UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena EEL

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena EEL"

Transcrição

1 UNIVERSIDADE DE SÃO PAULO Escola de Egehaia de Loea EEL LOB101 - FÍSICA IV Pof. D. Duval Rodigues Juio Depatameto de Egehaia de Mateiais (DEMAR) Escola de Egehaia de Loea (EEL) Uivesidade de São Paulo (USP) Polo Ubo-Idustial, Gleba AI-6 - Loea, SP Comuidade Aluos (Págia dos pofessoes) Rodovia Itajubá-Loea, Km 74,5 - Caixa Postal 116 CEP Loea - SP Fax (1) Tel. (Dieto) (1) / USP Loea Polo Ubo-Idustial Gleba AI-6 - Caixa Postal 116 CEP Loea - SP Fax (1) Tel. (PABX) (1)

2 UNIDADE 5 - Itefeêcia

3 Itefeêcia Picípio de Huyges A Lei da Refação Difação O Expeimeto de Youg Itesidade das Fajas de Itefeêcia Itefeêcia em Filmes Fios O Itefeômeto de Michelso

4 Picípio de Huyges Chistiaa Huyges ( ), físico holadês, apesetou a pimeia teoia odulatóia da luz em Teoia mais simples que a Teoia de Maxwell, pemite a explicação das leis de eflexão e efação em temos de odas e defie ídice de efação. Costuto de telescópios, em 1655 detectou a pimeia lua de Satuo. Ciado do pimeio elógio de pêdulo, pateteado em 1656 seguido poposta de Galileu.

5 Itefeêcia Teoia odulatóia de Huyges: utiliza uma costução geomética que pemite peve ode estaá uma dada fete de oda em qualque istate futuo se cohecemos sua posição atual. Essa costução se baseia o Picípio de Huyges.

6 Picípio de Huyges: Todos os potos de uma fete de oda se compotam como fotes potuais de odas secudáias. Depois de um itevalo de tempo Δt a ova posição da fete de oda é dada po uma supefície tagete a essas odas secudáias. A Teoia odulatóia da Luz foi feita pelo físico holadês Chistia Huyges em Emboa muito meos completa que a teoia eletomagética de Maxwell, fomulada mais tade, a teoia de Huyges ea matematicamete mais simples e pemaece útil até hoje.

7

8 θ i θ Veificamos que a eflexão especula: θ θ i

9 Refação e Lei de Sell Veificamos a Lei de Sell: i siθ i t siθ t θ i ode i c v i θ t

10 Fequêcia e Compimeto de Oda a Refação Temos: i t siθ siθ t i 4t AD 4i AD logo: t i i t θ i se i 1 (vácuo): t t θ t

11 Itefeêcia Compimeto de oda e ídice de efação v. c c v Compimeto de oda o meio é o ídice de efação do meio Compimeto de oda o vácuo

12 Itefeêcia Seja f a fequêcia da luz em um meio cujo ídice de efação é. f v c v f c c f Emboa a velocidade e o compimeto de oda sejam difeetes o meio e o vácuo, a feqüêcia ão se altea. É a mesma o meio e o vácuo. (IMPORTANTE!)

13 1 / / i t t i t i i t t i i t i i t t i t c c v v v v f f Ela é a mesma, o meio mateial e o vácuo. Quato a feqüêcia ( f ) :

14 A Luz como uma Oda Itefeêcia Difeeça de Fase ou Defasagem (φ) É a difeeça em gaus ou em compimetos de oda que existe ete duas odas o mometo do ecoto ete as mesmas. Obseve o esquema a segui: Levado a oda paa iicia em F 1 ao ivés de F, obtém-se a figua a segui: F F 1 P φ Itefeêcia destutiva em P (defasagem φ)

15 Capítulo 35: Itefeêcia 35- A Luz como uma Oda Exemplos de Defasagem (φ) φ φ 0 0 o ou ITC Odas em fase φ 1 ou φ 180 o φ ou φ 360 o φ ou φ 540 o 3 ITD Odas em oposição de fase ITC Odas em fase ITD Odas em oposição de fase ITC Itefeêcia Totalmete Costutiva ITD Itefeêcia Totalmete Destutiva

16 A Luz como uma Oda Itefeêcia Utilização da Defasagem paa detemia a itefeêcia Pelos exemplos ateioes, podemos coclui que: φ m Esse m é o úmeo de meios compimetos de oda em que as odas estão defasadas. Paa m Pa Ímpa Itefeêcia Costutiva Itefeêcia Destutiva

17 A Luz como uma Oda v v c c v c c f f Itefeêcia A fequêcia da luz em um meio é o mesma que o vácuo. Desde que os compimetos de oda em 1 e são difeetes, os dois feixes podem ão esta mais em fase após passaem pelos dois mateiais. Númeo de compimetos de oda em Númeo de compimetos de oda em 1 : : N N 1 L 1 L L Assumido > 1 : N N1 ( 1) L 1 L L1 L

18 Mudaça de Fase Os úmeos de compimetos de oda os meios 1 e são dados po: N 1 L 1 L 1 N L L logo N L ( ) N1 1 a a Difeeça de fase efetiva, em ad : Δf pate decimal de N N 1

19 Mudaça de Fase A difeeça de fase em compimetos de oda seá: N L ( ) N1 1 p/ > 1 em adiaos seá: ( N ). π φ em ad) ( N1 a a em gaus seá: ( N ) N. φ( em gaus) 1 360

20 A Luz como uma Oda Itefeêcia Exemplo 35-1 Na Fig as duas odas lumiosas epesetadas po aios têm um compimeto de oda de 550,0 m ates de peeta os meios 1 e. Elas têm a mesma amplitude e estão em fase. Supoha que o meio 1 seja o pópio a e que o meio seja um plástico taspaete com ídice de efação 1,600 e uma espessua de,600 μm. (a) Qual é a difeeça de fase ete as duas odas emegetes em compimetos de oda, adiaos e gaus? Qual é a difeeça de fase efetiva (em compimetos de oda)? (b) Se os aios lumiosos se ecotassem em uma tela distate, poduziiam um poto clao ou escuo? Resposta (a):,84 17,8ad 100 o Resposta (b): ve livo (p. 48)

21 A Luz como uma Oda Itefeêcia

22 Thomas Youg ( ) Youg lia em Iglês aos aos, Latim aos 6 aos, e apedeu outas líguas, domiado 10 idiomas com apeas 16 aos. Físico e médico iglês, estudou a sesibilidade do olho humao às coes. Popôs a existêcia de tês coes difeetes que têm sesibilidade paa as coes vemelho, azul e vede: o picípio usado a TV coloida. Em 1800, o tabalho Outlies of Expeimets ad Equies Respectig Soud ad Light, compaou os modelos de Newto e Huyges dado supote à itepetação odulatóia. Deu cotibuições impotates a teoia da elasticidade (módulo de Youg), e a egiptologia.

23 O Expeimeto de Youg (1801) Itefeêcia: S 1 e S são Fotes Coeetes e em fase.

24 Itefeêcia Obsevações Impotates A difeeça de fase ete odas pode muda se as odas pecoem distâcias difeetes. Em um expeimeto de itefeêcia de dupla feda de Youg, a itesidade lumiosa em cada poto da tela de obsevação depede da difeeça L ete as distâcias pecoidas pelos dois aios que chegam em cada poto da tela.

