Capítulo 4 Variáveis Aleatórias Discretas. Prof. Fabrício Maciel Gomes

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Capítulo 4 Variáveis Aleatórias Discretas. Prof. Fabrício Maciel Gomes"

Transcrição

1 Capítulo 4 Vaiáveis Aleatóias Discetas Pof. Fabício Maciel Gomes

2 Picipais Distibuições de Pobabilidade Discetas Equipovável Beoulli Biomial Poisso Geomética Pascal Hipegeomética

3 Distibuição Equipovável Todos os possíveis valoes da Vaiável Aleatóia tem a mesma Pobabilidade de ocoe valoes P X xi 1 Paa valoes equi-espaçados (a difeeça ete os valoes é costate e igual a h), tem-se:

4 Distibuição Equipovável E( X) x x 1 2 Va( X ) h 2 ( 2 1) 12

5 Distibuição de Beoulli Expeimeto sucesso facasso Seja X: vaiável aleatóia com possíveis esultados: X = 1 se o esultado fo um sucesso X = 0 se o esultado fo um facasso

6 Distibuição de Beoulli p: pobabilidade de ocoe sucesso q: pobabilidade de ão ocoe sucesso (facasso) q = 1- p paa X = 0; P(X) = p paa X = 1; 0 paa X 0 ou X 1 E(X) = p Va(X) = p.q

7 Distibuição Biomial Codições do expeimeto: (1) úmeo fixo de epetições idepedetes : (2) cada epetição tem Distibuição Beoulli: sucesso ou facasso (3) Pobabilidade p de sucesso é costate

8 Distibuição Biomial P(Y=): Pobabilidade de sucessos as pimeias epetições de um total de epetições 1, 1, 1, 1, 1,...,1 0, 0, 0, 0,...,0 - P(Y=) = p.q - Cosideado todas as combiações de elemetos a tem-se:

9 Distibuição Biomial Seja: X: vaiável aleatóia Biomial : úmeo de epetições : úmeo de sucessos P(X=): Pobabilidade de sucessos em epetições P( X ) p q!!! E (x) =.p Va (x) =.p.q

10 Distibuição Biomial Exemplo: Laçameto de 4 moedas viciadas. Pobabilidade de sai caa () é 0,8 e cooa (c) é 0,2. Seja X: úmeo de caas Logo: p=0,8 e q=0,2. Calcula a pobabilidade de sai 2 caas: P(X=2)=?

11 Distibuição de Poisso X: Númeo de sucessos em um detemiado itevalo cotíuo (tempo, compimeto, supefície, volume, etc). Exemplos: Númeo de pessoas que chegam a odoviáia o peíodo de 1 h. Númeo de defeitos em baas de aço 5 m. Númeo de focos de icêdio po hectae.

12 Distibuição de Poisso Hipóteses: 1. O úmeo de sucessos em itevalos ão sobepostos costituem vaiáveis aleatóias idepedetes. 2. A pobabilidade do úmeo de sucessos em qualque itevalo depede apeas da sua dimesão. Po outas palavas, em itevalos de mesma dimesão são iguais as pobabilidades de ocoêcia de um mesmo úmeo de sucessos. 3. A pobabilidade de obte dois ou mais sucessos em um itevalo suficietemete pequeo é despezível.

13 Distibuição de Poisso Seja t: compimeto total do itevalo : úmeo de pates da divisão do itevalo, tal que o máximo um sucesso em cada pate t/: compimeto de cada pate do itevalo Potato: P( X ) p q Ode : úmeo de sucessos em epatições p: pobabilidade de sucesso em cada pate

14 Distibuição de Poisso Seja : taxa de ocoêcia de sucessos (Ex.: chegadas/ hoa; defeitos /meto) Etão: t t X 1 ) P( t p t t X 1 lim ) P( Cosideado ifiito ( POISSON )! ) ( ) P( t t e X

15 Distibuição de Poisso E( X) t e t! 0 t Va 0 X t 2 e t! t t Exemplo: Num pocesso de fabicação de alumíio apaecem em média uma falha a cada 400 m (taxa de falha: = 0,0025 falhas/m ). Qual a pobabilidade de ocoe 3 falhas em 1000m?

16 Distibuição Geomética Repetição de um expeimeto com distibuição de Beoulli (sucesso ou facasso) até obteção do pimeio sucesso. Codições do expeimeto: epetições idepedetes mesma pobabilidade de sucesso p P( X ) p q 1, 1,2,3...

17 Distibuição Geomética E( X ) i x i P X x i 1 p q 1 1 p Va X x EX 2 i PX x i i 1 1 p 2 p q 1 q p 2 Exemplo: Um ceto expeimeto é epetido até que um detemiado esultado seja obtido. As povas são idepedetes e o custo de executa um expeimeto é de $ Etetato, se o esultado a alcaça (Sucesso) ão fo atigido, um custo de $ é ecessáio paa o setup da póxima pova. Supoha que se teha somete $ paa ivesti o expeimeto. Qual a pobabilidade do custo ultapassa essa quatia se a pobabilidade do expeimeto de ceto é de 0,25?

18 Distibuição de Pascal Repetição de um expeimeto com distibuição de Beoulli (sucesso ou facasso) até obteção do -ésimo sucesso. Codições do expeimeto: povas idepedetes mesma pobabilidade de sucesso p -ésimo sucesso ocoe a -ésima tetativa -1 tetativas ateioes houve sucessos Daí P( ) X p p q 1 1

19 Distibuição de Pascal q p X 1 1 ) P( 2 ) ( p q X Va p X E ) ( Exemplo: A pobabilidade de um bem sucedido laçameto de foguete é igual a 0,8. Supoha que tetativas de laçameto sejam feitas até que teham ocoido 3 laçametos bem sucedidos. Qual a pobabilidade de que exatamete 6 tetativas sejam ecessáias?

20 Distibuição Hipegeomética Difee da Distibuição Biomial somete poque as epetições do expeimeto são feitas sem eposição. Seja: N: cojuto de elemetos : subcojuto com detemiada caacteística : elemetos são extaídos sem eposição X: úmeo de elemetos com tal caacteística N N P(X )

21 Distibuição Hipegeomética p N N N X E... ) ( N N q p N N p X Va ) (

22 Distibuição Hipegeomética Exemplo: Pequeos motoes eléticos são expedidos em lotes de 50 uidades. Ates que uma emessa seja apovada, um ispeto escolhe 5 desses motoes e os ispecioa. Se ehum dos motoes ispecioados fo defeituoso, o lote é apovado. Se um ou mais foem veificados defeituosos, todos os motoes da emessa são ispecioados. Supoha que existam, de fato, tês motoes defeituosos o lote. Qual a pobabilidade de que a ispeção 100% seja ecessáia?

