ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA 12º ANO DE ESCOLARIDADE MATEMÁTICA A. Tarefa nº 7 do plano de trabalho nº 1

Tamanho: px
Começar a partir da página:

Download "ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA 12º ANO DE ESCOLARIDADE MATEMÁTICA A. Tarefa nº 7 do plano de trabalho nº 1"

Transcrição

1 ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA º ANO DE ESCOLARIDADE MATEMÁTICA A Taefa º 7 do plao de tabalho º. Comece po esolve o execício 3 da págia 0.. Muitas das geealizações feitas as divesas ciêcias, em paticula em ciêcias expeimetais, são feitas a pati da obsevação expeimetal de cetas egulaidades, tal como fizemos este exemplo, que depois de igoosamete demostadas são cosideadas leis. A históia da Matemática está cheia de exemplos de matemáticos que citicam esultados dos seus pecedetes ou cotempoâeos po discodaem do igo das demostações apesetadas ou po detectaem falhas em casos paticulaes. É este setido que a seguaça da aplicação de detemiado esultado depede da aceitação ou ão da demostação do mesmo. O Método de Idução Matemática é uma podeosa feameta que pemite tia coclusões sobe uma ifiidade de situações, ecoedo apeas a duas povas. Método de Idução Matemática Se petedemos pova que uma popiedade A() é vedadeia paa todos os úmeos atuais devemos pova que:. A() se veifica paa o pimeio elemeto do cojuto;. Supodo-se a popiedade A() veificada pelo úmeo atual k, abitáio, etão a popiedade A() também é veificada pelo úmeo k+, (ou seja, A(k+) é vedadeia), o que se expime dizedo que a popiedade A() é heeditáia. A ( k) A( k + ) Etão podemos coclui que A (), é vedadeia o cojuto dos úmeos atuais... Pove, ecoedo ao método de idução matemática, que o úmeo de diagoais de qualque polígoo de lados é dado pela fómula D A Toe de Haói é, a sua vesão clássica, o jogo de uma base com tês vaetas, uma das quais se isee um ceto úmeo de discos de difeetes tamahos, odeados do maio paa o meo. O Jogo cosiste em move os discos de uma vaeta a outa cumpido as seguites egas: Em cada movimeto só pode desloca um disco. Não pode move um disco paa uma vaeta ode exista um disco de meo tamaho. Paa um úmeo pequeo de discos, o jogo esulta sumamete fácil. Mas à medida que se vai icemetado o úmeo de discos, cesce também o úmeo de movimetos que devem ealiza-se paa esolvê-lo e com isso, a complexidade do jogo. No caso de um disco um movimeto é suficiete. PROFESSORA: Rosa Caelas 005/006

2 No caso de dois discos, a solução passa pelas seguites fases: Passa o disco pequeo da vaeta a à vaeta b. Passa o disco gade da vaeta a à vaeta c. Passa o disco pequeo da vaeta b à vaeta c. No total 3 movimetos No caso de tês discos, a solução passa pelas seguites fases: Passa o disco pequeo da vaeta a à vaeta c. Passa o disco médio da vaeta a à vaeta b. Passa o disco pequeo da vaeta c à vaeta b. Passa o disco gade da vaeta a à vaeta c. Passa o disco pequeo da vaeta b à vaeta a. Passa o disco médio da vaeta b à vaeta c. Passa o disco pequeo da vaeta a à vaeta c. No total 7 movimetos Obsevado cuidadosamete o pocesso costatamos que o pocesso se divide em tês fases. Pimeio tasfee-se uma toe de dois discos, com o úmeo míimo de movimetos, da vaeta a paa a vaeta b, Em seguida passa-se o disco gade da vaeta a paa a vaeta c. Fialmete passa-se, com o úmeo míimo de movimetos, os dois discos que estão em b paa c. As pimeia e teceia fases são possíveis poque o disco gade ão impede ehum movimeto pelo que tudo fucioa como se a vaeta c estivesse vazia. O úmeo de passos é po isso Estededo este aciocíio paa 4, 5, 6, discos, podemos chega à coclusão de que o úmeo de movimetos paa passa discos da vaeta a paa a c é dado po: M ( ). 3.. Pove, usado o método de idução matemática, que M ( ) epeseta o úmeo míimo de movimetos ecessáios a tasfei discos da vaeta a paa a vaeta c um jogo de Toe de Haói. 4. Pove, usado o método de idução matemática, que a soma de temos de uma pogessão geomética ( u ), de azão difeete de um, é dada po S u. PROFESSORA: Rosa Caelas 005/006

3 ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA º ANO DE ESCOLARIDADE MATEMÁTICA A Taefa º 7 do plao de tabalho º poposta de esolução. Comecemos po esolve o execício 3 da págia 0. Cosideemos a sequêcia de polígoos covexos da qual estão epesetados os quato pimeios e taçadas as espectivas diagoais. a. Se obsevamos os polígoos veificamos que cada vétice se liga po uma diagoal a todos os vétices do polígoo meos 3 (ele pópio e os dois que com ele defiem lados do polígoo). Veificamos aida que cada uma dessas ligações se epete duas vezes pois uma diagoal AB é a mesma que a diagoal BA. Etão podemos dize que o úmeo D() de diagoais de um polígoo de lados é dado po: D() 3. Completemos etão a seguite tabela: Nº de lados do polígoo Nº de diagoais b. Paa sabemos se existe um polígoo que teha 405 diagoais vamos esolve a equação: ( ) 3 3 ± D( ) ± Cocluímos existi um polígoo com 405 diagoais que é um polígoo com 30 lados. Paa sabemos se existe um polígoo que teha 750 diagoais vamos esolve a equação: ( ) 3 3 ± D( ) PROFESSORA: Rosa Caelas 3 005/006

4 ± , equação impossível em IN. Cocluímos ão existi ehum polígoo com 750 diagoais. c. A sucessão que os dá o úmeo de diagoais de um polígoo de lados é um ifiitamete gade positivo poque: Qualque que seja M, eal positivo e tão gade quato se queia, existe uma odem p depois da qual todos os temos da sucessão são maioes que M. 3 > M 3> M 3 M> 0, paa esolve a iequação vamos calcula 3± 9+ 8M os zeos do poliómio: 3 M 0 e tedo em cota que a paábola que epeseta a fução defiida pelo poliómio tem a cocavidade voltada paa cima podemos dize que M 3 M> 0 > cocluido que depois de uma odem + + p > 3 9 8M os temos da sucessão são maioes que M. 3 d. Resolvedo a iequação: > > > 0 73 paa esolve a iequação calculámos os zeos do poliómio: 3 ± e tedo em cota que a paábola que epeseta a fução defiida pelo poliómio tem a cocavidade voltada paa cima podemos dize que > 0 73 Ou utilizado a tabela a calculadoa: Etão é depois da odem 7 que os temos da sucessão são maioes que Muitas das geealizações feitas as divesas ciêcias, em paticula em ciêcias expeimetais, são feitas a pati da obsevação expeimetal de cetas egulaidades, tal como fizemos este exemplo, que depois de igoosamete demostadas são cosideadas leis. A históia da Matemática está cheia de exemplos de matemáticos que citicam esultados dos seus pecedetes ou cotempoâeos po discodaem do igo das demostações apesetadas ou po detectaem falhas em casos paticulaes. É este setido que a seguaça da aplicação de detemiado esultado depede da aceitação ou ão da demostação do mesmo. O Método de Idução Matemática é uma podeosa PROFESSORA: Rosa Caelas 4 005/006