25 Visão tidimesioal:

26

27 Exemplo de itefeêcia de odas a supefície da água Neste poto as odas sofem itefeêcia costutiva Neste poto as odas sofem itefeêcia destutiva Odas ciculaes popagam-se em todas as dieções Odas ciculaes geadas po uma boliha oscilate Boliha oscilate

28 Itefeêcia da Luz - Expeiêcia de Youg A expeiêcia de Youg cia duas fotes de luz em fase e coeetes a pati de uma úica fote. Faja claa Fajas de itefeêcia Faja escua Itefeêcia Destutiva Itefeêcia Costutiva

29 Temos a fomação de fajas devido à difeeça de pecusos (ópticos): Odas foa de Fase: Itefeêcia Destutiva Odas em Fase: Itefeêcia Costutiva Poto R à meia distâcia ete os potos P e Q.

30 Localização das Fajas: L >> d δ 1 d se θ Faja claa: (itefeêcia costutiva) δ m ; d se θ m, m 0, 1,,.. Faja escua: (itefeêcia destutiva) δ (m +1/) ; d se θ (m +1/)

31 Fajas Claas e Escuas: d se θ m (Claas) d se θ (m +1/) (Escuas) (Máx. Lateal de a odem) (Mi. Lateal de a odem) (Máx. Lateal de 1 a odem) (Mi. Lateal de 1 a odem) (Máximo cetal) (Mi. Lateal de 1 a odem) (Máx. Lateal de 1 a odem) (Mi. Lateal de a odem) (Máx. Lateal de a odem)

32 Posições o Atepao Paa âgulos pequeos temos: θ taθ seθ Logo, paa os máximos mais cetais: d seθ m d taθ m y d m m L L m d y m (máximos) Aalogamete, paa os míimos mais cetais: y m m + 1 L d (míimos)

33 Posições o atepao Máximos: y m L L ( ) m Míimos: y m + 1 m +1 d d O espaçameto ete as fajas seá : Δ y ym+1 y m d L Se d e θ são pequeos, a distâcia ete as fajas idepede de m.

34 d d

35 Itesidade das Fajas de Itefeêcia A itefeêcia ete S 1 e S, de itesidades I a tela, leva a eegia lumiosa a se edistibuída o atepao segudo a equação: I 1 4I φ 0 cos ode φ πd seθ

36 Os máximos de itesidade ocoem em: ( m 0, 1,,..) 1 φ mπ Os míimos em: πd seθ mπ d seθ m 1 1 ( φ m + π d seθ m + 1 ) kδl π ΔL

37 Demostação da Eq. paa a Itesidade das Fajas: Itefeêcia Geal 1 No caso do expeimeto de Youg temos: E E 01 0 Assim, os campos eléticos só difeem a fase.

38 Pova: Fómula da Itesidade O campo elético geado po duas fotes coeetes: E (,t) E (,t) E (,t) E 1 + ( ) ode 1,t E (,t) e são devidos às fotes 1 e. supodo: E E 1 (,t) E cos( k ωt) 01 ( ) (,t E cos k ωt) 0 e E // E 01 0

39 E Podemos esceve paa o poto P o atepao: ( ) ( ) ( ) P t E cos k t + E cos k ωt +, 1 ω 01 0 Usado a elação: cos a a E a + b a b + cos b cos cos ; E 01 E e 0 E01 E0 k + E01 E0 cos 1 cos ( + ) ω ; 1 t ( k ωt) ( k ωt) b k A teceia pacela da equação acima fica: + 1 ( ) [cos( k ( 1 + ) ωt) + cos( k ( 1 ))] 01.E0

40 ( ) ( ) cos 0 01 k E E E E P E + + Tomado a média tempoal, temos: Multiplicado po: 0 cε ( ) ( ) ( ) ( ) ( ) ( ) cos k P I P I P I P I P I + + ( )( ) P I 1 Assim, são as itesidades das fotes 1 e o poto P. ( ) ( ) 1 1 k k θ θ θ 1 como: 1 1 ; k k k k 0 E c I ε

41 como: θ 1 θ Lembado que: I θ 1 k d seθ πd I1 + I + I1I cos se θ Se as fotes são iguais: 0 ( ) I I o 1+ cosφ 4I o ( ) k( ) I I I 1 cos φ cos( φ / + φ / ) 1 + cos ( φ / ) se ( φ / ) cos ( φ / ) I 1 4I 0 cos φ φ πd seθ

42 Mas a históia ão está completa. Na difação (póximas aulas) teemos: a a a >!

43 Exemplos

44 Itefeêcia em Filmes Fios A luz icidete em um filme fio apeseta efeitos de itefeêcia associados à difeeça de camiho óptico deto do filme. Cosidee: 0 θ e > 1 Fatos: i) Icidêcia de 1 paa, ode > 1, o aio efletido tem defasagem de e o efatado está em fase com o icidete; ii) Icidêcia de 1 paa, ode < 1, o aio efletido ão tem defasagem. θ θ 1 L

45 > Paa ou : 1 > 1 Itefeêcia costutiva: 11 1 L m + 1 L m L m + m 0, 1,,... ou: ; Itefeêcia destutiva: L m L m1 1 ou: m ; L m 0, 1,,...

46 Espessua do filme muito meo que : >> L > < 1 Se cosidea-se apeas a defasagem devida à eflexão. 1 Itefeêcia destutiva (escuo)

47 Itefeêcia em Filmes Fios Itefeêcia

48 Itefeômeto de Michelso

49 Itefeômeto de Michelso E 1 Difeeça de camiho ótico: L m L f Se a difeeça fo alteada teemos modificação a itefeêcia. Se E 1 muda de, todos os máximos se deslocam paa os adjacetes.

50 Itefeômeto de Michelso Itodução de mateial de espessua L e ídice de efação : Númeo de compimetos de oda o mateial: L N b Númeo de compimetos de oda em L ates da itodução: L N a N b N a L ( 1) Cada máximo se desloca de N b N a fajas de itefeêcia.

51 Itefeômeto de Michelso Usado esta técica é possível medi a espessua L do mateial itoduzido; Michelso mostou que o meto padão ea equivalete a ,5 compimetos de oda de uma luz moocomática, emitida po uma fote lumiosa de Cádmio. Po esta medida ele gahou o Pemio Nobel de Física de 1907; Um apaato como este foi usado paa testa a existêcia do éte, meio ode a luz se popagaia! O esultado foi egativo, mostado que o éte ão existe.