Veremos neste capítulo as distribuições na variável discreta: Distribuição Binomial e Distribuição de Poisson.

Veremos neste capítulo as distribuições na variável discreta: Distribuição Binomial e Distribuição de Poisson. CAPÍTULO 5 DISTRIBUIÇÃO BINOMIAL E DISTRIBUIÇÃO DE POISSON Veemos este capítulo as distibuições a vaiável disceta: Distibuição Biomial e Distibuição de Poisso. 1. Pobabilidade de Beoulli Seja um expeimeto

Leia mais

Distribuições Discretas. Estatística. 6 - Distribuição de Probabilidade de Variáveis Aleatórias Discretas UNESP FEG DPD

Distribuições Discretas. Estatística. 6 - Distribuição de Probabilidade de Variáveis Aleatórias Discretas UNESP FEG DPD Estatístca 6 - Dstbução de Pobabldade de Vaáves Aleatóas Dscetas 06-1 Como ocoe na modelagem de fenômenos detemnístcos em que algumas funções têm papel mpotante tas como: função lnea, quadátca exponencal,

Leia mais

1 - CORRELAÇÃO LINEAR SIMPLES rxy

1 - CORRELAÇÃO LINEAR SIMPLES rxy 1 - CORRELAÇÃO LINEAR IMPLE Em pesquisas, feqüetemete, pocua-se veifica se existe elação ete duas ou mais vaiáveis, isto é, sabe se as alteações sofidas po uma das vaiáveis são acompahadas po alteações

Leia mais

) E X. ) = 0 2 ( 1 p ) p = p. ) E 2 ( X ) = p p 2 = p ( 1 p ) ( ) = i 1 n. ( ) 2 n E( X) = ( ) = 1 p ( ) = p V ( X ) = E ( X 2 E X

) E X. ) = 0 2 ( 1 p ) p = p. ) E 2 ( X ) = p p 2 = p ( 1 p ) ( ) = i 1 n. ( ) 2 n E( X) = ( ) = 1 p ( ) = p V ( X ) = E ( X 2 E X 3.5 A distribuição uiforme discreta Defiição: X tem distribuição uiforme discreta se cada um dos valores possíveis,,,, tiver fução de probabilidade P( X = i ) = e represeta-se por, i =,, 0, c.c. X ~ Uif

Leia mais

) E 2 ( X) = p p 2 = p( 1 p) ) = 0 2 ( 1 p) p = p ( ) = ( ) = ( ) = p. F - cara (sucesso) C - coroa (insucesso)

) E 2 ( X) = p p 2 = p( 1 p) ) = 0 2 ( 1 p) p = p ( ) = ( ) = ( ) = p. F - cara (sucesso) C - coroa (insucesso) 3.6 A distribuição biomial Defiição: uma eperiêcia ou prova de Beroulli é uma eperiêcia aleatória só com dois resultados possíveis (um deles chamado "sucesso" e o outro "isucesso"). Seja P(sucesso) = p,

Leia mais

Esquemas simétricos de cifra

Esquemas simétricos de cifra Esquemas siméticos de cifa Notas paa a UC de Seguaça Ifomática Iveo de 12/13 Pedo Félix (pedofelix em cc.isel.ipl.pt) Istituto Supeio de Egehaia de Lisboa Sumáio Pimitivas de cifa em bloco Pimitivas iteadas

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA 12º ANO DE ESCOLARIDADE MATEMÁTICA A. Tarefa nº 7 do plano de trabalho nº 1

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA 12º ANO DE ESCOLARIDADE MATEMÁTICA A. Tarefa nº 7 do plano de trabalho nº 1 ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA º ANO DE ESCOLARIDADE MATEMÁTICA A Taefa º 7 do plao de tabalho º. Comece po esolve o execício 3 da págia 0.. Muitas das geealizações feitas as divesas ciêcias,

Leia mais

AULA 23 FATORES DE FORMA DE RADIAÇÃO TÉRMICA

AULA 23 FATORES DE FORMA DE RADIAÇÃO TÉRMICA Notas de aula de PME 336 Pocessos de Tasfeêcia de Calo e Massa 98 AULA 3 ATORES DE ORMA DE RADIAÇÃO TÉRMICA Cosidee o caso de duas supefícies egas quaisque que tocam calo po adiação témica ete si. Supoha

Leia mais

Principais fórmulas. Capítulo 3. Desvio padrão amostral de uma distribuição de frequência: Escore padrão: z = Valor Média Desvio padrão σ

Principais fórmulas. Capítulo 3. Desvio padrão amostral de uma distribuição de frequência: Escore padrão: z = Valor Média Desvio padrão σ Picipais fómulas De Esaísica aplicada, 4 a edição, de Laso e Fabe, 00 Peice Hall Capíulo Ampliude dos dados Lagua da classe úmeo de classes (Aedode paa cima paa o póimo úmeo coveiee Poo médio (Limie ifeio

Leia mais

ENGENHARIA DA QUALIDADE A ENG AULA 6 CARTAS DE CONTROLE PARA ATRIBUTOS

ENGENHARIA DA QUALIDADE A ENG AULA 6 CARTAS DE CONTROLE PARA ATRIBUTOS ENGENHARIA DA QUALIDADE A ENG 09008 AULA 6 CARTAS DE CONTROLE PARA ATRIBUTOS PROFESSORES: CARLA SCHWENGBER TEN CATEN Tópicos desta aula Cartas de Cotrole para Variáveis Tipo 1: Tipo 2: Tipo 3: X X X ~

Leia mais

MODELOS PROBABILÍSTICOS DISCRETOS (BINOMIAL e POISSON)

MODELOS PROBABILÍSTICOS DISCRETOS (BINOMIAL e POISSON) MODELOS PROBABILÍSTICOS DISCRETOS (BINOMIAL e POISSON) Modelos probabilísticos Algumas variáveis aleatórias (V.A.) aparecem com bastate frequêcia em situações práticas de eperimetos aleatórios (E.: peso,

Leia mais

MOQ 13 PROBABILIDADE E ESTATÍSTICA. Professor: Rodrigo A. Scarpel

MOQ 13 PROBABILIDADE E ESTATÍSTICA. Professor: Rodrigo A. Scarpel MOQ 13 PROBABILIDADE E ESTATÍSTICA Professor: Rodrigo A. Scarpel rodrigo@ita.br www.mec.ita.br/~rodrigo Programa do curso: Semaas 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 e 16 Itrodução à probabilidade evetos

