE TECNOLOGIA Departamento Matemática Probabilidades e Estatística Curso Engenharia do Ambiente 2º Semestre 1º Ficha n.º1: Probabilidades e Variáveis Aleatórias 1. Lançam- ao acaso 2 moedas. a) Escreva o espaço de resultados

Leia mais

Módulo de Semelhança de Triângulos e Teorema de Tales. 8 ano/9 a série E.F.

Módulo de Semelhança de Triângulos e Teorema de Tales. 8 ano/9 a série E.F. Módulo de Semelhança de Triângulos e Teorema de Tales Relações Métricas no Triângulo Retângulo. 8 ano/9 a série E.F. Semelhança de Triângulos e Teorema de Tales Relações Métricas no Triângulo Retângulo.

Leia mais

Prof.Letícia Garcia Polac. 26 de setembro de 2017

Prof.Letícia Garcia Polac. 26 de setembro de 2017 Bioestatística Prof.Letícia Garcia Polac Universidade Federal de Uberlândia UFU-MG 26 de setembro de 2017 Sumário 1 2 Probabilidade Condicional e Independência Introdução Neste capítulo serão abordados

Leia mais

Estatística e Probabilidade. Aula 5 Cap 03 Probabilidade

Estatística e Probabilidade. Aula 5 Cap 03 Probabilidade Estatística e Probabilidade Aula 5 Cap 03 Probabilidade Na aula anterior vimos... Conceito de Probabilidade Experimento Probabilístico Tipos de Probabilidade Espaço amostral Propriedades da Probabilidade

Leia mais

3. Probabilidade P(A) =

3. Probabilidade P(A) = 7 3. Probabilidade Probabilidade é uma medida numérica da plausibilidade de que um evento ocorrerá. Assim, as probabilidades podem ser usadas como medidas do grau de incerteza e podem ser expressas de

Leia mais

Canguru Matemático sem Fronteiras 2014

Canguru Matemático sem Fronteiras 2014 http://www.mat.uc.pt/canguru/ Destinatários: alunos do 12. ano de escolaridade Nome: Turma: Duração: 1h 30min Não podes usar calculadora. Em cada questão deves assinalar a resposta correta. As questões

Leia mais

EXERCÍCIOS RESOLVIDOS ESTUDO DA RETA

EXERCÍCIOS RESOLVIDOS ESTUDO DA RETA 1 EXERCÍCIOS RESOLVIDOS ESTUDO DA RETA 1. SEJA O CUBO DADO NA FIGURA ABAIXO CUJOS VÉRTICES AB PERTENCEM À LT. PERGUNTA-SE: A) QUE TIPO DE RETAS PASSA PELAS ARESTAS EF, EC, EG. B) QUE TIPO DE RETAS PASSA

Leia mais

Testes Qui-Quadrado - Teste de Aderência

Testes Qui-Quadrado - Teste de Aderência Testes Qui-Quadrado - Teste de Aderência Consideremos uma tabela de frequências com k frequências, k 2 k: total de categorias frequências observadas: O 1,, O k seja p 1 = p 01,, p k = p 0k as probabilidades

Leia mais

BANCO DE EXERCÍCIOS - 24 HORAS

BANCO DE EXERCÍCIOS - 24 HORAS BANCO DE EXERCÍCIOS - 4 HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº 04 GABARITO COMENTADO 40 40 ) Sabendo que O B M = 40 O B = B M M = O, 40 O B+ M = 46 + M = 46 M 46M + 40 =

Leia mais

Matemática. A probabilidade pedida é p =

Matemática. A probabilidade pedida é p = a) Uma urna contém 5 bolinhas numeradas de a 5. Uma bolinha é sorteada, tem observado seu número, e é recolocada na urna. Em seguida, uma segunda bolinha é sorteada e tem observado seu número. Qual a probabilidade

Leia mais

2ª LISTA DE EXERCÍCIOS. 2) Uma indústria automobilística possui 15.000 empregados, classificados de acordo com a tabela abaixo:

