Análise de Variância (ANOVA) Exemplo: os lírios por espécie. A ANOVA como caso particular do Modelo Linear. A ANOVA a um Factor

Tamanho: px
Começar a partir da página:

Download "Análise de Variância (ANOVA) Exemplo: os lírios por espécie. A ANOVA como caso particular do Modelo Linear. A ANOVA a um Factor"

Transcrição

1 Análise de Vriânci (ANOVA) Exemplo: os lírios por espécie A Regressão Liner vis modelr um vriável respost numéric (quntittiv), à cust de um ou mis vriáveis preditors, igulmente numérics Sepl.Length Sepl.Width Ms um vriável respost numéric pode depender de um ou mis vriáveis qulittivs (ctegórics), ou sej, de um ou mis fctores. Em tis situções pode ser útil um Análise de Vriânci (ANOVA), metodologi esttístic desenvolvid nos nos 30 n Estção Experimentl Agrícol de Rothmsted (Reino Unido), por R.A. Fisher Petl.Length Petl.Width Species As medições ds pétls vrim muito entre s espécies dos lírios. As medições ds sépls nem por isso. J. Cdim (ISA) Esttístic e Delinemento / 424 J. Cdim (ISA) Esttístic e Delinemento / 424 A ANOVA como cso prticulr do Modelo Liner A ANOVA um Fctor Embor Análise de Vriânci tenh surgido como método utónomo, quer Análise de Vriânci, quer Regressão Liner, são prticulrizções do Modelo Liner. Introduzir ANOVA trvés ds sus semelhnçs com Regressão Liner permite proveitr bo prte d teori estudd té qui. Terminologi: Vriável respost Y : um vriável numéric (quntittiv), que se pretende estudr e modelr. Fctor : um vriável preditor ctegóric (qulittiv); Níveis do fctor : vlores (distints ctegoris) do fctor, ou sej, diferentes situções experimentis onde se frão observções de Y. Começmos por nlisr o mis simples de todos os modelos ANOVA: ANOVA um Fctor (totlmente csulizdo). Considermos que vriável respost (numéric) Y depende de um único fctor, com k níveis. Efectumos observções de Y ns k diferentes situções experimentis. Admite-se que os vlores de Y poderão vrir por corresponderem níveis diferentes do fctor, ou ind devido flutução letóri. J. Cdim (ISA) Esttístic e Delinemento / 424 J. Cdim (ISA) Esttístic e Delinemento / 424 As n observções As n observções (cont.) Pr estudr os efeitos dum fctor, com k níveis, sobre um vriável respost Y, dmitimos que temos n observções independentes de Y, sendo n i (i = 1,...,k) correspondentes o nível i do fctor. Logo, n 1 + n n k = n. Embor fosse possível continur indexr s n observções de Y com um único índice, vrindo de 1 n (como se fez n Regressão), é preferível utilizr dois índices pr indexr s observções de Y : um pr indicr o nível do fctor que observção corresponde; outro pr distinguir cd observção dentro de um ddo nível. Em gerl, Y ij indic j-ésim observção no i-ésimo nível do fctor, com i = 1,...,k e j = 1,...,n i. No cso de igul número de observções em cd nível, n 1 = n 2 = n 3 = = n k ( = n c ), diz-se que estmos pernte um delinemento equilibrdo. Os delinementos equilibrdos são conselháveis, por váris rzões. J. Cdim (ISA) Esttístic e Delinemento / 424 J. Cdim (ISA) Esttístic e Delinemento / 424

2 A modelção de Y A nturez mis pobre d noss vriável preditor estrá ssocid um modelo mis simples do que n regressão. Em gerl, dmitimos que o vlor esperdo (médio) de Y pode diferir em cd um ds k situções (níveis do fctor) em que é observdo. Um primeir formulção do modelo pode ssim ser dd pel equção de bse: E[Y ij ] = µ i. A modelção de Y (cont.) Pr poder enqudrr ANOVA n teori do Modelo Liner já estudd, é conveniente re-escrever s médis de nível n form: E[Y ij ] = µ i = µ + α i. O prâmetro µ é comum tods s observções, enqunto os prâmetros α i são específicos pr cd nível (i) do fctor. Cd α i é designdo o efeito do nível i. Admite-se que Y ij oscil letorimente em torno do seu vlor médio: Y ij = µ + α i + ε ij, com E[ε ij ] = 0. J. Cdim (ISA) Esttístic e Delinemento / 424 J. Cdim (ISA) Esttístic e Delinemento / 424 O modelo ANOVA como um Modelo Liner As vriáveis indictrizes A equção de bse do modelo ANOVA um fctor pode ser escrito n form vectoril/mtricil, como no modelo de regressão liner. Sej Y o vector n-dimensionl com totlidde ds observções d vriável respost. Admite-se que s n 1 primeirs correspondem o nível 1 do fctor, s n 2 seguintes o nível 2, e ssim de seguid. 1 n o vector de n uns, já considerdo n regressão. I i vriável indictriz de pertenç o nível i do fctor. Pr cd observção, est vriável tom o vlor 1 se observção corresponde o nível i do fctor, e o vlor 0 cso contrário (i = 1,...,k). ε o vector dos n erros letórios. Por exemplo, se se fizerem n = 9 observções, com n 1 = 3 observções no primeiro nível do fctor, n 2 = 4 no segundo nível e n 3 = 2 observções no terceiro nível, os vectores I 2 e I 3 serão: I 2 = , I 3 = J. Cdim (ISA) Esttístic e Delinemento / 424 J. Cdim (ISA) Esttístic e Delinemento / 424 A relção de bse em notção vectoril Em notção vectoril, equção de bse que descreve s n observções de Y pode escrever-se como no Modelo Liner: Y = µ 1 n + α 1 I 1 + α 2 I 2 + α 3 I 3 + ε. No exemplo com s n 1 = 3, n 2 = 4 e n 3 = 2 observções: Y ε 11 Y ε 12 Y Y µ ε 13 Y 22 = α 1 Y α 2 + ε 21 ε 22 Y α 3 ε 23 ε 24 Y ε 31 Y ε 32 Y = X β + ε O problem do excesso de prâmetros Existe um problem técnico : s coluns d mtriz X são linermente dependentes, pelo que mtriz X t X não é invertível. Existe um excesso de prâmetros no modelo. Soluções possíveis: 1 retirr o prâmetro µ do modelo. corresponde retirr colun de uns d mtriz X; cd αi equivle µ i, médi do nível; não se pode generlizr situções mis complexs; mis difícil de encixr n teori já dd. 2 tomr α 1 = 0: será solução utilizd. corresponde excluir 1. vriável indictriz do modelo (e de X); permite proveitr teori do modelo RLM e é generlizável. 3 impor restrições os prâmetros: e.g., k α i = 0. Foi solução clássic, ind hoje frequente em livros de ANOVA; mis difícil de encixr n teori já dd. Cd solução tem implicções n form de interpretr os prâmetros. J. Cdim (ISA) Esttístic e Delinemento / 424 J. Cdim (ISA) Esttístic e Delinemento / 424

3 A relção de bse pr o nosso exemplo (cont.) Admitindo α 1 = 0, re-escrevemos o modelo como: Y ε 11 Y ε 12 Y ε 13 Y µ 1 ε 21 Y 22 = α 2 + ε 22 Y α 3 ε 23 Y ε 24 Y ε 31 Y ε 32 Agor µ 1 é o vlor médio ds observções do nível i = 1: E[Y 1j ] = µ 1, j = 1,...,n 1 E[Y 2j ] = µ 1 + α 2, j = 1,...,n 2 A mtrix X num ANOVA um fctor Agor, mtriz X tem ns coluns os vectores 1 n, I 2, I 3,..., I k. N ANOVA um fctor, mtriz do modelo X indic quis s observções correspondentes cd nível do fctor. Est nturez especil d mtriz X n ANOVA fz com que resultdos geris válidos pr qulquer Modelo Liner tenhm expressões específics no contexto d ANOVA. Explorremos esss expressões específics. E[Y 3j ] = µ 1 + α 3, j = 1,...,n 3 Cd α i (i > 1) represent um créscimo à médi do primeiro nível. J. Cdim (ISA) Esttístic e Delinemento / 424 J. Cdim (ISA) Esttístic e Delinemento / 424 Os estimdores dos prâmetros Os estimdores dos prâmetros (cont.) Como equção do modelo ANOVA é um cso prticulr d equção do Modelo Liner, fórmul dos estimdores de mínimos qudrdos dos prâmetros é igulmente ˆβ = (X t X) 1 X t Y. Devido à nturez ds coluns d mtriz X, tem-se: n n 2 n 3 n 4 n k n 2 n X t n 3 0 n X = n n n k n k Tem-se tmbém: n 1 1 +n 2 n ( X t X ) n n 3 n 1 1 = 3 n n n 4 1 n n n k n k k n i j=1 Y ij n 2 j=1 X t Y 2j Y = n 3 j=1 Y 3j. n k j=1 Y kj J. Cdim (ISA) Esttístic e Delinemento / 424 J. Cdim (ISA) Esttístic e Delinemento / 424 Os estimdores dos prâmetros (cont.) Os estimdores ds médis de nível Logo, ˆµ 1 = Y 1 ˆα 2 = Y 2 Y 1 ˆα 3 = Y 3 Y 1... ˆα k = Y k Y 1 Ddos os estimdores referidos no cetto nterior, e um vez que s médis de cd nível (lém do primeiro) são dds por µ i = µ 1 + α i, temos que os estimdores de cd médi de nível são ˆµ 1 = Y 1 ˆµ 2 = Y 2 ˆµ 3 = Y 3... onde Y i = 1 n i n i j=1 Y ij é médi ds n i observções de Y no nível i. Ou sej, os prâmetros são estimdos pels quntiddes mostris correspondentes. ˆµ k = Y k sendo Y i médi ds n i observções de Y no nível i do fctor. J. Cdim (ISA) Esttístic e Delinemento / 424 J. Cdim (ISA) Esttístic e Delinemento / 424

4 Os vlores justdos Ŷij Do que foi visto, decorre que qulquer observção tem vlor justdo: Ŷ ij = ˆµ i = ˆµ 1 + ˆα i = Y i. Ou sej, os vlores justdos Ŷij são iguis pr tods s observções num mesmo nível i do fctor, e são dds pel médi mostrl ds observções nesse nível. Tl como n Regressão, os vlores justdos de Y resultm de projectr ortogonlmente os vlores observdos d vriável respost Y sobre o subespço de R n gerdo pels coluns d mtriz X. Num ANOVA um fctor, o subespço C (X) tem nturez especil. O subespço C (X) num ANOVA um fctor Qulquer vector no subespço C (X) tem de ter vlores iguis pr tods s observções dum mesmo nível do fctor: n + 2 I I k I k = (...) 1 + k k O vector Ŷ pertence C (X), logo tem ess crcterístic, como se viu. J. Cdim (ISA) Esttístic e Delinemento / 424 J. Cdim (ISA) Esttístic e Delinemento / 424 O modelo ANOVA 1 fctor pr efeitos inferenciis Pr se poder fzer inferênci no modelo ANOVA um fctor, dmite-se não pens que cd observção individul Y ij é d form Y ij = µ 1 + α i + ε ij, i = 1,...,k, j = 1,...,n i, com E[ε ij ] = 0 e α 1 = 0. Admite-se ind que os erros letórios ε ij têm s mesms proprieddes que no modelo de regressão liner: Normis, de vriânci constnte e independentes. O modelo ANOVA um fctor Modelo ANOVA um fctor, com k níveis Existem n observções, Y ij, n i ds quis ssocids o nível i (i = 1,...,k) do fctor. Tem-se: 1 Y ij = µ 1 + α i + ε ij, i = 1,...,k, j = 1,...,n i (α 1 = 0). 2 ε ij N (0, σ 2 ) 3 {ε ij } n v..s independentes. O modelo tem k prâmetros desconhecidos: médi de Y no primeiro nível do fctor, µ 1, e os créscimos α i (i > 1) que germ s médis de cd um dos k 1 restntes níveis do fctor. Ou sej, β = (µ 1, α 2, α 3,,α k ) t. J. Cdim (ISA) Esttístic e Delinemento / 424 J. Cdim (ISA) Esttístic e Delinemento / 424 O modelo ANOVA um fctor - notção vectoril Versão vectoril/mtricil do modelo um fctor De form equivlente, em notção vectoril, Modelo ANOVA um fctor - notção vectoril O vector Y ds n observções verific: 1 Y = µ 1 1 n + α 2 I 2 + α 3 I α k I k + ε, sendo 1 n o vector de n uns e I 2, I 3,..., I k s vriáveis indictrizes dos níveis indicdos. 2 ε N n (0, σ 2 I n ), sendo I n mtriz identidde n n. Trt-se de um modelo nálogo um modelo de Regressão Liner Múltipl, diferindo pens n nturez ds vriáveis preditors, que são qui vriáveis indictrizes dos níveis 2 k do fctor. Um terceir form equivlente de escrever o Modelo: Modelo ANOVA um fctor - notção vectoril/mtricil O vector Y ds n observções verific: 1 Y = Xβ + ε, onde X = [ 1 n I 2 I 3 I k ] e β = (µ 1,α 2,α 3,,α k ) t, sendo 1 n o vector de n uns e I 2, I 3,..., I k s vriáveis indictrizes dos níveis indicdos. 2 ε N n (0, σ 2 I n ), sendo I n mtriz identidde n n. J. Cdim (ISA) Esttístic e Delinemento / 424 J. Cdim (ISA) Esttístic e Delinemento / 424