Leia mais

INTRODUÇÃO AO ESTUDO DA ÁLGEBRA LINERAR Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 2 ESPAÇOS VETORIAIS

INTRODUÇÃO AO ESTUDO DA ÁLGEBRA LINERAR Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 2 ESPAÇOS VETORIAIS Luiz Facisco da Cuz Depatameto de Matática Uesp/Bauu CAPÍTULO ESPAÇOS VETORIAIS 1 Históico Sabe-se que, até pelo meos o fial do século XIX, ão havia ehuma teoia ou cojuto de egas b defiidas a que se pudesse

Leia mais

Números Complexos (Parte II) 1 Plano de Argand-Gauss. 2 Módulo de um número complexo. Prof. Gustavo Adolfo Soares

Números Complexos (Parte II) 1 Plano de Argand-Gauss. 2 Módulo de um número complexo. Prof. Gustavo Adolfo Soares Númeos Complexos (Pate II) 1 Plao de Agad-Gauss Das defiições de que um úmeo complexo é um pa odeado de úmeos eais x e y e que C = R R, temos que: A cada úmeo complexo coespode um úico poto do plao catesiao,

Leia mais

DISTRIBUIÇÕES DE PROBABILIDADE

DISTRIBUIÇÕES DE PROBABILIDADE DISTRIBUIÇÕES DE PROBABILIDADE DISTRIBUIÇÃO DE PROBABILIDADE Seja uma v.a. que assume os valores,,..., com probabilidade p, p,..., p associadas a cada elemeto de, sedo p p... p diz-se que está defiida

Leia mais

Departamento de Física - ICE/UFJF Laboratório de Física II

Departamento de Física - ICE/UFJF Laboratório de Física II Depatameto de ísica - ICE/UJ Laboatóio de ísica II - Itodução Pática : Medida da Aceeação Gavitacioa A iteação avitacioa é uma das quato iteações fudametais que se ecotam a atueza e é a úica que afeta

Leia mais

Departamento de Informática. Modelagem Analítica. Desempenho de Sistemas de Computação. Arranjos: Amostras Ordenadas. Exemplo

Departamento de Informática. Modelagem Analítica. Desempenho de Sistemas de Computação. Arranjos: Amostras Ordenadas. Exemplo Depatameto de Ifomática Disciplia: Modelagem Aalítica do Desempeho de Sistemas de Computação Elemetos de Aálise Combiatóia Pof. Ségio Colche colche@if.puc-io.b Teoema: Elemetos de Aálise Combiatóia Modelagem

Leia mais

Universidade de São Paulo Instituto de Física. Física Moderna II. Profa. Márcia de Almeida Rizzutto 2 o Semestre de Física Moderna 2 Aula 20

Universidade de São Paulo Instituto de Física. Física Moderna II. Profa. Márcia de Almeida Rizzutto 2 o Semestre de Física Moderna 2 Aula 20 Uivesidade de São Paulo Istituto de Física Física Modea II Pofa. Mácia de Almeida Rizzutto o Semeste de 14 Física Modea 1 Todos os tipos de ligação molecula se devem ao fato de a eegia total da molécula

Leia mais

INTRODUÇÃO AO ESTUDO DA ÁLGEBRA LINERAR Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 2 ESPAÇOS VETORIAIS

INTRODUÇÃO AO ESTUDO DA ÁLGEBRA LINERAR Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 2 ESPAÇOS VETORIAIS Luiz Facisco da Cuz Depatameto de Matemática Uesp/Bauu CAPÍTULO ESPAÇOS VETORIAIS 1 Históico Sabe-se que, até pelo meos o fial do século XIX, ão havia ehuma teoia ou cojuto de egas bem defiidas a que se

Leia mais

Demonstrações Geométricas, Algébricas e Solução de Equações Discretas utilizando as Sequências de Números Figurados

Demonstrações Geométricas, Algébricas e Solução de Equações Discretas utilizando as Sequências de Números Figurados Demostações Geométicas, Algébicas e Solução de Equações Discetas utilizado as Sequêcias de Númeos Figuados José Atoio Salvado Depatameto de Matemática - CCET - Uivesidade Fedeal de São Calos 3565-905,

Leia mais

Resolução da Prova de Raciocínio Lógico

Resolução da Prova de Raciocínio Lógico ESAF/ANA/2009 da Pova de Raciocínio Lógico (Refeência: Pova Objetiva 1 comum a todos os cagos). Opus Pi. Rio de Janeio, maço de 2009. Opus Pi. opuspi@ymail.com 1 21 Um io pincipal tem, ao passa em deteminado

Leia mais

Distribuição de Bernoulli

Distribuição de Bernoulli Algumas Distribuições Discretas Cálculo das Probabilidades e Estatística I Prof. Luiz Medeiros Departameto de Estatística UFPB Distribuição de Beroulli Na prática muitos eperimetos admitem apeas dois resultados

Leia mais

λ λ n n Distribuição de Poisson Exemplo. Considere a transmissão de n bits em um canal de comunicação digital. X : número de bits em erro

λ λ n n Distribuição de Poisson Exemplo. Considere a transmissão de n bits em um canal de comunicação digital. X : número de bits em erro Distribuição de Poisso Eemplo. Cosidere a trasmissão de bits em um caal de comuicação digital. X : úmero de bits em erro Probabilidade p de erro costate e trasmissões idepedetes Distribuição biomial λ=p

Leia mais

Prova Escrita de Matemática A

Prova Escrita de Matemática A EXAME FINAL NACIONAL DO ENSINO SECUNDÁRIO Pova Escita de Matemática A 12.º Ano de Escolaidade Deceto-Lei n.º 19/2012, de 5 de julho Pova 65/1.ª Fase Citéios de Classificação 11 Páginas 2016 Pova 65/1.ª

Leia mais

Cap. 4 - Estimação por Intervalo

Cap. 4 - Estimação por Intervalo Cap. 4 - Estimação por Itervalo Amostragem e iferêcia estatística População: cosiste a totalidade das observações em que estamos iteressados. Nº de observações a população é deomiado tamaho=n. Amostra:

Leia mais

Processos Estocásticos

Processos Estocásticos IFBA Processos Estocásticos Versão 1 Alla de Sousa Soares Graduação: Liceciatura em Matemática - UESB Especilização: Matemática Pura - UESB Mestrado: Matemática Pura - UFMG Vitória da Coquista - BA 2014

Leia mais

Campo Gravítico da Terra

Campo Gravítico da Terra 5. Campo Gavítico ómalo elação ete o potecial gavítico e o potecial omal é dada po: W ( x, y, z = U( x, y,z + ( x, y,z O campo gavítico aómalo ou petubado é etão defiido pela difeeça do campo gavítico

Leia mais

Exame Final Nacional de Matemática A Prova 635 Época Especial Ensino Secundário º Ano de Escolaridade. Critérios de Classificação.