2ª LISTA DE EXERCÍCIOS. 2) Uma indústria automobilística possui 15.000 empregados, classificados de acordo com a tabela abaixo: DISCIPLINA: ESTATÍSTICA APLICADA À ADMINISTRAÇÃO PROF: LUIZ MEDEIROS 2ª LISTA DE EXERCÍCIOS 1) Descreva o espaço amostral para cada um dos seguintes experimentos: a) Lançamento de um dado e de uma moeda;

Leia mais

Siemens AG 2009 SIRIUS SENTRON SIVACON. Catálogo LV 90 2009. Baixa Tensão Corte, protecção e comando. Answers for industry.

Siemens AG 2009 SIRIUS SENTRON SIVACON. Catálogo LV 90 2009. Baixa Tensão Corte, protecção e comando. Answers for industry. SIRIUS SENTRON SIVACON Catálogo LV 90 2009 Baixa Tensão Corte, protecção e comando Answers for industry. Interruptores de corte em carga, sistemas de barramentos SENTRON 8US Introdução Tipo 3NP 1 3K 3NJ4

Leia mais

Exercícios Resolvidos sobre: II A Representação da Economia e a Contabilidade Nacional

Exercícios Resolvidos sobre: II A Representação da Economia e a Contabilidade Nacional Exercícios Resolvidos sobre: II A Representação da Economia e a Contabilidade Nacional Contabilidade Nacional Questão 6 O nosso objectivo é conhecer o valor da produção da economia ou PIB. Se as empresas

Leia mais

Universidade Federal de Goiás Regional Catalão - IMTec

Universidade Federal de Goiás Regional Catalão - IMTec Universidade Federal de Goiás Regional Catalão - IMTec Disciplina: Álgebra I Professor: André Luiz Galdino Gabarito da 1 a Lista de Exercícios 11/03/2015 1. Prove que G é um grupo com a operação de multiplicação

Leia mais

Curso de Farmácia Estatística Vital Aula 05 Comentários Adicionais. Prof. Hemílio Fernandes Depto. de Estatística - UFPB

Curso de Farmácia Estatística Vital Aula 05 Comentários Adicionais. Prof. Hemílio Fernandes Depto. de Estatística - UFPB Curso de Farmácia Estatística Vital Aula 05 Comentários Adicionais Prof. Hemílio Fernandes Depto. de Estatística - UFPB Um pouco de Probabilidade Experimento Aleatório: procedimento que, ao ser repetido

Leia mais

NOÇÕES DE PROBABILIDADE

NOÇÕES DE PROBABILIDADE NOÇÕES DE PROBABILIDADE Fenômeno Aleatório: situação ou acontecimento cujos resultados não podem ser determinados com certeza. Exemplos: 1. Resultado do lançamento de um dado;. Hábito de fumar de um estudante

Leia mais

Ficha Prática 5: Cap 3.Princípios Elementares de Contagem

Ficha Prática 5: Cap 3.Princípios Elementares de Contagem Matemática Discreta - 2010/11 Cursos: Engenharia Informática, Informática de Gestão DEPARTAMENTO de MATEMÁTICA ESCOLA SUPERIOR de TECNOLOGIA e de GESTÃO - INSTITUTO POLITÉCNICO de BRAGANÇA Ficha Prática

Leia mais

PROBABILIDADE. É o conjunto de todos os resultados possíveis de um experimento aleatório. A letra que representa o espaço amostral, é S.

PROBABILIDADE. É o conjunto de todos os resultados possíveis de um experimento aleatório. A letra que representa o espaço amostral, é S. PROBABILIDADE A história da teoria das probabilidades, teve início com os jogos de cartas, dados e de roleta. Esse é o motivo da grande existência de exemplos de jogos de azar no estudo da probabilidade.