5 O teste os efeitos do fctor A hipótese de que nenhum dos níveis do fctor fecte médi d vriável respost corresponde à hipótese α 2 = α 3 =... = α k = 0 µ 1 = µ 2 = µ 3 = = µ k Ddo o prlelismo com os modelos de Regressão Liner, est hipótese corresponde dizer que todos os coeficientes ds vriáveis preditors (n ANOVA, s vriáveis indictrizes I i ) são nulos. Logo, é possível testr est hipótese, trvés dum teste F de justmento globl do modelo (ver cetto 208). Trtndo-se dum cso prticulr do modelo liner, neste contexto há fórmuls específics. Os grus de liberdde Num ANOVA um fctor, o número de prâmetros do modelo é p + 1 = k. Logo, os grus de liberdde ssocidos cd Som de Qudrdos são: SQxx g.l. SQF k 1 SQRE n k No contexto d ANOVA um fctor, utiliz-se SQF em vez de SQR, pr indicr Som de Qudrdos relciond com o Fctor (embor su definição sej idêntic). Os Qudrdos Médios continum ser os quocientes ds Soms de Qudrdos dividir pelos respectivos grus de liberdde. J. Cdim (ISA) Esttístic e Delinemento / 424 J. Cdim (ISA) Esttístic e Delinemento / 424 O Teste F os efeitos do fctor num ANOVA Sendo válido o Modelo de ANOVA um fctor, tem-se então: Teste F os efeitos do fctor Hipóteses: H 0 : α i = 0 i=2,...,k vs. H 1 : i=2,..,k t.q. α i 0. [FACTOR NÃO AFECTA] vs. [FACTOR AFECTA Y ] Esttístic do Teste: F = QMF QMRE F (k 1,n k) se H 0. Nível de significânci do teste: α Região Crític (Região de Rejeição): Unilterl direit Rej. H 0 se F clc > f α(k 1,n k) df(x, 4, 16) Tmbém s Soms de Qudrdos e Qudrdos Médios têm fórmuls específics este contexto. J. Cdim (ISA) Esttístic e Delinemento / 424 x Os resíduos e SQRE Viu-se ntes (cetto 272) que Ŷij = ˆµ i = Y i, pelo que o resíduo d observção Y ij é ddo por: E ij = Y ij Ŷij = Y ij Y i, Logo, Som de Qudrdos dos Resíduos é dd por: onde S 2 i = 1 SQRE = n i n i 1 j=1 k n i j=1 ( k 2 Yij Y i ) = (n i 1) Si 2, (Y ij Y i ) 2 é vriânci mostrl ds n i observções no i-ésimo nível do fctor. SQRE mede vribilidde no seio dos k níveis. J. Cdim (ISA) Esttístic e Delinemento / 424 A Som de Qudrdos ssocid o Fctor A Som de Qudrdos ssocid à Regressão tom, neste contexto, designção Som de Qudrdos ssocid o Fctor e será representd por SQF. É dd por: SQF = SQF = sendo Y = 1 n k n i Y ij j=1 k n i j=1 (Ŷij Y ) 2 = k k n i (Y 2 i Y ) n i j=1 ( Y i Y ) 2 médi d totlidde ds n observções. SQF mede vribilidde entre s médis mostris de cd nível. A relção entre Soms de Qudrdos A relção fundmentl entre s três Soms de Qudrdos gnh, neste contexto, um significdo prticulr: onde: k n i SQT = SQF + SQRE (Y ij Y ) 2 = k j=1 n i (Y i Y ) 2 + k (n i 1) Si 2. SQT numerdor d vriânci mostrl SY 2 d totlidde ds n observções de Y ; SQF medid d vribilidde ds k médis de nível (vribilidde inter-níveis); SQRE som ponderd ds vriâncis mostris de Y em cd um dos k níveis (vribilidde intr-níveis). J. Cdim (ISA) Esttístic e Delinemento / 424 J. Cdim (ISA) Esttístic e Delinemento / 424

6 O qudro-resumo d ANOVA 1 Fctor Pode-se coleccionr est informção num tbel-resumo d ANOVA. Fonte g.l. SQ QM f clc Fctor k 1 SQF = k n i (y i y ) 2 QMF = SQF k 1 Resíduos n k SQRE = k (n i 1)si 2 QMRE = SQRE n k QMF QMRE Totl n 1 SQT = (n 1)s 2 y Fctores no O tem um estrutur de ddos específic pr vriáveis qulittivs (ctegórics), designd fctor. Um fctor, é crido pelo comndo fctor, plicdo um vector de tipo chrcter contendo os nomes dos vários níveis: > fctor(c( Adubo 1, Adubo 1,..., Adubo 5 )) NOTA: Explore o comndo rep pr instruções curts que crim repetições de vlores. E.g., no objecto iris, colun Species é um fctor. Vejmos como função summry lid com fctores: > summry(iris) Sepl.Length Sepl.Width Petl.Length Petl.Width Species Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100 setos :50 1st Qu.: st Qu.: st Qu.: st Qu.:0.300 versicolor:50 Medin :5.800 Medin :3.000 Medin :4.350 Medin :1.300 virginic :50 Men :5.843 Men :3.057 Men :3.758 Men : rd Qu.: rd Qu.: rd Qu.: rd Qu.:1.800 Mx. :7.900 Mx. :4.400 Mx. :6.900 Mx. :2.500 J. Cdim (ISA) Esttístic e Delinemento / 424 J. Cdim (ISA) Esttístic e Delinemento / 424 ANOVAs um Fctor no Pr efectur um ANOVA um Fctor no ddos num dt.frme com dus coluns:, convém orgnizr os 1 um pr os vlores (numéricos) d vriável respost; 2 outr pr o fctor (com indicção dos seus níveis). As fórmuls usds no pr indicr um ANOVA um fctor são semelhntes às d regressão liner, indicndo o fctor preditor. Por exemplo, pr efectur um ANOVA de comprimentos ds pétls sobre espécies, nos ddos dos n = 150 lírios, fórmul é: Petl.Length Species um vez que dt frme iris contém um colun de nome Species que foi definid como fctor. ANOVAs um fctor no (cont.) Embor sej possível usr o comndo lm pr efectur um ANOVA ( ANOVA é cso prticulr do Modelo Liner), existe outro comndo que orgniz informção d form mis trdicionl num ANOVA: ov. E.g., ANOVA de comprimento de pétls sobre espécies pr os lírios invoc-se d seguinte form: > ov(petl.length ~ Species, dt=iris) É produzido o seguinte resultdo (diferente do do comndo lm): Cll: ov(formul = Petl.Length ~ Species, dt=iris) Terms: Species Residuls Sum of Squres Deg. of Freedom Residul stndrd error: J. Cdim (ISA) Esttístic e Delinemento / 424 J. Cdim (ISA) Esttístic e Delinemento / 424 ANOVAs um fctor no (cont.) Os prâmetros estimdos, no A função summry tmbém pode ser plicd o resultdo de um ANOVA, produzindo o qudro-resumo d ANOVA: > iris.ov <- ov(petl.length ~ Species, dt=iris) > summry(iris.ov) Df Sum Sq Men Sq F vlue Pr(>F) Species < 2.2e-16 *** Residuls Signif. codes: 0 ~***~ ~**~ 0.01 ~*~ 0.05 ~.~ 0.1 ~ ~ 1 Neste cso, rejeit-se clrmente hipótese de que os créscimos de nível, α i, sejm todos nulos, pelo que se rejeit hipótese de comprimentos médios de pétls iguis em tods s espécies. O fctor fect vriável respost. Pr obter s estimtivs dos prâmetros µ 1, α 2, α 3,..., α k, pode plicr-se função coef o resultdo d ANOVA. No exemplo dos lírios, temos: > coef(iris.ov) (Intercept) Speciesversicolor Speciesvirginic Estes são os vlores estimdos dos prâmetros ˆµ 1 : médi mostrl de comprimentos de pétls setos; ˆα 2 : créscimo que, somdo à médi mostrl d 1. espécie, nos dá médi mostrl dos comprimentos de pétls versicolor; ˆα 3 : créscimo que, somdo à médi mostrl d 1. espécie, nos dá médi mostrl dos comprimentos de pétls virginic. J. Cdim (ISA) Esttístic e Delinemento / 424 J. Cdim (ISA) Esttístic e Delinemento / 424

7 Prâmetros estimdos no (cont.) Pr melhor interpretr os resultdos, vejmos s médis por nível do fctor d vriável respost, trvés d função model.tbles, com o rgumento type= mens : > model.tbles(iris.ov, type="men") Tbles of mens Grnd men Species Species setos versicolor virginic O orden os níveis de um fctor por ordem lfbétic. ANOVAs como modelo Liner no Tmbém é possível estudr um ANOVA trvés do comndo lm, nomedmente pr fzer inferênci sobre os prâmetros do modelo: > summry(lm(petl.length ~ Species, dt=iris)) Cll: lm(formul = Petl.Length ~ Species, dt=iris) Residuls: Min 1Q Medin 3Q Mx Coefficients: Estimte Std. Error t vlue Pr(> t ) (Intercept) <2e-16 *** Speciesversicolor <2e-16 *** Speciesvirginic <2e-16 *** --- Residul stndrd error: on 147 degrees of freedom Multiple R-squred: , Adjusted R-squred: F-sttistic: 1180 on 2 nd 147 DF, p-vlue: < 2.2e-16 J. Cdim (ISA) Esttístic e Delinemento / 424 J. Cdim (ISA) Esttístic e Delinemento / 424 A explorção ulterior de H 1 A explorção ulterior de H 1 (cont.) A Hipótese Nul, no teste F num ANOVA 1 Fctor, firm que todos os níveis do fctor têm efeito nulo, isto é, que médi d vriável respost Y é igul nos k níveis do Fctor: α 2 = α 3 =... = α k = 0 µ 1 = µ 2 = µ 3 = = µ k A Hipótese Alterntiv diz que pelo menos um dos níveis do fctor tem um médi de Y diferente do primeiro nível: i tl que α i 0 (i > 1) i tl que µ 1 µ i (i > 1) Cso se opte pel Hipótese Alterntiv, fic em berto (excepto qundo k = 2) questão de sber quis os níveis do fctor cujs médis diferem entre si. Mesmo com k = 3, rejeição de H 0 pode dever-se : µ 1 = µ 2 µ 3 i.e., α 2 = 0 ; α 3 0 µ 1 = µ 3 µ 2 i.e., α 3 = 0 ; α 2 0 µ 1 µ 2 = µ 3 i.e., α 2 = α 3 0; µ i todos diferentes i.e., α 2 α 3 e α 2,α 3 0. Como optr entre ests diferentes lterntivs? Ou sej, nem tods s médis de nível de Y são iguis J. Cdim (ISA) Esttístic e Delinemento / 424 J. Cdim (ISA) Esttístic e Delinemento / 424 A explorção ulterior de H 1 (cont.) As comprções múltipls Um hipótese consiste em efectur testes os α i s, com bse n teori já estudd nteriormente. Ms qunto mior fôr k, mis sub-hipóteses lterntivs existem, mis testes hverá pr fzer. Não se trt pens de um questão de serem necessários muitos testes. A multiplicção do número de testes fz perder o controlo do nivel de significânci α globl pr o conjunto de todos os testes. É possível construir testes de hipóteses reltivos tods s diferençs µ i µ j, definids pels médis populcionis de Y nos níveis i, j de um fctor (i,j = 1,...,k, com i j), controlndo o nível de significânci globl α do conjunto dos testes. Tis testes chmm-se testes de comprções múltipls de médis. O nível de significânci α nos testes de comprção múltipl é probbilidde de rejeitr qulquer ds hipóteses µ i = µ j, cso el sej verdde, ou sej, é um nível de significânci globl. Alterntivmente, podem-se construir intervlos de confinç pr cd diferenç µ i µ j, com um nível (1 α) 100% de confinç de que os verddeiros vlores de µ i µ j pertencem todos os intervlos. J. Cdim (ISA) Esttístic e Delinemento / 424 J. Cdim (ISA) Esttístic e Delinemento / 424

8 Distribuição de Tukey pr Amplitudes Studentizds O mis usdo teste de comprções múltipls é o teste de Tukey, que se bsei no seguinte resultdo. Teorem (Distribuição de Tukey) Sejm {W i } k vriáveis letóris independentes, com distribuição Norml, de iguis prâmetros: W i N (µ W,σW 2 ), i = 1,...,k. Sej SW 2 um estimdor d vriânci comum σ W 2, tl que ν S2 W σw 2 Sej R W = mxw i minw i mplitude mostrl. i i Sejm S w e R w independentes. χ 2 ν. Então, mplitude Studentizd, R W SW, tem distribuição de Tukey, que depende de dois prâmetros: k e ν. A utilidde d distribuição de Tukey Num ANOVA um fctor, dmitimos que Y ij = µ 1 + α } {{ } i +ε ij, (α 1 = 0), = µ i pelo que (com os pressupostos reltivos os erros letórios do modelo ANOVA) Y ij N (µ i, σ 2 ). Logo, médi mostrl de cd nível, Y i = 1 n i Y i N (µ i, σ 2 ) n i n i j=1 Y ij, tem distribuição Y i µ i N (0, σ 2 ) n i J. Cdim (ISA) Esttístic e Delinemento / 424 J. Cdim (ISA) Esttístic e Delinemento / 424 A utilidde d distribuição de Tukey (cont.) Cso o delinemento sej equilibrdo, isto é, n 1 = n 2 =... = n k (= n c ), s k diferençs Y i µ i terão mesm distribuição N ( 0, σ 2 /n c ), e serão s vriáveis W i do Teorem no cetto (297). Um estimdor d vriânci comum σ 2 /n c é ddo por QMRE/n c, e: (n k) QMRE/n c σ 2 /n c = SQRE σ 2 χ 2 n k, (cettos 188 e 189, pois no modelo ANOVA há k prâmetros). Os vlores justdos Y i e os resíduos que definem SQRE são independentes, logo, mplitude mostrl R = mx(y i µ i ) min(y j µ j ) i j é independente do estimdor d vriânci comum, QMRE/n c. Aplic-se o Teorem do cetto (297). J. Cdim (ISA) Esttístic e Delinemento / 424 Intervlos de Confinç pr µ i µ j Sej q α (k,n k) o vlor que num distribuição de Tukey com prâmetros k e n k, deix à direit um região de probbilidde α. Então, por definição: [ ] R P S < q α (k,n k) = 1 α Logo, um intervlo de confinç (1 α) 100% pr mplitude R é ddo por: QMRE R < q α (k,n k) n c Os vlores d função distribuição cumultiv e os quntis q α (k,n k) dum distribuição de Tukey são clculdos no, trvés ds funções ptukey e qtukey, respectivmente. A utilidde d distribuição de Tukey (cont.) Assim, R S = mx i (Y i µ i ) min(y j µ j ) j QMRE n c tem distribuição de Tukey, com prâmetros k e n k. O quociente R S não pode ser negtivo, por definição. Este resultdo pode ser usdo pr construir testes de hipóteses ou intervlos de confinç pr o conjunto de tods s diferençs de médis de nível de Y, µ i µ j. J. Cdim (ISA) Esttístic e Delinemento / 424 Intervlos de Confinç pr µ i µ j (cont.) Ms R = mx(y i µ i ) min(y j µ j ) é mior de tods s i j diferençs do tipo (Y i µ i ) (Y j µ j ), pr qulquer i,j = 1,...,k. Logo, pr todos os pres de níveis i e j, tem-se, com gru de confinç globl (1 α) 100%, ( y i y j ) (µi µ j ) R < q α (k,n k) QMRE nc ( y i y j ) qα (k,n k) QMRE < (µ nc i µ j ) < ( y i y j ) + qα (k,n k) QMRE nc J. Cdim (ISA) Esttístic e Delinemento / 424 J. Cdim (ISA) Esttístic e Delinemento / 424