5 feameta que pemite tia coclusões sobe uma ifiidade de situações, ecoedo apeas a duas povas. Método de Idução Matemática Se petedemos pova que uma popiedade A() é vedadeia paa todos os úmeos atuais devemos pova que:. A() se veifica paa o pimeio elemeto do cojuto;. Supodo-se a popiedade A() veificada pelo úmeo atual k, abitáio, etão a popiedade A() também é veificada pelo úmeo k+, (ou seja, A(k+) é vedadeia), o que se expime dizedo que a popiedade A() é heeditáia. A ( k) A( k + ) Etão podemos coclui que A (), é vedadeia o cojuto dos úmeos atuais... Pove, ecoedo ao método de idução matemática, que o úmeo de diagoais de qualque polígoo de lados é dado pela fómula D Comecemos po veifica a popiedade D qual tem sigificado: 3. 3 paa 3 meo úmeo atual paa o 33 3 D3 ( ) D3 ( ) 0 e veifica que de facto o tiâgulo ão tem diagoais. Supodo-se a popiedade D 3 popiedade também é veificada pelo úmeo k+, (ou seja, veificada pelo úmeo atual k, abitáio, etão a D k+ ( k + )( k + 3) vedadeia), o que se expime dizedo que a popiedade é heeditáia e se taduz po: ( ) ( )( ) k k 3 k + k Dk ( ) Dk ( + ) 3 3 (a hipótese de idução implica a tese) Paa veificamos a heeditaiedade temos de pecebe como se passa do úmeo de diagoais de um polígoo de k lados paa o úmeo de diagoais de um polígoo de k + lados. é PROFESSORA: Rosa Caelas 5 005/006

6 Se compaamos as duas figuas veificamos que ao acesceta um ovo vétice ele se vai liga fomado uma diagoal a todos os k vétices já existetes meos e que gahámos uma diagoal que esultou do facto de um dos lados se te tasfomado uma diagoal. Etão ( ) k k 3 (*) k 3k + k D(k+ ) D(k) + k + Dk+ ( ) + k Dk+ ( ) k k Dk+ ( ) (*) Note que utilizámos a hipótese de idução paa pova a tese. Usado a ega de Ruffii, Cocluímos que Dk+ ( ) Dk+ ( ) A popiedade D ( + ) k k k k 3 úmeo atual maio ou igual a tês. é válida paa 3 e é heeditáia pelo que é vedadeia paa qualque 3. A Toe de Haói é, a sua vesão clássica, o jogo de uma base com tês vaetas, uma das quais se isee um ceto úmeo de discos de difeetes tamahos, odeados do maio paa o meo. O Jogo cosiste em move os discos de uma vaeta a outa cumpido as seguites egas: Em cada movimeto só pode desloca um disco. Não pode move um disco paa uma vaeta ode exista um disco de meo tamaho. Paa um úmeo pequeo de discos, o jogo esulta sumamete fácil. Mas à medida que se vai icemetado o úmeo de discos, cesce também o úmeo de movimetos que devem ealiza-se paa esolvê-lo e com isso, a complexidade do jogo. PROFESSORA: Rosa Caelas 6 005/006

7 No caso de um disco um movimeto é suficiete. No caso de dois discos, faemos um total de 3 movimetos No caso de tês discos, faemos um total de 7 movimetos Obsevado cuidadosamete o pocesso costatamos que o pocesso se divide em tês fases. Pimeio tasfee-se uma toe de dois discos, com o úmeo míimo de movimetos, da vaeta a paa a vaeta b, Em seguida passa-se o disco gade da vaeta a paa a vaeta c. Fialmete passa-se, com o úmeo míimo de movimetos, os dois discos que estão em b paa c. As pimeia e teceia fases são possíveis poque o disco gade ão impede ehum movimeto pelo que tudo fucioa como se a vaeta c estivesse vazia. O úmeo de passos é po isso Estededo este aciocíio paa 4, 5, 6, discos, podemos chega à coclusão de que o úmeo de movimetos paa passa discos da vaeta a paa a c é dado po: M ( ). 3.. Povemos, usado o método de idução matemática, que M ( ) epeseta o úmeo míimo de movimetos ecessáios a tasfei discos da vaeta a paa a vaeta c um jogo de Toe de Haói. Comecemos po veifica a popiedade M ( ) paa. ( ) ( ) M M e veifica que de facto com um úico disco apeas teemos de efectua um movimeto. Supodo-se a popiedade M ( ) veificada pelo úmeo atual k, abitáio, etão a popiedade também é veificada pelo úmeo k+, (ou seja, ( ) + o que se expime dizedo que a popiedade é heeditáia e se taduz po: ( ) ( ) + k k Mk Mk+ (a hipótese de idução implica a tese) k Mk+ é vedadeia), Obsevado cuidadosamete as egas veificamos que, paa efectua o movimeto de k + peças pecisamos de efectua o úmeo de movimetos que fizemos paa movimeta k discos, mais um movimeto paa muda a peça maio, e em seguida, ovamete o úmeo de movimetos que tíhamos feito paa movimeta as k discos paa as volta a coloca em cima do disco maio. k k k k+ Assim M(k + ) M(k) + + M(k) + + A popiedade M ( ) é válida paa e é heeditáia pelo que é vedadeia paa qualque úmeo atual. 4. Povemos, usado o método de idução matemática, que a soma de temos de uma pogessão geomética ( u ), de azão difeete de um, é dada po S u. PROFESSORA: Rosa Caelas 7 005/006

8 Comecemos po veifica a popiedade S u é válida paa S u S u e veifica que de facto a soma de um só temo da pogessão aitmética de temo geal u é o pimeio temo. Supodo-se a popiedade S u é veificada pelo úmeo atual k, abitáio, etão a k+ popiedade também é veificada pelo úmeo k+, (ou seja, Sk+ u é vedadeia), o que se expime dizedo que a popiedade é heeditáia e se taduz po: k k+ Sk u Sk+ u.(a hipótese de idução implica a tese) Mas sabemos que paa passamos de um temo ao seguite temos de multiplica o ateio po. Sabemos também que a soma de k+ temos cosecutivos de uma pogessão é a soma dos k pimeios temos com o temo de odem k +. Etão k k k k Sk+ Sku+ uk+ Sk+ u + u Sk+ u + k k k+ k+ + k+ k+ S u S u A popiedade S u é válida paa e é heeditáia pelo que é vedadeia paa qualque úmeo atual. PROFESSORA: Rosa Caelas 8 005/006