Leia mais

Aula 09 Análise Estrutural - Treliça Capítulo 6 R. C. Hibbeler 10ª Edição Editora Pearson - http://www.pearson.com.br/

Aula 09 Análise Estrutural - Treliça Capítulo 6 R. C. Hibbeler 10ª Edição Editora Pearson - http://www.pearson.com.br/ Aula 09 Análise Estrutural - Treliça Capítulo 6 R. C. Hibbeler 10ª Edição Editora Pearson - http://www.pearson.com.br/ Estrutura Sistema qualquer de elementos ligados, construído para suportar ou transferir

Leia mais

Vamos denotar por C o evento balancete de custo e por O o evento balancete de orçamento. Temos: #O = 4 #C = 3 # = 7 Logo, Pr(O) =4/7 Pr(C) =2/7

Vamos denotar por C o evento balancete de custo e por O o evento balancete de orçamento. Temos: #O = 4 #C = 3 # = 7 Logo, Pr(O) =4/7 Pr(C) =2/7 AEDB - 2ª BI Probabilidade e Estatística - 2 o Ano 2011 - Prof: Roberto Campos Leoni Simulado 1. Em um arquivo há 4 balancetes de orçamento e 3 balancetes de custos. Em uma auditoria, o auditor seleciona

Leia mais

21- EXERCÍCIOS FUNÇÕES DO SEGUNDO GRAU

21- EXERCÍCIOS FUNÇÕES DO SEGUNDO GRAU 1 21- EXERCÍCIOS FUNÇÕES DO SEGUNDO GRAU 1. O gráfico do trinômio y = ax 2 + bx + c. Qual a afirmativa errada? a) se a > 0 a parábola possui concavidade para cima b) se b 2 4ac > 0 o trinômio possui duas

Leia mais

Bioestatística F. Modelo Binomial. Enrico A. Colosimo

Bioestatística F. Modelo Binomial. Enrico A. Colosimo Bioestatística F Modelo Binomial Enrico A. Colosimo Departamento de Estatística Universidade Federal de Minas Gerais http://www.est.ufmg.br/~enricoc 2011 1 / 1 Variável aleatória discreta Definição Uma

Leia mais

Universidade Federal do Rio de Janeiro INSTITUTO DE MATEMÁTICA Departamento de Métodos Matemáticos

Universidade Federal do Rio de Janeiro INSTITUTO DE MATEMÁTICA Departamento de Métodos Matemáticos Universidade Federal do Rio de Janeiro INSTITUTO DE MATEMÁTICA Departamento de Métodos Matemáticos Gabarito da a Prova de Geometria I - Matemática - Monica 9/05/015 1 a Questão: (4,5 pontos) (solução na

Leia mais

Os degraus serão obtidos cortando-se uma peça linear de madeira cujo comprimento mínimo, em cm, deve ser: (D) 225.

Os degraus serão obtidos cortando-se uma peça linear de madeira cujo comprimento mínimo, em cm, deve ser: (D) 225. 1. (ENEM 2000) Um marceneiro deseja construir uma escada trapezoidal com 5 degraus, de forma que o mais baixo e o mais alto tenham larguras respectivamente iguais a 60 cm e a 30 cm, conforme a figura:

Leia mais

Câmara dos Deputados Praça 3 Poderes Consultoria Legislativa Anexo III - Térreo Brasília - DF

Câmara dos Deputados Praça 3 Poderes Consultoria Legislativa Anexo III - Térreo Brasília - DF Henrique Leonardo Medeiros Consultor Legislativo da Área II Direito Civil e Processual Civil, Direito Penal e Processual Penal, de Família, do Autor, de Sucessões, Internacional Privado Câmara dos Deputados

Leia mais

LISTA DE EXERCÍCIOS MECÂNICA DOS SÓLIDOS I

LISTA DE EXERCÍCIOS MECÂNICA DOS SÓLIDOS I LISTA DE EXERCÍCIOS MECÂNICA DOS SÓLIDOS I A - Tensão Normal Média 1. Exemplo 1.17 - A luminária de 80 kg é sustentada por duas hastes, AB e BC, como mostra a Figura 1.17a. Se AB tiver diâmetro de 10 mm

Leia mais

Roteiro da aula. MA091 Matemática básica. Conjuntos. Subconjunto. Aula 12 Conjuntos. Intervalos. Inequações. Francisco A. M. Gomes.

