1 - CORRELAÇÃO LINEAR SIMPLES rxy

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "1 - CORRELAÇÃO LINEAR SIMPLES rxy"

Transcrição

1 1 - CORRELAÇÃO LINEAR IMPLE Em pesquisas, feqüetemete, pocua-se veifica se existe elação ete duas ou mais vaiáveis, isto é, sabe se as alteações sofidas po uma das vaiáveis são acompahadas po alteações as outas. Po exemplo, peso vs. idade, cosumo vs. eda, altua vs. peso, de um idivíduo. O temo coelação sigifica elação em dois setidos (co + elação), e é usado em estatística paa desiga a foça que matém uidos dois cojutos de valoes. A veificação da existêcia e do gau de elação ete as vaiáveis é o objeto de estudo da coelação.

2 Uma vez caacteizada esta elação, pocua-se descevê-la sob foma matemática, atavés de uma fução. A estimação dos paâmetos dessa fução matemática é o objeto da egessão. Os paes de valoes das duas vaiáveis podeão se colocados um diagama catesiao chamado diagama de dispesão. A vatagem de costui um diagama de dispesão está em que, muitas vezes sua simples obsevação já os dá uma idéia bastate boa de como as duas vaiáveis se elacioam.

3 Uma medida do gau e do sial da coelação é dada pela covaiâcia ete as duas vaiáveis aleatóias X e Y que é uma medida uméica de associação liea existete ete elas, e defiida po Cov(X, Y) = É mais coveiete usa paa medida de coelação, o coeficiete de coelação liea de Peaso, como estimado de, defiido po = 1 ( ) Cov x, y σ x σ y = x. y xx x.. yy y.

4 x -. xx yy yy x y xx yy. y - - x. y ode as somas de quadados são b. x. x. y y xx x = úmeo de paes das obsevações. x yy y y

5 A pati de X e Y são detemiadas todas as somas ecessáias paa este cálculo Y y x ; x (x.y) O coeficiete de coelação liea é um úmeo puo que vaia de 1 a +1 e sua itepetação depedeá do valo uméico e do sial, como segue = -1-1 < < 0 = 0 0 < < 1 = 1 0, < <0,4 0,4 < <0,7 0,7 < <0,9 X X Y y coelação egativa coelação ula coelação positiva coelação faca* coelação modeada* coelação fote* X. Y coelação pefeita egativa coelação pefeita positiva *possui o mesmo sigificado paa os casos egativos ou positivos.

6 Aálise do Diagama de Dispesão O diagama de dispesão mostaá que a coelação seá tato mais fote quato mais póximo estive o coeficiete de 1 ou +1, e seá tato mais faca quato mais póximo o coeficiete estive de zeo. a) Coelação pefeita egativa ( = -1) Quado os potos estiveem pefeitamete alihados, mas em setido cotáio, a coelação é deomiada pefeita egativa. b) Coelação egativa (-1 < < 0) A coelação é cosideada egativa quado valoes cescetes da vaiável X estiveem associados a valoes decescetes da vaiável Y, ou valoes decescetes de X associados a valoes cescetes de Y.

7 c) Coelação ula ( = 0) Quado ão houve elação ete as vaiáveis X e Y, ou seja, quado os valoes de X e Y ocoeem idepedetemete, ão existe coelação ete elas. d) Coelação positiva (0 < < 1) eá cosideada positiva se os valoes cescetes de X estiveem associados a valoes cescetes de Y. e) Coelação pefeita positiva ( = 1) A coelação liea pefeita positiva coespode ao caso ateio, só que os potos (X, Y) estão pefeitamete alihados. f) Coelação espúia Quado duas vaiáveis X e Y foem idepedetes, o coeficiete de coelação seá ulo. Etetato, algumas vezes, isto ão ocoe, podedo, assim mesmo, o coeficiete apeseta um valo póximo de 1 ou +1. Neste caso a coelação é espúia.

8 Algumas situações que podem se apeseta os diagamas de dispesão

9 OBERVAÇÕE Coelação ão é o mesmo que causa e efeito. Duas vaiáveis podem esta altamete coelacioadas e, o etato, ão have elação de causa e efeito ete elas. e duas vaiáveis estiveem amaadas po uma elação de causa e efeito elas estaão, obigatoiamete, coelacioadas. O estudo de coelação pessupõe que as vaiáveis X e Y teham uma distibuição omal. A palava simples que compõe o ome coelação liea simples, idica que estão evolvidas o cálculo somete duas vaiáveis. O coeficiete de coelação liea de Peaso mede a coelação em estatística paamética. Coeficiete de coelação de peama (coelação po postos}é o coespodete à áea ão paamética. Va(x) = xx ρˆ Cov(x,y) = = βˆ. xx yy yy = Q Q Re g Total Va(y) = Testa = 0 é equivalete a testa = 0 a equação de egessão, pois

10 TETE DO COEFICIENTE DE CORRELAÇÃO IGNIFICÂNCIA DE O coeficiete de coelação é apeas uma estimativa do coeficiete de coelação populacioal e ão devemos esquece que o valo de é calculado com base em de paes de dados costituido amostas aleatóias. Muitas vezes os potos da amosta podem apeseta uma coelação e, o etato a população ão, este caso, estamos diate de um poblema de ifeêcia, pois 0 ão é gaatia de que 0. Podemos esolve o poblema aplicado um teste de hipóteses paa veificamos se o valo de é coeete com o tamaho da amosta, a um ível de sigificâcia, que ealmete existe coelação liea ete as vaiáveis.