Exame Final Nacional de Matemática A Prova 635 Época Especial Ensino Secundário º Ano de Escolaridade. Critérios de Classificação. Exame Final Nacional de Matemática A Pova 635 Época Especial Ensino Secundáio 07.º Ano de Escolaidade Deceto-Lei n.º 39/0, de 5 de julho Citéios de Classificação 0 Páginas Pova 635/E. Especial CC Página

Leia mais

APONTAMENTOS DE COMPLEMENTOS DE MATEMÁTICA

APONTAMENTOS DE COMPLEMENTOS DE MATEMÁTICA UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA APONTAMENTOS DE COMPLEMENTOS DE MATEMÁTICA (CÁLCULO DIFERENCIAL EM ) ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Cálculo Dieecial em Cálculo dieecial em

Leia mais

Avaliação de Desempenho de Sistemas Discretos

Avaliação de Desempenho de Sistemas Discretos Distribuições Comus Avaliação de Desempeho de Sistemas Discretos Probabilidade e Estatística 2 Uiforme Normal Poisso Hipergeométrica Biomial Studet's Geométrica Logormal Expoecial Beta Gamma Qui-Quadrado

Leia mais

AMOSTRAGEM PARA INVENTÁRIO FLORESTAL COM PROBABILIDADE DE SUPERPOSIÇÃO DE PARCELAS CIRCULARES 1

AMOSTRAGEM PARA INVENTÁRIO FLORESTAL COM PROBABILIDADE DE SUPERPOSIÇÃO DE PARCELAS CIRCULARES 1 Amostagem paa ivetáio floestal com 137 AMOSTRAGEM PARA INVENTÁRIO FLORESTAL COM PROBABILIDADE DE SUPERPOSIÇÃO DE PARCELAS CIRCULARES 1 Thomaz Coêa de Casto da Costa 2 e Adai José Regazzi 3 RESUMO Este

Leia mais

Análise Combinatória (Regras de Contagem) 2 Princípio Fundamental da Multiplicação

Análise Combinatória (Regras de Contagem) 2 Princípio Fundamental da Multiplicação Uiversidade Federal Flumiese INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA Estatística Básica para Egeharia Prof. Mariaa Albi Material de Apoio Assuto: Aálise Combiatória Aálise Combiatória

Leia mais

A Inferência Estatística é um conjunto de técnicas que objetiva estudar a população através de evidências fornecidas por uma amostra.

A Inferência Estatística é um conjunto de técnicas que objetiva estudar a população através de evidências fornecidas por uma amostra. UNIVERSIDADE FEDERAL DA PARAÍBA Distribuição Amostral Luiz Medeiros de Araujo Lima Filho Departameto de Estatística INTRODUÇÃO A Iferêcia Estatística é um cojuto de técicas que objetiva estudar a população

Leia mais

UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPTO. DE ESTATÍSTICA LISTA 4 PROBABILIDADE A (CE068) Prof. Benito Olivares Aguilera

UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPTO. DE ESTATÍSTICA LISTA 4 PROBABILIDADE A (CE068) Prof. Benito Olivares Aguilera UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EATAS DEPTO. DE ESTATÍSTICA LISTA 4 PROBABILIDADE A (CE068) Prof. Beito Olivares Aguilera 2 o Sem./09 1. Das variáveis abaixo descritas, assiale quais são

Leia mais

O Paradoxo de Bertrand para um Experimento Probabilístico Geométrico

O Paradoxo de Bertrand para um Experimento Probabilístico Geométrico O Paadoxo de etand paa um Expeimento Pobabilístico Geomético maildo de Vicente 1 1 Colegiado do Cuso de Matemática Cento de Ciências Exatas e Tecnológicas da Univesidade Estadual do Oeste do Paaná Caixa

Leia mais

5. ANÁLISE DE SISTEMAS DA CONFIABILIADE DE SISTEMAS SÉRIE-PARALELO

5. ANÁLISE DE SISTEMAS DA CONFIABILIADE DE SISTEMAS SÉRIE-PARALELO 5. ANÁLISE DE SISTEMAS DA CONFIABILIADE DE SISTEMAS SÉRIE-PARALELO 5.1 INTRODUÇÃO Um sistema é defiido como todo o cojuto de compoetes itercoectados, previamete determiados, de forma a realizar um cojuto

Leia mais

Departamento de Informática. Modelagem Analítica. Modelagem Analítica do Desempenho de Sistemas de Computação. Disciplina: Algumas Distribuições

Departamento de Informática. Modelagem Analítica. Modelagem Analítica do Desempenho de Sistemas de Computação. Disciplina: Algumas Distribuições Deartameto de Iformática Discilia: do Desemeho de Sistemas de Comutação Algumas Distribuições Algumas Distribuições Discretas Prof. Sérgio Colcher colcher@if.uc-rio.br Coyright 999-8 by TeleMídia Lab.

Leia mais

NÚMEROS IRRACIONAIS E TRANSCENDENTES

NÚMEROS IRRACIONAIS E TRANSCENDENTES UNIVERSIDADE FEDERAL DE SANTA CATARINA UNIVERSIDADE VIRTUAL DO MARANHÃO DEPARTAMENTO DE MATEMÁTICA E FÍSICA CURSO DE ESPECIALIZAÇÃO EM MATEMÁTICA NÚMEROS IRRACIONAIS E TRANSCENDENTES IMPERATRIZ 009 JULIMAR

Leia mais

ELETRICIDADE CAPÍTULO 3 LEIS DE CIRCUITOS ELÉTRICOS

ELETRICIDADE CAPÍTULO 3 LEIS DE CIRCUITOS ELÉTRICOS ELETICIDADE CAPÍTULO 3 LEIS DE CICUITOS ELÉTICOS - CONSIDEE A SEGUINTE ELAÇÃO: 3. LEI DE OHM - QUALQUE POCESSO DE CONVESÃO DE ENEGIA PODE SE ELACIONADO A ESTA EQUAÇÃO. - EM CICUITOS ELÉTICOS : - POTANTO,

Leia mais

Probabilidade II Aula 12

Probabilidade II Aula 12 Coteúdo Probabilidade II Aula Juho de 009 Desigualdade de Marov Desigualdade de Jese Lei Fraca dos Grades Números Môica Barros, D.Sc. Itrodução A variâcia de uma variável aleatória mede a dispersão em

Leia mais

CEDERJ - CENTRO DE EDUCAÇÃO SUPERIOR A DISTÂNCIA DO ESTADO DO RIO DE JANEIRO

CEDERJ - CENTRO DE EDUCAÇÃO SUPERIOR A DISTÂNCIA DO ESTADO DO RIO DE JANEIRO CEDERJ - CENTRO DE EDUCAÇÃO SUPERIOR A DISTÂNCIA DO ESTADO DO RIO DE JANEIRO MATERIAL DIDÁTICO IMPRESSO CURSO: Física DISCIPLINA: Ifomática paa o Esio de Física CONTEUDISTA: Calos Eduado Aguia AULA 4 TÍTULO:

Leia mais

= o logaritmo natural de x.