Roteiro da aula. MA091 Matemática básica. Conjuntos. Subconjunto. Aula 12 Conjuntos. Intervalos. Inequações. Francisco A. M. Gomes. Roteiro da aula MA091 Matemática básica Aula 1... Francisco A. M. Gomes UNICAMP - IMECC Março de 016 1 3 4 Francisco A. M. Gomes (UNICAMP - IMECC) MA091 Matemática básica Março de 016 1 / 8 Francisco A.

Leia mais

ENG1200 Mecânica Geral Lista de Exercícios 1 Equilíbrio da Partícula

ENG1200 Mecânica Geral Lista de Exercícios 1 Equilíbrio da Partícula ENG1200 Mecânica Geral 2013.2 Lista de Exercícios 1 Equilíbrio da Partícula Questão 1 - Prova P1 2013.1 Determine o máximo valor da força P que pode ser aplicada na estrutura abaixo, sabendo que no tripé

Leia mais

Contagem e Probabilidade Soluções do Exercícios Adicionais. Paulo Cezar Pinto Carvalho

Contagem e Probabilidade Soluções do Exercícios Adicionais. Paulo Cezar Pinto Carvalho Contagem e Probabilidade Soluções do Exercícios Adicionais Paulo Cezar Pinto Carvalho 1. a) AB, AC, AD, BA, BC, BD, CA, CB, CD, DA, DB, DC b) O líder pode ser escolhido de modos; uma vez escolhido o líder,

Leia mais

Pos. Designação Tipo Medida Material 1 RETENTORES CB 4 X 11 X 6 2 RETENTORES CB 4 X 11 X 6 VITON 3 RETENTORES CB 4 X 12 X 6 4 RETENTORES CB 4 X 12 X

Pos. Designação Tipo Medida Material 1 RETENTORES CB 4 X 11 X 6 2 RETENTORES CB 4 X 11 X 6 VITON 3 RETENTORES CB 4 X 12 X 6 4 RETENTORES CB 4 X 12 X 1 RETENTORES CB 4 X 11 X 6 2 RETENTORES CB 4 X 11 X 6 VITON 3 RETENTORES CB 4 X 12 X 6 4 RETENTORES CB 4 X 12 X 6 VITON 5 RETENTORES CB 4,5 0X 16 X 7 6 RETENTORES CB 4,8 X 22 X 7 7 RETENTORES CC 5 X 15

Leia mais

3. (Apostila 1 - ex.1.4) Defina um espaço amostral para cada um dos seguintes experimentos

3. (Apostila 1 - ex.1.4) Defina um espaço amostral para cada um dos seguintes experimentos Primeira Lista de Exercícios Introdução à probabilidade e à estatística Prof Patrícia Lusié Assunto: Probabilidade. 1. (Apostila 1 - ex.1.1) Lançam-se três moedas. Enumerar o espaço amostral e os eventos

Leia mais

PUC-Rio Desafio em Matemática 15 de novembro de 2008

PUC-Rio Desafio em Matemática 15 de novembro de 2008 PUC-Rio Desafio em Matemática 5 de novembro de 2008 Nome: Assinatura: Inscrição: Identidade: Questão Valor Nota Revisão.0 2.0 3.0 4.0 5a.0 5b.0 6a.0 6b.0 7 2.0 Nota final 0.0 Instruções Mantenha seu celular

Leia mais

MATEMÁTICA B UNIVERSIDADE FEDERAL DE MINAS GERAIS. 2 a Etapa SÓ ABRA QUANDO AUTORIZADO. FAÇA LETRA LEGÍVEL. Duração desta prova: TRÊS HORAS.