9 Testes de Hipóteses pr µ i µ j = 0, i,j Comprções Múltipls de Médis no Alterntivmente, prtir do resultdo do cetto (300) é possível testr Hipótese Nul de que tods s diferençs de pres de médis de nível, µ i µ j, sejm nuls, em cujo cso Y i Y j < q α (k,n k) QMRE nc, com probbilidde (1 α). Qulquer diferenç de médis mostris de nível, Y i Y j, que exced o limir q α (k,n k) QMRE nc indic que, pr esse pr de níveis i,j, se deve considerr µ i µ j. O nível (globl) de significânci de tods ests comprções é α, ou sej, probbilidde de se concluir que µ i µ j (pr lgum pr i,j), se em todos os csos µ i = µ j, é α. As comprções múltipls de médis de nível, com bse no resultdo de Tukey, podem ser fcilmente efectuds no. Pr se obter o termo de comprção nos testes de hipóteses que µ i µ j = 0, o quntil de ordem 1 α n distribuição de Tukey é obtido prtir do comndo > qtukey(1-α, k, n k) (com os vlores numéricos de α, k e n k). O vlor de QMRE é ddo pelo comndo ov, sob designção Residul stndrd error. J. Cdim (ISA) Esttístic e Delinemento / 424 J. Cdim (ISA) Esttístic e Delinemento / 424 Comprções Múltipls de Médis no (cont.) Comprções Múltipls de Médis no (cont.) Os intervlos de Confinç (1 α) 100% pr s diferençs de médis são obtidos trvés do comndo TukeyHSD. Por exemplo, pr os ddos dos lírios, > TukeyHSD(ov(Sepl.Width ~ Species, dt=iris)) Tukey multiple comprisons of mens 95% fmily-wise confidence level $Species diff lwr upr p dj versicolor-setos virginic-setos virginic-versicolor Neste exemplo, nenhum dos intervlos inclui o vlor zero, pelo que considermos que µ i µ j, pr qulquer i j, ou sej, tods s médis de espécie são diferentes. O vlor de prov indicdo (p dj) deve ser interpretdo como o vlor de α pr o qul cd diferenç de médis, y i. y j., seri, pel primeir vez, considerdo não significtivo. > TukeyHSD(ov(Sepl.Width ~ Species, dt=iris)) Tukey multiple comprisons of mens 95% fmily-wise confidence level $Species diff lwr upr p dj versicolor-setos virginic-setos virginic-versicolor Assim, pr α = , diferenç de médis mostris pr s espécies virginic e versicolor já seri considerd não significtiv. Ou sej, o intervlo (1 α) 100% = % de confinç pr ess diferenç de médis já conteri o vlor zero. J. Cdim (ISA) Esttístic e Delinemento / 424 J. Cdim (ISA) Esttístic e Delinemento / 424 Representção gráfic ds comprções múltipls O disponibiliz ind um uxilir gráfico pr visulizr s comprções ds médis de nível, trvés d função plot, plicd o resultdo d função TukeyHSD. virginic versicolor virginic setos versicolor setos 95% fmily wise confidence level Differences in men levels of Species Delinementos não equilibrdos Qundo o delinemento d ANOVA um Fctor não é equilibrdo (isto é, existe diferente número de observções nos vários níveis do fctor), os resultdos gor enuncidos não são, em rigor, válidos. Ms, pr delinementos em que o desequilíbrio no número de observções não sej muito centudo, é possível justr os vlores d distribuição de Tukey. A função TukeyHSD do incorpor esss correcções. J. Cdim (ISA) Esttístic e Delinemento / 424 J. Cdim (ISA) Esttístic e Delinemento / 424

10 Análise de Resíduos n ANOVA 1 Fctor A vlidde dos pressupostos do modelo estud-se de form idêntic o que foi visto n Regressão Liner. Ms há lgums prticulriddes. Num ANOVA um fctor, os resíduos precem empilhdos em k coluns nos gráficos de ŷ ij vs. e ij, porque qulquer vlor justdo ŷ ij é igul pr observções num mesmo nível do fctor. Este pdrão não indici qulquer violção os pressupostos do modelo. Análise de Resíduos n ANOVA 1 Fctor (cont.) Pdrão de resíduos num ANOVA 1 Fctor (o exemplo considerdo é Sepl.Width Species, nos lírios) Residuls Residuls vs Fitted Fitted vlues ov(sepl.width ~ Species) J. Cdim (ISA) Esttístic e Delinemento / 424 J. Cdim (ISA) Esttístic e Delinemento / 424 Inspeccionndo homogeneidde de vriâncis Outr prticulridde d ANOVA, resultnte do fcto de hver n i repetições em cd um dos k níveis do fctor: é possível testr formlmente se s vriâncis dos erros letórios diferem entre os níveis do fctor. O Teste de Brtlett test s hipóteses vs. H 0 : σ 2 1 = σ 2 2 = = σ 2 k H 1 : i,i t.q. σ 2 i σ 2 i, sendo σ 2 i vriânci comum dos erros letórios ε ij do nível i. Médis ritmétics e médis geométrics Relção gerl entre médi ritmétic e médi geométric (mesmo que ponderds) de quisquer k números positivos. Sejm τ 1, τ 2,..., τ k números positivos, e p 1, p 2,..., p k números entre 0 e 1, de som 1. A médi ritmétic (ponderd com pesos p i ) dos τ i s é MA = k p i τ i. A médi geométric (ponderd com pesos p i ) dos τ i s é MG = k τ p i i. Qundo p i = 1 k, i, temos s médis ritmétic e geométric simples. J. Cdim (ISA) Esttístic e Delinemento / 424 J. Cdim (ISA) Esttístic e Delinemento / 424 A desiguldde entre médi ritmétic e geométric Quisquer que sejm os vlores (positivos) dos τ i e ds ponderções p i, tem-se seguinte desiguldde entre médi ritmétic e geométric dos k vlores de τ: MG MA (4) A iguldde em (4) verific-se se e só se os k vlores de τ são iguis: τ 1 = τ 2 = = τ k. Qunto mior fôr dispersão dos τ, mior será diferenç entre médi geométric e médi ritmétic. O nosso contexto Admit-se que os erros letórios, e portnto s observções Y ij, do nível i do fctor têm vriânci comum V [ε ij ] = V [Y ij ] = σi 2, podendo, no entnto os σi 2 diferir entre níveis. A idei subjcente à esttístic do teste de Brtlett é de comprr um médi ritmétic (MA) e geométric (MG) ds vriâncis mostris Si 2 n i ( 2 = Yij Y i ), 1 n i 1 j=1 que estimm s vriâncis populcionis σ 2 i. Se fôr verddeir Hipótese Nul do teste de Brtlett (σi 2 todos iguis), é nturl que s vriâncis mostris Si 2 sejm proximdmente iguis e MA MG sej próximo de 1. Qunto mior est rzão ds médis, mis duvidos se torn H 0. J. Cdim (ISA) Esttístic e Delinemento / 424 J. Cdim (ISA) Esttístic e Delinemento / 424

11 Estimndo s vriâncis de nível No cálculo ds médis ritmétic e geométric ds vriâncis mostris de nível S 2 i, vmos utilizr ponderções proprids o contexto. Se usrmos como ponderções p i = n i 1 i (n i 1) = n i 1 n k, médi ritmétic ponderd dos estimdores Si 2 é o Qudrdo Médio Residul d ANOVA (ver o Acetto 282): MA = k n i 1 n k S2 i = k n i j=1 (Y ij Y i ) 2 n k = QMRE. A idei subjcente o teste de Brtlett A médi geométric dos k estimdores de vriâncis de nível é: MG = k (S 2 i ) n i 1 n k. Sbemos que MA/MG 1. Qunto mior fôr este quociente, mior será vribilidde dos S 2 i, e portnto mis duvidos será Hipótese Nul d iguldde dos σ 2 i. Logo, o quociente MA MG é um cndidto esttístic do teste à iguldde de vriâncis, com Região Crític unilterl direit. Ms é necessário conhecer distribuição de probbiliddes dum esttístic do Teste, sob H 0. J. Cdim (ISA) Esttístic e Delinemento / 424 J. Cdim (ISA) Esttístic e Delinemento / 424 O teste de Brtlett Brtlett demonstrou que, sob H 0, um trnsformção monóton crescente do quociente MA/MG tem distribuição ssintoticmente χ 2, cso s vriáveis subjcentes às vriâncis tenhm distribuição Norml. Concretmente, demonstrou que K 2 = n k C ln [ ] MA MG = n k C tem, ssintoticmente distribuição χ 2 k 1, sendo 1 C = 1 + 3(k 1) [ k (ln MA ln MG), ] 1 n i 1 1. n k O Teste de Brtlett Teste de Brtlett à homogeneidde de vriâncis Hipóteses: H 0 : σ1 2 = σ 2 2 =... = σ k 2 vs. H 1 : i,i t.q. σi 2 σi 2 [Vriâncis homogénes] [Vr. heterogénes] Esttístic do Teste: K 2 = (n k)lnqmre k (n i 1) lnsi 2 C onde C = (k 1) [ k Nível de significânci do teste: α 1 n i 1 1 n k ]. Região Crític (Região de Rejeição): Unilterl direit Rejeitr H 0 se K 2 clc > χ2 α(k 1) χ 2 k 1 J. Cdim (ISA) Esttístic e Delinemento / 424 J. Cdim (ISA) Esttístic e Delinemento / 424 O Teste de Brtlett no Precuções No, o teste de Brtlett é invocdo pelo comndo brtlett.test, tendo por rgumento um fórmul (nálog à usd no comndo ov pr indicr vriável respost e o fctor). E.g., > brtlett.test(sepl.width ~ Species, dt=iris) Brtlett test of homogeneity of vrinces dt: Sepl.Width by Species Brtlett s K-squred = , df = 2, p-vlue = Dus precuções n utilizção do teste de Brtlett: O teste de Brtlett é fortemente sensível à Normlidde ds observções subjcentes. A distribuição χ 2 é pens ssintótic. Um regr comum é considerr que o teste pens deve ser usdo cso n i 5, i = 1,..,k. Neste cso, o teste de Brtlett indic não rejeição de H 0, ou sej, é dmissível hipótese de iguldde ns vriâncis em cd nível do fctor. J. Cdim (ISA) Esttístic e Delinemento / 424 J. Cdim (ISA) Esttístic e Delinemento / 424

12 Violções os pressupostos d ANOVA Violções os pressupostos do modelo não têm sempre igul grvidde. Alguns comentários geris: O teste F d ANOVA e s comprções múltipls de Tukey são reltivmente robustos desvios à hipótese de normlidde. As violções o pressuposto de vriâncis homogénes são em gerl pouco grves no cso de delinementos equilibrdos, ms podem ser grves em delinementos não equilibrdos. A flt de independênci entre erros letórios é violção mis grve dos pressupostos e deve ser evitd, o que é em gerl possível com um delinemento experimentl dequdo. Um dvertênci N formulção clássic do modelo ANOVA um Fctor, e prtir d equção-bse Y ij = µ + α i + ε ij, em vez de impor condição α 1 = 0, impõe-se condição i α i = 0. Est condição lterntiv: mud form de interpretr os prâmetros (µ é gor um espécie de médi gerl ds observções e α i o desvio médio ds observções do nível i em relção ess médi gerl); Mud os estimdores dos prâmetros. Não mud o resultdo do teste F à existênci de efeitos do fctor, nem qulidde globl do justmento. A noss formulção, lém de generlizável modelos com mis Fctores, permite proveitr directmente os resultdos d Regressão Liner Múltipl. J. Cdim (ISA) Esttístic e Delinemento / 424 J. Cdim (ISA) Esttístic e Delinemento / 424 Delinementos e Uniddes experimentis No delinemento ds experiêncis pr posterior nálise trvés dum ANOVA (ou regressão liner), é frequente que s n observções d vriável respost correspondm n diferentes uniddes experimentis (indivíduos, prcels de terreno, locis, etc.). É conveniente que s uniddes experimentis ns quis se recolhem os ddos sejm tão homogénes qunto possível, excepto em spectos ssocidos os fctores incorpordos no modelo. Uniddes experimentis (cont.) Qulquer vribilidde não controld ns uniddes experimentis (isto é, que não se pode tribuir os preditores) é considerd no modelo como vrição letóri, pelo que irá contribuir pr umentr o vlor de SQRE e de QMRE. Aumentr QMRE signific, no teste os efeitos do fctor, diminuir o vlor clculdo d esttístic F, fstndo- d região crític. Assim, num ANOVA heterogeneidde não controld ns uniddes experimentis contribui pr esconder presenç de eventuis efeitos do fctor. num Regressão Liner heterogeneidde não controld ns uniddes experimentis contribui pr piorr qulidde de justmento do modelo, diminuindo o seu Coeficiente de Determinção. J. Cdim (ISA) Esttístic e Delinemento / 424 J. Cdim (ISA) Esttístic e Delinemento / 424 Controlr heterogeneidde Crir fctores pr controlr vribilidde N prátic, é frequentemente impossível tornr s uniddes experimentis totlmente homogénes. A nturl vribilidde de plntes, nimis, terrenos, locliddes geográfics, céluls, etc. signific que em muits situções existirá vribilidde não controlável entre uniddes experimentis. Algum protecção contr efeitos não controldos result dos princípios de: repetição; csulizção. Mesmo que sej possível encontrr uniddes experimentis homogénes, isso pode ter um efeito indesejável: restringir vlidde dos resultdos o tipo de uniddes experimentis com s crcterístics utilizds n experiênci. Cso se sib que existe um fctor de vribilidde importnte ns uniddes experimentis, melhor form de controlr os seus efeitos consiste em contemplr existênci desse fctor de vribilidde no delinemento e no modelo, de form filtrr os seus efeitos. Deve-se ssocir níveis do fctor às uniddes experimentis de form letóri (csulizd). J. Cdim (ISA) Esttístic e Delinemento / 424 J. Cdim (ISA) Esttístic e Delinemento / 424