= o logaritmo natural de x. VI OLIMPÍ IEROMERIN E MTEMÁTI UNIVERSITÁRI 8 E NOVEMRO E 00 PROLEM [5 potos] Seja f ( x) log x 0 = o logaritmo atural de x efia para todo 0 f+ ( x) = f() t dt = lim f() t dt x 0 ε 0 ε Prove que o limite

Leia mais

Aluno(a): Professor: Chiquinho

Aluno(a): Professor: Chiquinho Aluo(a): Pofesso: Chquho Estatístca Básca É a cêca que tem po objetvo oeta a coleta, o esumo, a apesetação, a aálse e a tepetação de dados. População e amosta - População é um cojuto de sees com uma dada

Leia mais

CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA

CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA 5. INTRODUÇÃO É freqüete ecotrarmos problemas estatísticos do seguite tipo : temos um grade úmero de objetos (população) tais que se fossem tomadas as medidas

Leia mais

Módulo: Binômio de Newton e o Triângulo de Pascal. Somas de elementos em Linhas, Colunas e Diagonais do Triângulo de Pascal. 2 ano do E.M.

Módulo: Binômio de Newton e o Triângulo de Pascal. Somas de elementos em Linhas, Colunas e Diagonais do Triângulo de Pascal. 2 ano do E.M. Módulo: Bômo de Newto e o Tâgulo de Pascal Somas de elemetos em Lhas, Coluas e Dagoas do Tâgulo de Pascal ao do EM Módulo: Bômo de Newto e o Tâgulo de Pascal Somas de elemetos em Lhas, Coluas e Dagoas

Leia mais

Lei de Gauss II Revisão: Aula 2_2 Física Geral e Experimental III Prof. Cláudio Graça

Lei de Gauss II Revisão: Aula 2_2 Física Geral e Experimental III Prof. Cláudio Graça Lei de Gauss II Revisão: Aula 2_2 Física Geal e Expeimental III Pof. Cláudio Gaça Revisão Cálculo vetoial 1. Poduto de um escala po um veto 2. Poduto escala de dois vetoes 3. Lei de Gauss, fluxo atavés

Leia mais

VERSÃO 1. Prova Escrita de Matemática A. 12.º Ano de Escolaridade. Prova 635/2.ª Fase EXAME FINAL NACIONAL DO ENSINO SECUNDÁRIO

VERSÃO 1. Prova Escrita de Matemática A. 12.º Ano de Escolaridade. Prova 635/2.ª Fase EXAME FINAL NACIONAL DO ENSINO SECUNDÁRIO EXAME FINAL NACINAL D ENSIN SECUNDÁRI Pova Escita de Matemática A 1.º Ano de Escolaidade Deceto-Lei n.º 19/01, de 5 de julho Pova 65/.ª Fase 15 Páginas Duação da Pova: 150 minutos. Toleância: 0 minutos.

Leia mais

Probabilidades num jogo aos dados

Probabilidades num jogo aos dados Técicas Laboratoriais de Física Lic. Física e Eg. Biomédica 007/08 Capítulo VIII Distribuição Biomial Probabilidades um jogo aos dados Defiição de uma Distribuição Biomial Propriedades da Distribuição

Leia mais

Teoria Elementar da Probabilidade

Teoria Elementar da Probabilidade 10 Teoria Elemetar da Probabilidade MODELOS MTEMÁTICOS DETERMINÍSTICOS PROBBILÍSTICOS PROCESSO (FENÓMENO) LETÓRIO - Quado o acaso iterfere a ocorrêcia de um ou mais dos resultados os quais tal processo

Leia mais

E = F/q onde E é o campo elétrico, F a força

E = F/q onde E é o campo elétrico, F a força Campo Elético DISCIPLINA: Física NOE: N O : TURA: PROFESSOR: Glênon Duta DATA: Campo elético NOTA: É a egião do espaço em ue uma foça elética pode sugi em uma caga elética. Toda caga elética cia em tono

Leia mais

DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos:

DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos: 48 DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL LEI DOS GRANDES NÚMEROS Pretede-se estudar o seguite problema: À medida que o úmero de repetições de uma experiêcia cresce, a frequêcia relativa

Leia mais

BINÔMIO DE NEWTON. O desenvolvimento da expressão 2. a b é simples, pois exige somente quatro multiplicações e uma soma:

BINÔMIO DE NEWTON. O desenvolvimento da expressão 2. a b é simples, pois exige somente quatro multiplicações e uma soma: 07 BINÔMIO DE NEWTON O desevolvimeto da epressão a b é simples, pois eige somete quatro multiplicações e uma soma: a b a b a b a ab ba b a ab b O desevolvimeto de a b é uma tarefa um pouco mais trabalhosa,

Leia mais

Instruções gerais sobre a Prova:

Instruções gerais sobre a Prova: DEPARTAMENTO DE ESTATÍSTICA - UFMG PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 2012/2013 Istruções gerais sobre a Prova: (a) Cada questão respodida corretamete vale 1 (um) poto. (b) Cada

Leia mais

Prova Escrita de Matemática A

Prova Escrita de Matemática A EXAME NACIONAL DO ENSINO SECUNDÁRIO DecetoLei n.º 39/0, de 5 de julho Pova Escita de Matemática A.º Ano de Escolaidade Pova 635/Época Especial Citéios de Classificação Páginas 03 COTAÇÕES GRUPO I. a 8....(8

Leia mais

FGE0270 Eletricidade e Magnetismo I

FGE0270 Eletricidade e Magnetismo I FGE7 Eleticidade e Magnetismo I Lista de eecícios 1 8 1. As cagas q 1 = q = µc na Fig. 1a estão fias e sepaadas po d = 1,5m. (a) Qual é a foça elética que age sobe q 1? (b) Colocando-se uma teceia caga

Leia mais

FGE0270 Eletricidade e Magnetismo I

FGE0270 Eletricidade e Magnetismo I FGE7 Eleticidade e Magnetismo I Lista de eecícios 1 9 1. As cagas q 1 = q = µc na Fig. 1a estão fias e sepaadas po d = 1,5m. (a) Qual é a foça elética que age sobe q 1? (b) Colocando-se uma teceia caga

Leia mais

2. COMBINAÇÃO LINEAR E DEPENDÊNCIA LINEAR DE VETORES

2. COMBINAÇÃO LINEAR E DEPENDÊNCIA LINEAR DE VETORES CAPITULO II COMBINAÇÃO LINEAR E DEPENDÊNCIA LINEAR DE VETORES Acreditamos que os coceitos de Combiação Liear (CL) e de Depedêcia Liear serão melhor etedidos se forem apresetados a partir de dois vetores