MATEMÁTICA B UNIVERSIDADE FEDERAL DE MINAS GERAIS. 2 a Etapa SÓ ABRA QUANDO AUTORIZADO. FAÇA LETRA LEGÍVEL. Duração desta prova: TRÊS HORAS. 2 a Etapa MATEMÁTICA B SÓ ABRA QUANDO AUTORIZADO. UNIVERSIDADE FEDERAL DE MINAS GERAIS Leia atentamente o CARTAZ sobre ELIMINAÇÃO AUTOMÁTICA, afixado na parede da sala, à sua frente, e as instruções que

Leia mais

PUC-Rio Desafio em Matemática 23 de outubro de 2010

PUC-Rio Desafio em Matemática 23 de outubro de 2010 PUC-Rio Desafio em Matemática 3 de outubro de 010 Nome: GABARITO Assinatura: Inscrição: Identidade: Questão Valor Nota Revisão 1 1,0 1,0 3 1,0 4 1,5 5 1,5 6,0 7,0 Nota final 10,0 Instruções Mantenha seu

Leia mais

PRINCÍPIOS DA MULTIPLICAÇÃO, DA ADIÇÃO E DA INCLUSÃO-

PRINCÍPIOS DA MULTIPLICAÇÃO, DA ADIÇÃO E DA INCLUSÃO- Matemática Discreta 2009.10 Exercícios CAP2 pg 1 PRINCÍPIOS DA MULTIPLICAÇÃO, DA ADIÇÃO E DA INCLUSÃO- EXCLUSÃO 1. Quantas sequências com 5 letras podem ser escritas usando as letras A,B,C? 2. Quantos

Leia mais

Parte II - As negras e os negros nas bolsas de formação e de pesquisa do CNPq

Parte II - As negras e os negros nas bolsas de formação e de pesquisa do CNPq Parte II - As negras e os negros nas bolsas de formação e de pesquisa do CNPq Esta análise tem como base as principais bolsas de formação no País e de pesquisa, quais sejam: Iniciação Científica (IC),

Leia mais

Breve revisão de Análise Combinatória

Breve revisão de Análise Combinatória 1. Princípio fundamental da contagem Breve revisão de Análise Combinatória Considere que certo procedimento pode ocorrer de duas maneiras diferentes, quais sejam: A 1ª maneira, ocorrendo de a modos distintos;

Leia mais

Lista 2 - Probabilidade. Probabilidade. 1. Uma letra é escolhida entre as letras da palavra PROBABILIDADE

Lista 2 - Probabilidade. Probabilidade. 1. Uma letra é escolhida entre as letras da palavra PROBABILIDADE Estatística 2 a LISTA DE EXERCÍCIOS Prof. Ânderson Vieira Probabilidade Espaço Amostral Em cada um dos exercícios a 0. Determine o espaço amostral.. Uma letra é escolhida entre as letras da palavra PROBABILIDADE

Leia mais

Probabilidade Condicional

Probabilidade Condicional PROBABILIDADES Probabilidade Condicional BERTOLO Exemplo Introdutório Vamos introduzir a noção de probabilidade condicional através de um exemplo. Consideremos 250 estudantes que cursam o 4º ano de Ciências

Leia mais

COLÉGIO SHALOM 9 ANO Professora: Bethânia Rodrigues 65 Geometria. Aluno(a):. Nº.

COLÉGIO SHALOM 9 ANO Professora: Bethânia Rodrigues 65 Geometria. Aluno(a):. Nº. COLÉGIO SHALOM 9 ANO Professora: Bethânia Rodrigues 65 Geometria Aluno(a):. Nº. Trabalho de Recuperação E a receita é uma só: fazer as pazes com você mesmo, diminuir a expectativa e entender que felicidade

Leia mais

Probabilidade - Conceitos Básicos. Anderson Castro Soares de Oliveira

Probabilidade - Conceitos Básicos. Anderson Castro Soares de Oliveira - Conceitos Básicos Castro Soares de Oliveira é o ramo da matemática que estuda fenômenos aleatórios. está associada a estatística, porque sua teoria constitui a base de estatística inferencial. Conceito