INTRODUÇÃO AO ESTUDO DA ÁLGEBRA LINERAR Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 2 ESPAÇOS VETORIAIS

INTRODUÇÃO AO ESTUDO DA ÁLGEBRA LINERAR Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 2 ESPAÇOS VETORIAIS Luiz Facisco da Cuz Depatameto de Matática Uesp/Bauu CAPÍTULO ESPAÇOS VETORIAIS 1 Históico Sabe-se que, até pelo meos o fial do século XIX, ão havia ehuma teoia ou cojuto de egas b defiidas a que se pudesse

Leia mais

INTRODUÇÃO AO ESTUDO DA ÁLGEBRA LINERAR Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 2 ESPAÇOS VETORIAIS

INTRODUÇÃO AO ESTUDO DA ÁLGEBRA LINERAR Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 2 ESPAÇOS VETORIAIS Luiz Facisco da Cuz Depatameto de Matemática Uesp/Bauu CAPÍTULO ESPAÇOS VETORIAIS 1 Históico Sabe-se que, até pelo meos o fial do século XIX, ão havia ehuma teoia ou cojuto de egas bem defiidas a que se

Leia mais

1 - CORRELAÇÃO LINEAR SIMPLES rxy

1 - CORRELAÇÃO LINEAR SIMPLES rxy 1 - CORRELAÇÃO LINEAR IMPLE Em pesquisas, feqüetemete, pocua-se veifica se existe elação ete duas ou mais vaiáveis, isto é, sabe se as alteações sofidas po uma das vaiáveis são acompahadas po alteações

Leia mais

Material Teórico - Sistemas Lineares e Geometria Anaĺıtica. Sistemas com Três Variáveis - Parte 2. Terceiro Ano do Ensino Médio

Material Teórico - Sistemas Lineares e Geometria Anaĺıtica. Sistemas com Três Variáveis - Parte 2. Terceiro Ano do Ensino Médio Mateial Teóico - Sistemas Lineaes e Geometia Anaĺıtica Sistemas com Tês Vaiáveis - Pate 2 Teceio Ano do Ensino Médio Auto: Pof. Fabício Siqueia Benevides Reviso: Pof. Antonio Caminha M. Neto 1 Sistemas

Leia mais

q(x) = x 4 6x x² - 18x + 10 * z+ z + w + w = 6 ** z z + zw + z w + z w + w w = 15

q(x) = x 4 6x x² - 18x + 10 * z+ z + w + w = 6 ** z z + zw + z w + z w + w w = 15 MATEMÁTICA Sejam a i, a + si e a + ( s) + ( + s) i ( > ) temos de uma seqüêcia. Detemie, em fução de, os valoes de e s que toam esta seqüêcia uma pogessão aitmética, sabedo que e s são úmeos eais e i -.

Leia mais

Capítulo 4 Variáveis Aleatórias Discretas. Prof. Fabrício Maciel Gomes

Capítulo 4 Variáveis Aleatórias Discretas. Prof. Fabrício Maciel Gomes Capítulo 4 Vaiáveis Aleatóias Discetas Pof. Fabício Maciel Gomes Picipais Distibuições de Pobabilidade Discetas Equipovável Beoulli Biomial Poisso Geomética Pascal Hipegeomética Distibuição Equipovável

Leia mais

Demonstrações Geométricas, Algébricas e Solução de Equações Discretas utilizando as Sequências de Números Figurados

Demonstrações Geométricas, Algébricas e Solução de Equações Discretas utilizando as Sequências de Números Figurados Demostações Geométicas, Algébicas e Solução de Equações Discetas utilizado as Sequêcias de Númeos Figuados José Atoio Salvado Depatameto de Matemática - CCET - Uivesidade Fedeal de São Calos 3565-905,

Leia mais

3.1 Campo da Gravidade Normal Terra Normal

3.1 Campo da Gravidade Normal Terra Normal . Campo da avidade Nomal.. Tea Nomal tedeemos po Tea omal um elipsóide de evolução qual se atibui a mesma massa M e a mesma velocidade agula da Tea eal e tal que o esfeopotecial U seja uma fução costate

Leia mais

( ) 10 2 = = 505. = n3 + n P1 - MA Questão 1. Considere a sequência (a n ) n 1 definida como indicado abaixo:

( ) 10 2 = = 505. = n3 + n P1 - MA Questão 1. Considere a sequência (a n ) n 1 definida como indicado abaixo: P1 - MA 1-011 Questão 1 Considee a sequência (a n ) n 1 definida como indicado abaixo: a 1 = 1 a = + 3 a 3 = + 5 + 6 a = 7 + 8 + 9 + 10 (05) (a) O temo a 10 é a soma de 10 inteios consecutivos Qual é o

Leia mais

Veremos neste capítulo as distribuições na variável discreta: Distribuição Binomial e Distribuição de Poisson.

Veremos neste capítulo as distribuições na variável discreta: Distribuição Binomial e Distribuição de Poisson. CAPÍTULO 5 DISTRIBUIÇÃO BINOMIAL E DISTRIBUIÇÃO DE POISSON Veemos este capítulo as distibuições a vaiável disceta: Distibuição Biomial e Distibuição de Poisso. 1. Pobabilidade de Beoulli Seja um expeimeto

Leia mais

AULA 23 FATORES DE FORMA DE RADIAÇÃO TÉRMICA

AULA 23 FATORES DE FORMA DE RADIAÇÃO TÉRMICA Notas de aula de PME 336 Pocessos de Tasfeêcia de Calo e Massa 98 AULA 3 ATORES DE ORMA DE RADIAÇÃO TÉRMICA Cosidee o caso de duas supefícies egas quaisque que tocam calo po adiação témica ete si. Supoha

Leia mais

Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema I Probabilidades e Combinatória. Tarefa nº 1 do plano de trabalho nº 5

Escola Secundária com 3º ciclo D. Dinis 12º Ano de Matemática A Tema I Probabilidades e Combinatória. Tarefa nº 1 do plano de trabalho nº 5 Escola ecudária com 3º ciclo D. Diis º Ao de Matemática A Tema I Probabilidades e Combiatória Tarefa º do plao de trabalho º 5. Um saco cotém bolas do mesmo tamaho e do mesmo material, mas de três cores

Leia mais

Números Complexos (Parte II) 1 Plano de Argand-Gauss. 2 Módulo de um número complexo. Prof. Gustavo Adolfo Soares