11 H0 = 0 (ão existe coelação ete X e Y) H1 0 (existe coelação ete X e Y). tc distibuição t de tudet com gaus de libedade. Ode, 1 - de coelação., é o eo padão do coeficiete

12 COEFICIENTE DE DETERMINAÇÃO Idica a popoção de vaiação da vaiável idepedete que é explicada pela vaiável depedete, ou seja, é uma feameta que avalia a qualidade do ajuste.,0 1 Quato mais póximo da uidade o R² estive, melho a qualidade do ajuste. O seu valo foece a popoção da vaiável Y explicada pela vaiável X atavés da fução ajustada. R Exemplo R² = = (0,999)² = 0,9858 = 98,50 %. É a popoção que Y é explicada po X; ou seja; 98,50% da vaiação do úmeo de livos é explicado pelo tempo que feqüetou a escola. R

13 CORRELAÇÃO LINEAR POR POTO OU PEARMAM - s De todas as estatísticas baseadas em postos, o coeficiete de coelação po postos de peamam, foi a que sugiu pimeio, e é talvez a mais cohecida hoje. É uma medida de associação que exige que ambas as vaiáveis se apesetem em escala de mesuação pelo meos odial, de modo que os elemetos em estudo possam dispo-se po postos em duas séies odeadas. Este teste ão-paamético destia-se a detemia o gau de associação ete duas vaiáveis X e Y, dispostas em potos odeados, o objetivo é estuda a coelação ete duas classificações.

14 Resumo do Pocedimeto 1 ) Dispo em postos as duas vaiáveis X e Y de 1 a (=úmeo de paes de dados); ) Relacioa os elemetos, da o posto de cada elemeto; 3 ) Detemia = (posto x posto y), 4 ) e a popoção de empates de ambas as vaiáveis X ou Y é gade etão calcula-se Ode T t 3 s - t, 1 d d e d ; i pela fómula x s i i x y. x. y 3 3 Tx y 1 1 ode t, coespode ao úmeo de empates, usado paa coigi a soma de quadados. Caso cotáio se aplica a fómula = 1 - s d 6 di 3-5 ) A sigificâcia de é testada com tc = s s ; com - gaus de 1 s libedade, que é o mesmo teste ateio (Peaso). i Ty

INTRODUÇÃO AO ESTUDO DA ÁLGEBRA LINERAR Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 2 ESPAÇOS VETORIAIS

INTRODUÇÃO AO ESTUDO DA ÁLGEBRA LINERAR Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 2 ESPAÇOS VETORIAIS Luiz Facisco da Cuz Depatameto de Matática Uesp/Bauu CAPÍTULO ESPAÇOS VETORIAIS 1 Históico Sabe-se que, até pelo meos o fial do século XIX, ão havia ehuma teoia ou cojuto de egas b defiidas a que se pudesse

Leia mais

INTRODUÇÃO AO ESTUDO DA ÁLGEBRA LINERAR Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 2 ESPAÇOS VETORIAIS

INTRODUÇÃO AO ESTUDO DA ÁLGEBRA LINERAR Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 2 ESPAÇOS VETORIAIS Luiz Facisco da Cuz Depatameto de Matemática Uesp/Bauu CAPÍTULO ESPAÇOS VETORIAIS 1 Históico Sabe-se que, até pelo meos o fial do século XIX, ão havia ehuma teoia ou cojuto de egas bem defiidas a que se

Leia mais

Veremos neste capítulo as distribuições na variável discreta: Distribuição Binomial e Distribuição de Poisson.

Veremos neste capítulo as distribuições na variável discreta: Distribuição Binomial e Distribuição de Poisson. CAPÍTULO 5 DISTRIBUIÇÃO BINOMIAL E DISTRIBUIÇÃO DE POISSON Veemos este capítulo as distibuições a vaiável disceta: Distibuição Biomial e Distibuição de Poisso. 1. Pobabilidade de Beoulli Seja um expeimeto

Leia mais

Principais fórmulas. Capítulo 3. Desvio padrão amostral de uma distribuição de frequência: Escore padrão: z = Valor Média Desvio padrão σ

Principais fórmulas. Capítulo 3. Desvio padrão amostral de uma distribuição de frequência: Escore padrão: z = Valor Média Desvio padrão σ Picipais fómulas De Esaísica aplicada, 4 a edição, de Laso e Fabe, 00 Peice Hall Capíulo Ampliude dos dados Lagua da classe úmeo de classes (Aedode paa cima paa o póimo úmeo coveiee Poo médio (Limie ifeio

Leia mais

Capítulo 4 Variáveis Aleatórias Discretas. Prof. Fabrício Maciel Gomes

Capítulo 4 Variáveis Aleatórias Discretas. Prof. Fabrício Maciel Gomes Capítulo 4 Vaiáveis Aleatóias Discetas Pof. Fabício Maciel Gomes Picipais Distibuições de Pobabilidade Discetas Equipovável Beoulli Biomial Poisso Geomética Pascal Hipegeomética Distibuição Equipovável

Leia mais

Números Complexos (Parte II) 1 Plano de Argand-Gauss. 2 Módulo de um número complexo. Prof. Gustavo Adolfo Soares