Leia mais

PESQUISA DE OPINIÃO PÚBLICA SOBRE ASSUNTOS POLÍTICOS/ ADMINISTRATIVOS

PESQUISA DE OPINIÃO PÚBLICA SOBRE ASSUNTOS POLÍTICOS/ ADMINISTRATIVOS PESQUISA DE OPINIÃO PÚBLICA SOBRE ASSUNTOS POLÍTICOS/ ADMINISTRATIVOS NOVEMBRO/ DEZEMBRO DE 2013 JOB2726-13 ESPECIFICAÇÕES TÉCNICAS DA PESQUISA OBJETIVO LOCAL Trata-se de uma pesquisa de acompanhamento

Leia mais

PROVA PARA OS ALUNOS DE 2º ANO DO ENSINO MÉDIO. 4 cm

PROVA PARA OS ALUNOS DE 2º ANO DO ENSINO MÉDIO. 4 cm PROVA PARA OS ALUNOS DE º ANO DO ENSINO MÉDIO 1ª Questão: Um cálice com a forma de um cone contém V cm de uma bebida. Uma cereja de forma esférica com diâmetro de cm é colocada dentro do cálice. Supondo

Leia mais

NOÇÕES DE PROBABILIDADE

NOÇÕES DE PROBABILIDADE NOÇÕES DE PROBABILIDADE ALEATORIEDADE Menino ou Menina me? CARA OU COROA? 3 Qual será o rendimento da Caderneta de Poupança no final deste ano? E qual será a taxa de inflação acumulada em 014? Quem será

Leia mais

r a t (I), ht rs (II) e (III) r s t r a

r a t (I), ht rs (II) e (III) r s t r a 01 De T 1 e T 3, temos: a h r s h r a t (I), ht rs (II) e (III) r s t r a De T e T 3, temos: h b s s b s b t (IV) e (V) r s t r h De (III) e (V): b h h a b (VI) h a Somando (I) e (IV) temos: r s at bt

Leia mais

PESQUISA DE OPINIÃO PÚBLICA SOBRE ASSUNTOS POLÍTICOS

PESQUISA DE OPINIÃO PÚBLICA SOBRE ASSUNTOS POLÍTICOS PESQUISA DE OPINIÃO PÚBLICA SOBRE ASSUNTOS POLÍTICOS MARÇO DE 2014 JOB0311 ESPECIFICAÇÕES TÉCNICAS DA PESQUISA OBJETIVO O principal objetivo desse projeto é levantar a intenção de voto do eleitorado acerca

Leia mais

FUNDAMENTOS DA MATEMÁTICA

FUNDAMENTOS DA MATEMÁTICA FUNDAMENTOS DA MATEMÁTICA Aula Matrizes Professor Luciano Nóbrega UNIDADE MATRIZES _ INTRODUÇÃO DEFINIÇÃO Uma matriz é uma tabela com m linhas e n colunas que contém m. n elementos. EXEMPLO: Ângulo 0º

Leia mais

Ministério da Cultura Instituto do Patrimônio Histórico e Artístico Nacional Departamento de Planejamento e Administração Coordenação-Geral de

Ministério da Cultura Instituto do Patrimônio Histórico e Artístico Nacional Departamento de Planejamento e Administração Coordenação-Geral de Ministério da Cultura Instituto do Patrimônio Histórico e Artístico Nacional Departamento de Planejamento e Administração Coordenação-Geral de Tecnologia da Informação!" !" $%& '( ) %) * +, - +./0/1/+10,++$.(2

Leia mais

PROBABILIDADE. Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti

PROBABILIDADE. Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti PROBABILIDADE Dizemos que a probabilidade é uma medida da quantidade de incerteza que existe em um determinado experimento.