13 Um exemplo Pretende-se nlisr o rendimento de 5 diferentes vrieddes de trigo. Os rendimentos são tmbém fectdos pelos tipo de solos usdos. Nem sempre é possível ter terrenos homogéneos num experiênci. Mesmo que sej possível, pode não ser desejável, por se limitr vlidde dos resultdos um único tipo de solos. Admit-se que existem terrenos com qutro diferentes tipos de solos. Cd terreno pode ser dividido em cinco prcels viáveis pr o trigo. Em vez de reprtir letorimente s 5 vrieddes pels 20 prcels, é preferível forçr cd tipo de terreno conter um prcel com cd vriedde. Apens dentro dos terrenos hverá csulizção. Num delinemento experimentl deste tipo, os terrenos designm-se blocos csulizdos. Um exemplo (cont.) A situção descrit no cetto nterior é seguinte: Bloco 1 (Solo 1) Vr.1 Vr.3 Vr.4 Vr.5 Vr.2 Bloco 2 (Solo 2) Vr.4 Vr.3 Vr.5 Vr.1 Vr.2 Bloco 3 (Solo 3) Vr.2 Vr.4 Vr.1 Vr.3 Vr.5 Bloco 4 (Solo 4) Vr.5 Vr.2 Vr.4 Vr.1 Vr.3 Houve um restrição à csulizção totl: dentro de cd bloco há csulizção, ms obrig-se cd bloco ter um prcel ssocid cd nível do fctor vriedde. J. Cdim (ISA) Esttístic e Delinemento / 424 J. Cdim (ISA) Esttístic e Delinemento / 424 Delinementos fctoriis dois fctores O delinemento gor exemplificdo é um cso prticulr de um delinemento fctoril dois fctores, sendo um dos fctores vriedde de trigo e outr o tipo de solos. A existênci de mis do que um fctor pode resultr de: tenttiv de controlr vribilidde experimentl; pretender-se relmente estudr eventuis efeitos de mis do que um fctor sobre vriável respost. Historicmente, primeir situção ficou ssocid à designção blocos, e n segund fl-se pens em fctores. Ms são situções nálogs. Modelo ANOVA 2 Fctores (sem intercção) A um delinemento com 2 fctores pode ser ssocido um modelo ANOVA que prevê existênci de dois diferentes tipos de efeitos: os efeitos ssocidos os níveis de cd um dos fctores. Admit-se existênci de: Um vriável respost Y, d qul se efectum n observções. Um Fctor A, com níveis. Um Fctor B, com b níveis. Um delinemento fctoril é um delinemento em que há observções pr tods s possíveis combinções de níveis de cd fctor. J. Cdim (ISA) Esttístic e Delinemento / 424 J. Cdim (ISA) Esttístic e Delinemento / 424 Modelo ANOVA 2 Fctores (sem intercção) Modelo ANOVA 2 Fctores (sem intercção) Notção: Cd observção d vriável respost será gor identificd com três índices, Y ijk, onde: i indic o nível i do Fctor A. j indic o nível j do Fctor B. k indic repetição k no nível i do fctor A e nível j do Fctor B. Cd situção experimentl é dd pelo cruzmento dum nível dum Fctor com um nível do outro Fctor, cruzmento chmdo célul. O número de observções n célul (i,j) é representdo por n ij. Tem-se b j=1 n ij = n. Se o número de observções fôr igul em tods s céluls, n ij = n c, i,j, estmos pernte um delinemento equilibrdo. J. Cdim (ISA) Esttístic e Delinemento / 424 J. Cdim (ISA) Esttístic e Delinemento / 424

14 A modelção de Y A modelção de Y (cont.) Vmos dmitir que o vlor esperdo de cd observção depende pens dos níveis de cd Fctor, sendo d form: E[Y ijk ] = µ ij = µ + α i + β j. O prâmetro µ é comum tods s observções. Cd prâmetro α i funcion como um créscimo que pode diferir entre níveis do Fctor A, e é designdo o efeito do nível i do fctor A. Cd prâmetro β j funcion como um créscimo que pode diferir entre níveis do Fctor B, e é designdo o efeito do nível j do fctor B. Admite-se que vrição de Y ijk em torno do seu vlor médio é letóri: Y ijk = µ + α i + β j + ε ijk, com E[ε ijk ] = 0. Tmbém neste cso, será necessário introduzir lgum restrição os prâmetros, não podendo estimr-se prâmetros α i e β j pr todos os níveis de cd Fctor. J. Cdim (ISA) Esttístic e Delinemento / 424 J. Cdim (ISA) Esttístic e Delinemento / 424 A equção-bse em notção vectoril A equção de bse do modelo ANOVA dois fctores (sem intercção) tmbém pode ser escrit n form vectoril. Sej Y o vector n-dimensionl com totlidde ds observções d vriável respost. 1 n o vector de n uns. I Ai vriável indictriz de pertenç o nível i do Fctor A. I Bj vriável indictriz de pertenç o nível j do Fctor B. ε o vector dos n erros letórios. A equção-bse em notção vectoril: primeir tenttiv Se se dmitem efeitos pr todos os níveis de mbos os fctores, temos equção-bse: Y = µ1 n + α 1 I A1 + α 2 I A α I A + β 1 I B1 + β 2 I B β b I Bb +ε A mtriz X definid com bse neste modelo teri dependêncis lineres por dus diferentes rzões: som ds indictrizes do Fctor A dri colun dos uns, 1 n ; som ds indictrizes do Fctor B dri colun dos uns, 1 n. J. Cdim (ISA) Esttístic e Delinemento / 424 J. Cdim (ISA) Esttístic e Delinemento / 424 A mtriz X n primeiro tenttiv X = n I A1 I A2... I A I B1 I B2... I Bb Equção-bse em notção vectoril: 2. tenttiv Dorvnte, dmitimos que form excluíds do modelo s prcels ssocids o primeiro nível de cd Fctor, isto é: α 1 = 0 e β 1 = 0, o que corresponde excluir s coluns I A1 e I B1 d mtriz X. A equção-bse do modelo ANOVA 2 Fctores, sem intercção, fic: Y = µ1 n + α 2 I A α I A + β 2 I B β b I Bb + ε Nem mesmo exclusão d colun 1 n resolve o problem. J. Cdim (ISA) Esttístic e Delinemento / 424 J. Cdim (ISA) Esttístic e Delinemento / 424

15 A mtriz do delinemento n ANOVA 2 Fctores (sem intercção) X = n I A2... I A I B2... I Bb A nturez do prâmetro Um observção de Y efectud n célul (1, 1), correspondente o cruzmento do primeiro nível de cd fctor será d form: Y 11k = µ + ε 11k = E[Y 11k ] = µ O prâmetro µ corresponde o vlor esperdo d vriável respost Y n célul cujs indictrizes form excluíds d mtriz do delinemento. Será dorvnte chmdo µ 11. J. Cdim (ISA) Esttístic e Delinemento / 424 J. Cdim (ISA) Esttístic e Delinemento / 424 A nturez dos prâmetros α i A nturez dos prâmetros β j Um observção de Y efectud n célul (i,1), com i > 1, correspondente o cruzmento dum nível do fctor A diferente do primeiro, com o primeiro nível do Fctor B será d form: Y i1k = µ 11 + α i + ε i1k = µ i1 = E[Y i1k ] = µ 11 + α i Um observção de Y efectud n célul (1,j), com j > 1, correspondente o cruzmento do primeiro nível do fctor A com um nível do Fctor B diferente do primeiro será d form: Y 1jk = µ 11 + β j + ε 1jk = µ 1j = E[Y 1jk ] = µ 11 + β j O prâmetro α i = µ i1 µ 11 corresponde o créscimo no vlor esperdo d vriável respost Y ssocido observções do nível i > 1 do Fctor A (reltivmente às observções do primeiro nível do Fctor A). Design-se o efeito do nível i do fctor A. O prâmetro β j = µ 1j µ 11 corresponde o créscimo no vlor esperdo d vriável respost Y ssocido observções do nível j do Fctor B (reltivmente às observções do primeiro nível do Fctor B). Design-se o efeito do nível j do fctor B. J. Cdim (ISA) Esttístic e Delinemento / 424 J. Cdim (ISA) Esttístic e Delinemento / 424 Observções de Y no cso gerl O modelo ANOVA dois fctores, sem intercção Juntndo os pressupostos necessários à inferênci, Ests interpretções dos prâmetros α i e β j confirmm-se pr observções de Y efectuds num célul genéric (i, j), com i, j > 1, correspondente o cruzmento de níveis diferentes do primeiro, quer no Fctor A, quer no Fctor B. Esss observções serão d form: Y ijk = µ 11 + α i + β j + ε ijk = E[Y ijk ] = µ 11 + α i + β j. Os vlores esperdos de Y são, neste cso, crescidos em relção o vlor esperdo dum observção n célul (1, 1), quer pel prcel α i, quer pel prcel β j. Modelo ANOVA dois fctores, sem intercção Existem n observções, Y ijk, n ij ds quis ssocids à célul (i,j) (i = 1,...,; j = 1,...,b). Tem-se: 1 Y ijk = µ 11 +α i +β j +ε ijk,,...,; j=1,...,b; k=1,...,n ij (α 1 = 0;β 1 = 0). 2 ε ijk N (0, σ 2 ), i,j,k 3 {ε ijk } i,j,k v..s independentes. O modelo tem + b 1 prâmetros desconhecidos: o prâmetro µ 11 ; os 1 créscimos α i (i > 1); e os b 1 créscimos β j (j > 1). J. Cdim (ISA) Esttístic e Delinemento / 424 J. Cdim (ISA) Esttístic e Delinemento / 424

16 Testndo existênci de efeitos Um teste globl de justmento do modelo não distinguiri entre os efeitos do Fctor A e os efeitos do Fctor B. Mis útil será testr existênci dos efeitos de cd fctor seprdmente. Seri útil dispôr de testes pr s hipóteses: H 0 : α i = 0, H 0 : β j = 0, i = 2,..., ; e j = 2,...,b. Teste os efeitos do Fctor B O modelo do Acetto ANOVA 2 Fctores, sem intercção (Acetto 344) tem equção de bse, em notção vectoril, Y = µ1 n + α 2 I A α I A + β 2 I B β b I Bb + ε O fcto de ser um Modelo Liner permite plicr teori já conhecid pr este tipo de modelos, pr testr s hipóteses H 0 : β j = 0, j = 2,...,b vs. H 1 : j tl que β j 0. Trt-se dum teste F prcil comprndo o modelo (Modelo M A+B ) Y ijk = µ 11 + α i + β j + ε ijk, com o submodelo de equção de bse (Modelo M A ) Y ijk = µ 11 + α i + ε ijk, que é um modelo ANOVA 1 Fctor (fctor A). J. Cdim (ISA) Esttístic e Delinemento / 424 J. Cdim (ISA) Esttístic e Delinemento / 424 A construção do teste os efeitos do Fctor B Sej o delinemento equilibrdo, ou não, podemos: construir s mtrizes X do delinemento pr os dois modelos (M A+B e M A ). Obter s respectivs estimtivs de prâmetros, ˆβ = (X t X) 1 X t Y, pr mtriz X correspondente cd modelo. Obter s respectivs Soms de Qudrdos Residuis. Efectur o teste F prcil indicdo, com esttístic de Teste proprid: (Efeitos Fctor B) F = =SQB { }} { SQRE A SQRE A+B b 1 SQRE A+B n (+b 1) J. Cdim (ISA) Esttístic e Delinemento / 424 O Teste F os efeitos do fctor A Sendo válido o Modelo de ANOVA dois fctores, sem intercção, e definindo QMA = SQA 1, temos: Teste F os efeitos do fctor A Hipóteses: H 0 : α i = 0 i=2,..., vs. H 1 : i=2,.., t.q. α i 0. [A NÃO AFECTA Y ] vs. [A AFECTA Y ] Esttístic do Teste: F = QMA QMRE F ( 1,n (+b 1)) se H 0. Nível de significânci do teste: α Região Crític (Região de Rejeição): Unilterl direit Testndo os efeitos principis de cd Fctor Consideremos tmbém um teste os efeitos do Fctor A. Definindo: SQA como Som de Qudrdos do Fctor no Modelo M A ; e SQB como no cetto nterior, temos: SQB = SQRE A SQRE A+B SQA = SQF A = SQT SQRE A Somndo ests SQs SQRE A+B, obtém-se: SQRE A+B + } SQA {{ + SQB } = SQT =SQF A+B que é um decomposição de SQT. Usmos s Soms de Qudrdos de cd fctor pr definir os numerdores ds esttístics dos dois testes, e o Qudrdo Médio Residul do modelo A + B pr definir o denomindor ds dus esttístics. J. Cdim (ISA) Esttístic e Delinemento / 424 O Teste F os efeitos do fctor B Sendo válido o Modelo de ANOVA dois fctores, sem intercção definindo QMB = SQB b 1, temos: Teste F os efeitos do fctor B Hipóteses: H 0 : β j = 0 j=2,...,b vs. H 1 : j=2,..,b t.q. β j 0. [B NÃO AFECTA Y ] vs. [B AFECTA Y ] Esttístic do Teste: F = QMB QMRE F (b 1,n (+b 1)) se H 0. Nível de significânci do teste: α Região Crític (Região de Rejeição): Unilterl direit Rejeitr H 0 se F clc > f α( 1,n (+b 1)) df(x, 4, 16) Rejeitr H 0 se F clc > f α(b 1,n (+b 1)) df(x, 4, 16) x x J. Cdim (ISA) Esttístic e Delinemento / 424 J. Cdim (ISA) Esttístic e Delinemento / 424