Números Complexos (Parte II) 1 Plano de Argand-Gauss. 2 Módulo de um número complexo. Prof. Gustavo Adolfo Soares Númeos Complexos (Pate II) 1 Plao de Agad-Gauss Das defiições de que um úmeo complexo é um pa odeado de úmeos eais x e y e que C = R R, temos que: A cada úmeo complexo coespode um úico poto do plao catesiao,

Leia mais

Análise Matemática I 2 o Exame

Análise Matemática I 2 o Exame Aálise Matemática I 2 o Exame Campus da Alameda LEC, LET, LEN, LEM, LEMat, LEGM 29 de Jaeiro de 2003, 3 horas Apresete todos os cálculos e justificações relevates I. Cosidere dois subcojutos de R, A e

Leia mais

Aula 5 de Bases Matemáticas

Aula 5 de Bases Matemáticas Aula 5 de Bases Matemáticas Rodrigo Hause de julho de 04 Pricípio da Idução Fiita. Versão Fraca Deição (P.I.F., versão fraca) Seja p() uma proposição aberta o uiverso dos úmeros aturais. SE valem ambas

Leia mais

J. Sebastião e Silva, Compêndio de Matemática, 3º Volume

J. Sebastião e Silva, Compêndio de Matemática, 3º Volume J. SEBASTAO E SLVA. 3. ntepetação geomética da multiplicação de númeos compleos. Comecemos pelo seguinte caso paticula: Poduto do númeo i po um númeo compleo qualque, z = + iy (, y e R).,------- *' "--

Leia mais

DIMENSÕES Matemática A 12.o ano de escolaridade Caderno de preparação para o exame Índice PROVA 1 PROVA 2 PROVA 3 PROVA 4 PROVA 5 PROVA 6 RESOLUÇÕES

DIMENSÕES Matemática A 12.o ano de escolaridade Caderno de preparação para o exame Índice PROVA 1 PROVA 2 PROVA 3 PROVA 4 PROVA 5 PROVA 6 RESOLUÇÕES DIMENSÕES Matemática A. o ao de escolaidade Cadeo de pepaação paa o eame Ídice PROVA p. PROVA p. 7 PROVA p. PROVA p. PROVA p. 0 PROVA p. RESOLUÇÕES p. 8 Cao aluo, Este livo tem po base o pessuposto de

Leia mais

FORMULÁRIO ELABORAÇÃO ITENS/QUESTÕES

FORMULÁRIO ELABORAÇÃO ITENS/QUESTÕES CÓDIGOFO 7.5./0 REVISÃO 0 PÁGINA de CONCURSO DOCENTES EFETIVOS DO COLÉGIO PEDRO II DATA//0 CARGO/ARÉA MATEMÁTICÁ CONTEÚDO PROGRAMÁTICOSISTEMAS LINEARES/ VETORES NO R /GEOMETRIA ANALÍTICA EMR. NÍVEL DE

Leia mais

Universidade de São Paulo Instituto de Física. Física Moderna II. Profa. Márcia de Almeida Rizzutto 2 o Semestre de Física Moderna 2 Aula 20

Universidade de São Paulo Instituto de Física. Física Moderna II. Profa. Márcia de Almeida Rizzutto 2 o Semestre de Física Moderna 2 Aula 20 Uivesidade de São Paulo Istituto de Física Física Modea II Pofa. Mácia de Almeida Rizzutto o Semeste de 14 Física Modea 1 Todos os tipos de ligação molecula se devem ao fato de a eegia total da molécula

Leia mais

Dessa forma, concluímos que n deve ser ímpar e, como 120 é par, então essa sequência não possui termo central.

Dessa forma, concluímos que n deve ser ímpar e, como 120 é par, então essa sequência não possui termo central. Resoluções das atividades adicioais Capítulo Grupo A. a) a 9, a 7, a 8, a e a 79. b) a, a, a, a e a.. a) a, a, a, a 8 e a 6. 9 b) a, a 6, a, a 9 e a.. Se a 9 e a k são equidistates dos extremos, etão existe

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL II 014.2

CÁLCULO DIFERENCIAL E INTEGRAL II 014.2 CÁLCULO IFERENCIAL E INTEGRAL II Obsevações: ) Todos os eecícios popostos devem se esolvidos e entegue no dia de feveeio de 5 Integais uplas Integais uplas Seja z f( uma função definida em uma egião do

Leia mais

Esquemas simétricos de cifra

Esquemas simétricos de cifra Esquemas siméticos de cifa Notas paa a UC de Seguaça Ifomática Iveo de 12/13 Pedo Félix (pedofelix em cc.isel.ipl.pt) Istituto Supeio de Egehaia de Lisboa Sumáio Pimitivas de cifa em bloco Pimitivas iteadas

Leia mais

Departamento de Física - ICE/UFJF Laboratório de Física II

Departamento de Física - ICE/UFJF Laboratório de Física II Depatameto de ísica - ICE/UJ Laboatóio de ísica II - Itodução Pática : Medida da Aceeação Gavitacioa A iteação avitacioa é uma das quato iteações fudametais que se ecotam a atueza e é a úica que afeta

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema III Sucessões Reais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema III Sucessões Reais ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema III Sucessões Reais Tarefa º. Desta figura, do trabalho da Olívia e da Susaa, retire duas sequêcias e imagie o processo

Leia mais

2*5$',(17('2327(1&,$/( (1(5*,$12&$032(/(75267È7,&2

2*5$',(17('2327(1&,$/( (1(5*,$12&$032(/(75267È7,&2 3 *5',7'37&,/ 5*,&3/7567È7,& ÃÃÃ*5',7Ã'Ã37&,/ A expessão geéica paa o cálculo da difeeça de potecial como uma itegal de liha é: dl ) 5) Se o camiho escolhido fo um L, tal que se possa cosidea costate esse

Leia mais

CPV O cursinho que mais aprova na GV

CPV O cursinho que mais aprova na GV RJ_MATEMATICA_9_0_08 FGV-RJ A dministação Economia Dieito C Administação 26 26 das 200 vagas da GV têm ficado paa os alunos do CPV CPV O cusinho que mais apova na GV Ciências Sociais ociais GV CPV. ociais

Leia mais

. Essa força é a soma vectorial das forças individuais exercidas em q 0 pelas várias cargas que produzem o campo E r. Segue que a força q E

. Essa força é a soma vectorial das forças individuais exercidas em q 0 pelas várias cargas que produzem o campo E r. Segue que a força q E 7. Potencial Eléctico Tópicos do Capítulo 7.1. Difeença de Potencial e Potencial Eléctico 7.2. Difeenças de Potencial num Campo Eléctico Unifome 7.3. Potencial Eléctico e Enegia Potencial Eléctica de Cagas

Leia mais

Induzindo a um bom entendimento do Princípio da Indução Finita

Induzindo a um bom entendimento do Princípio da Indução Finita Iduzido a um bom etedimeto do Pricípio da Idução Fiita Jamil Ferreira (Apresetado a VI Ecotro Capixaba de Educação Matemática e utilizado como otas de aula para disciplias itrodutórias do curso de matemática)