Leia mais

AMOSTRAGEM ALEATÓRIA DISTRIBUIÇÕES POR AMOSTRAGEM

AMOSTRAGEM ALEATÓRIA DISTRIBUIÇÕES POR AMOSTRAGEM 6 AMOSTRAGEM ALEATÓRIA DISTRIBUIÇÕES POR AMOSTRAGEM Quado se pretede estudar uma determiada população, aalisam-se certas características ou variáveis dessa população. Essas variáveis poderão ser discretas

Leia mais

Probabilidades. José Viegas

Probabilidades. José Viegas Probabilidades José Viegas Lisboa 001 1 Teoria das probabilidades Coceito geral de probabilidade Supoha-se que o eveto A pode ocorrer x vezes em, igualmete possíveis. Etão a probabilidade de ocorrêcia

Leia mais

b) Fabrico de peças cilíndricas Capítulo 5 - Distribuições conjuntas de probabilidades e complementos X - comprimento da peça Y - diâmetro da peça

b) Fabrico de peças cilíndricas Capítulo 5 - Distribuições conjuntas de probabilidades e complementos X - comprimento da peça Y - diâmetro da peça Capítulo 5 - Distribuições cojutas de probabilidades e complemetos 5.1 Duas variáveis aleatórias discretas. Distribuições cojutas, margiais e codicioais. Idepedêcia Em relação a uma mesma eperiêcia podem

Leia mais

Lista 9 - Introdução à Probabilidade e Estatística

Lista 9 - Introdução à Probabilidade e Estatística Lista 9 - Itrodução à Probabilidade e Estatística Desigualdades e Teoremas Limites 2.=000. 1 Um ariro apota a um alvo de 20 cm de raio. Seus disparos atigem o alvo, em média, a 5 cm do cetro deste. Assuma

Leia mais

Movimento unidimensional com aceleração constante

Movimento unidimensional com aceleração constante Movimento unidimensional com aceleação constante Movimento Unifomemente Vaiado Pof. Luís C. Pena MOVIMENTO VARIADO Os movimentos que conhecemos da vida diáia não são unifomes. As velocidades dos móveis

Leia mais

Duração da Prova: 150 minutos. Tolerância: 30 minutos. É permitido o uso de régua, compasso, esquadro, transferidor e calculadora gráfica.

Duração da Prova: 150 minutos. Tolerância: 30 minutos. É permitido o uso de régua, compasso, esquadro, transferidor e calculadora gráfica. Eame Fial Nacioal de Matemática A Pova 635 Época Especial Esio Secdáio 07.º Ao de Escolaidade Deceto-Lei.º 39/0, de 5 de jlho Dação da Pova: 50 mitos. Toleâcia: 30 mitos. 8 Págias VERSÃO Idiqe de foma

Leia mais

UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena EEL

UNIVERSIDADE DE SÃO PAULO Escola de Engenharia de Lorena EEL UNIVERSIDADE DE SÃO PAULO Escola de Egehaia de Loea EEL LOB101 - FÍSICA IV Pof. D. Duval Rodigues Juio Depatameto de Egehaia de Mateiais (DEMAR) Escola de Egehaia de Loea (EEL) Uivesidade de São Paulo

Leia mais

Recredenciamento Portaria MEC 347, de D.O.U

Recredenciamento Portaria MEC 347, de D.O.U Portaria MEC 347, de 05.04.0 - D.O.U. 0.04.0. ESTATÍSTICA I / MÉTODOS QUANTITATIVOS E PROCESSO DECISÓRIO I / ESTATÍSTICA APLICADA À EDUCAÇÃO Elemetos de Probabilidade Quest(i) Ecotramos, a atureza, dois

Leia mais

Escola de Engenharia de Lorena EEL USP Departamento de Engenharia Química DEQUI Disciplina: Normalização e Controle da Qualidade NCQ

Escola de Engenharia de Lorena EEL USP Departamento de Engenharia Química DEQUI Disciplina: Normalização e Controle da Qualidade NCQ 1 Escola de Egeharia de orea EE SP Departameto de Egeharia Química DEQI Disciplia: Normalização e Cotrole da Qualidade NCQ Capítulo : Amostragem por Variáveis (MI STD 1) SEÇÃO A.1 Objetivo Este capítulo

Leia mais

TRABAJO. Empresa o Entidad Daimon Engenharia e Sistemas Companhia de Eletricidade do Estado da Bahia - COELBA

TRABAJO. Empresa o Entidad Daimon Engenharia e Sistemas Companhia de Eletricidade do Estado da Bahia - COELBA Título Análise de Patida de Motoes de Indução em Redes de Distibuição Utilizando Cicuito Elético Equivalente Obtido po Algoitmo Evolutivo Nº de Registo (Resumen 134 Empesa o Entidad Daimon Engenhaia e

Leia mais

Prof. Rafael A. Rosales 24 de maio de Exercício 1. De quantas maneiras é possível ordenar um conjunto formado por n elementos?

Prof. Rafael A. Rosales 24 de maio de Exercício 1. De quantas maneiras é possível ordenar um conjunto formado por n elementos? USP-FFCLRP Fudametos de Matemática DCM Iformática Biomédica Prof. Rafael A. Rosales 24 de maio de 20 Combiatória Exercício. De quatas maeiras é possível ordear um cojuto formado por elemetos? Exercício

Leia mais

A B C A e B A e C B e C A, B e C

A B C A e B A e C B e C A, B e C 2 O ANO EM Matemática I RAPHAEL LIMA Lista 6. Durate o desfile de Caraval das escolas de samba do Rio de Jaeiro em 207, uma empresa especializada em pesquisa de opiião etrevistou 40 foliões sobre qual

Leia mais

Estudo de um modelo do núcleo do deuterão

Estudo de um modelo do núcleo do deuterão Estudo de um modelo do úcleo do deuteão Goçalo Oliveia º 5789 Pedo Ricate º 578 Física Quâtica da Matéia Istituto Sueio Técico Maio, 8 Resumo Cosidea-se um modelo simles aa o úcleo do deuteão, ode a iteacção

Leia mais

AULA Subespaço, Base e Dimensão Subespaço.

AULA Subespaço, Base e Dimensão Subespaço. Note bem: a leitura destes apotametos ão dispesa de modo algum a leitura ateta da bibliografia pricipal da cadeira TÓPICOS Subespaço. ALA Chama-se a ateção para a importâcia do trabalho pessoal a realizar

Leia mais

Sempre que surgir uma dúvida quanto à utilização de um instrumento ou componente, o aluno deverá consultar o professor para esclarecimentos.