17 Fórmuls pr delinementos equilibrdos Sejm: Y i médi mostrl ds b n c observções do nível i do Fctor A, Y i = 1 b n c b n c Y ijk j=1 k=1 Y j médi mostrl ds n c observções do nível j do Y Fctor B, Y j = 1 n c n c Y ijk k=1 médi mostrl d totlidde ds n = b n c observções, Y = 1 n b j=1 n c k=1 Se o delinemento é equilibrdo, ou sej, n ij ˆµ 11 = Y 1 + Y 1 Y Y ijk. = n c, i,j, tem-se: Fórmuls pr delinementos equilibrdos (cont.) Tendo em cont ests fórmuls e equção bse do Modelo, tem-se que os vlores justdos de cd observção dependem pens ds médis dos respectivos níveis em cd fctor e d médi gerl de tods s observções: Ŷ ijk = ˆµ 11 + ˆα i + ˆβ j = Y i + Y j Y, i,j,k Consideremos gor s fórmuls ds três Soms de Qudrdos no Modelo M A+B. ˆα i = Y i Y 1 ˆβ j = Y j Y 1 J. Cdim (ISA) Esttístic e Delinemento / 424 J. Cdim (ISA) Esttístic e Delinemento / 424 As Soms de Qudrdos (delinemento equilibrdo) A Som de Qudrdos dos Fctores É preciso somr vrindo os 3 índices: SQT = SQF = SQRE = b n c j=1 k=1 b n c j=1 k=1 b n c j=1 k=1 ( Yijk Y ) 2 (Ŷijk Y ) 2 ( ) 2 Y ijk Ŷijk No Modelo M A+B, Som de Qudrdos ssocid os Fctores (SQF A+B ) tem, pr delinementos equilibrdos, seguinte decomposição: SQF A+B = = b n c j=1 k=1 b j=1 = b n c [ (Y i + Y j Y ) Y ] 2 n c [(Y i Y ) + (Y j Y ) ] 2 (Y i Y ) 2 } {{ } =SQA + n c b j=1 (Y j Y ) 2 } {{ } =SQB J. Cdim (ISA) Esttístic e Delinemento / 424 J. Cdim (ISA) Esttístic e Delinemento / 424 SQA e SQB em delinementos equilibrdos A Som de Qudrdos ssocid o fctor A obtid no cetto 354 e usdo no teste os efeitos do Fctor A é Som de Qudrdos do Fctor (SQF A ) do Modelo M A, pens com o Fctor A. Nesse modelo, os vlores justdos são Ŷijk = Y i.. (cetto 273), logo: O qudro-resumo d ANOVA 2 Fctores (sem intercção; delinemento equilibrdo) Fonte g.l. SQ QM f clc SQF A = b n c j=1 k=1 (Ŷijk Y ) 2 = b n c (Y i Y ) 2 = SQA. D mesm form, num delinemento equilibrdo, SQB é Som de Qudrdos do Fctor (SQF B ) do Modelo M B, pens com o Fctor B: Nesse modelo, os vlores justdos são Ŷijk = Y.j. (cetto 273), logo: Fctor A 1 SQA = b n c (y i y ) 2 QMA = SQA 1 b ( 2 Fctor B b 1 SQB = n c y j y ) QMB = SQB b 1 j=1 Resíduos n (+b 1) SQRE= b nc ) 2 QMRE= SQRE (yijk ŷijk n (+b 1) j=1 k=1 QMA QMRE QMB QMRE SQF B = b n c j=1 k=1 (Ŷijk Y ) 2 = n c b j=1 (Y j Y ) 2 = SQB. Totl n 1 SQT = (n 1)s 2 y J. Cdim (ISA) Esttístic e Delinemento / 424 J. Cdim (ISA) Esttístic e Delinemento / 424

18 ANOVA dois Fctores, sem intercção no Pr efectur um ANOVA dois Fctores (sem intercção) no, convém orgnizr os ddos num dt.frme com três coluns: 1 um pr os vlores (numéricos) d vriável respost; 2 outr pr o fctor A (com indicção dos seus níveis); 3 outr pr o fctor B (com indicção dos seus níveis). As fórmuls utilizds no pr indicr um ANOVA dois Fctores, sem intercção, são semelhntes às usds n Regressão Liner com dois preditores, devendo o nome dos dois fctores ser seprdo pelo símbolo +: y fa + fb Um exemplo O rendimento de cinco vrieddes de vei (mnchuri, svnsot,velvet, trebi e petlnd) foi registdo em seis diferentes locliddes 1. Em cd loclidde foi semed um e um só prcel com cd vriedde (hvendo csulizção em cd loclidde). > summry(ov(y1 ~ Vr + Loc, dt=immer)) Df Sum Sq Men Sq F vlue Pr(>F) Vr * Loc e-07 *** Residuls Há lgum indicção de efeitos significtivos entre vrieddes, e muit entre locliddes. E num modelo sem efeito de locliddes (blocos)? > summry(ov(y1 ~ Vr, dt=immer)) Df Sum Sq Men Sq F vlue Pr(>F) Vr Residuls Ddos em Immer, Hyes e LeRoy Powers, Sttisticl dpttion of brley vrietl dpttion, Journl of the Americn J. Cdim (ISA) Esttístic e Delinemento / 424 Society for Agronomy, 26, , J. Cdim (ISA) Esttístic e Delinemento / 424 Delinementos não equilibrdos Se um delinemento não é equilibrdo, s fórmuls do cetto 351, e s que dels decorrem, não se plicm. É possível mnter um decomposição do tipo SQT = SQA + SQB + SQRE e justificr testes nálogos os considerdos nos cettos (349) e (350), ms de dus forms lterntivs e diferentes: Tomr SQA = SQF A e SQB = SQRE A SQRE A+B ( SQF B ) Tomr SQB = SQF B e SQA = SQRE B SQRE A+B ( SQF A ) Modelos com intercção Um modelo ANOVA 2 Fctores, sem intercção, foi considerdo pr um delinemento fctoril, isto é, em que se cruzm todos os níveis de um e outro fctor. Um modelo sem efeitos de intercção é utilizdo sobretudo qundo existe um únic observção em cd célul, i.e., n ij = 1, i,j. N presenç de repetições ns céluls, form mis nturl de modelr um delinemento com dois fctores é de prever existênci de um terceiro tipo de efeitos: os efeitos de intercção. A idei é incorporr n equção bse do modelo pr Y ijk um prcel (αβ) ij que permit que em cd célul hj um efeito específico d combinção dos níveis i do Fctor A e j do Fctor B: Y ijk = µ + α i + β j + (αβ) ij + ε ijk. J. Cdim (ISA) Esttístic e Delinemento / 424 J. Cdim (ISA) Esttístic e Delinemento / 424 Os vlores esperdos de Y ijk Vmos dmitir s seguintes restrições os prâmetros: Tem-se: α 1 = 0 ; β 1 = 0 ; (αβ) 1j = 0, j ; (αβ) i1 = 0, i. Pr primeir célul (i = j = 1): µ 11 = E[Y 11k ] = µ. Ns restntes céluls (1,j) do primeiro nível do Fctor A: µ 1j = E[Y 1jk ] = µ 11 + β j. Ns restntes céluls (i,1) do primeiro nível do Fctor B: µ i1 = E[Y i1k ] = µ 11 + α i. Ns céluls genérics (i,j), com i > 1 e j > 1, µ ij = E[Y ijk ] = µ 11 + α i + β j + (αβ) ij. Os efeitos α i e β j designm-se efeitos principis de cd Fctor. Vriáveis indictrizes de célul A versão vectoril do modelo com intercção ssoci os novos efeitos (αβ) ij vriáveis indictrizes de cd célul, excluíndo, mis um vez, s céluls ssocids o primeiro nível de qulquer fctor. A equção-bse do modelo ANOVA 2 Fctores, com intercção, é: Y = µ1 n + α 2 I A α I A + β 2 I B β b I Bb + + (αβ ) 22 I A2 :B 2 + (αβ ) 23 I A2 :B (αβ ) b I A:B b + ε onde I Ai :B j represent vriável indictriz d célul correspondente o nível i do Fctor A e nível j do fctor B. Existem neste modelo b prâmetros. Cd indictriz de célul é d form I Ai :B j = I Ai I Bj, com o operdor indicr um multiplicção, elemento elemento, entre dois vectores. J. Cdim (ISA) Esttístic e Delinemento / 424 J. Cdim (ISA) Esttístic e Delinemento / 424

19 Modelo ANOVA 2 fctores, com intercção (cont.) O justmento deste modelo fz-se de form nálog o justmento de modelos nteriores. A mtriz X do delinemento é gor constituíd por b coluns: um colun de uns, 1 n, ssocid o prâmetro µ coluns de indictrizes de nível do fctor A, I Ai, (i > 1), ssocids os prâmetros α i. b 1 coluns de indictrizes de nível do fctor B, I Bj, (j > 1), ssocids os prâmetros β j. ( 1)(b 1) coluns de indictrizes de célul, I Ai :B j, (i,j > 1), ssocids os efeitos de intercção (αβ) ij. Os três testes ANOVA Neste delinemento, desejmos fzer um teste à existênci de cd um dos três tipos de efeitos: H 0 : (αβ) ij = 0, i = 2,...,, j = 2,...,b ; H 0 : α i = 0, i = 2,..., ; e H 0 : β j = 0, j = 2,...,b. As esttístics de teste pr cd um destes testes obtêm-se prtir d decomposição d Som de Qudrdos Totl em prcels convenientes. Como em modelos nteriores, Ŷ = HY, sendo H mtriz que project ortogonlmente sobre o espço C (X) gerdo pels coluns dest mtriz X. E tmbém, SQRE A B = Y Ŷ 2 = n ij b j=1 k=1 (Y ijk Ŷijk) 2. J. Cdim (ISA) Esttístic e Delinemento / 424 J. Cdim (ISA) Esttístic e Delinemento / 424 O modelo ANOVA dois fctores, com intercção Juntndo os pressupostos necessários à inferênci, Modelo ANOVA dois fctores, com intercção (Modelo M A B ) Existem n observções, Y ijk, n ij ds quis ssocids à célul (i,j) (i = 1,...,; j = 1,...,b). Tem-se: 1 Y ijk = µ 11 + α i + β j + (αβ) ij + ε ijk,,..., ; j=1,...,b ; k=1,...,n ij (α 1 =0 ; β 1 =0 ; (αβ) 1j =0, j; (αβ) i1 =0, i). 2 ε ijk N (0, σ 2 ) 3 {ε ijk } i,j,k v..s independentes. O modelo tem b prâmetros desconhecidos: µ 11 ; os 1 créscimos α i (i > 1); os b 1 créscimos β j e os ( 1)(b 1) efeitos de intercção (αβ) ij, pr i > 1, j > 1. Testndo efeitos de intercção Pr testr existênci de efeitos de intercção, H 0 : (αβ) ij = 0, i = 2,...,, j = 2,...,b, pode efectur-se um teste F prcil comprndo o modelo (Modelo M A B ) Y ijk = µ 11 + α i + β j + (αβ) ij + ε ijk, com o submodelo (Modelo M A+B ) Y ijk = µ 11 + α i + β j + ε ijk, Design-se Som de Qudrdos ssocid à intercção à diferenç SQAB = SQRE A+B SQRE A B J. Cdim (ISA) Esttístic e Delinemento / 424 J. Cdim (ISA) Esttístic e Delinemento / 424 Testndo os efeitos principis de cd Fctor A decomposição de SQT Pr testr os efeitos principis do Fctor B, H 0 : β j = 0, j = 2,...,b, pode prtir-se dos modelos (Modelo M A+B ) Y ijk = µ 11 + α i + β j + ε ijk (Modelo M A ) Y ijk = µ 11 + α i + ε ijk, Definimos : SQAB = SQRE A+B SQRE A B SQB = SQRE A SQRE A+B SQA = SQF A e tomr Somndo ests Soms de Qudrdos SQRE A B, obtém-se: SQB = SQRE A SQRE A+B SQA = SQF A SQRE A B + SQAB } + SQA {{ + SQB } = SQT =SQF A B Est decomposição de SQT ger s quntiddes ns quis se bseim s esttístics dos três testes ssocidos o Modelo M A B. J. Cdim (ISA) Esttístic e Delinemento / 424 J. Cdim (ISA) Esttístic e Delinemento / 424

20 O qudro-resumo Com bse n decomposição do cetto 368 podemos construir o qudro resumo d ANOVA 2 Fctores, com intercção. Fonte g.l. SQ QM f clc Fctor A 1 SQA QMA = SQA 1 QMA QMRE Fctor B b 1 SQB QMB = SQB b 1 Intercção ( 1)(b 1) SQAB QMAB = SQAB ( 1)(b 1) QMB QMRE QMAB QMRE Resíduos n b SQRE QMRE = SQRE n b Totl n 1 SQT = (n 1)sy 2 O Teste F os efeitos de intercção Sendo válido o Modelo ANOVA dois fctores, com intercção: Teste F os efeitos de intercção Hipóteses: H 0 : (αβ) ij = 0 i,j vs. H 1 : i,j t.q. (αβ) ij 0. [NÃO HÁ INTERACÇÃO] vs. [HÁ INTERACÇÃO] Esttístic do Teste: F = QMAB QMRE F (( 1)(b 1),n b) se H 0. Nível de significânci do teste: α Região Crític (Região de Rejeição): Unilterl direit Rejeitr H 0 se F clc > f α(( 1)(b 1),n b ) df(x, 4, 16) x J. Cdim (ISA) Esttístic e Delinemento / 424 J. Cdim (ISA) Esttístic e Delinemento / 424 O Teste F os efeitos principis do fctor A Sendo válido o Modelo ANOVA dois fctores, com intercção (delinemento equilibrdo) tem-se então: Teste F os efeitos principis do fctor A Hipóteses: H 0 : α i = 0 i=2,..., vs. H 1 : i=2,.., t.q. α i 0. [ EFEITOS DE A] vs. [ EFEITOS DE A] Esttístic do Teste: F = QMA QMRE F ( 1,n b) se H 0. Nível de significânci do teste: α Região Crític (Região de Rejeição): Unilterl direit O Teste F os efeitos principis do fctor B Sendo válido o Modelo ANOVA dois fctores, com intercção (delinemento equilibrdo) tem-se então: Teste F os efeitos principis do fctor B Hipóteses: H 0 : β j = 0 j=2,...,b vs. H 1 : j=2,..,b t.q. β j 0. [ EFEITOS DE B] vs. [ EFEITOS DE B] Esttístic do Teste: F = QMB QMRE F (b 1,n b) se H 0. Nível de significânci do teste: α Região Crític (Região de Rejeição): Unilterl direit Rejeitr H 0 se F clc > f α( 1,n b) df(x, 4, 16) Rejeitr H 0 se F clc > f α(b 1,n b) df(x, 4, 16) x x J. Cdim (ISA) Esttístic e Delinemento / 424 J. Cdim (ISA) Esttístic e Delinemento / 424 ANOVA dois Fctores, com intercção no Estimção d intercção necessit de repetições Pr efectur um ANOVA dois Fctor, com intercção, no, convém orgnizr os ddos num dt.frme com três coluns: 1 um pr os vlores (numéricos) d vriável respost; 2 outr pr o fctor A (com indicção dos seus níveis); 3 outr pr o fctor B (com indicção dos seus níveis). As fórmuls utilizds no pr indicr um ANOVA dois Fctores, com intercção, recorrem o símbolo : y fa fb Pr se poder estudr efeitos de intercção, é necessário que hj repetições ns céluls. Os grus de liberdde do SQRE são n b. Se houver um únic observção em cd célul, tem-se n = b, ou sej, tntos prâmetros qunts s observções existentes. Num delinemento com um únic observção por célul é obrigtório optr por um modelo sem intercção. Hvendo repetições, é mis nturl considerr um modelo com intercção. J. Cdim (ISA) Esttístic e Delinemento / 424 J. Cdim (ISA) Esttístic e Delinemento / 424