Leia mais

Capítulo I Erros e Aritmética Computacional

Capítulo I Erros e Aritmética Computacional C. Balsa e A. Satos Capítulo I Eos e Aitmética Computacioal. Itodução aos Métodos Numéicos O objectivo da disciplia de Métodos Numéicos é o estudo, desevolvimeto e avaliação de algoitmos computacioais

Leia mais

ESCOLA BÁSICA DE ALFORNELOS

ESCOLA BÁSICA DE ALFORNELOS ESCOLA BÁSICA DE ALFORNELOS FICHA DE TRABALHO DE MATEMÁTICA 9.º ANO VALORES APROXIMADOS DE NÚMEROS REAIS Dado um úmero xe um úmero positivo r, um úmero x como uma aproximação de x com erro iferior a r

Leia mais

ANÁLISE ESTATÍSTICA DOS ERROS DE CENTRAGEM E PONTARIA

ANÁLISE ESTATÍSTICA DOS ERROS DE CENTRAGEM E PONTARIA 5 ANÁLISE ESTATÍSTICA DOS ERROS DE CENTRAGEM E PONTARIA Jai Medes Maques Uivesidade Tuiuti do Paaá R. Macelio Champagat, 55 CEP 87-5 e-mail: jaimm@utp.b RESUMO O objetivo deste tabalho cosiste o desevolvimeto

Leia mais

O perímetro da circunferência

O perímetro da circunferência Univesidade de Basília Depatamento de Matemática Cálculo 1 O peímeto da cicunfeência O peímeto de um polígono de n lados é a soma do compimento dos seus lados. Dado um polígono qualque, você pode sempe

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II Tema II Itrodução ao Cálculo Diferecial II TPC º 7 Etregar em 09 0 009. O João é coleccioador de cháveas de café. Recebeu como preda um cojuto de 0 cháveas, todas diferetes em que 4 são douradas e 6 prateadas.

Leia mais

Preliminares 1. 1 lim sup, lim inf. Medida e Integração. Departamento de Física e Matemática. USP-RP. Prof. Rafael A. Rosales. 8 de março de 2009.

Preliminares 1. 1 lim sup, lim inf. Medida e Integração. Departamento de Física e Matemática. USP-RP. Prof. Rafael A. Rosales. 8 de março de 2009. Medida e Itegração. Departameto de Física e Matemática. USP-RP. Prof. Rafael A. Rosales 8 de março de 2009. 1 lim sup, lim if Prelimiares 1 Seja (x ), N, uma seqüêcia de úmeros reais, e l o limite desta

Leia mais

Escola Básica e Secundária Dr. Ângelo Augusto da Silva

Escola Básica e Secundária Dr. Ângelo Augusto da Silva Escola Básica e Secdáia D. Âgelo Agsto da Silva Teste de MATEMÁTICA A.º Ao Dação: 90 itos Maço/ 06 Noe N.º T: Classificação Pof. (Lís Abe).ª PARTE Paa cada a das segites qestões de escolha últipla, selecioe

Leia mais

Campo Gravítico da Terra

Campo Gravítico da Terra 5. Campo Gavítico ómalo elação ete o potecial gavítico e o potecial omal é dada po: W ( x, y, z = U( x, y,z + ( x, y,z O campo gavítico aómalo ou petubado é etão defiido pela difeeça do campo gavítico

Leia mais

Seção 8: EDO s de 2 a ordem redutíveis à 1 a ordem

Seção 8: EDO s de 2 a ordem redutíveis à 1 a ordem Seção 8: EDO s de a odem edutíveis à a odem Caso : Equações Autônomas Definição Uma EDO s de a odem é dita autônoma se não envolve explicitamente a vaiável independente, isto é, se fo da foma F y, y, y

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 2

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 2 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para

Leia mais

Sucessão ou Sequência. Sucessão ou seqüência é todo conjunto que consideramos os elementos dispostos em certa ordem. janeiro,fevereiro,...

Sucessão ou Sequência. Sucessão ou seqüência é todo conjunto que consideramos os elementos dispostos em certa ordem. janeiro,fevereiro,... Curso Metor www.cursometor.wordpress.com Sucessão ou Sequêcia Defiição Sucessão ou seqüêcia é todo cojuto que cosideramos os elemetos dispostos em certa ordem. jaeiro,fevereiro,...,dezembro Exemplo : Exemplo

Leia mais

Matemática do Ensino Médio vol.2

Matemática do Ensino Médio vol.2 Matemática do Ensino Médio vol.2 Cap.11 Soluções 1) a) = 10 1, = 9m = 9000 litos. b) A áea do fundo é 10 = 0m 2 e a áea das paedes é (10 + + 10 + ) 1, = 51,2m 2. Como a áea que seá ladilhada é 0 + 51,2

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 1

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 1 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Nome: N.º Turma: Professor: Classificação: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as ustificações

Leia mais

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema III Sucessões Reais. TPC nº11 (entregar no dia 20 de Maio de 2011) 1ª Parte

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema III Sucessões Reais. TPC nº11 (entregar no dia 20 de Maio de 2011) 1ª Parte Escola Secudária com 3º ciclo D. Diis º Ao de Matemática A Tema III Sucessões Reais TPC º (etregar o dia 0 de Maio de 0) ª Parte As cico questões deste grupo são de escolha múltipla. Para cada uma delas

Leia mais

GEOMETRIA DINÂMICA E O ESTUDO DE TANGENTES AO CÍRCULO

GEOMETRIA DINÂMICA E O ESTUDO DE TANGENTES AO CÍRCULO GEMETRIA DINÂMICA E ESTUD DE TANGENTES A CÍRCUL Luiz Calos Guimaães, Elizabeth Belfot e Leo Akio Yokoyama Instituto de Matemática UFRJ lcg@labma.ufj.b, beth@im.ufj.b, leoakyo@yahoo.com.b INTRDUÇÃ: CÍRCULS,

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema III Sucessões Reais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema III Sucessões Reais ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema III Sucessões Reais Tarefa º 3. Aalisemos o problema do trabalho da Maria Rita: O Tobias vive a mesma rua, ode se situa

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 4

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 4 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão 4 Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para

Leia mais

TEMA 2 FUNÇÕES FICHAS DE TRABALHO 12.º ANO COMPILAÇÃO TEMA 2 FUNÇÕES. Jorge Penalva José Carlos Pereira Vítor Pereira MathSuccess

TEMA 2 FUNÇÕES FICHAS DE TRABALHO 12.º ANO COMPILAÇÃO TEMA 2 FUNÇÕES. Jorge Penalva José Carlos Pereira Vítor Pereira MathSuccess Jorge Pealva José Carlos Pereira Vítor Pereira MathSuccess FICHAS DE TRABALHO 1.º ANO COMPILAÇÃO TEMA FUNÇÕES Site: http://www.mathsuccess.pt Facebook: https://www.facebook.com/mathsuccess TEMA FUNÇÕES