Sempre que surgir uma dúvida quanto à utilização de um instrumento ou componente, o aluno deverá consultar o professor para esclarecimentos. Instituto de Física de São Calos Laboatóio de Eleticidade e Magnetismo: Nesta pática vamos estuda o compotamento de gandezas como campo elético e potencial elético. Deteminaemos as supefícies equipotenciais

Leia mais

Amostras Aleatórias e Distribuições Amostrais. Probabilidade e Estatística: afinal, qual é a diferença?

Amostras Aleatórias e Distribuições Amostrais. Probabilidade e Estatística: afinal, qual é a diferença? Amostras Aleatórias e Distribuições Amostrais Probabilidade e Estatística: afial, qual é a difereça? Até agora o que fizemos foi desevolver modelos probabilísticos que se adequavam a situações reais. Por

Leia mais

CAPÍTULO 7: CAPILARIDADE

CAPÍTULO 7: CAPILARIDADE LCE000 Física do Ambiente Agícola CAPÍTULO 7: CAPILARIDADE inteface líquido-gás M M 4 esfea de ação molecula M 3 Ao colocamos uma das extemidades de um tubo capila de vido dento de um ecipiente com água,

Leia mais

Prova Escrita de Matemática A

Prova Escrita de Matemática A EXAME FINAL NACIONAL DO ENSINO SECUNDÁRIO Pova Escita de Matemática A 12.º Ano de Escolaidade Deceto-Lei n.º 139/2012, de 5 de julho Pova 635/2.ª Fase Citéios de Classificação 11 Páginas 2015 Pova 635/2.ª

Leia mais

&255(17((/e75,&$ (6.1) Se a carga é livre para se mover, ela sofrerá uma aceleração que, de acordo com a segunda lei de Newton é dada por : r r (6.

&255(17((/e75,&$ (6.1) Se a carga é livre para se mover, ela sofrerá uma aceleração que, de acordo com a segunda lei de Newton é dada por : r r (6. 9 &55(1((/e5,&$ Nos capítulos anteioes estudamos os campos eletostáticos, geados a pati de distibuições de cagas eléticas estáticas. Neste capítulo iniciaemos o estudo da coente elética, que nada mais

Leia mais

Árvores Digitais. Fonte de consulta: Szwarcfiter, J.; Markezon, L. Estruturas de Dados e seus Algoritmos, 3a. ed. LTC. Capítulo11

Árvores Digitais. Fonte de consulta: Szwarcfiter, J.; Markezon, L. Estruturas de Dados e seus Algoritmos, 3a. ed. LTC. Capítulo11 Ávoes Digitais Fonte de consulta: Szwacfite, J.; Makezon, L. Estutuas de Dados e seus Algoitmos, 3a. ed. LTC. Capítulo Pemissas do que vimos até aqui } As chaves têm tamanho fixo } As chaves cabem em uma

Leia mais

Electricidade e magnetismo

Electricidade e magnetismo Electicidade e magnetismo Campo e potencial eléctico 2ª Pate Pof. Luís Pena 2010/11 Enegia potencial eléctica O campo eléctico, tal como o campo gavítico, é um campo consevativo. A foça eléctica é consevativa.

Leia mais

DEPARTAMENTO DE ESTATÍSTICA - UFMG PROVA DE ESTATÍSTICA E PROBABILIDADE SELEÇÃO - MESTRADO/ UFMG /2016

DEPARTAMENTO DE ESTATÍSTICA - UFMG PROVA DE ESTATÍSTICA E PROBABILIDADE SELEÇÃO - MESTRADO/ UFMG /2016 DEPARTAMENTO DE ESTATÍSTICA - UFMG PROVA DE ESTATÍSTICA E PROBABILIDADE SELEÇÃO - MESTRADO/ UFMG - 205/206 Istruções:. Cada questão respodida corretamete vale (um poto. 2. Cada questão respodida icorretamete

Leia mais

MATEMÁTICA SUAS TECNOLOGIAS. 05. A função logarítmica RC = log é logarítmica crescente C8, 4 =

MATEMÁTICA SUAS TECNOLOGIAS. 05. A função logarítmica RC = log é logarítmica crescente C8, 4 = RESOLUÇÃO E Resolva Eem I TEÁTI SUS TENOLOGIS III) No tiâgulo equiláteo JI: ai 60 ssim, sedo JÎH, devemos te: + 60 + 0 + 08 60 7 0. O obô pecoeá o peímeto de um polígoo egula de lados, cujo âgulo eteo

Leia mais

Mecânica. Conceito de campo Gravitação 2ª Parte Prof. Luís Perna 2010/11

Mecânica. Conceito de campo Gravitação 2ª Parte Prof. Luís Perna 2010/11 Mecânica Gavitação 2ª Pate Pof. Luís Pena 2010/11 Conceito de campo O conceito de campo foi intoduzido, pela pimeia vez po Faaday no estudo das inteacções elécticas e magnéticas. Michael Faaday (1791-1867)

Leia mais

Departamento de Física - Universidade do Algarve FORÇA CENTRÍFUGA

Departamento de Física - Universidade do Algarve FORÇA CENTRÍFUGA FORÇA CENTRÍFUGA 1. Resumo Um copo desceve um movimento cicula unifome. Faz-se vaia a sua velocidade de otação e a distância ao eixo de otação, medindo-se a foça centífuga em função destes dois paâmetos..

Leia mais

Revisão Vetores em R n

Revisão Vetores em R n Revisão Vetoes em R Deiição O espaço vetoial R é o cojuto R : {( x1,, x) xi R, i 1,, } o qual deiimos as opeações: a) Se u ( x 1,, x ) e v ( y 1,, y ) estão em R temos que u + v ( x1 + y1,, x + y) ; b)

Leia mais

Aula-10 Indução e Indutância

Aula-10 Indução e Indutância Aula-1 Idução e Idutâcia Idução Apedeos que: Ua espia codutoa pecoida po ua coete i a peseça de u capo agético sofe ação de u toque: espia de coete + capo agético toque as... Se ua espia, co a coete desligada,

Leia mais

Energia no movimento de uma carga em campo elétrico

Energia no movimento de uma carga em campo elétrico O potencial elético Imagine dois objetos eletizados, com cagas de mesmo sinal, inicialmente afastados. Paa apoximá-los, é necessáia a ação de uma foça extena, capaz de vence a epulsão elética ente eles.