Números Complexos (Parte II) 1 Plano de Argand-Gauss. 2 Módulo de um número complexo. Prof. Gustavo Adolfo Soares Númeos Complexos (Pate II) 1 Plao de Agad-Gauss Das defiições de que um úmeo complexo é um pa odeado de úmeos eais x e y e que C = R R, temos que: A cada úmeo complexo coespode um úico poto do plao catesiao,

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA 12º ANO DE ESCOLARIDADE MATEMÁTICA A. Tarefa nº 7 do plano de trabalho nº 1

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA 12º ANO DE ESCOLARIDADE MATEMÁTICA A. Tarefa nº 7 do plano de trabalho nº 1 ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA º ANO DE ESCOLARIDADE MATEMÁTICA A Taefa º 7 do plao de tabalho º. Comece po esolve o execício 3 da págia 0.. Muitas das geealizações feitas as divesas ciêcias,

Leia mais

REGRESSÃO LINEAR MÚLTIPLA Correlação múltipla

REGRESSÃO LINEAR MÚLTIPLA Correlação múltipla REGRESSÃO LINEAR MÚLTIPLA Coelação múltipla Coeficiente de coelação múltipla: indicado de quanto da vaiação total da vaiável dependente é explicado pelo conjunto das vaiáveis independentes (explicativas)

Leia mais

A finalidade de uma equação de regressão seria estimar valores de uma variável, com base em valores conhecidos da outra.

A finalidade de uma equação de regressão seria estimar valores de uma variável, com base em valores conhecidos da outra. Jaete Pereira Amador Itrodução A aálise de regressão tem por objetivo descrever através de um modelo matemático, a relação existete etre duas variáveis, a partir de observações dessas viráveis. A aálise

Leia mais

Medidas de Associação.

Medidas de Associação. Medidas de Associação. Medidas de associação quantificam a elação ente uma dada exposição e uma consequência. Medidas de impacto quantificam o impacto da mudança de exposição num dado gupo. Não podemos

Leia mais

Campo Gravítico da Terra

Campo Gravítico da Terra 5. Campo Gavítico ómalo elação ete o potecial gavítico e o potecial omal é dada po: W ( x, y, z = U( x, y,z + ( x, y,z O campo gavítico aómalo ou petubado é etão defiido pela difeeça do campo gavítico

Leia mais

Relação Risco Retorno em uma série histórica

Relação Risco Retorno em uma série histórica Relação Risco Retono em uma séie históica E ( j ) R j Retono espeado é a expectativa que se constói paa o esultado de um ativo a pati da média históica de esultado. E( j ) R j j,1 + j, + L+ n j, n n i

Leia mais

PROPAGAÇÃO DE ONDAS ELECTROMAGNÉTICAS NUM GUIA CILÍNDRICO

PROPAGAÇÃO DE ONDAS ELECTROMAGNÉTICAS NUM GUIA CILÍNDRICO PROPAGAÇÃO D ONDAS LCTROMAGNÉTICAS NM GIA CILÍNDRICO po Calos Vaadas e Maia mília Maso IST, Maio de 5 t j e. Itodução Vamos estuda a popagação de odas electomagéticas um guia cilídico de aio a. Podeiamos

Leia mais

Estudo de um modelo do núcleo do deuterão

Estudo de um modelo do núcleo do deuterão Estudo de um modelo do úcleo do deuteão Goçalo Oliveia º 5789 Pedo Ricate º 578 Física Quâtica da Matéia Istituto Sueio Técico Maio, 8 Resumo Cosidea-se um modelo simles aa o úcleo do deuteão, ode a iteacção

Leia mais

AULA 23 FATORES DE FORMA DE RADIAÇÃO TÉRMICA

AULA 23 FATORES DE FORMA DE RADIAÇÃO TÉRMICA Notas de aula de PME 336 Pocessos de Tasfeêcia de Calo e Massa 98 AULA 3 ATORES DE ORMA DE RADIAÇÃO TÉRMICA Cosidee o caso de duas supefícies egas quaisque que tocam calo po adiação témica ete si. Supoha

Leia mais

Universidade de São Paulo Instituto de Física. Física Moderna II. Profa. Márcia de Almeida Rizzutto 2 o Semestre de Física Moderna 2 Aula 20

Universidade de São Paulo Instituto de Física. Física Moderna II. Profa. Márcia de Almeida Rizzutto 2 o Semestre de Física Moderna 2 Aula 20 Uivesidade de São Paulo Istituto de Física Física Modea II Pofa. Mácia de Almeida Rizzutto o Semeste de 14 Física Modea 1 Todos os tipos de ligação molecula se devem ao fato de a eegia total da molécula

Leia mais

CEDERJ - CENTRO DE EDUCAÇÃO SUPERIOR A DISTÂNCIA DO ESTADO DO RIO DE JANEIRO

CEDERJ - CENTRO DE EDUCAÇÃO SUPERIOR A DISTÂNCIA DO ESTADO DO RIO DE JANEIRO CEDERJ - CENTRO DE EDUCAÇÃO SUPERIOR A DISTÂNCIA DO ESTADO DO RIO DE JANEIRO MATERIAL DIDÁTICO IMPRESSO CURSO: Física DISCIPLINA: Ifomática paa o Esio de Física CONTEUDISTA: Calos Eduado Aguia AULA 4 TÍTULO:

Leia mais

Aluno(a): Professor: Chiquinho

Aluno(a): Professor: Chiquinho Aluo(a): Pofesso: Chquho Estatístca Básca É a cêca que tem po objetvo oeta a coleta, o esumo, a apesetação, a aálse e a tepetação de dados. População e amosta - População é um cojuto de sees com uma dada

Leia mais

CORRELAÇÃO Aqui me tens de regresso

CORRELAÇÃO Aqui me tens de regresso CORRELAÇÃO Aqui me tes de regresso O assuto Correlação fez parte, acompahado de Regressão, do programa de Auditor Fiscal, até 998, desaparecedo a partir do cocurso do ao 000 para agora retorar soziho.