Leia mais

Torre de Hanói. Luís Ricardo da Silva Manoel

Torre de Hanói. Luís Ricardo da Silva Manoel Torre de Haói Luís Ricardo da Silva Maoel História e Leda A torre de Haói, também cohecida por torre de bramaismo ou quebra-cabeças do fim do mudo, foi ivetada e vedida como briquedo, o ao de 1883, pelo

Leia mais

APÊNDICE. Revisão de Trigonometria

APÊNDICE. Revisão de Trigonometria E APÊNDICE Revisão de Tigonometia FUNÇÕES E IDENTIDADES TRIGONOMÉTRICAS ÂNGULOS Os ângulos em um plano podem se geados pela otação de um aio (semi-eta) em tono de sua etemidade. A posição inicial do aio

Leia mais

Fundamentos de Análise Matemática Profª Ana Paula. Sequência Infinitas

Fundamentos de Análise Matemática Profª Ana Paula. Sequência Infinitas Fudametos de Aálise Matemática Profª Aa Paula Sequêcia Ifiitas Defiição 1: Uma sequêcia umérica a 1, a 2, a 3,,a,é uma fução, defiida o cojuto dos úmeros aturais : f : f a Notação: O úmero é chamado de

Leia mais

Problemas e Soluções

Problemas e Soluções FAMAT e Revista Revista Cietífica Eletôica da Faculdade de Mateática - FAMAT Uivesidade Fedeal de Ubelâdia - UFU - MG Pobleas e Soluções Núeo 09 - Outubo de 007 www.faat.ufu.b Coitê Editoial da Seção Pobleas

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 2

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 2 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Aluo: N.º Turma: Professor: Classificação: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 4

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 4 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Aluo: N.º Turma: Professor: Classificação: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações

Leia mais

Matemática E Extensivo V. 1

Matemática E Extensivo V. 1 Extesivo V. 0) a) r b) r c) r / d) r 7 0) A 0) B P.A. 7,,,... r a + ( ). a +. + 69 a 5 P.A. (r, r, r ) r ( r + r) 6r r r r 70 Exercícios 05) a 0 98 a a a 06) E 07) B 08) B 7 0 0; 8? P.A. ( 7, 65, 58,...)

Leia mais

FICHA DE TRABALHO 11º ANO. Sucessões

FICHA DE TRABALHO 11º ANO. Sucessões . Observe a sequêcia das seguites figuras: FICHA DE TRABALHO º ANO Sucessões Vão-se costruido, sucessivamete, triâgulos equiláteros os vértices dos triâgulos equiláteros já existetes, prologado-se os seus

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 2

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 2 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Teste.º Ao de escolaridade Versão Nome: N.º Turma: Professor: José Tioco /0/08 Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 1

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 1 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Teste.º Ao de escolaridade Versão Nome: N.º Turma: Professor: José Tioco /0/08 Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar

Leia mais

XIX Semana Olímpica de Matemática. Nível U. Algumas Técnicas com Funções Geratrizes. Davi Lopes

XIX Semana Olímpica de Matemática. Nível U. Algumas Técnicas com Funções Geratrizes. Davi Lopes XIX Semaa Olímpica de Matemática Nível U Algumas Técicas com Fuções Geratrizes Davi Lopes O projeto da XIX Semaa Olímpica de Matemática foi patrociado por: Algumas Técicas com Fuções Geratrizes Davi Lopes

Leia mais

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 6 PLANO. v r 1

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 6 PLANO. v r 1 Luiz Fancisco a Cuz Depatamento e Matemática Unesp/Bauu CAPÍTULO 6 PLANO Definição: Seja A um ponto qualque o plano e v e v ois vetoes LI (ou seja, não paalelos), mas ambos paalelos ao plano. Seja X um

Leia mais

A maneiras. Concluindo, podemos obter

A maneiras. Concluindo, podemos obter Matemática A. o ao TESTE DE AVALIAÇÃO DE MATEMÁTICA.º ANO PROPOSTA DE RESOLUÇÃO. A soma de todos os termos da liha de ordem do triâgulo de Pascal é ; assim, para esta liha, tem-se 96 log 96 log. O elemeto

Leia mais

Exercícios de Aprofundamento Matemática Progressão Aritmética e Geométrica

Exercícios de Aprofundamento Matemática Progressão Aritmética e Geométrica Exercícios de Aprofudameto Matemática Progressão Aritmética e b. (Fuvest 05) Dadas as sequêcias a 4 4, b, c a a e d, b defiidas para valores iteiros positivos de, cosidere as seguites afirmações: I. a

Leia mais

PROPAGAÇÃO DE ONDAS ELECTROMAGNÉTICAS NUM GUIA CILÍNDRICO

PROPAGAÇÃO DE ONDAS ELECTROMAGNÉTICAS NUM GUIA CILÍNDRICO PROPAGAÇÃO D ONDAS LCTROMAGNÉTICAS NM GIA CILÍNDRICO po Calos Vaadas e Maia mília Maso IST, Maio de 5 t j e. Itodução Vamos estuda a popagação de odas electomagéticas um guia cilídico de aio a. Podeiamos

Leia mais

U.C Matemática Finita. 8 de junho de 2016

U.C Matemática Finita. 8 de junho de 2016 Miistério da Ciêcia, Tecologia e Esio Superior U.C. 21082 Matemática Fiita 8 de juho de 2016 Questões de Escolha Múltipla: Critérios de avaliação Na prova de Exame, cada questão de escolha múltipla tem

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 4

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 4 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Teste.º Ao de escolaridade Versão 4 Nome: N.º Turma: Professor: José Tioco //8 Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 3

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 3 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Teste.º Ao de escolaridade Versão Nome: N.º Turma: Professor: José Tioco //8 Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar

Leia mais

Duração da Prova: 150 minutos. Tolerância: 30 minutos. É permitido o uso de régua, compasso, esquadro, transferidor e calculadora gráfica.