52 Itefeêcia

53 Itefeêcia

54 Itefeêcia

55 Itefeêcia Execícios ecomedáveis do Capítulo 35 do Halliday, 8ª Edição, paa seem feitos: Poblemas: 1; ; 4; 5; 8; 9; 13; 14; 16; 17; 18; 19; 0; ; 7; 9; 31; 33; 35; 38; 39; 53; 55; 69; 83

Departamento de Física - ICE/UFJF Laboratório de Física II

Departamento de Física - ICE/UFJF Laboratório de Física II Depatameto de ísica - ICE/UJ Laboatóio de ísica II - Itodução Pática : Medida da Aceeação Gavitacioa A iteação avitacioa é uma das quato iteações fudametais que se ecotam a atueza e é a úica que afeta

Leia mais

AULA 23 FATORES DE FORMA DE RADIAÇÃO TÉRMICA

AULA 23 FATORES DE FORMA DE RADIAÇÃO TÉRMICA Notas de aula de PME 336 Pocessos de Tasfeêcia de Calo e Massa 98 AULA 3 ATORES DE ORMA DE RADIAÇÃO TÉRMICA Cosidee o caso de duas supefícies egas quaisque que tocam calo po adiação témica ete si. Supoha

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA 12º ANO DE ESCOLARIDADE MATEMÁTICA A. Tarefa nº 7 do plano de trabalho nº 1

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA 12º ANO DE ESCOLARIDADE MATEMÁTICA A. Tarefa nº 7 do plano de trabalho nº 1 ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA º ANO DE ESCOLARIDADE MATEMÁTICA A Taefa º 7 do plao de tabalho º. Comece po esolve o execício 3 da págia 0.. Muitas das geealizações feitas as divesas ciêcias,

Leia mais

Os fundamentos da física Volume 2 1. Resumo do capítulo

Os fundamentos da física Volume 2 1. Resumo do capítulo Os fudametos da físca Volume 2 1 Capítulo 13 Refação lumosa A efação é o feômeo o qual a luz muda de meo de popagação, com mudaça em sua velocdade. ÍDICE DE REFRAÇÃO ABSOLUTO O ídce de efação absoluto

Leia mais

Capítulo 4 Variáveis Aleatórias Discretas. Prof. Fabrício Maciel Gomes

Capítulo 4 Variáveis Aleatórias Discretas. Prof. Fabrício Maciel Gomes Capítulo 4 Vaiáveis Aleatóias Discetas Pof. Fabício Maciel Gomes Picipais Distibuições de Pobabilidade Discetas Equipovável Beoulli Biomial Poisso Geomética Pascal Hipegeomética Distibuição Equipovável

Leia mais

INTRODUÇÃO AO ESTUDO DA ÁLGEBRA LINERAR Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 2 ESPAÇOS VETORIAIS

INTRODUÇÃO AO ESTUDO DA ÁLGEBRA LINERAR Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 2 ESPAÇOS VETORIAIS Luiz Facisco da Cuz Depatameto de Matática Uesp/Bauu CAPÍTULO ESPAÇOS VETORIAIS 1 Históico Sabe-se que, até pelo meos o fial do século XIX, ão havia ehuma teoia ou cojuto de egas b defiidas a que se pudesse

Leia mais

Números Complexos (Parte II) 1 Plano de Argand-Gauss. 2 Módulo de um número complexo. Prof. Gustavo Adolfo Soares

Números Complexos (Parte II) 1 Plano de Argand-Gauss. 2 Módulo de um número complexo. Prof. Gustavo Adolfo Soares Númeos Complexos (Pate II) 1 Plao de Agad-Gauss Das defiições de que um úmeo complexo é um pa odeado de úmeos eais x e y e que C = R R, temos que: A cada úmeo complexo coespode um úico poto do plao catesiao,

Leia mais

INTRODUÇÃO AO ESTUDO DA ÁLGEBRA LINERAR Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 2 ESPAÇOS VETORIAIS

INTRODUÇÃO AO ESTUDO DA ÁLGEBRA LINERAR Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 2 ESPAÇOS VETORIAIS Luiz Facisco da Cuz Depatameto de Matemática Uesp/Bauu CAPÍTULO ESPAÇOS VETORIAIS 1 Históico Sabe-se que, até pelo meos o fial do século XIX, ão havia ehuma teoia ou cojuto de egas bem defiidas a que se

Leia mais

CEDERJ - CENTRO DE EDUCAÇÃO SUPERIOR A DISTÂNCIA DO ESTADO DO RIO DE JANEIRO

CEDERJ - CENTRO DE EDUCAÇÃO SUPERIOR A DISTÂNCIA DO ESTADO DO RIO DE JANEIRO CEDERJ - CENTRO DE EDUCAÇÃO SUPERIOR A DISTÂNCIA DO ESTADO DO RIO DE JANEIRO MATERIAL DIDÁTICO IMPRESSO CURSO: Física DISCIPLINA: Ifomática paa o Esio de Física CONTEUDISTA: Calos Eduado Aguia AULA 4 TÍTULO:

Leia mais

1 - CORRELAÇÃO LINEAR SIMPLES rxy

1 - CORRELAÇÃO LINEAR SIMPLES rxy 1 - CORRELAÇÃO LINEAR IMPLE Em pesquisas, feqüetemete, pocua-se veifica se existe elação ete duas ou mais vaiáveis, isto é, sabe se as alteações sofidas po uma das vaiáveis são acompahadas po alteações

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL II 014.2

CÁLCULO DIFERENCIAL E INTEGRAL II 014.2 CÁLCULO IFERENCIAL E INTEGRAL II Obsevações: ) Todos os eecícios popostos devem se esolvidos e entegue no dia de feveeio de 5 Integais uplas Integais uplas Seja z f( uma função definida em uma egião do

Leia mais

PROPAGAÇÃO DE ONDAS ELECTROMAGNÉTICAS NUM GUIA CILÍNDRICO

PROPAGAÇÃO DE ONDAS ELECTROMAGNÉTICAS NUM GUIA CILÍNDRICO PROPAGAÇÃO D ONDAS LCTROMAGNÉTICAS NM GIA CILÍNDRICO po Calos Vaadas e Maia mília Maso IST, Maio de 5 t j e. Itodução Vamos estuda a popagação de odas electomagéticas um guia cilídico de aio a. Podeiamos

Leia mais

Universidade de São Paulo Instituto de Física. Física Moderna II. Profa. Márcia de Almeida Rizzutto 2 o Semestre de Física Moderna 2 Aula 20

Universidade de São Paulo Instituto de Física. Física Moderna II. Profa. Márcia de Almeida Rizzutto 2 o Semestre de Física Moderna 2 Aula 20 Uivesidade de São Paulo Istituto de Física Física Modea II Pofa. Mácia de Almeida Rizzutto o Semeste de 14 Física Modea 1 Todos os tipos de ligação molecula se devem ao fato de a eegia total da molécula

Leia mais

Veremos neste capítulo as distribuições na variável discreta: Distribuição Binomial e Distribuição de Poisson.

Veremos neste capítulo as distribuições na variável discreta: Distribuição Binomial e Distribuição de Poisson. CAPÍTULO 5 DISTRIBUIÇÃO BINOMIAL E DISTRIBUIÇÃO DE POISSON Veemos este capítulo as distibuições a vaiável disceta: Distibuição Biomial e Distibuição de Poisso. 1. Pobabilidade de Beoulli Seja um expeimeto

Leia mais

UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena EEL

UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena EEL UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena EEL LOB1021 - FÍSICA IV Prof. Dr. Durval Rodrigues Junior Departamento de Engenharia de Materiais (DEMAR) Escola de Engenharia de Lorena (EEL) Universidade

Leia mais

Estudo de um modelo do núcleo do deuterão

Estudo de um modelo do núcleo do deuterão Estudo de um modelo do úcleo do deuteão Goçalo Oliveia º 5789 Pedo Ricate º 578 Física Quâtica da Matéia Istituto Sueio Técico Maio, 8 Resumo Cosidea-se um modelo simles aa o úcleo do deuteão, ode a iteacção

Leia mais

Ondas Eletromagnéticas.

