PROVA DE MATEMÁTICA DA UNESP VESTIBULAR a Fase RESOLUÇÃO: Profa. Maria Antônia Gouveia.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "PROVA DE MATEMÁTICA DA UNESP VESTIBULAR 2012 1 a Fase RESOLUÇÃO: Profa. Maria Antônia Gouveia."

Transcrição

1 PROVA DE MATEMÁTICA DA UNESP VESTIBULAR 01 1 Fse Prof. Mri Antôni Gouvei. QUESTÃO 83. Em 010, o Instituto Brsileiro de Geogrfi e Esttístic (IBGE) relizou o último censo populcionl brsileiro, que mostrou que o pís possuí cerc de 190 milhões de hbitntes. Supondo que tx de crescimento populcionl do nosso pís não se ltere pr o próximo século, e que populção se estbilizrá em torno de 80 milhões de hbitntes, um modelo mtemático cpz de proximr o número de hbitntes (P), em milhões, cd no (t), prtir de 1970, é ddo por P ( t) = e ). [ ] 14 Bsedo nesse modelo, e tomndo proximção pr o logritmo nturl ln 1, 9 9 populção brsileir será brsileir 90% d supost populção de estbilizção proximdmente no no de: (A) 0 (B) 070 (C) 07 (D) 080 (E) 08 [ ( t ) ] = ) = ) e 0, e 8.e = ,019. ( t 1970) = ln 0,019t = 1,9 37,43 0,019t = 39,33 t = RESPOSTA: Alterntiv B. QUESTÃO 84. A figur mostr um prlelepípedo reto-retângulo ABCDEFGH, com bse qudrd ABCD de rest e ltur, em centímetros A distânci, em centímetros, do vértice A à digonl BH vle: (A) (B) (C) (D) (E) 30 1

2 Considerndo o triângulo retângulo ADH tem-se: AH = 4 + AH =. Considerndo o triângulo retângulo ABH tem-se: BH = + BH =. Como em todo triângulo retângulo o produto dos ctetos é igul o produto d hipotenus pel ltur el reltiv: Do triângulo ABH: BH.AI = AB.AH.AI =. AI = AI = 30 RESPOSTA: Alterntiv E. QUESTÃO 8. No di 11 de mrço de 011, o Jpão foi scudido por terremoto com intensidde de 8,9 n Escl Richter, com o epicentro no Oceno Pcífico, 30 km de Tóquio, seguido de tsunmi. A cidde de Sendi, 30 km nordeste de Tóquio, foi tingid pel primeir ond do tsunmi pós 13 minutos. (O Estdo de São Pulo, Adptdo) Bsendo-se nos ddos fornecidos e sbendo que cosα 0,934, onde α é o ângulo Epicentro-Tóquio- 8 Sendi, e que.3.93,4 1100, velocidde médi, em km/h, com que 1 ond do tsunmi tingiu té cidde de Sendi foi de (A) 10. (B) 0. (C) 100. (D) 0. (E) 00. Aplicndo o triângulo JES Lei dos Cossenos determin-se distânci em quilômetros entre o epicentro e Sendi: x = cosα x = ,934 x = , x x 130km x = 130 V m = = 130. km/h = 00km/h, h 0 RESPOSTA: Alterntiv E.

3 QUESTÃO 8. 3 Ddo que s rízes d equção x 3x x + k = 0, onde k é um constnte rel, formm um progressão ritmétic, o vlor de k é: (A). (B) 3. (C) 0. (D) 3. (E). Considere-se ( r), e (+r) como sendo s rízes d equção, então pels relções entre s rízes e os coeficientes d equção: 3 = 3 r r = 3 r = 4 = 1 ( r) + ( + r) + ( r)( + r) = = k 1 r + 1+ r + 1 r = 1 ( r)( + r) = k k = 3 1 r = k RESPOSTA: Alterntiv D. QUESTÃO 87. Um quilogrm de tomtes é constituído por 80% de águ. Ess mss de tomte (polp + H O) é submetid um processo de desidrtção, no qul pens águ n mss de tomte se reduz 0%. Após o processo de desidrtção, mss de tomte, em grms, será de: (A) 00 (B) (C) 0. (D) 7. (E) 300. Em 1 quilogrm de tomtes, 00 gr são de polp de tomte e 800 gr são de águ. Considerndo como x quntidde de águ foi reduzid n mss de tomte depois d desidrtção: 800 x x 1 = = 4000 x = 1000 x 4x = 3000 x = x x A mss se reduziu 1000gr 70gr = 0gr. RESPOSTA: Alterntiv C. QUESTÃO 88. Em um progrm de pltéi d TV brsileir, cinco prticipntes form escolhidos pelo presentdor pr tentrem certr o número de bols de gude contids em um urn de vidro trnsprente. Aquele que certsse ou mis se proximsse do número rel de bols de gude contids n urn gnhri um prêmio. Os prticipntes A, B, C, D e E disserm hver, respectivmente, 1 19, 1 184, 1 177, 1 0 e 1 3 bols n urn. Sbe-se que nenhum dos prticipntes certou o número rel de bols, ms que um deles se engnou em 30 bols, outro em, outro em 7, outro em 48 e, finlmente, outro em 18 bols. Podemos concluir que quem gnhou o prêmio foi o prticipnte: (A) A. (B) B. (C) C. (D) D. (E) E. Sej x o número rel de bols. Sendo 48 o mior engno, ele foi cometido pelo prticipnte que disse hver o menor número de bols, x 1177 = 48 x = 1, Pr x = 1, os erros serim de 30, 41, 48, e 7. sendo que 41 não está entre os erros cometidos. O vlor de x deve então ser menor que x = 48 x = 10. 3

4 Pr x = 10, os erros serim, respectivmente, de 7, 18,, 48 e 30. logo o número de bols contidos n urn é 10. O prticipnte que mis se proximou do vlor rel foi o A. RESPOSTA: Alterntiv A. QUESTÃO 89. O mercdo utomobilístico brsileiro possui mrcs de utomóveis disponíveis os consumidores. Pr cinco desss mrcs (A, B, C, D e E), mtriz fornece probbilidde de um proprietário de um crro de mrc d linh i trocr pr o crro de mrc d colun j, qundo d compr de um crro novo. Os termos d digonl principl dess mtriz fornecem s probbiliddes de um proprietário permnecer com mesm mrc de crro n compr de um novo. A B C D E A 0, 0,1 0, 0,1 0,0 B 0,3 0, 0,0 0,1 0,1 C 0, 0, 0,4 0,1 0,1 D 0,3 0, 0, 0,3 0,0 E 0, 0,3 0,1 0, 0, A probbilidde de um proprietário de um crro d mrc B comprr um novo crro d mrc C, pós dus comprs, é: (A) 0, (B) 0,4 (C) 0,0 (D) 0,09 (E) 0,00 Porque o proprietário do crro d mrc B que desej possuir um crro d mrc C, não pode fzê-lo logo n primeir troc? Por que consultndo tbel vê-se que probbilidde dess troc é zero. Crro B Troc por A Troc por C Probbilidde Probbilidde 0,3 0, 0,3 0, = 0,0 Crro B Troc por D Troc por C Probbilidde 0,1 0, 0,1 0, = 0,0 Crro B Troc por E Troc por C Probbilidde 0,1 0,1 0,1 0,1 = 0,01 Logo probbilidde de um proprietário de um crro d mrc B comprr um novo crro d mrc C, pós dus comprs, é de 0,0 + 0,0 + 0, 01 = 0,09. RESPOSTA: Alterntiv D. QUESTÃO 90. O gráfico represent vzão resultnte de águ, em m³/h, em um tnque, em função do tempo, em hors. Vzões negtivs significm que o volume de águ no tnque está diminuindo. São feits s seguintes firmções: 4