Duração da Prova: 150 minutos. Tolerância: 30 minutos. É permitido o uso de régua, compasso, esquadro, transferidor e calculadora gráfica. Eame Fial Nacioal de Matemática A Pova 635 Época Especial Esio Secdáio 07.º Ao de Escolaidade Deceto-Lei.º 39/0, de 5 de jlho Dação da Pova: 50 mitos. Toleâcia: 30 mitos. 8 Págias VERSÃO Idiqe de foma

Leia mais

NÚMEROS IRRACIONAIS E TRANSCENDENTES

NÚMEROS IRRACIONAIS E TRANSCENDENTES UNIVERSIDADE FEDERAL DE SANTA CATARINA UNIVERSIDADE VIRTUAL DO MARANHÃO DEPARTAMENTO DE MATEMÁTICA E FÍSICA CURSO DE ESPECIALIZAÇÃO EM MATEMÁTICA NÚMEROS IRRACIONAIS E TRANSCENDENTES IMPERATRIZ 009 JULIMAR

Leia mais

APONTAMENTOS DE COMPLEMENTOS DE MATEMÁTICA

APONTAMENTOS DE COMPLEMENTOS DE MATEMÁTICA UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA APONTAMENTOS DE COMPLEMENTOS DE MATEMÁTICA (CÁLCULO DIFERENCIAL EM ) ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Cálculo Dieecial em Cálculo dieecial em

Leia mais

Prova Escrita de Matemática B

Prova Escrita de Matemática B EXAME FINAL NACIONAL DO ENSINO SECUNDÁRIO Pova Escita de Matemática B 11.º Ano de Escolaidade Deceto-Lei n.º 139/01, de 5 de julho Pova 735/.ª Fase Citéios de Classificação 1 Páginas 016 Pova 735/.ª F.

Leia mais

Módulo Elementos Básicos de Geometria - Parte 3. Diagonais de Poĺıgonos. Professores Cleber Assis e Tiago Miranda

Módulo Elementos Básicos de Geometria - Parte 3. Diagonais de Poĺıgonos. Professores Cleber Assis e Tiago Miranda Módulo Elemetos Básicos de Geometria - Parte 3 Diagoais de Poĺıgoos. 8 ao/e.f. Professores Cleber Assis e Tiago Mirada Elemetos Básicos de Geometria - Parte 3. Diagoais de Polígoos. 1 Exercícios Itrodutórios

Leia mais

Prova Escrita de Matemática A

Prova Escrita de Matemática A EXAME FINAL NACIONAL DO ENSINO SECUNDÁRIO Pova Escita de Matemática A 12.º Ano de Escolaidade Deceto-Lei n.º 139/2012, de 5 de julho Pova 635/2.ª Fase Citéios de Classificação 11 Páginas 2015 Pova 635/2.ª

Leia mais

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema III Sucessões Reais. TPC nº 10 (entregar no dia 6 de Maio de 2011) 1ª Parte

Escola Secundária com 3º ciclo D. Dinis 11º Ano de Matemática A Tema III Sucessões Reais. TPC nº 10 (entregar no dia 6 de Maio de 2011) 1ª Parte Escola Secudária com º ciclo D. Diis º Ao de Matemática A Tema III Sucessões Reais TPC º 0 (etregar o dia 6 de Maio de 0) ª Parte As cico questões deste grupo são de escolha múltipla. Para cada uma delas

Leia mais

Material Teórico - Módulo Binômio de Newton e Triangulo de Pascal. Soma de Elementos em Linhas, Colunas e Diagonais. Segundo Ano do Ensino Médio

Material Teórico - Módulo Binômio de Newton e Triangulo de Pascal. Soma de Elementos em Linhas, Colunas e Diagonais. Segundo Ano do Ensino Médio Material Teórico - Módulo Biômio de Newto e Triagulo de Pascal Soma de Elemetos em Lihas, Coluas e Diagoais Segudo Ao do Esio Médio Autor: Prof Fabrício Siqueira Beevides Revisor: Prof Atoio Camiha M Neto

Leia mais

Material Teórico - Módulo Binômio de Newton e Triangulo de Pascal. Soma de Elementos em Linhas, Colunas e Diagonais. Segundo Ano do Ensino Médio

Material Teórico - Módulo Binômio de Newton e Triangulo de Pascal. Soma de Elementos em Linhas, Colunas e Diagonais. Segundo Ano do Ensino Médio Material Teórico - Módulo Biômio de Newto e Triagulo de Pascal Soma de Elemetos em Lihas, Coluas e Diagoais Segudo Ao do Esio Médio Autor: Prof Fabrício Siqueira Beevides Revisor: Prof Atoio Camiha M Neto

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - 1o Ao 00 - a Fase Proposta de resolução GRUPO I 1. Como a probabilidade do João acertar em cada tetativa é 0,, a probabilidade do João acertar as tetativas é 0, 0, 0, 0,

Leia mais

Módulo: Binômio de Newton e o Triângulo de Pascal. Somas de elementos em Linhas, Colunas e Diagonais do Triângulo de Pascal. 2 ano do E.M.

Módulo: Binômio de Newton e o Triângulo de Pascal. Somas de elementos em Linhas, Colunas e Diagonais do Triângulo de Pascal. 2 ano do E.M. Módulo: Bômo de Newto e o Tâgulo de Pascal Somas de elemetos em Lhas, Coluas e Dagoas do Tâgulo de Pascal ao do EM Módulo: Bômo de Newto e o Tâgulo de Pascal Somas de elemetos em Lhas, Coluas e Dagoas

Leia mais

Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos

Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos Aálise de Algoritmos Aálise de Algoritmos Prof Dr José Augusto Baraauskas DFM-FFCLRP-USP A Aálise de Algoritmos é um campo da Ciêcia da Computação que tem como objetivo o etedimeto da complexidade dos

Leia mais

Módulo: Binômio de Newton e o Triângulo de Pascal. Somas de elementos em Linhas, Colunas e Diagonais do Triângulo de Pascal. 2 ano do E.M.

Módulo: Binômio de Newton e o Triângulo de Pascal. Somas de elementos em Linhas, Colunas e Diagonais do Triângulo de Pascal. 2 ano do E.M. Módulo: Bômo de Newto e o Tâgulo de Pascal Somas de elemetos em Lhas, Coluas e Dagoas do Tâgulo de Pascal ao do EM Módulo: Bômo de Newto e o Tâgulo de Pascal Somas de elemetos em Lhas, Coluas e Dagoas

Leia mais

(i) (1,5 val.) Represente na forma de um intervalo ou de uma união disjunta de intervalos cada um dos conjuntos seguintes:

(i) (1,5 val.) Represente na forma de um intervalo ou de uma união disjunta de intervalos cada um dos conjuntos seguintes: Istituto Superior Técico Departameto de Matemática o TESTE DE CÁLCULO DIFERENCIAL E INTEGRAL I - Versão A MEAero o Sem. 0/3 0//0 Duração: h30m RESOLUÇÃO. 3,0 val. i,5 val. Represete a forma de um itervalo

Leia mais

é igual a f c f x f c f c h f c 2.1. Como g é derivável em tem um máximo relativo em x 1, então Resposta: A

é igual a f c f x f c f c h f c 2.1. Como g é derivável em tem um máximo relativo em x 1, então Resposta: A Pepaa o Eame 03 07 Matemática A Página 84. A taa de vaiação instantânea da função f em c é igual a f c e é dada po: c f f c f c h f c f lim lim c c ch h0 h Resposta: D... Como g é deivável em tem um máimo