Ondas Eletromagnéticas. Cap 33: Óptica Odas Eletromagéticas - Prof. Wladimir Odas Eletromagéticas. 33. Itrodução As odas eletromagéticas estão presetes o osso dia a dia. Por meio destas odas, iformações do mudo são recebidas

Leia mais

MATEMÁTICA 3 A SÉRIE - E. MÉDIO

MATEMÁTICA 3 A SÉRIE - E. MÉDIO 1 MTEMÁTIC 3 SÉRIE - E. MÉDIO Pof. Rogéio Rodigues ELEMENTOS PRIMITIVOS / ÂNGULOS NOME :... NÚMERO :... TURM :... 2 I) ELEMENTOS PRIMITIVOS ÂNGULOS Os elementos pimitivos da Geometia são O Ponto, eta e

Leia mais

Energia no movimento de uma carga em campo elétrico

Energia no movimento de uma carga em campo elétrico O potencial elético Imagine dois objetos eletizados, com cagas de mesmo sinal, inicialmente afastados. Paa apoximá-los, é necessáia a ação de uma foça extena, capaz de vence a epulsão elética ente eles.

Leia mais

Forma Integral das Equações Básicas para Volume de Controle (cont.)

Forma Integral das Equações Básicas para Volume de Controle (cont.) EOLA DE ENGENHARIA DE SÃO CARLOS Núcleo de Egehaia Témica e Fluidos Foma Itegal das Equações Básicas paa Volume de Cotole (cot.) Teoema do Taspote de Reyolds: elação geal ete a taxa de vaiação de qq. popiedade

Leia mais

LUZ COMO UMA ONDA... ELETROMAGNÉTICA 1

LUZ COMO UMA ONDA... ELETROMAGNÉTICA 1 LUZ COMO UMA ONDA... LTROMAGNÉTICA Ao abomos os tópicos Óptica, em alguns casos iniciamos o estudo pela apoximação epesenta pelos aios de luz, tata na Óptica Geomética, que pessupõe a popagação etilínea

Leia mais

Propriedades das Ondas

Propriedades das Ondas Propriedades das Odas Reflexão, Refração da Luz e Difração da Luz Reflexão, Absorção e Trasmissão de uma oda E icidete = E reflectida + E absorvida + E trasmitida Reflexão Regular e Difusa da Luz Quado

Leia mais

Aula 2 Óptica geométrica (reflexão e refração) F-428: Física Geral IV

Aula 2 Óptica geométrica (reflexão e refração) F-428: Física Geral IV Aula Óptica geométrica (reflexão e refração) F-48: Física Geral IV Odas eletromagéticas plaas o vácuo E(r,t) E 0 se (k. r - t) O vetor de propagação k defiirá a direção e setido do raio associado a óptica

Leia mais

1ªAula do cap. 10 Rotação

1ªAula do cap. 10 Rotação 1ªAula do cap. 10 Rotação Conteúdo: Copos ígidos em otação; Vaiáveis angulaes; Equações Cinemáticas paa aceleação angula constante; Relação ente Vaiáveis Lineaes e Angulaes; Enegia Cinética de Rotação

Leia mais

DISPERSÃO E PODER RESOLVENTE DUM PRISMA

DISPERSÃO E PODER RESOLVENTE DUM PRISMA Aulas páticas de Óptica e Acústica º semeste de / DISPERSÃO E PODER RESOLVENTE DUM PRISMA Conceitos envolvidos: Equações de Maxwell, dispesão, polaizabilidade, índice de efacção, pisma, ede de difacção

Leia mais

Campo Gravítico da Terra

Campo Gravítico da Terra 5. Campo Gavítico ómalo elação ete o potecial gavítico e o potecial omal é dada po: W ( x, y, z = U( x, y,z + ( x, y,z O campo gavítico aómalo ou petubado é etão defiido pela difeeça do campo gavítico

Leia mais

Lei de Ampère. (corrente I ) Foi visto: carga elétrica com v pode sentir força magnética se existir B e se B não é // a v

Lei de Ampère. (corrente I ) Foi visto: carga elétrica com v pode sentir força magnética se existir B e se B não é // a v Lei de Ampèe Foi visto: caga elética com v pode senti foça magnética se existi B e se B não é // a v F q v B m campos magnéticos B são geados po cagas em movimento (coente ) Agoa: esultados qualitativos

Leia mais

Mecânica Técnica. Aula 5 Vetor Posição, Aplicações do Produto Escalar. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica Técnica. Aula 5 Vetor Posição, Aplicações do Produto Escalar. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues ula 5 Veto Posição, plicações do Poduto Escala Pof. MSc. Luiz Eduado Mianda J. Rodigues Pof. MSc. Luiz Eduado Mianda J. Rodigues Tópicos bodados Nesta ula Vetoes Posição. Veto Foça Oientado ao Longo de

Leia mais

Matemática do Ensino Médio vol.2

Matemática do Ensino Médio vol.2 Matemática do Ensino Médio vol.2 Cap.11 Soluções 1) a) = 10 1, = 9m = 9000 litos. b) A áea do fundo é 10 = 0m 2 e a áea das paedes é (10 + + 10 + ) 1, = 51,2m 2. Como a áea que seá ladilhada é 0 + 51,2

Leia mais

Capítulo I Erros e Aritmética Computacional

Capítulo I Erros e Aritmética Computacional C. Balsa e A. Satos Capítulo I Eos e Aitmética Computacioal. Itodução aos Métodos Numéicos O objectivo da disciplia de Métodos Numéicos é o estudo, desevolvimeto e avaliação de algoitmos computacioais

Leia mais

Cap014 - Campo magnético gerado por corrente elétrica

Cap014 - Campo magnético gerado por corrente elétrica ap014 - ampo magnético geado po coente elética 14.1 NTRODUÇÃO S.J.Toise Até agoa os fenômenos eléticos e magnéticos foam apesentados como fatos isolados. Veemos a pati de agoa que os mesmos fazem pate

Leia mais

4 Análise de refletores circularmente simétricos alimentados por diagramas com dependência azimutal n=0 4.1 Introdução

4 Análise de refletores circularmente simétricos alimentados por diagramas com dependência azimutal n=0 4.1 Introdução 59 4 Aálise de efletoes ciculamete siméticos alimetados po diagamas com depedêcia aimutal = 4.1 Itodução Diagamas omidiecioais veticalmete polaiados podem se geados po ateas efletoas ciculamete siméticas

Leia mais

Carga Elétrica e Campo Elétrico

Carga Elétrica e Campo Elétrico Aula 1_ Caga lética e Campo lético Física Geal e peimental III Pof. Cláudio Gaça Capítulo 1 Pincípios fundamentais da letostática 1. Consevação da caga elética. Quantização da caga elética 3. Lei de Coulomb

Leia mais

Aula Lab. Transformação de coordenadas

Aula Lab. Transformação de coordenadas Aula Lab Tansfomação de coodenadas Os adaes ealizam vaeduas azimutais, potanto as medidas encontam-se em coodenadas polaes. q Entetanto, além da vaedua azimutal os adaes também ealizam vaeduas em elevação,

Leia mais

Prof. Dr. Oscar Rodrigues dos Santos

Prof. Dr. Oscar Rodrigues dos Santos FÍSICA 017-1º. Semeste Pof. D. Osca Rodigues dos Santos oscasantos@utfp.edu.b ou pofoscafisica@gmail.com EMENTA Gavitação. Mecânica dos Fluidos. Oscilações. Ondas Mecânicas. Óptica Geomética. Tempeatua.