Análise de Variância com Dois Factores

Análise de Variância com Dois Factores Análise de Vriânci com Dois Fctores Modelo sem intercção Eemplo Neste eemplo, o testrmos hipótese de s três lojs terem volumes médios de vends iguis, estmos testr se o fctor Loj tem influênci no volume

Leia mais

Simbolicamente, para. e 1. a tem-se

Simbolicamente, para. e 1. a tem-se . Logritmos Inicilmente vmos trtr dos ritmos, um ferrment crid pr uilir no desenvolvimento de cálculos e que o longo do tempo mostrou-se um modelo dequdo pr vários fenômenos ns ciêncis em gerl. Os ritmos

Leia mais

APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA

APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA APONTAMENTOS DE ÁLGEBRA LINEAR E GEOMETRIA ANALÍTICA (II Determinntes) ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Determinntes Índice 2 Determinntes 2

Leia mais

O modelo ANOVA a dois factores, hierarquizados

O modelo ANOVA a dois factores, hierarquizados O modelo ANOVA a dois factores, hierarquizados Juntando os pressupostos necessários à inferência, Modelo ANOVA a dois factores, hierarquizados Seja A o Factor dominante e B o Factor subordinado. Existem

Leia mais

Algoritmos de Busca de Palavras em Texto

Algoritmos de Busca de Palavras em Texto Revisdo 08Nov12 A busc de pdrões dentro de um conjunto de informções tem um grnde plicção em computção. São muits s vrições deste problem, desde procurr determinds plvrs ou sentençs em um texto té procurr

Leia mais

Operadores momento e energia e o Princípio da Incerteza

Operadores momento e energia e o Princípio da Incerteza Operdores momento e energi e o Princípio d Incertez A U L A 5 Mets d ul Definir os operdores quânticos do momento liner e d energi e enuncir o Princípio d Incertez de Heisenberg. objetivos clculr grndezs

Leia mais

Programação Linear Introdução

Programação Linear Introdução Progrmção Liner Introdução Prof. Msc. Fernndo M. A. Nogueir EPD - Deprtmento de Engenhri de Produção FE - Fculdde de Engenhri UFJF - Universidde Federl de Juiz de For Progrmção Liner - Modelgem Progrmção

Leia mais

Semelhança e áreas 1,5

Semelhança e áreas 1,5 A UA UL LA Semelhnç e áres Introdução N Aul 17, estudmos o Teorem de Tles e semelhnç de triângulos. Nest ul, vmos tornr mis gerl o conceito de semelhnç e ver como se comportm s áres de figurs semelhntes.

Leia mais

Projecções Cotadas. Luís Miguel Cotrim Mateus, Assistente (2006)

Projecções Cotadas. Luís Miguel Cotrim Mateus, Assistente (2006) 1 Projecções Cotds Luís Miguel Cotrim Mteus, Assistente (2006) 2 Nestes pontmentos não se fz o desenvolvimento exustivo de tods s mtéris, focndo-se pens lguns items. Pelo indicdo, estes pontmentos não

Leia mais

1º semestre de Engenharia Civil/Mecânica Cálculo 1 Profa Olga (1º sem de 2015) Função Exponencial

1º semestre de Engenharia Civil/Mecânica Cálculo 1 Profa Olga (1º sem de 2015) Função Exponencial º semestre de Engenhri Civil/Mecânic Cálculo Prof Olg (º sem de 05) Função Eponencil Definição: É tod função f: R R d form =, com R >0 e. Eemplos: = ; = ( ) ; = 3 ; = e Gráfico: ) Construir o gráfico d

Leia mais

Fluxo Gênico. Desvios de Hardy-Weinberg. Estimativas de Fluxo gênico podem ser feitas através de dois tipos de métodos:

Fluxo Gênico. Desvios de Hardy-Weinberg. Estimativas de Fluxo gênico podem ser feitas através de dois tipos de métodos: Desvios de Hrdy-Weinberg cslmento preferencil Mutção Recombinção Deriv Genétic Fluo gênico Fluo Gênico O modelo de Hrdy-Weinberg consider pens um únic populção miori ds espécies tem váris populções locis

Leia mais

1. VARIÁVEL ALEATÓRIA 2. DISTRIBUIÇÃO DE PROBABILIDADE

1. VARIÁVEL ALEATÓRIA 2. DISTRIBUIÇÃO DE PROBABILIDADE Vriáveis Aletóris 1. VARIÁVEL ALEATÓRIA Suponhmos um espço mostrl S e que cd ponto mostrl sej triuído um número. Fic, então, definid um função chmd vriável letóri 1, com vlores x i2. Assim, se o espço

Leia mais

Transporte de solvente através de membranas: estado estacionário

Transporte de solvente através de membranas: estado estacionário Trnsporte de solvente trvés de membrns: estdo estcionário Estudos experimentis mostrm que o fluxo de solvente (águ) em respost pressão hidráulic, em um meio homogêneo e poroso, é nálogo o fluxo difusivo

Leia mais

POLINÔMIOS. Definição: Um polinômio de grau n é uma função que pode ser escrita na forma. n em que cada a i é um número complexo (ou

POLINÔMIOS. Definição: Um polinômio de grau n é uma função que pode ser escrita na forma. n em que cada a i é um número complexo (ou POLINÔMIOS Definição: Um polinômio de gru n é um função que pode ser escrit n form P() n n i 0... n i em que cd i é um número compleo (ou i 0 rel) tl que n é um número nturl e n 0. Os números i são denomindos

Leia mais

COLÉGIO NAVAL 2016 (1º dia)

COLÉGIO NAVAL 2016 (1º dia) COLÉGIO NAVAL 016 (1º di) MATEMÁTICA PROVA AMARELA Nº 01 PROVA ROSA Nº 0 ( 5 40) 01) Sej S som dos vlores inteiros que stisfzem inequção 10 1 0. Sendo ssim, pode-se firmr que + ) S é um número divisíel

Leia mais

COPEL INSTRUÇÕES PARA CÁLCULO DA DEMANDA EM EDIFÍCIOS NTC 900600

COPEL INSTRUÇÕES PARA CÁLCULO DA DEMANDA EM EDIFÍCIOS NTC 900600 1 - INTRODUÇÃO Ests instruções têm por objetivo fornecer s orientções pr utilizção do critério pr cálculo d demnd de edifícios residenciis de uso coletivo O referido critério é plicável os órgãos d COPEL

Leia mais

Capítulo 3. Autómatos e respectivas linguagens

Capítulo 3. Autómatos e respectivas linguagens Cpítulo 3. Neste estudo, os utómtos serão considerdos principlmente como dispositivos de ceitção d lingugem, e respectiv estrutur intern será discutid pens n medid em que se relcione com lingugem ceite.

Leia mais

3. Cálculo integral em IR 3.1. Integral Indefinido 3.1.1. Definição, Propriedades e Exemplos

3. Cálculo integral em IR 3.1. Integral Indefinido 3.1.1. Definição, Propriedades e Exemplos 3. Cálculo integrl em IR 3.. Integrl Indefinido 3... Definição, Proprieddes e Exemplos A noção de integrl indefinido prece ssocid à de derivd de um função como se pode verificr prtir d su definição: Definição

Leia mais

CPV O cursinho que mais aprova na GV

CPV O cursinho que mais aprova na GV O cursinho que mis prov n GV FGV Administrção 04/junho/006 MATEMÁTICA 0. Pulo comprou um utomóvel fle que pode ser bstecido com álcool ou com gsolin. O mnul d montdor inform que o consumo médio do veículo

Leia mais

Apoio à Decisão. Aula 3. Aula 3. Mônica Barros, D.Sc.

Apoio à Decisão. Aula 3. Aula 3. Mônica Barros, D.Sc. Aul Métodos Esttísticos sticos de Apoio à Decisão Aul Mônic Brros, D.Sc. Vriáveis Aletóris Contínus e Discrets Função de Probbilidde Função Densidde Função de Distribuição Momentos de um vriável letóri

Leia mais

Professores Edu Vicente e Marcos José Colégio Pedro II Departamento de Matemática Potências e Radicais

Professores Edu Vicente e Marcos José Colégio Pedro II Departamento de Matemática Potências e Radicais POTÊNCIAS A potênci de epoente n ( n nturl mior que ) do número, representd por n, é o produto de n ftores iguis. n =...... ( n ftores) é chmdo de bse n é chmdo de epoente Eemplos =... = 8 =... = PROPRIEDADES

Leia mais

Função de onda e Equação de Schrödinger

Função de onda e Equação de Schrödinger Função de ond e Equção de Schrödinger A U L A 4 Met d ul Introduzir função de ond e Equção de Schrödinger. objetivos interpretr fisicmente função de ond; obter informção sobre um sistem microscópico, prtir

Leia mais

CONJUNTOS NUMÉRICOS Símbolos Matemáticos

CONJUNTOS NUMÉRICOS Símbolos Matemáticos CONJUNTOS NUMÉRICOS Símolos Mtemáticos,,... vriáveis e prâmetros igul A, B,... conjuntos diferente pertence > mior que não pertence < menor que está contido mior ou igul não está contido menor ou igul

Leia mais

TRIGONOMETRIA. A trigonometria é uma parte importante da Matemática. Começaremos lembrando as relações trigonométricas num triângulo retângulo.

TRIGONOMETRIA. A trigonometria é uma parte importante da Matemática. Começaremos lembrando as relações trigonométricas num triângulo retângulo. TRIGONOMETRIA A trigonometri é um prte importnte d Mtemátic. Começremos lembrndo s relções trigonométrics num triângulo retângulo. Num triângulo ABC, retângulo em A, indicremos por Bˆ e por Ĉ s medids

Leia mais

Capítulo 1 Introdução à Física

Capítulo 1 Introdução à Física Vetor Pré Vestiulr Comunitário Físic 1 Cpítulo 1 Introdução à Físic Antes de começrem com os conceitos práticos d Físic, é imprescindível pr os lunos de Pré-Vestiulr estrem certificdos de que dominm os

Leia mais

1 As grandezas A, B e C são tais que A é diretamente proporcional a B e inversamente proporcional a C.

1 As grandezas A, B e C são tais que A é diretamente proporcional a B e inversamente proporcional a C. As grndezs A, B e C são tis que A é diretmente proporcionl B e inversmente proporcionl C. Qundo B = 00 e C = 4 tem-se A = 5. Qul será o vlor de A qundo tivermos B = 0 e C = 5? B AC Temos, pelo enuncido,

Leia mais

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE CURSO: ADMINISTRAÇÃO/CIÊNCIAS CONTÁBEI /LOGISTICA ASSUNTO: INTRODUÇÃO AO ESTUDO DE FUNÇÕES

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE CURSO: ADMINISTRAÇÃO/CIÊNCIAS CONTÁBEI /LOGISTICA ASSUNTO: INTRODUÇÃO AO ESTUDO DE FUNÇÕES FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE CURSO: ADMINISTRAÇÃO/CIÊNCIAS CONTÁBEI /LOGISTICA ASSUNTO: INTRODUÇÃO AO ESTUDO DE FUNÇÕES PROFESSOR: MARCOS AGUIAR MAT. BÁSICA I. FUNÇÕES. DEFINIÇÃO Ddos

Leia mais

Matemática Aplicada. A Mostre que a combinação dos movimentos N e S, em qualquer ordem, é nula, isto é,

Matemática Aplicada. A Mostre que a combinação dos movimentos N e S, em qualquer ordem, é nula, isto é, Mtemátic Aplicd Considere, no espço crtesino idimensionl, os movimentos unitários N, S, L e O definidos seguir, onde (, ) R é um ponto qulquer: N(, ) (, ) S(, ) (, ) L(, ) (, ) O(, ) (, ) Considere ind

Leia mais

07 AVALIAÇÃO DO EFEITO DO TRATAMENTO DE

07 AVALIAÇÃO DO EFEITO DO TRATAMENTO DE 07 AVALIAÇÃO DO EFEITO DO TRATAMENTO DE SEMENTES NA QUALIDADE FISIOLOGICA DA SEMENTE E A EFICIENCIA NO CONTROLE DE PRAGAS INICIAIS NA CULTURA DA SOJA Objetivo Este trblho tem como objetivo vlir o efeito

Leia mais

a a 3,88965 $140 7 9% 7 $187 7 9% a 5, 03295

a a 3,88965 $140 7 9% 7 $187 7 9% a 5, 03295 Anuiddes equivlentes: $480 + $113 + $149 5 9% 5 VPL A (1, 09) $56, 37 A 5 9% 3,88965 5 9% 5 9% AE = = = = $14, 49 = 3,88965 AE B $140 $620 + $120 + 7 9% 7 VPL B (1, 09) $60, 54 = = = 5, 03295 7 9% 7 9%

Leia mais

1 Fórmulas de Newton-Cotes

1 Fórmulas de Newton-Cotes As nots de ul que se seguem são um compilção dos textos relciondos n bibliogrfi e não têm intenção de substitui o livro-texto, nem qulquer outr bibliogrfi. Integrção Numéric Exemplos de problems: ) Como

Leia mais

Introdução à Programação Linear

Introdução à Programação Linear CAPÍTULO. Definição Um problem de PL consiste em determinr vlores não negtivos pr s vriáveis de decisão, de form que stisfçm s restrições imposts e que optimizem (minimizem ou mimizem) um função (rel)

Leia mais

Vestibular UFRGS 2013 Resolução da Prova de Matemática

Vestibular UFRGS 2013 Resolução da Prova de Matemática Vestibulr UFRG 0 Resolução d Prov de Mtemátic 6. Alterntiv (C) 00 bilhões 00. ( 000 000 000) 00 000 000 000 0 7. Alterntiv (B) Qundo multiplicmos dois números com o lgrismo ds uniddes igul 4, o lgrismo

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DA FASE 1 DO VESTIBULAR DA UFBA/UFRB-2007 POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA DA FASE 1 DO VESTIBULAR DA UFBA/UFRB-2007 POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA DA FASE DO VESTIBULAR DA UFBA/UFRB-7 POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA Questão Sore números reis, é correto firmr: () Se é o mior número de três lgrismos divisível

Leia mais

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU

Cálculo Numérico Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Cálculo Numérico Fculdde de Enenhri, Arquiteturs e Urnismo FEAU Pro. Dr. Serio Pillin IPD/ Físic e Astronomi V Ajuste de curvs pelo método dos mínimos qudrdos Ojetivos: O ojetivo dest ul é presentr o método

Leia mais

, então ela é integrável em [ a, b] Interpretação geométrica: seja contínua e positiva em um intervalo [ a, b]

, então ela é integrável em [ a, b] Interpretação geométrica: seja contínua e positiva em um intervalo [ a, b] Interl Deinid Se é um unção de, então su interl deinid é um interl restrit à vlores em um intervlo especíico, dimos, O resultdo é um número que depende pens de e, e não de Vejmos deinição: Deinição: Sej

Leia mais

tem-se: Logo, x é racional. ALTERNATIVA B AB : segmento de reta unindo os pontos A e B. m (AB) : medida (comprimento) de AB.

tem-se: Logo, x é racional. ALTERNATIVA B AB : segmento de reta unindo os pontos A e B. m (AB) : medida (comprimento) de AB. MÚLTIPL ESCOLH NOTÇÕES C : conjunto dos números compleos. Q : conjunto dos números rcionis. R : conjunto dos números reis. Z : conjunto dos números inteiros. N {0,,,,...}. N* {,,,...}. : conjunto vzio.