Leia mais

CONCEITOS BÁSICOS E PRINCÍPIOS DE ESTATÍSTICA

CONCEITOS BÁSICOS E PRINCÍPIOS DE ESTATÍSTICA 1 CONCEITOS BÁSICOS E PRINCÍPIOS DE ESTATÍSTICA 1. Coceitos Básicos de Probabilidade Variável aleatória: é um úmero (ou vetor) determiado por uma resposta, isto é, uma fução defiida em potos do espaço

Leia mais

Sistemas e Sinais 2009/2010

Sistemas e Sinais 2009/2010 Aálise em espaço de estados Sistemas e Siais 009/010 Repesetação de Sistemas Sistemas descitos po equações difeeciais Sistemas descitos po sistemas de equações difeeciais Repesetação em espaço de estados

Leia mais

Departamento de Física - ICE/UFJF Laboratório de Física II

Departamento de Física - ICE/UFJF Laboratório de Física II Depatameto de ísica - ICE/UJ Laboatóio de ísica II - Itodução Pática : Medida da Aceeação Gavitacioa A iteação avitacioa é uma das quato iteações fudametais que se ecotam a atueza e é a úica que afeta

Leia mais

FORMULÁRIO ELABORAÇÃO ITENS/QUESTÕES

FORMULÁRIO ELABORAÇÃO ITENS/QUESTÕES CÓDIGOFO 7.5./0 REVISÃO 0 PÁGINA de CONCURSO DOCENTES EFETIVOS DO COLÉGIO PEDRO II DATA//0 CARGO/ARÉA MATEMÁTICÁ CONTEÚDO PROGRAMÁTICOSISTEMAS LINEARES/ VETORES NO R /GEOMETRIA ANALÍTICA EMR. NÍVEL DE

Leia mais

Cap. 4 - Estimação por Intervalo

Cap. 4 - Estimação por Intervalo Cap. 4 - Estimação por Itervalo Amostragem e iferêcia estatística População: cosiste a totalidade das observações em que estamos iteressados. Nº de observações a população é deomiado tamaho=n. Amostra:

Leia mais

Instruções gerais sobre a Prova:

Instruções gerais sobre a Prova: DEPARTAMENTO DE ESTATÍSTICA - UFMG PROVA DE ESTATÍSTICA & PROBABILIDADES SELEÇÃO MESTRADO/UFMG 2012/2013 Istruções gerais sobre a Prova: (a) Cada questão respodida corretamete vale 1 (um) poto. (b) Cada

Leia mais

Mas o que deixou de ser abordado na grande generalidade desses cursos foi o estudo dos produtos infinitos, mesmo que só no caso numérico real.

Mas o que deixou de ser abordado na grande generalidade desses cursos foi o estudo dos produtos infinitos, mesmo que só no caso numérico real. Resumo. O estudo das séries de termos reais, estudado as disciplias de Aálise Matemática da grade geeralidade dos cursos técicos de liceciatura, é aqui estedido ao corpo complexo, bem como ao caso em que

Leia mais

Regressão linear simples

Regressão linear simples Regressão liear simples Maria Virgiia P Dutra Eloae G Ramos Vaia Matos Foseca Pós Graduação em Saúde da Mulher e da Criaça IFF FIOCRUZ Baseado as aulas de M. Pagao e Gravreau e Geraldo Marcelo da Cuha

Leia mais

Fundamentos de Análise Matemática Profª Ana Paula. Números reais

Fundamentos de Análise Matemática Profª Ana Paula. Números reais Fudametos de Aálise Matemática Profª Aa Paula Números reais 1,, 3, cojuto dos úmeros aturais 0,1,,3, cojuto dos úmeros iteiros p q /p e q cojuto dos úmeros racioais a, a 0 a 1 a a, a e a i 0, 1,, 3, 4,

Leia mais

FACULDADE DE ECONOMIA DO PORTO. Licenciatura em Economia E C O N O M E T R I A I I PARTE

FACULDADE DE ECONOMIA DO PORTO. Licenciatura em Economia E C O N O M E T R I A I I PARTE FACULDADE DE ECONOMIA DO PORTO Liceciatura em Ecoomia E C O N O M E T R I A I (LEC0) Exame Fial 0 de Jaeiro de 00 RESOLUÇÃO: I PARTE I GRUPO a) Dispoível uma amostra de observações de Y para períodos cosecutivos,

Leia mais

O perímetro da circunferência

O perímetro da circunferência Univesidade de Basília Depatamento de Matemática Cálculo 1 O peímeto da cicunfeência O peímeto de um polígono de n lados é a soma do compimento dos seus lados. Dado um polígono qualque, você pode sempe

Leia mais

Módulo: Binômio de Newton e o Triângulo de Pascal. Somas de elementos em Linhas, Colunas e Diagonais do Triângulo de Pascal. 2 ano do E.M.