Leia mais

O Paradoxo de Bertrand para um Experimento Probabilístico Geométrico

O Paradoxo de Bertrand para um Experimento Probabilístico Geométrico O Paadoxo de etand paa um Expeimento Pobabilístico Geomético maildo de Vicente 1 1 Colegiado do Cuso de Matemática Cento de Ciências Exatas e Tecnológicas da Univesidade Estadual do Oeste do Paaná Caixa

Leia mais

Lei de Gauss. Lei de Gauss: outra forma de calcular campos elétricos

Lei de Gauss. Lei de Gauss: outra forma de calcular campos elétricos ... Do que tata a? Até aqui: Lei de Coulomb noteou! : outa foma de calcula campos eléticos fi mais simples quando se tem alta simetia (na vedade, só tem utilidade pática nesses casos!!) fi válida quando

Leia mais

CPV O cursinho que mais aprova na GV

CPV O cursinho que mais aprova na GV RJ_MATEMATICA_9_0_08 FGV-RJ A dministação Economia Dieito C Administação 26 26 das 200 vagas da GV têm ficado paa os alunos do CPV CPV O cusinho que mais apova na GV Ciências Sociais ociais GV CPV. ociais

Leia mais

APÊNDICE. Revisão de Trigonometria

APÊNDICE. Revisão de Trigonometria E APÊNDICE Revisão de Tigonometia FUNÇÕES E IDENTIDADES TRIGONOMÉTRICAS ÂNGULOS Os ângulos em um plano podem se geados pela otação de um aio (semi-eta) em tono de sua etemidade. A posição inicial do aio

Leia mais

Cap03 - Estudo da força de interação entre corpos eletrizados

Cap03 - Estudo da força de interação entre corpos eletrizados ap03 - Estudo da foça de inteação ente copos eletizados 3.1 INTRODUÇÃO S.J.Toise omo foi dito na intodução, a Física utiliza como método de tabalho a medida das qandezas envolvidas em cada fenômeno que

Leia mais

CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO

CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO Capítulo 4 - Cinemática Invesa de Posição 4 CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO 4.1 INTRODUÇÃO No capítulo anteio foi visto como detemina a posição e a oientação do ógão teminal em temos das vaiáveis

Leia mais

Eletromagnetismo e Ótica (MEAer/LEAN) Circuitos Corrente Variável, Equações de Maxwell

Eletromagnetismo e Ótica (MEAer/LEAN) Circuitos Corrente Variável, Equações de Maxwell Eletomagnetismo e Ótica (MEAe/EAN) icuitos oente Vaiável, Equações de Maxwell 11ª Semana Pobl. 1) (evisão) Moste que a pessão (foça po unidade de áea) na supefície ente dois meios de pemeabilidades difeentes

Leia mais

PUC-RIO CB-CTC. P4 DE ELETROMAGNETISMO sexta-feira. Nome : Assinatura: Matrícula: Turma:

PUC-RIO CB-CTC. P4 DE ELETROMAGNETISMO sexta-feira. Nome : Assinatura: Matrícula: Turma: UC-O CB-CTC 4 DE ELETOMAGNETSMO..09 seta-feia Nome : Assinatua: Matícula: Tuma: NÃO SEÃO ACETAS ESOSTAS SEM JUSTFCATVAS E CÁLCULOS EXLÍCTOS. Não é pemitido destaca folhas da pova Questão Valo Gau evisão

Leia mais

FGE0270 Eletricidade e Magnetismo I

FGE0270 Eletricidade e Magnetismo I FGE7 Eleticidade e Magnetismo I Lista de eecícios 1 8 1. As cagas q 1 = q = µc na Fig. 1a estão fias e sepaadas po d = 1,5m. (a) Qual é a foça elética que age sobe q 1? (b) Colocando-se uma teceia caga

Leia mais

FGE0270 Eletricidade e Magnetismo I

FGE0270 Eletricidade e Magnetismo I FGE7 Eleticidade e Magnetismo I Lista de eecícios 1 9 1. As cagas q 1 = q = µc na Fig. 1a estão fias e sepaadas po d = 1,5m. (a) Qual é a foça elética que age sobe q 1? (b) Colocando-se uma teceia caga

Leia mais

Resolução da Prova de Raciocínio Lógico

Resolução da Prova de Raciocínio Lógico ESAF/ANA/2009 da Pova de Raciocínio Lógico (Refeência: Pova Objetiva 1 comum a todos os cagos). Opus Pi. Rio de Janeio, maço de 2009. Opus Pi. opuspi@ymail.com 1 21 Um io pincipal tem, ao passa em deteminado

Leia mais

TRABALHO E POTENCIAL ELETROSTÁTICO

TRABALHO E POTENCIAL ELETROSTÁTICO LTOMAGNTISMO I 5 TABALHO POTNCIAL LTOSTÁTICO Nos capítulos ateioes ós ivestigamos o campo elético devido a divesas cofiguações de cagas (potuais, distibuição liea, supefície de cagas e distibuição volumética

Leia mais

Aula-10 Indução e Indutância

Aula-10 Indução e Indutância Aula-1 Idução e Idutâcia Idução Apedeos que: Ua espia codutoa pecoida po ua coete i a peseça de u capo agético sofe ação de u toque: espia de coete + capo agético toque as... Se ua espia, co a coete desligada,

Leia mais

4.4 Mais da geometria analítica de retas e planos

4.4 Mais da geometria analítica de retas e planos 07 4.4 Mais da geometia analítica de etas e planos Equações da eta na foma simética Lembemos que uma eta, no planos casos acima, a foma simética é um caso paticula da equação na eta na foma geal ou no

Leia mais

Física IV para a Escola Politécnica (Engenharia Elétrica) TURMA 3

Física IV para a Escola Politécnica (Engenharia Elétrica) TURMA 3 Física IV para a Escola Politécica (Egeharia Elétrica) 43093 TURMA 3 Professor: Dr. Marcos A. G. Alvarez Departameto de Física Nuclear (DFN) IFUSP Edifício Oscar Sala (sala 46) Escaiho malvarez@if.usp.br

Leia mais

Mecânica Técnica. Aula 4 Adição e Subtração de Vetores Cartesianos. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica Técnica. Aula 4 Adição e Subtração de Vetores Cartesianos. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues Aula 4 Adição e Subtação de Vetoes Catesianos Pof. MSc. Luiz Eduado Mianda J. Rodigues Pof. MSc. Luiz Eduado Mianda J. Rodigues Tópicos Abodados Nesta Aula Opeações com Vetoes Catesianos. Veto Unitáio.