5 I. No intervlo de A té B, o volume de águ no tnque é constnte. II. No intervlo de B té E, o volume de águ no tnque está crescendo. III. No intervlo de E té H, o volume de águ no tnque está decrescendo. IV. No intervlo de C té D, o volume de águ no tnque está crescendo mis rpidmente. V. No intervlo de F té G, o volume de águ no tnque está decrescendo mis rpidmente. É correto o que se firm em: (A) I, III e V, pens. (B) II e IV, pens. (C) I, II e III, pens. (D) III, IV e V, pens. (E) I, II, III, IV e V. I. No intervlo de A té B, vzão é nul, portnto o volume de águ no tnque é constnte. II. No intervlo de B té E, vzão é positiv, portnto, o volume de águ no tnque está crescendo. III. No intervlo de E té H, vzão é negtiv, portnto,o volume de águ no tnque está decrescendo. IV. No intervlo de C té D, vzão é positiv, máxim e constnte, portnto, o volume de águ no tnque está crescendo mis rpidmente. V. No intervlo de F té G, vzão é negtiv, mínim e constnte, portnto,o volume de águ no tnque está decrescendo mis rpidmente. Logo tods s cinco firmtivs são verddeirs. RESPOSTA: Alterntiv E.

PROVA DE MATEMÁTICA DA FUVEST VESTIBULAR 2010 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA FUVEST VESTIBULAR 2010 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA FUVET VETIBULAR 00 Fse Prof. Mri Antôni Gouvei. Q-7 Um utomóvel, modelo flex, consome litros de gsolin pr percorrer 7km. Qundo se opt pelo uso do álcool, o utomóvel consome 7 litros

Leia mais

Uma roda gigante tem 10m de raio e possui 12 assentos, igualmente espaçados, e gira no sentido horário.

Uma roda gigante tem 10m de raio e possui 12 assentos, igualmente espaçados, e gira no sentido horário. Questão PROVA FINAL DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - OUTUBRO DE. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA Um rod

Leia mais

64 5 y e log 2. 32 5 z, então x 1 y 1 z é igual a: c) 13 e) 64 3. , respectivamente. Admitindo-se que E 1 foi equivalente à milésima parte de E 2

64 5 y e log 2. 32 5 z, então x 1 y 1 z é igual a: c) 13 e) 64 3. , respectivamente. Admitindo-se que E 1 foi equivalente à milésima parte de E 2 Resolução ds tividdes complementres Mtemátic M Função Logrítmic p. (UFSM-RS) Sejm log, log 6 e log z, então z é igul : ) b) c) e) 6 d) log log 6 6 log z z z z (UFMT) A mgnitude de um terremoto é medid

Leia mais

Vestibular UFRGS 2013 Resolução da Prova de Matemática

Vestibular UFRGS 2013 Resolução da Prova de Matemática Vestibulr UFRG 0 Resolução d Prov de Mtemátic 6. Alterntiv (C) 00 bilhões 00. ( 000 000 000) 00 000 000 000 0 7. Alterntiv (B) Qundo multiplicmos dois números com o lgrismo ds uniddes igul 4, o lgrismo

Leia mais

CPV 82% de aprovação na ESPM em 2011

CPV 82% de aprovação na ESPM em 2011 CPV 8% de provção n ESPM em 0 Prov Resolvid ESPM Prov E 0/julho/0 MATEMÁTICA. Considerndo-se que x = 97, y = 907 e z =. xy, o vlor d expressão x + y z é: ) 679 b) 58 c) 7 d) 98 e) 77. Se três empds mis

Leia mais

4 π. 8 π Considere a função real f, definida por f(x) = 2 x e duas circunferência C 1 e C 2, centradas na origem.

4 π. 8 π Considere a função real f, definida por f(x) = 2 x e duas circunferência C 1 e C 2, centradas na origem. EFOMM 2010 1. Anlise s firmtivs bixo. I - Sej K o conjunto dos qudriláteros plnos, seus subconjuntos são: P = {x K / x possui ldos opostos prlelos}; L = {x K / x possui 4 ldos congruentes}; R = {x K /

Leia mais

1º semestre de Engenharia Civil/Mecânica Cálculo 1 Profa Olga (1º sem de 2015) Função Exponencial

1º semestre de Engenharia Civil/Mecânica Cálculo 1 Profa Olga (1º sem de 2015) Função Exponencial º semestre de Engenhri Civil/Mecânic Cálculo Prof Olg (º sem de 05) Função Eponencil Definição: É tod função f: R R d form =, com R >0 e. Eemplos: = ; = ( ) ; = 3 ; = e Gráfico: ) Construir o gráfico d

Leia mais

COLÉGIO NAVAL 2016 (1º dia)

COLÉGIO NAVAL 2016 (1º dia) COLÉGIO NAVAL 016 (1º di) MATEMÁTICA PROVA AMARELA Nº 01 PROVA ROSA Nº 0 ( 5 40) 01) Sej S som dos vlores inteiros que stisfzem inequção 10 1 0. Sendo ssim, pode-se firmr que + ) S é um número divisíel

Leia mais

Matemática UNICAMP ETAPA. Resposta. Resposta QUESTÃO 14 QUESTÃO 13

Matemática UNICAMP ETAPA. Resposta. Resposta QUESTÃO 14 QUESTÃO 13 Mtemátic UNICAMP QUESTÃO 1 Em 1 de outubro de 01, Felix Bumgrtner quebrou o recorde de velocidde em qued livre. O slto foi monitordo oficilmente e os vlores obtidos estão expressos de modo proximdo n tbel

Leia mais

DESAFIOS. π e. π <y < π, satisfazendo seny = 8 x

DESAFIOS. π e. π <y < π, satisfazendo seny = 8 x DESAFIOS ENZO MATEMÁTICA 01-(FUVEST) Sejm x e y dois números reis, com 0

Leia mais

Professores Edu Vicente e Marcos José Colégio Pedro II Departamento de Matemática Potências e Radicais

Professores Edu Vicente e Marcos José Colégio Pedro II Departamento de Matemática Potências e Radicais POTÊNCIAS A potênci de epoente n ( n nturl mior que ) do número, representd por n, é o produto de n ftores iguis. n =...... ( n ftores) é chmdo de bse n é chmdo de epoente Eemplos =... = 8 =... = PROPRIEDADES

Leia mais

IME MATEMÁTICA. Questão 01. Calcule o número natural n que torna o determinante abaixo igual a 5. Resolução:

IME MATEMÁTICA. Questão 01. Calcule o número natural n que torna o determinante abaixo igual a 5. Resolução: IME MATEMÁTICA A mtemátic é o lfbeto com que Deus escreveu o mundo Glileu Glilei Questão Clcule o número nturl n que torn o determinnte bixo igul 5. log (n ) log (n + ) log (n ) log (n ) Adicionndo s três

Leia mais

Matemática D Extensivo V. 6

Matemática D Extensivo V. 6 Mtemátic D Extensivo V. 6 Exercícios 0) ) cm Por definição temos que digonl D vle: D = D = cm. b) 6 cm² A áre d lterl é dd pel som ds áres dos qutro ldos que compõe: =. ² =. ( cm)² = 6 cm² c) 96 cm² O

Leia mais

o Seu pé direito na medicina

o Seu pé direito na medicina o Seu pé direito n medicin UNIFESP //006 MATEMÁTIA 0 Entre os primeiros mil números inteiros positivos, quntos são divisíveis pelos números,, 4 e 5? 60 b) 0 c) 0 d) 6 e) 5 Se o número é divisível por,,

Leia mais

Trabalhando-se com log 3 = 0,47 e log 2 = 0,30, pode-se concluir que o valor que mais se aproxima de log 146 é

Trabalhando-se com log 3 = 0,47 e log 2 = 0,30, pode-se concluir que o valor que mais se aproxima de log 146 é Questão 0) Trlhndo-se com log = 0,47 e log = 0,0, pode-se concluir que o vlor que mis se proxim de log 46 é 0),0 0),08 0),9 04),8 0),64 Questão 0) Pr se clculr intensidde luminos L, medid em lumens, um

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 2016 FASE 2. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 2016 FASE 2. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 6 FASE. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA. O gráfico de brrs bixo exibe distribuição d idde de um grupo de pessos. ) Mostre que, nesse grupo,

Leia mais

1 As grandezas A, B e C são tais que A é diretamente proporcional a B e inversamente proporcional a C.

1 As grandezas A, B e C são tais que A é diretamente proporcional a B e inversamente proporcional a C. As grndezs A, B e C são tis que A é diretmente proporcionl B e inversmente proporcionl C. Qundo B = 00 e C = 4 tem-se A = 5. Qul será o vlor de A qundo tivermos B = 0 e C = 5? B AC Temos, pelo enuncido,

Leia mais

81,9(56,'$'( )('(5$/ '2 5,2 '( -$1(,52 &21&8562 '( 6(/(d 2 0$7(0É7,&$

81,9(56,'$'( )('(5$/ '2 5,2 '( -$1(,52 &21&8562 '( 6(/(d 2 0$7(0É7,&$ 81,9(56,'$'( )('(5$/ ' 5, '( -$1(,5 &1&856 '( 6(/(d 0$7(0É7,&$ -867,),48( 7'$6 $6 68$6 5(667$6 De um retângulo de 18 cm de lrgur e 48 cm de comprimento form retirdos dois qudrdos de ldos iguis 7 cm, como

Leia mais

{ 2 3k > 0. Num triângulo, a medida de um lado é diminuída de 15% e a medida da altura relativa a esse lado é aumentada

{ 2 3k > 0. Num triângulo, a medida de um lado é diminuída de 15% e a medida da altura relativa a esse lado é aumentada MATEMÁTICA b Sbe-se que o qudrdo de um número nturl k é mior do que o seu triplo e que o quíntuplo desse número k é mior do que o seu qudrdo. Dess form, k k vle: ) 0 b) c) 6 d) 0 e) 8 k k k < 0 ou k >

Leia mais

CPV O cursinho que mais aprova na GV

CPV O cursinho que mais aprova na GV O cursinho que mis prov n GV FGV Administrção 04/junho/006 MATEMÁTICA 0. Pulo comprou um utomóvel fle que pode ser bstecido com álcool ou com gsolin. O mnul d montdor inform que o consumo médio do veículo

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 1ª FASE 23 DE JUNHO 2015 GRUPO I

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 1ª FASE 23 DE JUNHO 2015 GRUPO I PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 1ª FASE 23 DE JUNHO 2015 GRUPO I 1. A função objetivo é o lucro e é dd por L(x, y) = 30x + 50y. Restrições: x 0

Leia mais

x n NOTA Tipo de Avaliação: Material de Apoio Disciplina: Matemática Turma: Aulão + Professor (a): Jefferson Cruz Data: 24/05/2014 DICAS do Jeff

x n NOTA Tipo de Avaliação: Material de Apoio Disciplina: Matemática Turma: Aulão + Professor (a): Jefferson Cruz Data: 24/05/2014 DICAS do Jeff NOTA Tipo de Avlição: Mteril de Apoio Disciplin: Mtemátic Turm: Aulão + Professor (): Jefferson Cruz Dt: 24/05/2014 DICAS do Jeff Olhr s lterntivs ntes de resolver s questões, principlmente em questões

Leia mais

Aprimorando os Conhecimentos de Mecânica Lista 7 Grandezas Cinemáticas I

Aprimorando os Conhecimentos de Mecânica Lista 7 Grandezas Cinemáticas I Aprimorndo os Conhecimentos de Mecânic List 7 Grndezs Cinemátics I 1. (PUCCAMP-98) Num birro, onde todos os qurteirões são qudrdos e s rus prlels distm 100m um d outr, um trnseunte fz o percurso de P Q

Leia mais

tem-se: Logo, x é racional. ALTERNATIVA B AB : segmento de reta unindo os pontos A e B. m (AB) : medida (comprimento) de AB.

tem-se: Logo, x é racional. ALTERNATIVA B AB : segmento de reta unindo os pontos A e B. m (AB) : medida (comprimento) de AB. MÚLTIPL ESCOLH NOTÇÕES C : conjunto dos números compleos. Q : conjunto dos números rcionis. R : conjunto dos números reis. Z : conjunto dos números inteiros. N {0,,,,...}. N* {,,,...}. : conjunto vzio.

Leia mais

Aula de solução de problemas: cinemática em 1 e 2 dimensões

Aula de solução de problemas: cinemática em 1 e 2 dimensões Aul de solução de problems: cinemátic em 1 e dimensões Crlos Mciel O. Bstos, Edurdo R. Azevedo FCM 01 - Físic Gerl pr Químicos 1. Velocidde instntâne 1 A posição de um corpo oscil pendurdo por um mol é

Leia mais

a) 3 ( 2) = d) 4 + ( 3) = g) = b) 4 5 = e) 2 5 = h) = c) = f) = i) =

a) 3 ( 2) = d) 4 + ( 3) = g) = b) 4 5 = e) 2 5 = h) = c) = f) = i) = List Mtemátic -) Efetue s dições e subtrções: ) ( ) = d) + ( ) = g) + 7 = b) = e) = h) + = c) 7 + = f) + = i) 7 = ) Efetue s multiplicções e divisões: ).( ) = d).( ) = g) ( ) = b).( 7) = e).( 6) = h) (

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DA FASE 1 DO VESTIBULAR DA UFBA/UFRB-2007 POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA DA FASE 1 DO VESTIBULAR DA UFBA/UFRB-2007 POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA DA FASE DO VESTIBULAR DA UFBA/UFRB-7 POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA Questão Sore números reis, é correto firmr: () Se é o mior número de três lgrismos divisível