Módulo: Binômio de Newton e o Triângulo de Pascal. Somas de elementos em Linhas, Colunas e Diagonais do Triângulo de Pascal. 2 ano do E.M. Módulo: Bômo de Newto e o Tâgulo de Pascal Somas de elemetos em Lhas, Coluas e Dagoas do Tâgulo de Pascal ao do EM Módulo: Bômo de Newto e o Tâgulo de Pascal Somas de elemetos em Lhas, Coluas e Dagoas

Leia mais

Soluções Composição qualitativa

Soluções Composição qualitativa Soluções oposição qualitativa As soluções são istuas de difeetes substâcias. Ua solução te dois tipos de copoetes: o solvete a substâcia ode se dissolve o soluto e os solutos as substâcias que se dissolve.

Leia mais

AULA Subespaço, Base e Dimensão Subespaço.

AULA Subespaço, Base e Dimensão Subespaço. Note bem: a leitura destes apotametos ão dispesa de modo algum a leitura ateta da bibliografia pricipal da cadeira TÓPICOS Subespaço. ALA Chama-se a ateção para a importâcia do trabalho pessoal a realizar

Leia mais

ANÁLISE DE VARIÂNCIA MULTIVARIADA Carlos Alberto Alves Varella 1

ANÁLISE DE VARIÂNCIA MULTIVARIADA Carlos Alberto Alves Varella 1 ANÁLISE MULTIVARIADA APLICADA AS CIÊNCIAS AGRÁRIAS PÓS-GRADUAÇÃO EM AGRONOMIA CIÊNCIA DO SOLO: CPGA-CS ANÁLISE DE VARIÂNCIA MULTIVARIADA Calos Albeto Alves Vaella ÍNDICE INTRODUÇÃO... MODELO ESTATÍSTICO...

Leia mais

Departamento de Física - Universidade do Algarve FORÇA CENTRÍFUGA

Departamento de Física - Universidade do Algarve FORÇA CENTRÍFUGA FORÇA CENTRÍFUGA 1. Resumo Um copo desceve um movimento cicula unifome. Faz-se vaia a sua velocidade de otação e a distância ao eixo de otação, medindo-se a foça centífuga em função destes dois paâmetos..

Leia mais

TUKEY Para obtenção da d.m.s. pelo Teste de TUKEY, basta calcular:

TUKEY Para obtenção da d.m.s. pelo Teste de TUKEY, basta calcular: Compaação de Médias Quando a análise de vaiância de um expeimento nos mosta que as médias dos tatamentos avaliados não são estatisticamente iguais, passamos a ejeita a hipótese da nulidade h=0, e aceitamos

Leia mais

Esquemas simétricos de cifra

Esquemas simétricos de cifra Esquemas siméticos de cifa Notas paa a UC de Seguaça Ifomática Iveo de 12/13 Pedo Félix (pedofelix em cc.isel.ipl.pt) Istituto Supeio de Egehaia de Lisboa Sumáio Pimitivas de cifa em bloco Pimitivas iteadas

Leia mais

Forma Integral das Equações Básicas para Volume de Controle (cont.)

Forma Integral das Equações Básicas para Volume de Controle (cont.) EOLA DE ENGENHARIA DE SÃO CARLOS Núcleo de Egehaia Témica e Fluidos Foma Itegal das Equações Básicas paa Volume de Cotole (cot.) Teoema do Taspote de Reyolds: elação geal ete a taxa de vaiação de qq. popiedade

Leia mais

Figura 6.6. Superfícies fechadas de várias formas englobando uma carga q. O fluxo eléctrico resultante através de cada superfície é o mesmo.

Figura 6.6. Superfícies fechadas de várias formas englobando uma carga q. O fluxo eléctrico resultante através de cada superfície é o mesmo. foma dessa supefície. (Pode-se pova ue este é o caso poue E 1/ 2 ) De fato, o fluxo esultante atavés de ualue supefície fechada ue envolve uma caga pontual é dado po. Figua 6.6. Supefícies fechadas de

Leia mais

Universidade Federal de Lavras Departamento de Ciências Exatas Prof. Daniel Furtado Ferreira 1 a Aula Prática Técnicas de somatório

Universidade Federal de Lavras Departamento de Ciências Exatas Prof. Daniel Furtado Ferreira 1 a Aula Prática Técnicas de somatório Uiversidade Federal de Lavras Departameto de Ciêcias Exatas Prof. Daiel Furtado Ferreira 1 a Aula Prática Técicas de somatório Notação e propriedades: 1) Variáveis e ídices: o símbolo x j (leia x ídice

Leia mais

Análise de Correlação e medidas de associação

Análise de Correlação e medidas de associação Análise de Coelação e medidas de associação Pof. Paulo Ricado B. Guimaães 1. Intodução Muitas vezes pecisamos avalia o gau de elacionamento ente duas ou mais vaiáveis. É possível descobi com pecisão, o

Leia mais

10 - Medidas de Variabilidade ou de Dispersão

10 - Medidas de Variabilidade ou de Dispersão 10 - Medidas de Variabilidade ou de Dispersão 10.1 Itrodução Localizado o cetro de uma distribuição de dados, o próximo passo será verificar a dispersão desses dados, buscado uma medida para essa dispersão.