Leia mais

Prova Escrita de Matemática B

Prova Escrita de Matemática B EXAME NACIONAL DO ENSINO SECUNDÁRIO Deceto-Lei n.º 139/01, de 5 de julho Pova Escita de Matemática B 10.º e 11.º Anos de Escolaidade Pova 735/.ª Fase 13 Páginas Duação da Pova: 150 minutos. Toleância:

Leia mais

CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO

CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO Capítulo 4 - Cinemática Invesa de Posição 4 CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO 4.1 INTRODUÇÃO No capítulo anteio foi visto como detemina a posição e a oientação do ógão teminal em temos das vaiáveis

Leia mais

PROVA COMENTADA E RESOLVIDA PELOS PROFESSORES DO CURSO POSITIVO

PROVA COMENTADA E RESOLVIDA PELOS PROFESSORES DO CURSO POSITIVO Vestibula AFA 010 Pova de Matemática COMENTÁRIO GERAL DOS PROFESSORES DO CURSO POSITIVO A pova de Matemática da AFA em 010 apesentou-se excessivamente algébica. Paa o equílibio que se espea nesta seleção,

Leia mais

Universidade Federal Fluminense - UFF-RJ

Universidade Federal Fluminense - UFF-RJ Aotações sobre somatórios Rodrigo Carlos Silva de Lima Uiversidade Federal Flumiese - UFF-RJ rodrigouffmath@gmailcom Sumário Somatórios 3 Somatórios e úmeros complexos 3 O truque de Gauss para somatórios

Leia mais

1 Distribuições Amostrais

1 Distribuições Amostrais 1 Distribuições Amostrais Ao retirarmos uma amostra aleatória de uma população e calcularmos a partir desta amostra qualquer quatidade, ecotramos a estatística, ou seja, chamaremos os valores calculados

Leia mais

Faculdade de Economia Universidade Nova de Lisboa ESTATÍSTICA. Exame Final 2ª Época 26 de Junho de Grupo I (3 valores)

Faculdade de Economia Universidade Nova de Lisboa ESTATÍSTICA. Exame Final 2ª Época 26 de Junho de Grupo I (3 valores) Faculdade de Ecoomia Uiversidade Nova de Lisboa ESTATÍSTIA Exame Fial ª Época 6 de Juho de 00 Ateção:. Respoda a cada grupo em folhas separadas. Idetifique todas as folhas.. Todas as respostas devem ser

Leia mais

( 1,2,4,8,16,32,... ) PG de razão 2 ( 5,5,5,5,5,5,5,... ) PG de razão 1 ( 100,50,25,... ) PG de razão ½ ( 2, 6,18, 54,162,...

( 1,2,4,8,16,32,... ) PG de razão 2 ( 5,5,5,5,5,5,5,... ) PG de razão 1 ( 100,50,25,... ) PG de razão ½ ( 2, 6,18, 54,162,... Progressões Geométricas Defiição Chama se progressão geométrica PG qualquer seqüêcia de úmeros reais ou complexos, ode cada termo a partir do segudo, é igual ao aterior, multiplicado por uma costate deomiada

Leia mais

Sistemas e Sinais 2009/2010

Sistemas e Sinais 2009/2010 Aálise em espaço de estados Sistemas e Siais 009/010 Repesetação de Sistemas Sistemas descitos po equações difeeciais Sistemas descitos po sistemas de equações difeeciais Repesetação em espaço de estados

Leia mais

Fundamentos de Análise Matemática Profª Ana Paula. Sequência Infinitas

Fundamentos de Análise Matemática Profª Ana Paula. Sequência Infinitas Fudametos de Aálise Matemática Profª Aa Paula Sequêcia Ifiitas Defiição 1: Uma sequêcia umérica a 1, a 2, a 3,,a,é uma fução, defiida o cojuto dos úmeros aturais : f : f a Notação: O úmero é chamado de

Leia mais

Lista 9 - Introdução à Probabilidade e Estatística

Lista 9 - Introdução à Probabilidade e Estatística UNIVERSIDADE FEDERAL DO ABC Lista 9 - Itrodução à Probabilidade e Estatística Desigualdades e Teoremas Limites 1 Um ariro apota a um alvo de 20 cm de raio. Seus disparos atigem o alvo, em média, a 5 cm

Leia mais

4 Análise de refletores circularmente simétricos alimentados por diagramas com dependência azimutal n=0 4.1 Introdução

4 Análise de refletores circularmente simétricos alimentados por diagramas com dependência azimutal n=0 4.1 Introdução 59 4 Aálise de efletoes ciculamete siméticos alimetados po diagamas com depedêcia aimutal = 4.1 Itodução Diagamas omidiecioais veticalmete polaiados podem se geados po ateas efletoas ciculamete siméticas

Leia mais

Cap. 4 - O Campo Elétrico

Cap. 4 - O Campo Elétrico ap. 4 - O ampo Elético 4.1 onceito de ampo hama-se ampo a toda egião do espaço que apesenta uma deteminada popiedade física. Esta popiedade pode se de qualque natueza, dando oigem a difeentes campos, escalaes

Leia mais

PROBABILIDADES E INTRODUÇÃO A PROCESSOS ESTOCÁSTICOS. Aula 7 11 e 12 abril MOQ-12 Probabilidades e Int. a Processos Estocásticos

PROBABILIDADES E INTRODUÇÃO A PROCESSOS ESTOCÁSTICOS. Aula 7 11 e 12 abril MOQ-12 Probabilidades e Int. a Processos Estocásticos PROBABILIDADES E INTRODUÇÃO A PROCESSOS ESTOCÁSTICOS Aula 7 11 e 12 abril 2007 1 Distribuições Discretas 1. Distribuição Bernoulli 2. Distribuição Binomial 3. Distribuição Geométrica 4. Distribuição Pascal

Leia mais

PROPAGAÇÃO DE ONDAS ELECTROMAGNÉTICAS NUM GUIA CILÍNDRICO

PROPAGAÇÃO DE ONDAS ELECTROMAGNÉTICAS NUM GUIA CILÍNDRICO PROPAGAÇÃO D ONDAS LCTROMAGNÉTICAS NM GIA CILÍNDRICO po Calos Vaadas e Maia mília Maso IST, Maio de 5 t j e. Itodução Vamos estuda a popagação de odas electomagéticas um guia cilídico de aio a. Podeiamos

Leia mais

Estudo da transferência de calor em fluidos nãonewtonianos. em dutos circulares e não-circulares

Estudo da transferência de calor em fluidos nãonewtonianos. em dutos circulares e não-circulares WAGNE ANDÉ DOS SANOS CONCEIÇÃO Estudo da tasfeêcia de calo em fluidos ãoewtoiaos em dutos ciculaes e ão-ciculaes FLOIANÓPOLIS UNIVESIDADE FEDEAL DE SANA CAAINA CENO ECNOLÓGICO DEPAAMENO DE ENGENHAIA QUÍMICA

Leia mais