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 1ª FASE 23 DE JUNHO 2015 GRUPO I

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 1ª FASE 23 DE JUNHO 2015 GRUPO I Associção de Professores de Mtemátic Contctos: Ru Dr. João Couto, n.º 27-A 1500-236 Lisbo Tel.: +351 21 716 36 90 / 21 711 03 77 Fx: +351 21 716 64 24 http://www.pm.pt emil: gerl@pm.pt PROPOSTA DE RESOLUÇÃO

Leia mais

COLÉGIO MILITAR DE BELO HORIZONTE CONCURSO DE ADMISSÃO 2006 / 2007 PROVA DE MATEMÁTICA 1ª SÉRIE DO ENSINO MÉDIO

COLÉGIO MILITAR DE BELO HORIZONTE CONCURSO DE ADMISSÃO 2006 / 2007 PROVA DE MATEMÁTICA 1ª SÉRIE DO ENSINO MÉDIO COLÉGIO MILITA DE BELO HOIZONTE CONCUSO DE ADMISSÃO 6 / 7 POVA DE MATEMÁTICA 1ª SÉIE DO ENSINO MÉDIO CONFEÊNCIA: Chefe d Sucomissão de Mtemátic Chefe d COC Dir Ens CPO / CMBH CONCUSO DE ADMISSÃO À 1ª SÉIE

Leia mais

Módulo de Leis dos Senos e dos Cossenos. Leis dos Senos e dos Cossenos. 1 a série E.M.

Módulo de Leis dos Senos e dos Cossenos. Leis dos Senos e dos Cossenos. 1 a série E.M. Módulo de Leis dos Senos e dos Cossenos Leis dos Senos e dos Cossenos. 1 série E.M. Módulo de Leis dos Senos e dos Cossenos Leis dos Senos e dos Cossenos. 1 Eercícios Introdutórios Eercício 10. Três ilhs

Leia mais

Nº de infrações de 1 a 3 de 4 a 6 de 7 a 9 de 10 a 12 de 13 a 15 maior ou igual a 16

Nº de infrações de 1 a 3 de 4 a 6 de 7 a 9 de 10 a 12 de 13 a 15 maior ou igual a 16 MATEMÁTICA 77 Num bolão, sete migos gnhrm vinte e um milhões, sessent e três mil e qurent e dois reis. O prêmio foi dividido em sete prtes iguis. Logo, o que cd um recebeu, em reis, foi: ) 3.009.006,00

Leia mais

QUESTÃO 01. QUESTÃO 02.

QUESTÃO 01. QUESTÃO 02. PROVA DE MATEMÁTICA DO O ANO _ EM DO COLÉGIO ANCHIETA BA. ANO 6 UNIDADE III PRIMEIRA AVALIAÇÃO. ELABORAÇÃO: PROFESSOR OCTAMAR MARQUES. PROFESSORA MARIA ANTÔNIA GOUVEIA. QUESTÃO. Quntos inteiros são soluções

Leia mais

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução (9) - www.elitecmpins.com.br O ELITE RESOLVE MATEMÁTICA QUESTÃO Se Améli der R$, Lúci, então mbs ficrão com mesm qunti. Se Mri der um terço do que tem Lúci, então est ficrá com R$, mis do que Améli. Se

Leia mais

Seu pé direito nas melhores faculdades

Seu pé direito nas melhores faculdades MTMÁTI Seu pé direito ns melhores fculddes 0. João entrou n lnchonete OG e pediu hmbúrgueres, suco de lrnj e cocds, gstndo $,0. N mes o ldo, lgums pessos pedirm 8 hmbúrgueres, sucos de lrnj e cocds, gstndo

Leia mais

Matemática Aplicada. A Mostre que a combinação dos movimentos N e S, em qualquer ordem, é nula, isto é,

Matemática Aplicada. A Mostre que a combinação dos movimentos N e S, em qualquer ordem, é nula, isto é, Mtemátic Aplicd Considere, no espço crtesino idimensionl, os movimentos unitários N, S, L e O definidos seguir, onde (, ) R é um ponto qulquer: N(, ) (, ) S(, ) (, ) L(, ) (, ) O(, ) (, ) Considere ind

Leia mais

(c) 600 dólares. (e) 60 mil dólares.

(c) 600 dólares. (e) 60 mil dólares. Vestibulr Insper 2014 1 B Análise Quntittiv e Lógic 1. De cordo com estimtiv do Fundo Monetário Interncionl, o Produto Interno Bruto (PIB) d Chin em 2012 foi de 8 trilhões e 227 bilhões de dólres. Considerndo

Leia mais

cpv especializado na espm

cpv especializado na espm 0 espm 05/07/009 cpv especilizdo n espm Mtemátic. O vlor d epressão. + pr = 0 é igul : ), b) c) d) 0 e). + = + = +. ( + ) = =. = ( + ). + Substituindo = 0 = 0,, temos: + 0, +, = = = 0, 0, = +. Sobre o

Leia mais

1 Assinale a alternativa verdadeira: a) < <

1 Assinale a alternativa verdadeira: a) < < MATEMÁTICA Assinle lterntiv verddeir: ) 6 < 7 6 < 6 b) 7 6 < 6 < 6 c) 7 6 < 6 < 6 d) 6 < 6 < 7 6 e) 6 < 7 6 < 6 Pr * {} temos: ) *, * + e + * + ) + > + + > ) Ds equções (I) e (II) result 7 6 < ( 6 )

Leia mais

CONCURSO DE SELEÇÃO 2003 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

CONCURSO DE SELEÇÃO 2003 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO CONCURSO DE SELEÇÃO 003 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO 41100 0$7(0É7,&$ RESOLUÇÃO PELA PROFESSORA MARIA ANTÔNIA CONCEIÇÃO GOUVEIA $ LOXVWUDomR TXH VXEVWLWXL D RULJLQDO GD TXHVWmR H DV GDV UHVROXo}HV

Leia mais

Bhaskara e sua turma Cícero Thiago B. Magalh~aes

Bhaskara e sua turma Cícero Thiago B. Magalh~aes 1 Equções de Segundo Gru Bhskr e su turm Cícero Thigo B Mglh~es Um equção do segundo gru é um equção do tipo x + bx + c = 0, em que, b e c são números reis ddos, com 0 Dd um equção do segundo gru como

Leia mais

Gabarito - Matemática Grupo G

Gabarito - Matemática Grupo G 1 QUESTÃO: (1,0 ponto) Avlidor Revisor Um resturnte cobr, no lmoço, té s 16 h, o preço fixo de R$ 1,00 por pesso. Após s 16h, esse vlor ci pr R$ 1,00. Em determindo di, 0 pessos lmoçrm no resturnte, sendo

Leia mais

FUNÇÃO LOGARITMICA. Professora Laura. 1 Definição de Logaritmo

FUNÇÃO LOGARITMICA. Professora Laura. 1 Definição de Logaritmo 57 FUÇÃO LOGARITMICA Professor Lur 1 Definição de Logritmo Chm se logritmo de um número > 0 em relção um bse (0 < 1), o expoente que se deve elevr bse, fim de que potênci obtid sej igul. log, onde: > 0,