Leia mais

DERIVADAS DE FUNÇÕES11

DERIVADAS DE FUNÇÕES11 DERIVADAS DE FUNÇÕES11 Gil da Costa Marques Fudametos de Matemática I 11.1 O cálculo diferecial 11. Difereças 11.3 Taxa de variação média 11.4 Taxa de variação istatâea e potual 11.5 Primeiros exemplos

Leia mais

Virgílio A. F. Almeida DCC-UFMG 1/2005

Virgílio A. F. Almeida DCC-UFMG 1/2005 Virgílio A. F. Almeida DCC-UFMG 1/005 !" # Comparado quatitativamete sistemas eperimetais: Algoritmos, protótipos, modelos, etc Sigificado de uma amostra Itervalos de cofiaça Tomado decisões e comparado

Leia mais

APÊNDICE. Revisão de Trigonometria

APÊNDICE. Revisão de Trigonometria E APÊNDICE Revisão de Tigonometia FUNÇÕES E IDENTIDADES TRIGONOMÉTRICAS ÂNGULOS Os ângulos em um plano podem se geados pela otação de um aio (semi-eta) em tono de sua etemidade. A posição inicial do aio

Leia mais

ENGENHARIA DA QUALIDADE A ENG AULA 6 CARTAS DE CONTROLE PARA ATRIBUTOS

ENGENHARIA DA QUALIDADE A ENG AULA 6 CARTAS DE CONTROLE PARA ATRIBUTOS ENGENHARIA DA QUALIDADE A ENG 09008 AULA 6 CARTAS DE CONTROLE PARA ATRIBUTOS PROFESSORES: CARLA SCHWENGBER TEN CATEN Tópicos desta aula Cartas de Cotrole para Variáveis Tipo 1: Tipo 2: Tipo 3: X X X ~

Leia mais

Stela Adami Vayego DEST/UFPR

Stela Adami Vayego DEST/UFPR Resumo 3 Resumo dos dados uméricos por meio de úmeros 1. Medidas de Tedêcia Cetral A tedêcia cetral da distribuição de freqüêcias de uma variável em um cojuto de dados é caracterizada pelo valor típico

Leia mais

Objetivo. Estimar a média µ de uma variável aleatória X, que representa uma característica de interesse de uma população, a partir de uma amostra.

Objetivo. Estimar a média µ de uma variável aleatória X, que representa uma característica de interesse de uma população, a partir de uma amostra. ESTIMAÇÃO PARA A MÉDIAM Objetivo Estimar a média µ de uma variável aleatória X, que represeta uma característica de iteresse de uma população, a partir de uma amostra. Exemplos: µ : peso médio de homes

Leia mais

Movimento unidimensional com aceleração constante

Movimento unidimensional com aceleração constante Movimento unidimensional com aceleação constante Movimento Unifomemente Vaiado Pof. Luís C. Pena MOVIMENTO VARIADO Os movimentos que conhecemos da vida diáia não são unifomes. As velocidades dos móveis

Leia mais

Capítulo I Erros e Aritmética Computacional

Capítulo I Erros e Aritmética Computacional C. Balsa e A. Satos Capítulo I Eos e Aitmética Computacioal. Itodução aos Métodos Numéicos O objectivo da disciplia de Métodos Numéicos é o estudo, desevolvimeto e avaliação de algoitmos computacioais

Leia mais

Secção 1. Introdução às equações diferenciais

Secção 1. Introdução às equações diferenciais Secção. Itrodução às equações difereciais (Farlow: Sec..,.) Cosideremos um exemplo simples de um feómeo que pode ser descrito por uma equação diferecial. A velocidade de um corpo é defiida como o espaço

Leia mais

A Inferência Estatística é um conjunto de técnicas que objetiva estudar a população através de evidências fornecidas por uma amostra.

A Inferência Estatística é um conjunto de técnicas que objetiva estudar a população através de evidências fornecidas por uma amostra. UNIVERSIDADE FEDERAL DA PARAÍBA Distribuição Amostral Luiz Medeiros de Araujo Lima Filho Departameto de Estatística INTRODUÇÃO A Iferêcia Estatística é um cojuto de técicas que objetiva estudar a população

Leia mais

DETERMINANDO A SIGNIFICÂNCIA ESTATÍSTICA PARA AS DIFERENÇAS ENTRE MÉDIAS

DETERMINANDO A SIGNIFICÂNCIA ESTATÍSTICA PARA AS DIFERENÇAS ENTRE MÉDIAS DTRMINANDO A SIGNIFIÂNIA STATÍSTIA PARA AS DIFRNÇAS NTR MÉDIAS Ferado Lag da Silveira Istituto de Física - UFRGS lag@if.ufrgs.br O objetivo desse texto é apresetar através de exemplos uméricos como se

Leia mais

Aula-10 Indução e Indutância

Aula-10 Indução e Indutância Aula-1 Idução e Idutâcia Idução Apedeos que: Ua espia codutoa pecoida po ua coete i a peseça de u capo agético sofe ação de u toque: espia de coete + capo agético toque as... Se ua espia, co a coete desligada,

Leia mais

1 Distribuições Amostrais

1 Distribuições Amostrais 1 Distribuições Amostrais Ao retirarmos uma amostra aleatória de uma população e calcularmos a partir desta amostra qualquer quatidade, ecotramos a estatística, ou seja, chamaremos os valores calculados