Leia mais

Seção 24: Laplaciano em Coordenadas Esféricas

Seção 24: Laplaciano em Coordenadas Esféricas Seção 4: Laplaciano em Coodenadas Esféicas Paa o leito inteessado, na pimeia seção deduimos a expessão do laplaciano em coodenadas esféicas. O leito ue estive disposto a aceita sem demonstação pode dietamente

Leia mais

Equações de Fresnel e Ângulo de Brewster

Equações de Fresnel e Ângulo de Brewster Instituto de Física de São Calos Laboatóio de Óptica: Ângulo de Bewste e Equações de Fesnel Equações de Fesnel e Ângulo de Bewste Nesta pática, vamos estuda a eflexão e a efação da luz na inteface ente

Leia mais

INSTITUTO DE FISICA- UFBa Março, 2003 DEPARTAMENTO DE FÍSICA DO ESTADO SÓLIDO ESTRUTURA DA MATERIA I (FIS 101) EFEITO HALL

INSTITUTO DE FISICA- UFBa Março, 2003 DEPARTAMENTO DE FÍSICA DO ESTADO SÓLIDO ESTRUTURA DA MATERIA I (FIS 101) EFEITO HALL INSTITUTO DE FISICA- UFBa Maço, 2003 DEPARTAMENTO DE FÍSICA DO ESTADO SÓLIDO ESTRUTURA DA MATERIA I (FIS 101) Roteio elaboado po Newton Oliveia EFEITO ALL OBJETIO DO EXPERIMENTO: A finalidade do expeimento

Leia mais

2.5 Aplicações da lei de Gauss para distribuições de carga com simetria

2.5 Aplicações da lei de Gauss para distribuições de carga com simetria .5 Aplicações da lei de Gauss paa distibuições de caga com simetia Paa distibuições de caga com alto gau de simetia, a lei de Gauss pemite calcula o campo elético com muita facilidade. Pecisamos explica

Leia mais

a) A energia potencial em função da posição pode ser representada graficamente como

a) A energia potencial em função da posição pode ser representada graficamente como Solução da questão de Mecânica uântica Mestado a) A enegia potencial em função da posição pode se epesentada gaficamente como V(x) I II III L x paa x < (egião I) V (x) = paa < x < L (egião II) paa x >

Leia mais

Lei de Gauss II Revisão: Aula 2_2 Física Geral e Experimental III Prof. Cláudio Graça

Lei de Gauss II Revisão: Aula 2_2 Física Geral e Experimental III Prof. Cláudio Graça Lei de Gauss II Revisão: Aula 2_2 Física Geal e Expeimental III Pof. Cláudio Gaça Revisão Cálculo vetoial 1. Poduto de um escala po um veto 2. Poduto escala de dois vetoes 3. Lei de Gauss, fluxo atavés

Leia mais

GERADORES. Figura 5.1 (a) Gerador não ideal. (b) Gerador não ideal com a resistência interna r explicita no diagrama.

GERADORES. Figura 5.1 (a) Gerador não ideal. (b) Gerador não ideal com a resistência interna r explicita no diagrama. ELEICIDADE CAPÍULO 5 GEADOES Cofome visto o Capítulo, o geado é uma máquia elética capaz de estabelece uma difeeça de potecial elético (ddp) costate (ou fime) ete os extemos de um coduto elético, de maeia

Leia mais

E = F/q onde E é o campo elétrico, F a força

E = F/q onde E é o campo elétrico, F a força Campo Elético DISCIPLINA: Física NOE: N O : TURA: PROFESSOR: Glênon Duta DATA: Campo elético NOTA: É a egião do espaço em ue uma foça elética pode sugi em uma caga elética. Toda caga elética cia em tono

Leia mais

Cap. 4 - O Campo Elétrico

Cap. 4 - O Campo Elétrico ap. 4 - O ampo Elético 4.1 onceito de ampo hama-se ampo a toda egião do espaço que apesenta uma deteminada popiedade física. Esta popiedade pode se de qualque natueza, dando oigem a difeentes campos, escalaes

Leia mais

Descontos desconto racional e desconto comercial

Descontos desconto racional e desconto comercial Descontos desconto acional e desconto comecial Uma opeação financeia ente dois agentes econômicos é nomalmente documentada po um título de cédito comecial, devendo esse título conte todos os elementos

Leia mais

REFRAÇÃO DA LUZ I) FÓRMULA DE REFRAÇÃO DA LUZ

REFRAÇÃO DA LUZ I) FÓRMULA DE REFRAÇÃO DA LUZ I) FÓRMULA DE REFRAÇÃO DA LUZ c = ídice de refração: represeta quatas vezes a velocidade da luz o meio em questão é meor que a velocidade da luz o vácuo REFRAÇÃO DA LUZ Feômeo que ocorre quado a luz muda

Leia mais

Áreas parte 2. Rodrigo Lucio Isabelle Araújo

Áreas parte 2. Rodrigo Lucio Isabelle Araújo Áeas pate Rodigo Lucio Isabelle Aaújo Áea do Cículo Veja o cículo inscito em um quadado. Medida do lado do quadado:. Áea da egião quadada: () = 4. Então, a áea do cículo com aio de medida é meno do que

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO SCOL POLITÉCIC UIVRSI SÃO PULO epatamento de ngenhaia ecânica P 100 CÂIC 1 Pova Substitutiva 1 de julho de 017 - uação: 110 minutos (não é pemitido o uso de celulaes, tablets, calculadoas e dispositivos

Leia mais

SISTEMA DE COORDENADAS

SISTEMA DE COORDENADAS ELETROMAGNETISMO I 1 0 ANÁLISE VETORIAL Este capítulo ofeece uma ecapitulação aos conhecimentos de álgeba vetoial, já vistos em outos cusos. Estando po isto numeado com o eo, não fa pate de fato dos nossos

Leia mais

Esquemas simétricos de cifra

Esquemas simétricos de cifra Esquemas siméticos de cifa Notas paa a UC de Seguaça Ifomática Iveo de 12/13 Pedo Félix (pedofelix em cc.isel.ipl.pt) Istituto Supeio de Egehaia de Lisboa Sumáio Pimitivas de cifa em bloco Pimitivas iteadas

Leia mais

Revisão Vetores em R n

Revisão Vetores em R n Revisão Vetoes em R Deiição O espaço vetoial R é o cojuto R : {( x1,, x) xi R, i 1,, } o qual deiimos as opeações: a) Se u ( x 1,, x ) e v ( y 1,, y ) estão em R temos que u + v ( x1 + y1,, x + y) ; b)

Leia mais

ESCOLA SECUNDÁRIA JOSÉ SARAMAGO

ESCOLA SECUNDÁRIA JOSÉ SARAMAGO ESCOLA SECUNDÁRIA JOSÉ SARAMAGO FÍSICA e QUÍMICA A 11º ano /1.º Ano 3º este de Avaliação Sumativa Feveeio 007 vesão Nome nº uma Data / / Duação: 90 minutos Pof. I Paa que se possa entende a lei descobeta

Leia mais

Departamento de Física - Universidade do Algarve FORÇA CENTRÍFUGA

Departamento de Física - Universidade do Algarve FORÇA CENTRÍFUGA FORÇA CENTRÍFUGA 1. Resumo Um copo desceve um movimento cicula unifome. Faz-se vaia a sua velocidade de otação e a distância ao eixo de otação, medindo-se a foça centífuga em função destes dois paâmetos..