Leia mais

Matemática. Resolução das atividades complementares. M13 Progressões Geométricas

Matemática. Resolução das atividades complementares. M13 Progressões Geométricas Resolução ds tividdes complementres Mtemátic M Progressões Geométrics p. 7 Qul é o o termo d PG (...)? q q? ( ) Qul é rzão d PG (...)? q ( )? ( ) 8 q 8 q 8 8 Três números reis formm um PG de som e produto

Leia mais

a n QUESTÃO 01 2 a 1 b Sejam a . Se P = a 4 b 4, então P é um número: e 1 bn 1

a n QUESTÃO 01 2 a 1 b Sejam a . Se P = a 4 b 4, então P é um número: e 1 bn 1 A AVALIAÇÃO ESPECIAL UNIDADE I -0 COLÉGIO ANCHIETA-BA ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. PROFA, MARIA ANTÔNIA C. GOUVEIA QUESTÃO 0 Sejm n n b e bn b n. Se P = b, então P é um número: 0) inteiro

Leia mais

a) -36 b) -18 c) 0 d)18 e) 36 a, na qual n IN- {0} e a 2, 2 aritmética, cujo décimo termo é: a) 94 b) 95 c) 101 d) 104 e) 105

a) -36 b) -18 c) 0 d)18 e) 36 a, na qual n IN- {0} e a 2, 2 aritmética, cujo décimo termo é: a) 94 b) 95 c) 101 d) 104 e) 105 Colégio Snt Mri Exercícios de P.A. e P.G. Professor: Flávio Verdugo Ferreir. (UFBA) A som dos 0 e 0 termos d seqüênci bixo é: 8 n n 8. n ) -6 b) -8 c) 0 d)8 e) 6. (Unifor CE) Considere seqüênci n, 8 Qul

Leia mais

02 e D são vértices consecutivos de um quadrado e PAB é um triângulo equilátero, sendo P interno ao quadrado ABCD. Qual é a medida do ângulo PCB?

02 e D são vértices consecutivos de um quadrado e PAB é um triângulo equilátero, sendo P interno ao quadrado ABCD. Qual é a medida do ângulo PCB? 0 Num prov de vinte questões, vlendo meio ponto cd um, três questões errds nulm um cert. Qul é not de um luno que errou nove questões em tod ess prov? (A) Qutro (B) Cinco (C) Qutro e meio (D) Cindo e meio

Leia mais

VETORES. Com as noções apresentadas, é possível, de maneira simplificada, conceituar-se o

VETORES. Com as noções apresentadas, é possível, de maneira simplificada, conceituar-se o VETORES INTRODUÇÃO No módulo nterior vimos que s grndezs físics podem ser esclres e vetoriis. Esclres são quels que ficm perfeitmente definids qundo expresss por um número e um significdo físico: mss (2

Leia mais

Função Modular. x, se x < 0. x, se x 0

Função Modular. x, se x < 0. x, se x 0 Módulo de um Número Rel Ddo um número rel, o módulo de é definido por:, se 0 = `, se < 0 Observção: O módulo de um número rel nunc é negtivo. Eemplo : = Eemplo : 0 = ( 0) = 0 Eemplo : 0 = 0 Geometricmente,

Leia mais

Relações em triângulos retângulos semelhantes

Relações em triângulos retângulos semelhantes Observe figur o ldo. Um escd com seis degrus está poid em num muro de m de ltur. distânci entre dois degrus vizinhos é 40 cm. Logo o comprimento d escd é 80 m. distânci d bse d escd () à bse do muro ()

Leia mais

QUESTÃO 01. O lado x do retângulo que se vê na figura, excede em 3cm o lado y. O valor de y, em centímetros é igual a: 01) 1 02) 1,5 03) 2

QUESTÃO 01. O lado x do retângulo que se vê na figura, excede em 3cm o lado y. O valor de y, em centímetros é igual a: 01) 1 02) 1,5 03) 2 PROV ELBORD PR SER PLICD ÀS TURMS DO O NO DO ENSINO MÉDIO DO COLÉGIO NCHIET-B EM MIO DE. ELBORÇÃO: PROFESSORES OCTMR MRQUES E DRINO CRIBÉ. PROFESSOR MRI NTÔNI C. GOUVEI QUESTÃO. O ldo x do retângulo que

Leia mais

Matemática. Resolução das atividades complementares. M24 Equações Polinomiais. 1 (PUC-SP) No universo C, a equação

Matemática. Resolução das atividades complementares. M24 Equações Polinomiais. 1 (PUC-SP) No universo C, a equação Resolução ds tividdes complementres Mtemátic M Equções Polinomiis p. 86 (PUC-SP) No universo C, equção 0 0 0 dmite: ) três rízes rcionis c) dus rízes irrcionis e) um únic riz positiv b) dus rízes não reis

Leia mais

5) Para b = temos: 2. Seja M uma matriz real 2 x 2. Defina uma função f na qual cada elemento da matriz se desloca para a posição. e as matrizes são:

5) Para b = temos: 2. Seja M uma matriz real 2 x 2. Defina uma função f na qual cada elemento da matriz se desloca para a posição. e as matrizes são: MATEMÁTIA Sej M um mtriz rel x. Defin um função f n qul cd elemento d mtriz se desloc pr posição b seguinte no sentido horário, ou sej, se M =, c d c implic que f (M) =. Encontre tods s mtrizes d b simétrics

Leia mais

a) sexto b) sétimo c) oitavo d) nono e) décimo

a) sexto b) sétimo c) oitavo d) nono e) décimo 1 INSPER 16/06/013 Seu Pé Direito ns Melhores Fculddes 1. Nos plnos seguir, estão representds dus relções entre s vriáveis x e y: y = x e y = x, pr x 0.. Em um sequênci, o terceiro termo é igul o primeiro

Leia mais

Professora: Profª Roberta Nara Sodré de Souza

Professora: Profª Roberta Nara Sodré de Souza MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICAS INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA-CAMPUS ITAJAÍ Professor: Profª Robert Nr Sodré de Souz Função

Leia mais

CPV O Cursinho que Mais Aprova na GV

CPV O Cursinho que Mais Aprova na GV CPV O Cursinho que Mis Aprov n GV FGV ADM 04/dezembro/016 MATEMÁTICA APLICADA 01. ) Represente grficmente no plno crtesino função: P(t) = t 4t + 10 se t 4 1 t se t > 4 Se função P(t), em centens de reis,

Leia mais

C O L É G I O F R A N C O - B R A S I L E I R O

C O L É G I O F R A N C O - B R A S I L E I R O C O L É G I O F R A N C O - B R A S I L E I R O Nome: Nº: Turm: Professor: FÁBIO LUÍS Série: 1ª Dt: / / 01 LISTA DE EXERCÍCIOS TRIGONOMETRIA PARTE I 1 Os ctetos de um triângulo retângulo medem cm e 18cm