Leia mais

Dois resultados em combinatória contemporânea. Guilherme Oliveira Mota

Dois resultados em combinatória contemporânea. Guilherme Oliveira Mota Dois esultados em combiatóia cotempoâea Guilheme Oliveia Mota Tese apesetada ao Istituto de Matemática e Estatística da Uivesidade de São Paulo paa obteção do título de Douto em Ciêcias Pogama: Ciêcia

Leia mais

Transformada de z Sistemas Discretos

Transformada de z Sistemas Discretos Sistemas de Pocessameto Digital Egehaia de Sistemas e Ifomática Ficha 5 005/006 4.º Ao/.º Semeste Tasfomada de Sistemas Discetos Tasfomada de A tasfomada de Z foece uma vesão o domíio da fequêcia dum sial

Leia mais

UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena EEL

UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena EEL UNIVERSIDADE DE SÃO PAULO Escola de Egehaia de Loea EEL PPE648 Tópicos Especiais de Física Pof. D. Duval Rodigues Juio Depatameto de Egehaia de Mateiais (DEMAR) Escola de Egehaia de Loea (EEL) Uivesidade

Leia mais

Fundamentos de Análise Matemática Profª Ana Paula. Números reais

Fundamentos de Análise Matemática Profª Ana Paula. Números reais Fudametos de Aálise Matemática Profª Aa Paula Números reais 1,, 3, cojuto dos úmeros aturais 0,1,,3, cojuto dos úmeros iteiros p q /p e q cojuto dos úmeros racioais a, a 0 a 1 a a, a e a i 0, 1,, 3, 4,

Leia mais

ÁLGEBRA. Licenciatura em Engenharia Electrotécnica e de Computadores LEEC Ano lectivo de 2002/2003

ÁLGEBRA. Licenciatura em Engenharia Electrotécnica e de Computadores LEEC Ano lectivo de 2002/2003 ÁLGEBRA Liceciatura em Egeharia Electrotécica e de Computadores LEEC Ao lectivo de 00/003 Apotametos para a resolução dos exercícios da aula prática 5 MATRIZES ELIMINAÇÃO GAUSSIANA a) Até se obter a forma

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 1

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 1 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 5

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano Versão 5 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão 5 Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para

Leia mais

de n lados, respectivamente, inscritos e circunscritos a uma circunferência de diâmetro 1, mostre que para n>

de n lados, respectivamente, inscritos e circunscritos a uma circunferência de diâmetro 1, mostre que para n> ESCOLA SECUNDÁRIA COM º CICLO D. DINIS COIMBRA º ANO DE ESCOLARIDADE MATEMÁTICA A Tarefa º 5 do plao de trabalho º Sucessões Covergetes Arquimedes e valores aproximados de π Arquimedes, matemático da atiguidade

Leia mais

Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos 2005.

Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos 2005. Ageda Aálise e Técicas de Algoritmos Jorge Figueiredo Relação de de Recorrêcia Derivado recorrêcia Resolvedo recorrêcia Aálise de de algoritmos recursivos Aálise de de Algoritmos Recursivos Itrodução A

Leia mais

4.4 Mais da geometria analítica de retas e planos

4.4 Mais da geometria analítica de retas e planos 07 4.4 Mais da geometia analítica de etas e planos Equações da eta na foma simética Lembemos que uma eta, no planos casos acima, a foma simética é um caso paticula da equação na eta na foma geal ou no

Leia mais

Capítulo 3. Sucessões e Séries Geométricas

Capítulo 3. Sucessões e Séries Geométricas Capítulo 3 Sucessões e Séries Geométricas SUMÁRIO Defiição de sucessão Mootoia de sucessões Sucessões itadas (majoradas e mioradas) Limites de sucessões Sucessões covergetes e divergetes Resultados sobre

Leia mais

4 SÉRIES DE POTÊNCIAS

4 SÉRIES DE POTÊNCIAS 4 SÉRIES DE POTÊNCIAS Por via da existêcia de um produto em C; as séries adquirem a mesma relevâcia que em R; talvez mesmo maior. Isso deve-se basicamete ao facto de podermos ovamete formular as chamadas

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO PME 3100 MECÂNIC I Teceia Pova 6 de uho de 015 Duação da Pova: 110 miutos (ão é pemitido uso de calculadoas) 1ª Questão (4,0 potos) fiua mosta um disco de ceto, massa m e aio, que pate do epouso e ola

Leia mais

Proposta de teste de avaliação

Proposta de teste de avaliação Matemática 11. N DE ESLRIDDE Duação: 90 minutos Data: adeno 1 (é pemitido o uso de calculadoa) Na esposta aos itens de escolha múltipla, selecione a opção coeta. Esceva, na olha de espostas, o númeo do

Leia mais

5 Estudo analítico de retas e planos

5 Estudo analítico de retas e planos GA3X1 - Geometia Analítica e Álgeba Linea 5 Estudo analítico de etas e planos 5.1 Equações de eta Definição (Veto dieto de uma eta): Qualque veto não-nulo paalelo a uma eta chama-se veto dieto dessa eta.

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 3

FICHA de AVALIAÇÃO de MATEMÁTICA A 11.º Ano de escolaridade Versão 3 FICHA de AVALIAÇÃO de MATEMÁTICA A º Teste º Ao de escolaridade Versão Nome: Nº Turma: Professor: José Tioco 9//8 Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 3

FICHA de AVALIAÇÃO de MATEMÁTICA A 12.º Ano Versão 3 FICHA de AVALIAÇÃO de MATEMÁTICA A.º Ao Versão Nome: N.º Turma: Apresete o seu raciocíio de forma clara, idicado todos os cálculos que tiver de efetuar e todas as justificações ecessárias. Quado, para

Leia mais

Estudo de um modelo do núcleo do deuterão

Estudo de um modelo do núcleo do deuterão Estudo de um modelo do úcleo do deuteão Goçalo Oliveia º 5789 Pedo Ricate º 578 Física Quâtica da Matéia Istituto Sueio Técico Maio, 8 Resumo Cosidea-se um modelo simles aa o úcleo do deuteão, ode a iteacção

Leia mais

Soluções dos Exercícios do Capítulo 6

Soluções dos Exercícios do Capítulo 6 Soluções dos Eercícios do Capítulo 6 1. O poliômio procurado P() a + b + c + d deve satisfazer a idetidade P(+1) P() +, ou seja, a(+1) + b(+1) + c(+1) + d a + b + c + d +, o que é equivalete a (a 1) +

Leia mais

3. Seja C o conjunto dos números complexos. Defina a soma em C por

3. Seja C o conjunto dos números complexos. Defina a soma em C por Eercícios Espaços vetoriais. Cosidere os vetores = (8 ) e = ( -) em. (a) Ecotre o comprimeto de cada vetor. (b) Seja = +. Determie o comprimeto de. Qual a relação etre seu comprimeto e a soma dos comprimetos

Leia mais