Leia mais

Estatística: Aplicação ao Sensoriamento Remoto SER ANO Técnicas de Reamostragem

Estatística: Aplicação ao Sensoriamento Remoto SER ANO Técnicas de Reamostragem Estatística: Aplicação ao Sesoriameto Remoto SER 202 - ANO 2016 Técicas de Reamostragem Camilo Daleles Reó camilo@dpi.ipe.br http://www.dpi.ipe.br/~camilo/estatistica/ Distribuição Amostral Testes paramétricos

Leia mais

Séries e aplicações15

Séries e aplicações15 Séries e aplicações5 Gil da Costa Marques Fudametos de Matemática I 5. Sequêcias 5. Séries 5. Séries especiais 5.4 Arquimedes e a quadratura da parábola 5.5 Sobre a Covergêcia de séries 5.6 Séries de Taylor

Leia mais

População x Amostra. statística descritiva X inferência estatística. Revisão de Estatística e Probabilidade

População x Amostra. statística descritiva X inferência estatística. Revisão de Estatística e Probabilidade Revisão de Estatística e Probabilidade Magos Martiello Uiversidade Federal do Espírito Sato - UFES Departameto de Iformática DI Laboratório de Pesquisas em Redes Multimidia LPRM statística descritiva X

Leia mais

1. Revisão Matemática

1. Revisão Matemática Sequêcias de Escalares Uma sequêcia { } diz-se uma sequêcia de Cauchy se para qualquer (depedete de ε ) tal que : ε > 0 algum K m < ε para todo K e m K Uma sequêcia { } diz-se ser limitada superiormete

Leia mais

PROVA DE ESTATÍSTICA SELEÇÃO MESTRADO/UFMG 2005

PROVA DE ESTATÍSTICA SELEÇÃO MESTRADO/UFMG 2005 PROVA DE ESTATÍSTICA SELEÇÃO MESTRADO/UFMG 005 Istruções para a prova: a) Cada questão respodida corretamete vale um poto. b) Questões deixadas em braco valem zero potos (este caso marque todas alterativas).

Leia mais

RADIOATIVIDADE- TEORIA PARTE I

RADIOATIVIDADE- TEORIA PARTE I RDIOTIVIDDE- TEORI PRTE I Itrodução Radioatividade estuda a emissão atural ou provocada (artificial) de partículas e odas eletromagéticas pelos úcleos atômicos (uclídeos) de certos elemetos. Ela evolve

Leia mais

Testes de Comparação Múltipla

Testes de Comparação Múltipla Testes de Comparação Múltipla Quado a aplicação da aálise de variâcia coduz à reeição da hipótese ula, temos evidêcia de que existem difereças etre as médias populacioais. Mas, etre que médias se registam

Leia mais

Preliminares 1. 1 lim sup, lim inf. Medida e Integração. Departamento de Física e Matemática. USP-RP. Prof. Rafael A. Rosales. 8 de março de 2009.

Preliminares 1. 1 lim sup, lim inf. Medida e Integração. Departamento de Física e Matemática. USP-RP. Prof. Rafael A. Rosales. 8 de março de 2009. Medida e Itegração. Departameto de Física e Matemática. USP-RP. Prof. Rafael A. Rosales 8 de março de 2009. 1 lim sup, lim if Prelimiares 1 Seja (x ), N, uma seqüêcia de úmeros reais, e l o limite desta

Leia mais

Fundamentos de Análise Matemática Profª Ana Paula. Sequência Infinitas

Fundamentos de Análise Matemática Profª Ana Paula. Sequência Infinitas Fudametos de Aálise Matemática Profª Aa Paula Sequêcia Ifiitas Defiição 1: Uma sequêcia umérica a 1, a 2, a 3,,a,é uma fução, defiida o cojuto dos úmeros aturais : f : f a Notação: O úmero é chamado de

Leia mais

1.1. Ordem e Precedência dos Cálculos 1) = Capítulo 1

1.1. Ordem e Precedência dos Cálculos 1) = Capítulo 1 Capítulo. Aritmética e Expressões Algébricas O estudo de cálculo exige muito mais que o cohecimeto de limite, derivada e itegral. Para que o apredizado seja satisfatório o domíio de tópicos de aritmética

Leia mais

Material Teórico - Módulo Binômio de Newton e Triangulo de Pascal. Soma de Elementos em Linhas, Colunas e Diagonais. Segundo Ano do Ensino Médio

Material Teórico - Módulo Binômio de Newton e Triangulo de Pascal. Soma de Elementos em Linhas, Colunas e Diagonais. Segundo Ano do Ensino Médio Material Teórico - Módulo Biômio de Newto e Triagulo de Pascal Soma de Elemetos em Lihas, Coluas e Diagoais Segudo Ao do Esio Médio Autor: Prof Fabrício Siqueira Beevides Revisor: Prof Atoio Camiha M Neto

Leia mais

Material Teórico - Módulo Binômio de Newton e Triangulo de Pascal. Soma de Elementos em Linhas, Colunas e Diagonais. Segundo Ano do Ensino Médio

Material Teórico - Módulo Binômio de Newton e Triangulo de Pascal. Soma de Elementos em Linhas, Colunas e Diagonais. Segundo Ano do Ensino Médio Material Teórico - Módulo Biômio de Newto e Triagulo de Pascal Soma de Elemetos em Lihas, Coluas e Diagoais Segudo Ao do Esio Médio Autor: Prof Fabrício Siqueira Beevides Revisor: Prof Atoio Camiha M Neto

Leia mais

Vamos adotar que as cargas fixas (cargas 1 e 2 na figura 1) tem valor Q e +Q e a carga suspensa pelo fio tem carga +q (carga 3).