Leia mais

Transporte de solvente através de membranas: estado estacionário

Transporte de solvente através de membranas: estado estacionário Trnsporte de solvente trvés de membrns: estdo estcionário Estudos experimentis mostrm que o fluxo de solvente (águ) em respost pressão hidráulic, em um meio homogêneo e poroso, é nálogo o fluxo difusivo

Leia mais

Matemática B Superintensivo

Matemática B Superintensivo GRITO Mtemátic Superintensivo Eercícios 0) 4 m M, m 0 m N tg 0 = b = b = b = = cos 0 = 4 = = 4. =.,7 =,4 MN =, +,4 + MN =,9 m tg 60 = = =.. = h = + = 0 m 04) 0) D O vlor de n figur bio é: (Errt) 4 sen

Leia mais

Mat.Semana. PC Sampaio Alex Amaral Rafael Jesus. (Fernanda Aranzate)

Mat.Semana. PC Sampaio Alex Amaral Rafael Jesus. (Fernanda Aranzate) 11 PC Smpio Alex Amrl Rfel Jesus Mt.Semn (Fernnd Arnzte) Este conteúdo pertence o Descomplic. Está vedd cópi ou reprodução não utorizd previmente e por escrito. Todos os direitos reservdos. CRONOGRAMA

Leia mais

Aulas 1 a 3. Aulas 4 e 5. Revisão Primeiro Semestre 2012 prof. Lessa. 4. (UNIFESP) Se 0 < a < b, racionalizando o denominador, tem-se que

Aulas 1 a 3. Aulas 4 e 5. Revisão Primeiro Semestre 2012 prof. Lessa. 4. (UNIFESP) Se 0 < a < b, racionalizando o denominador, tem-se que Revisão Primeiro Semestre 01 prof. Less Auls 1 1. (ESPM) A metde de vlem, respectivmente: A) 0,6 1 e e 1. Se 1 e 9 e 9 8 e 1, e o triplo de x =, então o vlor de x é: A) 6. (FUVEST) Rcionlizr o denomindor

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES MATRIZES

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES MATRIZES Universidde Federl do Rio Grnde FURG Instituto de Mtemátic, Esttístic e Físic IMEF Editl - CAPES MATRIZES Prof. Antônio Murício Medeiros Alves Profª Denise Mri Vrell Mrtinez Mtemátic Básic pr Ciêncis Sociis

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 19/03/11

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 19/03/11 RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA o ANO DO ENSINO MÉDIO DATA: 9// PROFESSORES: CARIBE E MANUEL O slário bruto mensl de um vendedor é constituído de um prte fi igul R$., mis um comissão de % sobre o

Leia mais

Aula 1 - POTI = Produtos Notáveis

Aula 1 - POTI = Produtos Notáveis Aul 1 - POTI = Produtos Notáveis O que temos seguir são s demonstrções lgébrics dos sete principis produtos notáveis e tmbém prov geométric dos três primeiros. 1) Qudrdo d Som ( + b) = ( + b) * ( + b)

Leia mais

1 Distribuições Contínuas de Probabilidade

1 Distribuições Contínuas de Probabilidade Distribuições Contínus de Probbilidde São distribuições de vriáveis letóris contínus. Um vriável letóri contínu tom um numero infinito não numerável de vlores (intervlos de números reis), os quis podem

Leia mais

Aula 10 Estabilidade

Aula 10 Estabilidade Aul 0 Estbilidde input S output O sistem é estável se respost à entrd impulso 0 qundo t Ou sej, se síd do sistem stisfz lim y(t) t = 0 qundo entrd r(t) = impulso input S output Equivlentemente, pode ser

Leia mais

UNITAU APOSTILA. SUCESSÃO, PA e PG PROF. CARLINHOS

UNITAU APOSTILA. SUCESSÃO, PA e PG PROF. CARLINHOS ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA SUCESSÃO, PA e PG PROF. CARLINHOS NOME DO ALUNO: Nº TURMA: blog.portlpositivo.com.br/cpitcr 1 SUCESSÃO OU SEQUENCIA NUMÉRICA Sucessão ou seqüênci

Leia mais

GEOMETRIA ESPACIAL. 1) O número de vértices de um dodecaedro formado por triângulos é. 2) O número de diagonais de um prisma octogonal regular é

GEOMETRIA ESPACIAL. 1) O número de vértices de um dodecaedro formado por triângulos é. 2) O número de diagonais de um prisma octogonal regular é GEOMETRIA ESPACIAL 1) O número de vértices de um dodecedro formdo por triângulos é () 6 (b) 8 (c) 10 (d) 15 (e) 0 ) O número de digonis de um prism octogonl regulr é () 0 (b) (c) 6 (d) 40 (e) 60 ) (UFRGS)

Leia mais

FUNÇÕES. Funções. TE203 Fundamentos Matemáticos para a Engenharia Elétrica I. TE203 Fundamentos Matemáticos para a Engenharia Elétrica I

FUNÇÕES. Funções. TE203 Fundamentos Matemáticos para a Engenharia Elétrica I. TE203 Fundamentos Matemáticos para a Engenharia Elétrica I FUNÇÕES DATA //9 //9 4//9 5//9 6//9 9//9 //9 //9 //9 //9 6//9 7//9 8//9 9//9 //9 5//9 6//9 7//9 IBOVESPA (fechmento) 8666 9746 49 48 4755 4 47 4845 45 467 484 9846 9674 97 874 8 88 88 DEFINIÇÃO Um grndez

Leia mais

Área entre curvas e a Integral definida

Área entre curvas e a Integral definida Universidde de Brsíli Deprtmento de Mtemátic Cálculo Áre entre curvs e Integrl definid Sej S região do plno delimitd pels curvs y = f(x) e y = g(x) e s rets verticis x = e x = b, onde f e g são funções

Leia mais

Matemática. Prova: 05/08/12. Questão 1. Questão 2. Considere os seguintes conjuntos numéricos,,,, = e considere também os seguintes conjuntos:

Matemática. Prova: 05/08/12. Questão 1. Questão 2. Considere os seguintes conjuntos numéricos,,,, = e considere também os seguintes conjuntos: Prov: 05/08/ Mtemátic Questão Considere os seguintes conjuntos numéricos,,,, = e considere tmbém os seguintes conjuntos: A= ( ) ( ) B= ( ) D= ( ) ( ) Ds lterntivs bixo, que present elementos que pertencem

Leia mais

MATEMÁTICA 1ª QUESTÃO. x é. O valor do limite. lim x B) 1 E) 1 2ª QUESTÃO. O valor do limite. lim A) 0 B) 1 C) 2 D) 3 E) 4

MATEMÁTICA 1ª QUESTÃO. x é. O valor do limite. lim x B) 1 E) 1 2ª QUESTÃO. O valor do limite. lim A) 0 B) 1 C) 2 D) 3 E) 4 MATEMÁTICA ª QUESTÃO O vlor do limite lim x 0 x x é A) B) C) D) 0 E) ª QUESTÃO O vlor do limite x 4 lim x x x é A) 0 B) C) D) E) 4 ª QUESTÃO Um equção d ret tngente o gráfico d função f ( x) x x no ponto