Leia mais

n θ E Lei de Gauss Fluxo Eletrico e Lei de Gauss

n θ E Lei de Gauss Fluxo Eletrico e Lei de Gauss Fundamentos de Fisica Clasica Pof icado Lei de Gauss A Lei de Gauss utiliza o conceito de linhas de foça paa calcula o campo elético onde existe um alto gau de simetia Po exemplo: caga elética pontual,

Leia mais

Monitoria: sala C1-07, das 11:00 as 12:00h Amanhã - 4ª feira

Monitoria: sala C1-07, das 11:00 as 12:00h Amanhã - 4ª feira CAPÍTULO 7 Moitoria: sala C-07, das :00 as :00h Amahã - 4ª feira DIFRAÇÃO DE FRAUNHOFER FENDA SIMPLES CRITÉRIO DE RAYLEIGH REDES DE DIFRAÇÃO LEI DE BRAGG DIFRAÇÃO DE RAIOS-X LISTA DE EXERCÍCIOS CAPÍTULO

Leia mais

Ondas Eletromagnéticas Interferência

Ondas Eletromagnéticas Interferência Onds Eletomgnétics Intefeênci Luz como ond A luz é um ond eletomgnétic (Mxwell, 1855). Ess ond é fomd po dois cmpos, E (cmpo elético) e B (cmpo mgnético). Esses cmpos estão colocdos de um fom pependicul

Leia mais

( ) ( ) ( ) Agora podemos invocar a simetria de rotação e de translação e escrever

( ) ( ) ( ) Agora podemos invocar a simetria de rotação e de translação e escrever 7.5 Aplicações da lei de Ampèe paa distibuições de coente com simetia De foma muito semelhante do uso de simetia com a lei de Gauss, pode-se detemina o campo magnético geado po uma distibuição de densidade

Leia mais

Série 2 versão 26/10/2013. Electromagnetismo. Série de exercícios 2

Série 2 versão 26/10/2013. Electromagnetismo. Série de exercícios 2 Séie 2 vesão 26/10/2013 Electomagnetismo Séie de execícios 2 Nota: Os execícios assinalados com seão esolvidos nas aulas. 1. A figua mosta uma vaa de plástico ue possui uma caga distibuída unifomemente

Leia mais

3.1 Potencial gravitacional na superfície da Terra

3.1 Potencial gravitacional na superfície da Terra 3. Potencial gavitacional na supefície da Tea Deive a expessão U(h) = mgh paa o potencial gavitacional na supefície da Tea. Solução: A pati da lei de Newton usando a expansão de Taylo: U( ) = GMm, U( +

Leia mais

VETORES GRANDEZAS VETORIAIS

VETORES GRANDEZAS VETORIAIS VETORES GRANDEZAS VETORIAIS Gandezas físicas que não ficam totalmente deteminadas com um valo e uma unidade são denominadas gandezas vetoiais. As gandezas que ficam totalmente expessas po um valo e uma

Leia mais

O perímetro da circunferência

O perímetro da circunferência Univesidade de Basília Depatamento de Matemática Cálculo 1 O peímeto da cicunfeência O peímeto de um polígono de n lados é a soma do compimento dos seus lados. Dado um polígono qualque, você pode sempe

Leia mais

Sobre a Dedução da Equação da Onda e da Solução segundo a Fórmula de Kirchhoff

Sobre a Dedução da Equação da Onda e da Solução segundo a Fórmula de Kirchhoff ais do CNMC v ISSN 984-8X Sobe a Dedução da Equação da Oda e da Solução segudo a Fómula de Kichhoff Robeto Toscao Couto Uivesidade Fedeal Flumiese Dep Matemática plicada 4-4, Campus do Valoguiho, Ceto,

Leia mais

Antenas e Propagação Folha de exercícios nº1 Conceitos Fundamentais

Antenas e Propagação Folha de exercícios nº1 Conceitos Fundamentais Antenas e Popagação Folha de execícios nº1 Conceitos Fundamentais 1. Uma onda electomagnética plana com fequência de oscilação de 9.4GHz popaga-se no polipopileno ( 2. 25 e 1). Se a amplitude do campo

Leia mais

Medidas elétricas em altas frequências

Medidas elétricas em altas frequências Medidas eléticas em altas fequências A gande maioia das medidas eléticas envolve o uso de cabos de ligação ente o ponto de medição e o instumento de medida. Quando o compimento de onda do sinal medido

Leia mais

Figura 6.6. Superfícies fechadas de várias formas englobando uma carga q. O fluxo eléctrico resultante através de cada superfície é o mesmo.

Figura 6.6. Superfícies fechadas de várias formas englobando uma carga q. O fluxo eléctrico resultante através de cada superfície é o mesmo. foma dessa supefície. (Pode-se pova ue este é o caso poue E 1/ 2 ) De fato, o fluxo esultante atavés de ualue supefície fechada ue envolve uma caga pontual é dado po. Figua 6.6. Supefícies fechadas de

Leia mais

Geodésicas 151. A.1 Geodésicas radiais nulas

Geodésicas 151. A.1 Geodésicas radiais nulas Geodésicas 151 ANEXO A Geodésicas na vizinhança de um buaco nego de Schwazschild A.1 Geodésicas adiais nulas No caso do movimento adial de um fotão os integais δ (expessão 1.11) e L (expessão 1.9) são

Leia mais

UPM/EE/DEM/FT-II-5C/Profa. Dra. Míriam Tvrzská de Gouvêa/2004-2S UPM/EE/DEM&DEE/FT-II-4E/F/Profa. Dra. Esleide Lopes Casella/2004-2S

UPM/EE/DEM/FT-II-5C/Profa. Dra. Míriam Tvrzská de Gouvêa/2004-2S UPM/EE/DEM&DEE/FT-II-4E/F/Profa. Dra. Esleide Lopes Casella/2004-2S Questão paa eflexão: em sítios, não é incomum nos fogões a lenha te-se uma tubulação que aquece água, a qual é conduzida paa os chuveios e toneias sem o uso de bombas. Explique o po quê. (figua extaída

Leia mais

Como. Caso 2: senβ = cosα. tgα= e tgβ= x, segue a igualdade. = x = x+ 1 0 = 1, um absurdo. Assim, esse caso não convém. Como. a) 3. b) 6.