Leia mais

UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE MATEMÁTICA LISTA DE EXERCÍCIOS PROVA 2- BIOESTATÍSTICA

UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE MATEMÁTICA LISTA DE EXERCÍCIOS PROVA 2- BIOESTATÍSTICA UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE MATEMÁTICA LISTA DE EXERCÍCIOS PROVA - BIOESTATÍSTICA TURMA: ENFERMAGEM PROF.: EDNALDO CARVALHO GUIMARÃES Regressão e Correlação Linear 1) A contagem do

Leia mais

Tratamentos Tempo de Armazenamento T F secagem 0 mês 6 meses ( C) (m 3 /minuto/t) (hora) D 1 D 2 D 3 Médias D 1 D 2 D 3 Médias 42 26,9 0 10,4 10,8

Tratamentos Tempo de Armazenamento T F secagem 0 mês 6 meses ( C) (m 3 /minuto/t) (hora) D 1 D 2 D 3 Médias D 1 D 2 D 3 Médias 42 26,9 0 10,4 10,8 Tratamentos Tempo de Armazenamento T F secagem 0 mês 6 meses ( C) (m 3 /minuto/t) (hora) D 1 D 2 D 3 Médias D 1 D 2 D 3 Médias 42 26,9 0 10,4 10,8 10,9 10,7 12,8 11,6 12,0 12,1 4 11,1 10,6 10,9 10,9 13,1

Leia mais

Teoria das Probabilidades

Teoria das Probabilidades Capítulo 2 Teoria das Probabilidades 2.1 Introdução No capítulo anterior, foram mostrados alguns conceitos relacionados à estatística descritiva. Neste capítulo apresentamos a base teórica para o desenvolvimento

Leia mais

Aula 16 - Erivaldo. Probabilidade

Aula 16 - Erivaldo. Probabilidade Aula 16 - Erivaldo Probabilidade Probabilidade Experimento aleatório Experimento em que não pode-se afirmar com certeza o resultado final, mas sabe-se todos os seus possíveis resultados. Exemplos: 1) Lançar

Leia mais

DEPARTAMENTO DE MATEMÁTICA

DEPARTAMENTO DE MATEMÁTICA FACULDADE DE CIÊNCIAS NATURAIS E MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA Campus de Lhanguene, Av. de Moçambique, km 1, Tel: +258 21401078, Fax: +258 21401082, Maputo Cursos de Licenciatura em Ensino de Matemática

Leia mais

O QUE É AMOSTRAGEM? PARTE I

O QUE É AMOSTRAGEM? PARTE I O QUE É AMOSTRAGEM? PARTE I! Teoria da amostragem! População x Amostra! O problema do censo! Amostragem probabilística e não probabilística Francisco Cavalcante(f_c_a@uol.com.br) Administrador de Empresas

Leia mais

Resposta: Não. Por exemplo, em 1998 houve um aumento.

Resposta: Não. Por exemplo, em 1998 houve um aumento. COLÉGIO PEDRO II - MEC 1aSÉRIE DO ENSINO MÉDIO MATEMÁTICA - 2007 DIURNO QUESTÃO 1 1 (VALOR: 1,5) Enquanto o número total de cheques utilizados no Brasil caiu nos últimos oito anos, o uso de cartões de

Leia mais

Raciocínio Lógico Matemático Cap. 8 Sequências Lógicas e Suas Leis de Formação

Raciocínio Lógico Matemático Cap. 8 Sequências Lógicas e Suas Leis de Formação Raciocínio Lógico Matemático Cap. 8 Sequências Lógicas e Suas Leis de Formação Sequências Lógicas e Suas Leis de Formação Estudaremos, neste capítulo, várias sequências lógicas e buscaremos explorar quais

Leia mais

Lista 2 de exercícios

Lista 2 de exercícios Lista 2 de exercícios 1. (ANDRADE; OGLIARI, 2010) Defina um espaço amostral para os seguintes experimentos aleatórios: a. Investigam-se famílias com quatro crianças, anotando-se a configuração conforme

Leia mais

PUC-Rio Desafio em Matemática 21 de outubro de 2012

PUC-Rio Desafio em Matemática 21 de outubro de 2012 PUC-Rio Desafio em Matemática 21 de outubro de 2012 Nome: GABARITO Assinatura: Inscrição: Identidade: Questão Valor Nota Revisão 1 1,0 2 1,0 3 1,5 4 1,5 5 1,5 6 1,5 7 2,0 Nota final 10,0 Instruções Mantenha

Leia mais