Leia mais

AB AC BC. k PQ PR QR AULA 1 - GEOMETRIA PLANA CONCEITOS BÁSICOS SEMELHANÇA DE TRIÂNGULOS. Triângulos isósceles

AB AC BC. k PQ PR QR AULA 1 - GEOMETRIA PLANA CONCEITOS BÁSICOS SEMELHANÇA DE TRIÂNGULOS. Triângulos isósceles AULA - GEOMETRIA PLANA Triângulos isósceles CONCEITOS BÁSICOS Rets prlels cortds por um trnsversl São queles que possuem dois ldos iguis. Ligndo o vértice A o ponto médio d bse BC, germos dois triângulos

Leia mais

MATEMÁTICA Questões de 01 a 04

MATEMÁTICA Questões de 01 a 04 GRUPO TIPO MT. MTEMÁTIC Questões de. Um correi trnsortdor deosit rei num monte de formto cônico reto um t constnte de m /. No monte que se form, rzão entre ltur e o rio d bse ermnece constnte e igul. )

Leia mais

Fatoração e Produtos Notáveis

Fatoração e Produtos Notáveis Ftorção e Produtos Notáveis 1. (G1 - cftmg 014) Simplificndo epressão 1 4 6 4 5 4 16 48 obtém-se ). b) 4 +. c). d) 4 +.. (G1 - ifce 014) O vlor d epressão: b b ) b. b) b. c) b. d) 4b. e) 6b. é. (Upf 014)

Leia mais

Colegio Naval ) O algoritmo acima foi utilizado para o cálculo do máximo divisor comum entre os números A e B. Logo A + B + C vale

Colegio Naval ) O algoritmo acima foi utilizado para o cálculo do máximo divisor comum entre os números A e B. Logo A + B + C vale Colegio Nvl 005 01) O lgoritmo cim foi utilizdo pr o cálculo do máximo divisor comum entre os números A e B. Logo A + B + C vle (A) 400 (B) 300 (C) 00 (D) 180 (E) 160 Resolvendo: Temos que E 40 C E C 40

Leia mais

PROVA DE MATEMÁTICA - TURMAS DO

PROVA DE MATEMÁTICA - TURMAS DO PROVA DE MATEMÁTICA - TURMAS DO o ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - MARÇO DE 0. ELABORAÇÃO: PROFESSORES ADRIANO CARIBÉ E WALTER PORTO. PROFESSORA MARIA ANTÔNIA C. GOUVEIA Questão 0. (UDESC SC)

Leia mais

Matemática. 2 log 2 + log 3 + log 5 log 5 ( ) 10 2 log 2 + log 3 + log. 10 log. 2 log 2 + log 3 + log 10 log 2 log 10 log 2.

Matemática. 2 log 2 + log 3 + log 5 log 5 ( ) 10 2 log 2 + log 3 + log. 10 log. 2 log 2 + log 3 + log 10 log 2 log 10 log 2. Mtemátic Aotno-se os vlores log = 0,30 e log 3 = 0,48, riz equção x = 60 vle proximmente: ), b),8 c) 4 ),4 e),67 x = 60 log x = log 60 x. log = log (. 3. ) x = x = log + log 3 + log log 0 log + log 3 +

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES DETERMINANTES

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES DETERMINANTES Universidde Federl do Rio Grnde FURG Instituto de Mtemátic, Esttístic e Físic IMEF Editl - APES DETERMINANTES Prof Antônio Murício Medeiros Alves Profª Denise Mri Vrell Mrtinez Mtemátic Básic pr iêncis

Leia mais

Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida.

Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida. 9 ENSINO 9-º no Mtemátic FUNDMENTL tividdes complementres Este mteril é um complemento d obr Mtemátic 9 Pr Viver Juntos. Reprodução permitid somente pr uso escolr. Vend proibid. Smuel Csl Cpítulo 6 Rzões

Leia mais

REVISÃO Lista 12 Geometria Analítica., então r e s são coincidentes., então r e s são perpendiculares.

REVISÃO Lista 12 Geometria Analítica., então r e s são coincidentes., então r e s são perpendiculares. NOME: ANO: º Nº: PROFESSOR(A): An Luiz Ozores DATA: REVISÃO List Geometri Anlític Algums definições y Equções d ret: by c 0, y mb, y y0 m( 0) e p q Posições de dus rets: Dds s rets r : y mr br e s y ms

Leia mais

, então ela é integrável em [ a, b] Interpretação geométrica: seja contínua e positiva em um intervalo [ a, b]

, então ela é integrável em [ a, b] Interpretação geométrica: seja contínua e positiva em um intervalo [ a, b] Interl Deinid Se é um unção de, então su interl deinid é um interl restrit à vlores em um intervlo especíico, dimos, O resultdo é um número que depende pens de e, e não de Vejmos deinição: Deinição: Sej

Leia mais

FUNC ~ OES REAIS DE VARI AVEL REAL

FUNC ~ OES REAIS DE VARI AVEL REAL FUNC ~ OES REAIS DE VARI AVEL REAL Clculo Integrl AMI ESTSetubl-DMAT 15 de Dezembro de 2012 AMI (ESTSetubl-DMAT) LIC ~AO 18 15 de Dezembro de 2012 1 / 14 Integrl de Riemnn Denic~o: Sej [, b] um intervlo

Leia mais

POLINÔMIOS. Definição: Um polinômio de grau n é uma função que pode ser escrita na forma. n em que cada a i é um número complexo (ou

POLINÔMIOS. Definição: Um polinômio de grau n é uma função que pode ser escrita na forma. n em que cada a i é um número complexo (ou POLINÔMIOS Definição: Um polinômio de gru n é um função que pode ser escrit n form P() n n i 0... n i em que cd i é um número compleo (ou i 0 rel) tl que n é um número nturl e n 0. Os números i são denomindos

Leia mais

Solução: Alternativa: A. Solução: Mas, 3 x, Daí, 2 cos x. Ora, tgx 7. Então, 14 senx. Assim, Alternativa: B

Solução: Alternativa: A. Solução: Mas, 3 x, Daí, 2 cos x. Ora, tgx 7. Então, 14 senx. Assim, Alternativa: B 0. Considere s seguintes firmções: I. A função f() = log 0 ( ) é estritmente crescente no intervlo ] [ II. A equção + = possui um únic solução rel. III. A equção ( + ) = dmite pelo menos um solução rel

Leia mais

f(x) é crescente e Im = R + Ex: 1) 3 > 81 x > 4; 2) 2 x 5 = 16 x = 9; 3) 16 x - 4 2x 1 10 = 2 2x - 1 x = 1;

f(x) é crescente e Im = R + Ex: 1) 3 > 81 x > 4; 2) 2 x 5 = 16 x = 9; 3) 16 x - 4 2x 1 10 = 2 2x - 1 x = 1; Curso Teste - Eponencil e Logritmos Apostil de Mtemátic - TOP ADP Curso Teste (ii) cso qundo 0 < < 1 EXPONENCIAL E LOGARITMO f() é decrescente e Im = R + 1. FUNÇÃO EXPONENCIAL A função f: R R + definid

Leia mais

Física 1 Capítulo 3 2. Acelerado v aumenta com o tempo. Se progressivo ( v positivo ) a m positiva Se retrógrado ( v negativo ) a m negativa