Como. Caso 2: senβ = cosα. tgα= e tgβ= x, segue a igualdade. = x = x+ 1 0 = 1, um absurdo. Assim, esse caso não convém. Como. a) 3. b) 6. OS MELHOES GABAITOS DA ITEET: www.elitecampias.com.b (9) 5-0 O ELITE ESOLVE IME 0 - TESTES MATEMÁTICA QUESTÃO 0 Seja o tiâgulo etâgulo ABC com os catetos medido cm e 4 cm. Os diâmetos dos tês semicículos,

Leia mais

( ) 10 2 = = 505. = n3 + n P1 - MA Questão 1. Considere a sequência (a n ) n 1 definida como indicado abaixo:

( ) 10 2 = = 505. = n3 + n P1 - MA Questão 1. Considere a sequência (a n ) n 1 definida como indicado abaixo: P1 - MA 1-011 Questão 1 Considee a sequência (a n ) n 1 definida como indicado abaixo: a 1 = 1 a = + 3 a 3 = + 5 + 6 a = 7 + 8 + 9 + 10 (05) (a) O temo a 10 é a soma de 10 inteios consecutivos Qual é o

Leia mais

CAMPO ELÉCTRICO NO EXTERIOR DE CONDUTORES LINEARES

CAMPO ELÉCTRICO NO EXTERIOR DE CONDUTORES LINEARES CAMPO ELÉCTRICO NO EXTERIOR DE CONDUTORES LINEARES 1. Resumo A coente que passa po um conduto poduz um campo magnético à sua volta. No pesente tabalho estuda-se a vaiação do campo magnético em função da

Leia mais

Polarização Circular e Elíptica e Birrefringência

Polarização Circular e Elíptica e Birrefringência UNIVRSIDAD D SÃO PAULO Polaização Cicula e líptica e Biefingência Nessa pática estudaemos a polaização cicula e elíptica da luz enfatizando as lâminas defasadoas e a sua utilização como instumento paa

Leia mais

Figura 14.0(inicio do capítulo)

Figura 14.0(inicio do capítulo) NOTA DE AULA 05 UNIVESIDADE CATÓLICA DE GOIÁS DEPATAMENTO DE MATEMÁTICA E FÍSICA Disciplina: FÍSICA GEAL E EXPEIMENTAL II (MAF 0) Coodenação: Pof. D. Elias Calixto Caijo CAPÍTULO 14 GAVITAÇÃO 1. O MUNDO

Leia mais

Prova de Física 1 o Série 1 a Mensal 1 o Trimestre TIPO - A

Prova de Física 1 o Série 1 a Mensal 1 o Trimestre TIPO - A Pova de Física 1 o Séie 1 a Mensal 1 o Timeste TIPO - A 01) A fómula matemática a segui mosta a elação que existe ente volume,, em m, de uma pessoa e sua massa, m, em kg. m a) Utilizando a fómula, calcule

Leia mais

IF Eletricidade e Magnetismo I

IF Eletricidade e Magnetismo I IF 437 Eleticidade e Magnetismo I Enegia potencial elética Já tatamos de enegia em divesos aspectos: enegia cinética, gavitacional, enegia potencial elástica e enegia témica. segui vamos adiciona a enegia

Leia mais

CPV - o cursinho que mais aprova na GV

CPV - o cursinho que mais aprova na GV FGV 1 a Fase conomia novembo/00 MTMÁTI PV - o cusinho que mais apova na GV 01. ois pilotos iniciaam simultaneamente a disputa de uma pova de automobilismo numa pista cuja etensão total é de, km. nquanto

Leia mais

Décimo Segundo Encontro Regional Ibero-americano do CIGRÉ Foz do Iguaçu-Pr, Brasil - 20 a 24 de maio de 2007

Décimo Segundo Encontro Regional Ibero-americano do CIGRÉ Foz do Iguaçu-Pr, Brasil - 20 a 24 de maio de 2007 Décimo Segudo Ecoto Regioal Ibeo-ameicao do CIGRÉ Foz do Iguaçu-P, Basil - 0 a 4 de maio de 007 MODEAGEM DA PRIMEIRA RESSONÂNCIA DE TRANSFORMADORES M. Jauáio* P. Kuo-Peg* N. J. Bastitela* W. P. Capes J.

Leia mais

Resoluções dos exercícios propostos

Resoluções dos exercícios propostos os fudametos da físa Udade E Capítulo efação lumosa esoluções dos eeíos popostos P.85 Como, temos: 8 0 0 8,5 P.86 De, em: 0 8,5 0 8 m/s P.87 elodade da luz a plaa de do oespode a 75% da elodade da luz

Leia mais

2- FONTES DE CAMPO MAGNÉTICO

2- FONTES DE CAMPO MAGNÉTICO - FONTES DE CAMPO MAGNÉTCO.1-A LE DE BOT-SAVART Chistian Oestd (18): Agulha de uma bússola é desviada po uma coente elética. Biot-Savat: Mediam expeimentalmente as foças sobe um pólo magnético devido a

Leia mais

Análise e Projeto de Antenas de Microfita Multicamadas

Análise e Projeto de Antenas de Microfita Multicamadas Análise e Pojeto de Antenas de Micofita Multicamadas Pojeto ITA/IEAv (Pocess FAPESP 02/14164-0) Coodenado: Pof. José Calos da Silva Lacava (ITA) Equipe do IEAv : Valdi Augusto Seão, Fancisco Sicilli e

Leia mais

0.18 O potencial vector

0.18 O potencial vector 68 0.18 O potencial vecto onfome ecodámos no início da disciplina, a divegência do otacional de um campo vectoial é sempe nula. Este esultado do cálculo vectoial implica que todos os campos solenoidais,

Leia mais

DA TERRA À LUA. Uma interação entre dois corpos significa uma ação recíproca entre os mesmos.

DA TERRA À LUA. Uma interação entre dois corpos significa uma ação recíproca entre os mesmos. DA TEA À LUA INTEAÇÃO ENTE COPOS Uma inteação ente dois copos significa uma ação ecípoca ente os mesmos. As inteações, em Física, são taduzidas pelas foças que atuam ente os copos. Estas foças podem se

Leia mais

Aula 7 Círculos. Objetivos. Apresentar as posições relativas entre dois círculos. Determinar a medida de um ângulo inscrito.

Aula 7 Círculos. Objetivos. Apresentar as posições relativas entre dois círculos. Determinar a medida de um ângulo inscrito. ículos MÓDUL 1 - UL 7 ula 7 ículos bjetivos pesenta as posições elativas ente etas e cículos. pesenta as posições elativas ente dois cículos. Detemina a medida de um ângulo inscito. Intodução cículo é

Leia mais

Série II - Resoluções sucintas Energia

Série II - Resoluções sucintas Energia Mecânica e Ondas, 0 Semeste 006-007, LEIC Séie II - Resoluções sucintas Enegia. A enegia da patícula é igual à sua enegia potencial, uma vez que a velocidade inicial é nula: V o mg h 4 mg R a As velocidades

Leia mais

FÍSICA III - FGE a Prova - Gabarito

FÍSICA III - FGE a Prova - Gabarito FÍICA III - FGE211 1 a Pova - Gabaito 1) Consiee uas cagas +2Q e Q. Calcule o fluxo o campo elético esultante essas uas cagas sobe a supefície esféica e aio R a figua. Resposta: Pela lei e Gauss, o fluxo

Leia mais