Leia mais

CINÉTICA QUÍMICA CINÉTICA QUÍMICA. Lei de Velocidade

CINÉTICA QUÍMICA CINÉTICA QUÍMICA. Lei de Velocidade CINÉTICA QUÍMICA Lei de Velocidde LEIS DE VELOCIDADE - DETERMINAÇÃO Os eperimentos em Cinétic Químic fornecem os vlores ds concentrções ds espécies em função do tempo. A lei de velocidde que govern um

Leia mais

CDI-II. Resumo das Aulas Teóricas (Semana 12) y x 2 + y, 2. x x 2 + y 2), F 1 y = F 2

CDI-II. Resumo das Aulas Teóricas (Semana 12) y x 2 + y, 2. x x 2 + y 2), F 1 y = F 2 Instituto Superior Técnico eprtmento de Mtemátic Secção de Álgebr e Análise Prof. Gbriel Pires CI-II Resumo ds Auls Teórics (Semn 12) 1 Teorem de Green no Plno O cmpo vectoril F : R 2 \ {(, )} R 2 definido

Leia mais

São possíveis ladrilhamentos com um único molde na forma de qualquer quadrilátero, de alguns tipos de pentágonos irregulares, etc.

São possíveis ladrilhamentos com um único molde na forma de qualquer quadrilátero, de alguns tipos de pentágonos irregulares, etc. LADRILHAMENTOS Elvi Mureb Sllum Mtemtec-IME-USP A rte do ldrilhmento consiste no preenchimento do plno, por moldes, sem superposição ou burcos. El existe desde que o homem começou usr pedrs pr cobrir o

Leia mais

II.3. Análise de Variância (ANOVA)

II.3. Análise de Variância (ANOVA) II.3. Análise de Variância (ANOVA) A Regressão Linear visa modelar uma variável resposta numérica (quantitativa), à custa de uma ou mais variáveis preditoras, igualmente numéricas. Mas uma variável resposta

Leia mais

PROVA DE MATEMÁTICA DA UNESP VESTIBULAR 2012 1 a Fase RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UNESP VESTIBULAR 2012 1 a Fase RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UNESP VESTIBULAR 01 1 Fse Prof. Mri Antôni Gouvei. QUESTÃO 83. Em 010, o Instituto Brsileiro de Geogrfi e Esttístic (IBGE) relizou o último censo populcionl brsileiro, que mostrou

Leia mais

1.1) Dividindo segmentos em partes iguais com mediatrizes sucessivas.

1.1) Dividindo segmentos em partes iguais com mediatrizes sucessivas. COLÉGIO PEDRO II U. E. ENGENHO NOVO II Divisão Gráfi de segmentos e Determinção gráfi de epressões lgéris (qurt e tereir proporionl e médi geométri). Prof. Sory Izr Coord. Prof. Jorge Mrelo TURM: luno:

Leia mais

VETORES. Com as noções apresentadas, é possível, de maneira simplificada, conceituar-se o

VETORES. Com as noções apresentadas, é possível, de maneira simplificada, conceituar-se o VETORES INTRODUÇÃO No módulo nterior vimos que s grndezs físics podem ser esclres e vetoriis. Esclres são quels que ficm perfeitmente definids qundo expresss por um número e um significdo físico: mss (2

Leia mais

b 2 = 1: (resp. R2 e ab) 8.1B Calcule a área da região delimitada pelo eixo x, pelas retas x = B; B > 0; e pelo grá co da função y = x 2 exp

b 2 = 1: (resp. R2 e ab) 8.1B Calcule a área da região delimitada pelo eixo x, pelas retas x = B; B > 0; e pelo grá co da função y = x 2 exp 8.1 Áres Plns Suponh que cert região D do plno xy sej delimitd pelo eixo x, pels rets x = e x = b e pelo grá co de um função contínu e não negtiv y = f (x) ; x b, como mostr gur 8.1. A áre d região D é

Leia mais

Acoplamento. Tipos de acoplamento. Acoplamento por dados. Acoplamento por imagem. Exemplo. É o grau de dependência entre dois módulos.

Acoplamento. Tipos de acoplamento. Acoplamento por dados. Acoplamento por imagem. Exemplo. É o grau de dependência entre dois módulos. Acoplmento É o gru de dependênci entre dois módulos. Objetivo: minimizr o coplmento grndes sistems devem ser segmentdos em módulos simples A qulidde do projeto será vlid pelo gru de modulrizção do sistem.

Leia mais

CURSO DE MATEMÁTICA BÁSICA

CURSO DE MATEMÁTICA BÁSICA [Digite teto] CURSO DE MATEMÁTICA BÁSICA BELO HORIZONTE MG [Digite teto] CONJUNTOS NÚMERICOS. Conjunto dos números nturis Ν é o conjunto de todos os números contáveis. N { 0,,,,,, K}. Conjunto dos números

Leia mais

Uma roda gigante tem 10m de raio e possui 12 assentos, igualmente espaçados, e gira no sentido horário.

Uma roda gigante tem 10m de raio e possui 12 assentos, igualmente espaçados, e gira no sentido horário. Questão PROVA FINAL DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - OUTUBRO DE. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA Um rod

Leia mais

3 DECISÃO SOB INCERTEZA

3 DECISÃO SOB INCERTEZA 3 DECISÃO SOB INCERTEZA Este cpítulo fz um resumo dos princípios e critérios de decisão so incertez, descrevendo su fundmentção mtemátic e discutindo su plicção. DECISÃO SOB INCERTEZA 4 3. INTRODUÇÃO A

Leia mais

Rolamentos com uma fileira de esferas de contato oblíquo

Rolamentos com uma fileira de esferas de contato oblíquo Rolmentos com um fileir de esfers de contto oblíquo Rolmentos com um fileir de esfers de contto oblíquo 232 Definições e ptidões 232 Séries 233 Vrintes 233 Tolerâncis e jogos 234 Elementos de cálculo 236

Leia mais

TÍTULO: Métodos de Avaliação e Identificação de Riscos nos Locais de Trabalho. AUTORIA: Ricardo Pedro

TÍTULO: Métodos de Avaliação e Identificação de Riscos nos Locais de Trabalho. AUTORIA: Ricardo Pedro TÍTULO: Métodos de Avlição e Identificção de Riscos nos Locis de Trblho AUTORIA: Ricrdo Pedro PUBLICAÇÕES: TECNOMETAL n.º 167 (Novembro/Dezembro de 2006) 1. Enqudrmento legl A vlição e identificção de

Leia mais

Cálculo Integral em R

Cálculo Integral em R Cálculo Integrl em R (Primitivção e Integrção) Miguel Moreir e Miguel Cruz Conteúdo Primitivção. Noção de primitiv......................... Algums primitivs imedits................... Proprieddes ds primitivs....................4

Leia mais

José Miguel Urbano. Análise Infinitesimal II Notas de curso

José Miguel Urbano. Análise Infinitesimal II Notas de curso José Miguel Urbno Análise Infinitesiml II Nots de curso Deprtmento de Mtemátic d Universidde de Coimbr Coimbr, 2005 Conteúdo Primitivs 3 2 O integrl de Riemnn 8 2. Proprieddes do integrl de Riemnn..............

Leia mais

Material Teórico - Números Inteiros e Números Racionais. Números Inteiros e Operações. Sétimo Ano. Prof. Angelo Papa Neto

Material Teórico - Números Inteiros e Números Racionais. Números Inteiros e Operações. Sétimo Ano. Prof. Angelo Papa Neto Mteril Teórico - Números Inteiros e Números Rcionis Números Inteiros e Operções Sétimo Ano Prof. Angelo Pp Neto 1 Introdução os números inteiros Vmos começr considerndo seguinte situção: Pedro tinh R$

Leia mais

Gabarito - Matemática Grupo G

Gabarito - Matemática Grupo G 1 QUESTÃO: (1,0 ponto) Avlidor Revisor Um resturnte cobr, no lmoço, té s 16 h, o preço fixo de R$ 1,00 por pesso. Após s 16h, esse vlor ci pr R$ 1,00. Em determindo di, 0 pessos lmoçrm no resturnte, sendo

Leia mais

9.2 Integração numérica via interpolação polinomial

9.2 Integração numérica via interpolação polinomial Cpítulo 9 Integrção Numéric 9. Introdução A integrção numéric é o processo computcionl cpz de produzir um vlor numérico pr integrl de um função sobre um determindo conjunto. El difere do processo de ntidiferencição,

Leia mais

64 5 y e log 2. 32 5 z, então x 1 y 1 z é igual a: c) 13 e) 64 3. , respectivamente. Admitindo-se que E 1 foi equivalente à milésima parte de E 2

64 5 y e log 2. 32 5 z, então x 1 y 1 z é igual a: c) 13 e) 64 3. , respectivamente. Admitindo-se que E 1 foi equivalente à milésima parte de E 2 Resolução ds tividdes complementres Mtemátic M Função Logrítmic p. (UFSM-RS) Sejm log, log 6 e log z, então z é igul : ) b) c) e) 6 d) log log 6 6 log z z z z (UFMT) A mgnitude de um terremoto é medid

Leia mais

CPV conquista 70% das vagas do ibmec (junho/2007)

CPV conquista 70% das vagas do ibmec (junho/2007) conquist 70% ds vgs do ibmec (junho/007) IBME 08/Junho /008 NÁLISE QUNTITTIV E LÓGI DISURSIV 0. Num lv-rápido de crros trblhm três funcionários. tbel bio mostr qunto tempo cd um deles lev sozinho pr lvr

Leia mais

Busca Digital (Trie e Árvore Patrícia) Estrutura de Dados II Jairo Francisco de Souza

Busca Digital (Trie e Árvore Patrícia) Estrutura de Dados II Jairo Francisco de Souza Busc Digitl (Trie e Árvore Ptríci) Estrutur de Ddos II Jiro Frncisco de Souz Introdução No prolem de usc, é suposto que existe um conjunto de chves S={s 1,, s n } e um vlor x correspondente um chve que

Leia mais

Aula 8: Gramáticas Livres de Contexto

Aula 8: Gramáticas Livres de Contexto Teori d Computção Segundo Semestre, 2014 ul 8: Grmátics Livres de Contexto DINF-UTFPR Prof. Ricrdo Dutr d Silv Veremos gor mneir de gerr s strings de um tipo específico de lingugem, conhecido como lingugem

Leia mais

push (c) pop () retorna-se c topo b a topo Figura 10.1: Funcionamento da pilha.

push (c) pop () retorna-se c topo b a topo Figura 10.1: Funcionamento da pilha. 11. Pilhs W. Celes e J. L. Rngel Um ds estruturs de ddos mis simples é pilh. Possivelmente por ess rzão, é estrutur de ddos mis utilizd em progrmção, sendo inclusive implementd diretmente pelo hrdwre d

Leia mais

Relações em triângulos retângulos semelhantes

Relações em triângulos retângulos semelhantes Observe figur o ldo. Um escd com seis degrus está poid em num muro de m de ltur. distânci entre dois degrus vizinhos é 40 cm. Logo o comprimento d escd é 80 m. distânci d bse d escd () à bse do muro ()

Leia mais

PRESSÕES LATERAIS DE TERRA

PRESSÕES LATERAIS DE TERRA Estdo de equilíbrio plástico de Rnkine Pressões lteris de terr (empuxos de terr) f(deslocmentos e deformções d mss de solo) f(pressões plicds) problem indetermindo. É necessário estudr o solo no estdo

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear Geometri Anlític e Álger Liner 8. Mtrizes Introdução As mtrizes estão presentes no nosso cotidino ds forms mis vrids. No entnto, em gerl não perceemos presenç dels, pois estão envolvids em certos prelhos

Leia mais

a) sexto b) sétimo c) oitavo d) nono e) décimo

a) sexto b) sétimo c) oitavo d) nono e) décimo 1 INSPER 16/06/013 Seu Pé Direito ns Melhores Fculddes 1. Nos plnos seguir, estão representds dus relções entre s vriáveis x e y: y = x e y = x, pr x 0.. Em um sequênci, o terceiro termo é igul o primeiro

Leia mais

Aula 02: Revisão de Probabilidade e Estatística. Sumário. O que é estatística 02/04/2014. Prof. Leonardo Menezes Tópicos em Telecomunicações

Aula 02: Revisão de Probabilidade e Estatística. Sumário. O que é estatística 02/04/2014. Prof. Leonardo Menezes Tópicos em Telecomunicações // Aul : Revisão de Probbilidde e sttístic Prof. Leonrdo Menezes Tóicos em Telecomunicções Sumário O que é esttístic O que é robbilidde Vriáveis letóris Distribuição de Probbilidde Alicções Mementos O

Leia mais

FUNC ~ OES REAIS DE VARI AVEL REAL

FUNC ~ OES REAIS DE VARI AVEL REAL FUNC ~ OES REAIS DE VARI AVEL REAL Clculo Integrl AMI ESTSetubl-DMAT 15 de Dezembro de 2012 AMI (ESTSetubl-DMAT) LIC ~AO 18 15 de Dezembro de 2012 1 / 14 Integrl de Riemnn Denic~o: Sej [, b] um intervlo

Leia mais

Linhas 1 2 Colunas 1 2. (*) Linhas 1 2 (**) Colunas 2 1.