Física 1 Capítulo 3 2. Acelerado v aumenta com o tempo. Se progressivo ( v positivo ) a m positiva Se retrógrado ( v negativo ) a m negativa Físic 1 - Cpítulo 3 Movimento Uniformemente Vrido (m.u.v.) Acelerção Esclr Médi v 1 v 2 Movimento Vrido: é o que tem vrições no vlor d velocidde. Uniddes de celerção: m/s 2 ; cm/s 2 ; km/h 2 1 2 Acelerção

Leia mais

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE CURSO: ADMINISTRAÇÃO/CIÊNCIAS CONTÁBEI /LOGISTICA ASSUNTO: INTRODUÇÃO AO ESTUDO DE FUNÇÕES

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE CURSO: ADMINISTRAÇÃO/CIÊNCIAS CONTÁBEI /LOGISTICA ASSUNTO: INTRODUÇÃO AO ESTUDO DE FUNÇÕES FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE CURSO: ADMINISTRAÇÃO/CIÊNCIAS CONTÁBEI /LOGISTICA ASSUNTO: INTRODUÇÃO AO ESTUDO DE FUNÇÕES PROFESSOR: MARCOS AGUIAR MAT. BÁSICA I. FUNÇÕES. DEFINIÇÃO Ddos

Leia mais

LISTA DE EXERCÍCIOS Questões de Vestibulares. e B = 2

LISTA DE EXERCÍCIOS Questões de Vestibulares. e B = 2 LISTA DE EXERCÍCIOS Questões de Vestiulres ) UFBA 9 Considere s mtries A e B Sendo-se que X é um mtri simétri e que AX B, determine -, sendo Y ( ij) X - R) ) UFBA 9 Dds s mtries A d Pode-se firmr: () se

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DA FUVEST 2016 - FASE 1. POR PROFA. MARIA ANTÔNIA CONCEICÃO GOUVEIA.

RESOLUÇÃO DA PROVA DE MATEMÁTICA DA FUVEST 2016 - FASE 1. POR PROFA. MARIA ANTÔNIA CONCEICÃO GOUVEIA. 6 ) RESOLUÇÃO DA PROVA DE MATEMÁTICA DA FUVEST 06 - FASE. POR PROFA. MARIA ANTÔNIA CONCEICÃO GOUVEIA. 0 De 869 té hoje, ocorrerm s seguintes munçs e moe no Brsil: () em 94, foi crio o cruzeiro, c cruzeiro

Leia mais

Semelhança e áreas 1,5

Semelhança e áreas 1,5 A UA UL LA Semelhnç e áres Introdução N Aul 17, estudmos o Teorem de Tles e semelhnç de triângulos. Nest ul, vmos tornr mis gerl o conceito de semelhnç e ver como se comportm s áres de figurs semelhntes.

Leia mais

Índice TEMA TEMA TEMA TEMA TEMA

Índice TEMA TEMA TEMA TEMA TEMA Índice Resolução de roblems envolvendo triângulos retângulos Teori. Rzões trigonométrics de um ângulo gudo 8 Teori. A clculdor gráfic e s rzões trigonométrics 0 Teori. Resolução de roblems usndo rzões

Leia mais

Relações Métricas e Razões Trigonométricas no Triângulo Retângulo - bombeiros

Relações Métricas e Razões Trigonométricas no Triângulo Retângulo - bombeiros Relções Métrics e Rzões Trigonométrics no Triângulo Retângulo - bombeiros Os ctetos de um triângulo retângulo medem cm e 8cm Nesss condições determine: ) medid "" d ipotenus b) medid "" d ltur reltiv à

Leia mais

Mat.Semana. PC Sampaio Alex Amaral Rafael Jesus. (Roberta Teixeira)

Mat.Semana. PC Sampaio Alex Amaral Rafael Jesus. (Roberta Teixeira) 9 PC Smpio Alex Amrl Rfel Jesus Mt.Semn (Robert Teixeir) Este conteúdo pertence o Descomplic. Está vedd cópi ou reprodução não utorizd previmente e por escrito. Todos os direitos reservdos. CRONOGRAMA

Leia mais

ACADEMIA DA FORÇA AÉREA PROVA DE MATEMÁTICA 2002

ACADEMIA DA FORÇA AÉREA PROVA DE MATEMÁTICA 2002 PROVA DE MATEMÁTICA 00 0 - O Sr. Souz, espos e filhos optrm pelo psseio cim nuncido e, proveitndo s féris escolres, pssrm 5 dis hospeddos no Hotel Fzend B fzendo tods s refeições, gstndo o todo 00 reis,

Leia mais

EXPOENTE. Podemos entender a potenciação como uma multiplicação de fatores iguais.

EXPOENTE. Podemos entender a potenciação como uma multiplicação de fatores iguais. EXPOENTE 2 3 = 8 RESULTADO BASE Podeos entender potencição coo u ultiplicção de ftores iguis. A Bse será o ftor que se repetirá O expoente indic qunts vezes bse vi ser ultiplicd por el es. 2 5 = 2. 2.

Leia mais

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x? INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região S utilizndo retângulos e depois

Leia mais

TRIGONOMETRIA. A trigonometria é uma parte importante da Matemática. Começaremos lembrando as relações trigonométricas num triângulo retângulo.

TRIGONOMETRIA. A trigonometria é uma parte importante da Matemática. Começaremos lembrando as relações trigonométricas num triângulo retângulo. TRIGONOMETRIA A trigonometri é um prte importnte d Mtemátic. Começremos lembrndo s relções trigonométrics num triângulo retângulo. Num triângulo ABC, retângulo em A, indicremos por Bˆ e por Ĉ s medids

Leia mais

WASTE TO ENERGY: UMA ALTERNATIVA VIÁVEL PARA O BRASIL? 01/10/2015 FIESP São Paulo/SP

WASTE TO ENERGY: UMA ALTERNATIVA VIÁVEL PARA O BRASIL? 01/10/2015 FIESP São Paulo/SP WASTE TO ENERGY: UMA ALTERNATIVA VIÁVEL PARA O BRASIL? 01/10/2015 FIESP São Pulo/SP PNRS E O WASTE-TO-ENERGY Definições do Artigo 3º - A nov ordenção básic dos processos Ordem de prioriddes do Artigo 9º

Leia mais

Operadores momento e energia e o Princípio da Incerteza

Operadores momento e energia e o Princípio da Incerteza Operdores momento e energi e o Princípio d Incertez A U L A 5 Mets d ul Definir os operdores quânticos do momento liner e d energi e enuncir o Princípio d Incertez de Heisenberg. objetivos clculr grndezs

Leia mais

SERVIÇO PÚBLICO FEDERAL Ministério da Educação

SERVIÇO PÚBLICO FEDERAL Ministério da Educação SERVIÇO PÚBLICO FEDERAL Ministério d Educção Universidde Federl do Rio Grnde Universidde Abert do Brsil Administrção Bchreldo Mtemátic pr Ciêncis Sociis Aplicds I Rodrigo Brbos Sores . Mtrizes:.. Introdução:

Leia mais