Linhas 1 2 Colunas 1 2. (*) Linhas 1 2 (**) Colunas 2 1. Resumos ds uls teórics -------------------- Cp 5 -------------------------------------- Cpítulo 5 Determinntes Definição Consideremos mtriz do tipo x A Formemos todos os produtos de pres de elementos de

Leia mais

A MODELAGEM MATEMÁTICA NA CONSTRUÇÃO DE TELHADOS COM DIFERENTES TIPOS DE TELHAS

A MODELAGEM MATEMÁTICA NA CONSTRUÇÃO DE TELHADOS COM DIFERENTES TIPOS DE TELHAS A MODELAGEM MATEMÁTICA NA CONSTRUÇÃO DE TELADOS COM DIFERENTES TIOS DE TELAS Angéli Cervi, Rosne Bins, Til Deckert e edro A.. Borges 4. Resumo A modelgem mtemátic é um método de investigção que utiliz

Leia mais

LISTA DE EXERCÍCIOS Questões de Vestibulares. e B = 2

LISTA DE EXERCÍCIOS Questões de Vestibulares. e B = 2 LISTA DE EXERCÍCIOS Questões de Vestiulres ) UFBA 9 Considere s mtries A e B Sendo-se que X é um mtri simétri e que AX B, determine -, sendo Y ( ij) X - R) ) UFBA 9 Dds s mtries A d Pode-se firmr: () se

Leia mais

PROVA DE MATEMÁTICA DA FUVEST VESTIBULAR 2010 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA FUVEST VESTIBULAR 2010 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA FUVET VETIBULAR 00 Fse Prof. Mri Antôni Gouvei. Q-7 Um utomóvel, modelo flex, consome litros de gsolin pr percorrer 7km. Qundo se opt pelo uso do álcool, o utomóvel consome 7 litros

Leia mais

INTEGRAL DEFINIDO. O conceito de integral definido está relacionado com um problema geométrico: o cálculo da área de uma figura plana.

INTEGRAL DEFINIDO. O conceito de integral definido está relacionado com um problema geométrico: o cálculo da área de uma figura plana. INTEGRAL DEFINIDO O oneito de integrl definido está reliondo om um prolem geométrio: o álulo d áre de um figur pln. Vmos omeçr por determinr áre de um figur delimitd por dus rets vertiis, o semi-eio positivo

Leia mais

Análise Matemática I. Feliz Minhós

Análise Matemática I. Feliz Minhós Análise Mtemátic I Feliz Minhós ii Conteúdo Objectivos Geris Progrm 3 Sucessões 5. De nição............................. 5.2 Subsucessão............................ 6.3 Sucessões monótons.......................

Leia mais

Álgebra Linear Tema # 3. Resolução de problema que conduzem a S.E.L. de infinita solução. Introdução aos problemas com infinitas soluções

Álgebra Linear Tema # 3. Resolução de problema que conduzem a S.E.L. de infinita solução. Introdução aos problemas com infinitas soluções Álgebr Liner Tem # 3. Resolução de problem que conduzem S.E.L. de infinit solução Assunto: Resolução de problems modeld trvés Sistem de Equções Lineres utilizndo comndo Solve no Derive. Introdução os problems

Leia mais

MATEMÁTICA PARA REFLETIR! EXERCÍCIOS EXERCÍCIOS COMPLEMENTARES OPERAÇÕES COM MATRIZES PARA REFLETIR!...437

MATEMÁTICA PARA REFLETIR! EXERCÍCIOS EXERCÍCIOS COMPLEMENTARES OPERAÇÕES COM MATRIZES PARA REFLETIR!...437 ÍNICE MATEMÁTICA... PARA REFLETIR!... EXERCÍCIOS... EXERCÍCIOS COMPLEMENTARES... OPERAÇÕES COM MATRIZES... PARA REFLETIR!...7 EXERCÍCIOS E APLICAÇÃO...8 EXERCÍCIOS COMPLEMENTARES...8...9 PARA REFLETIR!...

Leia mais

Característica de Regulação do Gerador de Corrente Contínua com Excitação em Derivação

Característica de Regulação do Gerador de Corrente Contínua com Excitação em Derivação Experiênci I Crcterístic de egulção do Gerdor de Corrente Contínu com Excitção em Derivção 1. Introdução Neste ensio máquin de corrente contínu ANEL trblhrá como gerdor utoexcitdo, não sendo mis necessári

Leia mais

Cœlum Australe. Jornal Pessoal de Astronomia, Física e Matemática - Produzido por Irineu Gomes Varella

Cœlum Australe. Jornal Pessoal de Astronomia, Física e Matemática - Produzido por Irineu Gomes Varella Cœlum Austrle Jornl essol de Astronomi, Físic e Mtemátic - roduzido por Irineu Gomes Vrell Crido em 995 Retomdo em Junho de 0 Ano III Nº 04 - Setembro de 0 ÓRBITAS LANETÁRIAS E LEIS DE KELER rof. Irineu

Leia mais

TEORIA E EXERCÍCIOS ANA SÁ BENTO LOURO

TEORIA E EXERCÍCIOS ANA SÁ BENTO LOURO ANÁLISE MATEMÁTICA I TEORIA E EXERCÍCIOS ANA SÁ BENTO LOURO 3 Índice Noções Topológics, Indução Mtemátic e Sucessões. Noções topológics em R............................. Indução mtemátic..............................

Leia mais

Fernanda da Costa Diniz Nogueira Belo Horizonte, junho de 2007.

Fernanda da Costa Diniz Nogueira Belo Horizonte, junho de 2007. Un i ve r si d d e F e de r l d e M in s G e r i s Institu to de C iê nc i s E t s Dep r t me n t o d e M t e m á t ic E n sin o M éd io e Un iver sit ár io: d ifer ent es bor d gen s n con st r ução d

Leia mais

Pontos onde f (x) = 0 e a < x < b. Suponha que f (x 0 ) existe para a < x 0 < b. Se x 0 é um ponto extremo então f (x 0 ) = 0.

Pontos onde f (x) = 0 e a < x < b. Suponha que f (x 0 ) existe para a < x 0 < b. Se x 0 é um ponto extremo então f (x 0 ) = 0. Resolver o seguinte PPNL M (min) f() s. [, ] Pr chr solução ótim deve-se chr todos os máimos (mínimos) locis, isto é, os etremos locis. A solução ótim será o etremo locl com mior (menor) vlor de f(). É

Leia mais

Sistems Lineres Form Gerl onde: ij ij coeficientes n n nn n n n n n n b... b... b...

Sistems Lineres Form Gerl onde: ij ij coeficientes n n nn n n n n n n b... b... b... Cálculo Numérico Módulo V Resolução Numéric de Sistems Lineres Prte I Profs.: Bruno Correi d Nóbreg Queiroz José Eustáquio Rngel de Queiroz Mrcelo Alves de Brros Sistems Lineres Form Gerl onde: ij ij coeficientes

Leia mais

Conheça a sua fatura da água!

Conheça a sua fatura da água! Conheç su ftur d águ! Jneiro de 20 FATURA/RECIBO N.º: 27 VALOR 8,7 Euros Município de Reguengos de Monsrz Titulr / Locl Mord ou sítio de leitur/do contdor Loclidde d mord de leitur NIF: Áre NIPC 07 040

Leia mais

Números Reais intervalos, números decimais, dízimas, números irracionais, ordem, a reta, módulo, potência com expoente racional.

Números Reais intervalos, números decimais, dízimas, números irracionais, ordem, a reta, módulo, potência com expoente racional. UNIVERSIDADE FEDERAL DE VIÇOSA UNIDADE DE APOIO EDUCACIONAL UAE MAT 099 - Tutori de Mtemátic Tópicos: Números Rcionis operções e proprieddes (frções, regr de sinl, som, produto e divisão de frções, potênci

Leia mais

CÂMARA MUNICIPAL DE FERREIRA DO ZÊZERE

CÂMARA MUNICIPAL DE FERREIRA DO ZÊZERE CAPITULO I VENDA DE LOTES DE TERRENO PARA FINS INDUSTRIAIS ARTIGO l. A lienção, trvés de vend, reliz-se por negocição direct com os concorrentes sendo o preço d vend fixo, por metro qudrdo, pr um ou mis

Leia mais

COLÉGIO MILITAR DE BELO HORIZONTE CONCURSO DE ADMISSÃO 2006 / 2007 PROVA DE MATEMÁTICA 1ª SÉRIE DO ENSINO MÉDIO

COLÉGIO MILITAR DE BELO HORIZONTE CONCURSO DE ADMISSÃO 2006 / 2007 PROVA DE MATEMÁTICA 1ª SÉRIE DO ENSINO MÉDIO COLÉGIO MILITA DE BELO HOIZONTE CONCUSO DE ADMISSÃO 6 / 7 POVA DE MATEMÁTICA 1ª SÉIE DO ENSINO MÉDIO CONFEÊNCIA: Chefe d Sucomissão de Mtemátic Chefe d COC Dir Ens CPO / CMBH CONCUSO DE ADMISSÃO À 1ª SÉIE

Leia mais

Equivalência Estrutural

Equivalência Estrutural Equivlênci Estruturl Jefferson Elert Simões sedo nos rtigos: Structurl Equivlence of Individuls in Socil Networks (Lorrin & White, 1971) Structurl Equivlence: Mening nd Definition, Computtion nd ppliction

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES SISTEMAS LINEARES

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES SISTEMAS LINEARES Universidde Federl do Rio Grnde FURG Instituto de Mtemátic, Esttístic e Físic IMEF Editl 5 - CAPES SISTEMAS LINEARES Prof. Antônio Murício Medeiros Alves Profª Denise Mri Vrell Mrtinez Mtemátic Básic r

Leia mais

Apostila De Matemática GEOMETRIA: REVISÃO DO ENSINO FUNDAMENTAL, PRISMAS E PIRÂMIDES

Apostila De Matemática GEOMETRIA: REVISÃO DO ENSINO FUNDAMENTAL, PRISMAS E PIRÂMIDES posti De Mtemátic GEOMETRI: REVISÃO DO ENSINO FUNDMENTL, PRISMS E PIRÂMIDES posti de Mtemátic (por Sérgio Le Jr.) GEOMETRI 1. REVISÃO DO ENSINO FUNDMENTL 1. 1. Reções métrics de um triânguo retânguo. Pr

Leia mais

Definição 1 O determinante de uma matriz quadrada A de ordem 2 é por definição a aplicação. det

Definição 1 O determinante de uma matriz quadrada A de ordem 2 é por definição a aplicação. det 5 DETERMINANTES 5 Definição e Proprieddes Definição O erminnte de um mtriz qudrd A de ordem é por definição plicção ( ) : M IR IR A Eemplo : 5 A ( A ) ( ) ( ) 5 7 5 Definição O erminnte de um mtriz qudrd

Leia mais

EXAME DE INGRESSO 2014 3º Período

EXAME DE INGRESSO 2014 3º Período PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA ÁREA DE ENGENHARIA DE COMPUTAÇÃO (141) ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO EXAME DE INGRESSO 2014 º Período NOME: Oservções Importntes: 1. Não

Leia mais

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução (9) - www.elitecmpins.com.br O ELITE RESOLVE MATEMÁTICA QUESTÃO Se Améli der R$, Lúci, então mbs ficrão com mesm qunti. Se Mri der um terço do que tem Lúci, então est ficrá com R$, mis do que Améli. Se

Leia mais

Processo TIG. Eletrodo (negativo) Argônio. Arco elétrico Ar Ar + + e - Terra (positivo)

Processo TIG. Eletrodo (negativo) Argônio. Arco elétrico Ar Ar + + e - Terra (positivo) Processo TIG No processo de soldgem rco sob proteção gsos, região se unir é quecid té que se tinj o ponto de fusão, pr que isto ocorr, é fornecid um energi trvés do rco elétrico, que irá fundir tnto o

Leia mais

Cálculo III-A Módulo 8

Cálculo III-A Módulo 8 Universidde Federl Fluminense Instituto de Mtemátic e Esttístic Deprtmento de Mtemátic Aplicd álculo III-A Módulo 8 Aul 15 Integrl de Linh de mpo Vetoril Objetivo Definir integris de linh. Estudr lgums

Leia mais

Manual de Operação e Instalação

Manual de Operação e Instalação Mnul de Operção e Instlção Clh Prshll MEDIDOR DE VAZÃO EM CANAIS ABERTOS Cód: 073AA-025-122M Rev. B Novembro / 2008 S/A. Ru João Serrno, 250 Birro do Limão São Pulo SP CEP 02551-060 Fone: (11) 3488-8999

Leia mais

Se conhecemos a taxa de variação de uma quantidade em relação a outra, podemos determinar a relação entre essas quantidades?

Se conhecemos a taxa de variação de uma quantidade em relação a outra, podemos determinar a relação entre essas quantidades? UNIVERSIDADE DO ESTADO DA BAHIA UNEB DEPARTAMENTO DE CIÊNCIAS EXATAS E DA TERRA DCET / CAMPUS I DISCIPLINA: Cálculo II (MAT 089 CH: 75 PROFESSOR: Adrino Ctti SEMESTRE: 0. ALUNO: APOSTILA 0: INTEGRAL INDEFINIDA

Leia mais

Dos Desvios das Médias dos Grupos Contemporâneos aos Modelos Animais. From Means Deviations of the Contemporary Groups up to Animal Models

Dos Desvios das Médias dos Grupos Contemporâneos aos Modelos Animais. From Means Deviations of the Contemporary Groups up to Animal Models Rev. brs. zootec., v.28, n.3, p.480-489, 1999 Dos Desvios ds Médis dos Grupos Contemporâneos os Modelos Animis uiz Alberto Fries 1 RESUMO - O objetivo deste trblho foi presentr reprmetrizção de um modelo

Leia mais

RACIOCÍNIO LÓGICO Simplificado

RACIOCÍNIO LÓGICO Simplificado Sérgio Crvlho Weer Cmpos RACIOCÍNIO LÓGICO Simplificdo Volume ª edição Revist, tulizd e mplid Mteril Complementr PRINCIPAIS CONCEITOS E FÓRMULAS DO LIVRO RACIOCÍNIO SIMPLIFICADO - Vol. www.editorjuspodivm.com.r

Leia mais

Cartilha Explicativa. Segurança para quem você ama.

Cartilha Explicativa. Segurança para quem você ama. Crtilh Explictiv Segurnç pr quem você m. Bem-vindo, novo prticipnte! É com stisfção que recebemos su desão o Fmíli Previdênci, plno desenhdo pr oferecer um complementção de posentdori num modelo moderno

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear Geometri Alític e Álgebr Lier 8. Sistems Lieres Muitos problems ds ciêcis turis e sociis, como tmbém ds egehris e ds ciêcis físics, trtm de equções que relciom dois cojutos de vriáveis. Um equção do tipo,

Leia mais