Vamos adotar que as cargas fixas (cargas 1 e 2 na figura 1) tem valor Q e +Q e a carga suspensa pelo fio tem carga +q (carga 3). Duas cagas e mesmo móulo e sinais opostos estão fixas sobe uma linha hoizontal a uma istância uma a outa. Uma esfea, e massa m caegaa com uma caga elética, pesa a um fio é apoximaa, pimeio e uma as cagas

Leia mais

CF358 Física BásicaExperimental I

CF358 Física BásicaExperimental I CF358 Física BásicaExperimetal I CONFIGURAÇÃO MÓDULO TEÓRICO MÓDULO EXPERIMENTAL => BLOCO 1-4 EXPERIMENTOS => BLOCO 2-4 EXPERIMENTOS PRESENÇA (muito importate) NO MÍNIMO 75% AVALIAÇÃO 01 PROVA -BLOCO TEÓRICO

Leia mais

INFERÊNCIA. Fazer inferência (ou inferir) = tirar conclusões

INFERÊNCIA. Fazer inferência (ou inferir) = tirar conclusões INFERÊNCIA Fazer iferêcia (ou iferir) = tirar coclusões Iferêcia Estatística: cojuto de métodos de aálise estatística que permitem tirar coclusões sobre uma população com base em somete uma parte dela

Leia mais

4.4 Mais da geometria analítica de retas e planos

4.4 Mais da geometria analítica de retas e planos 07 4.4 Mais da geometia analítica de etas e planos Equações da eta na foma simética Lembemos que uma eta, no planos casos acima, a foma simética é um caso paticula da equação na eta na foma geal ou no

Leia mais

Faculdade de Ciências da Universidade de Lisboa Departamento de Matemática. Geodesia Física. João Catalão

Faculdade de Ciências da Universidade de Lisboa Departamento de Matemática. Geodesia Física. João Catalão Faculdade de Ciêcias da Uivesidade de Lisboa Depatameto de Matemática Geodesia Física João Catalão Lisboa, Fudametos do campo gavítico Ídice Capítulo - Fudametos do Campo gavítico. O campo gavítico...

Leia mais

ESCOLA BÁSICA DE ALFORNELOS

ESCOLA BÁSICA DE ALFORNELOS ESCOLA BÁSICA DE ALFORNELOS FICHA DE TRABALHO DE MATEMÁTICA 9.º ANO VALORES APROXIMADOS DE NÚMEROS REAIS Dado um úmero xe um úmero positivo r, um úmero x como uma aproximação de x com erro iferior a r

Leia mais

Problema de três corpos. Caso: Circular e Restrito

Problema de três corpos. Caso: Circular e Restrito Poblema de tês copos Caso: Cicula e Restito Tópicos Intodução Aplicações do Poblema de tês copos Equações Geais Fomulação do Poblema Outas vaiantes Equações do Poblema Restito-Plano-Cicula Integal de Jacobi

Leia mais

Econometria. Econometria. Algumas considerações. Algumas considerações MQO. Derivando as Propriedades

Econometria. Econometria. Algumas considerações. Algumas considerações MQO. Derivando as Propriedades Ecoometria. Propriedades fiitas dos estimadores MQO. Estimação da Variâcia do estimador de MQO 3. Revisão de Iferêcia (testes em ecoometria) Ecoometria. Propriedades fiitas dos estimadores MQO Algumas

Leia mais

INTERPOLAÇÃO POLINOMIAL

INTERPOLAÇÃO POLINOMIAL 1 Mat-15/ Cálculo Numérico/ Departameto de Matemática/Prof. Dirceu Melo LISTA DE EXERCÍCIOS INTERPOLAÇÃO POLINOMIAL A aproximação de fuções por poliômios é uma das ideias mais atigas da aálise umérica,

Leia mais

Introdução. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ...

Introdução. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ... Itrodução Exemplos Para curar uma certa doeça existem quatro tratametos possíveis: A, B, C e D. Pretede-se saber se existem difereças sigificativas os tratametos o que diz respeito ao tempo ecessário para

Leia mais

Revisão Vetores em R n

Revisão Vetores em R n Revisão Vetoes em R Deiição O espaço vetoial R é o cojuto R : {( x1,, x) xi R, i 1,, } o qual deiimos as opeações: a) Se u ( x 1,, x ) e v ( y 1,, y ) estão em R temos que u + v ( x1 + y1,, x + y) ; b)

Leia mais

Intervalos de Confiança

Intervalos de Confiança Itervalos de Cofiaça Prof. Adriao Medoça Souza, Dr. Departameto de Estatística - PPGEMQ / PPGEP - UFSM - 0/9/008 Estimação de Parâmetros O objetivo da Estatística é a realização de iferêcias acerca de

Leia mais

Probabilidade II Aula 12

Probabilidade II Aula 12 Coteúdo Probabilidade II Aula Juho de 009 Desigualdade de Marov Desigualdade de Jese Lei Fraca dos Grades Números Môica Barros, D.Sc. Itrodução A variâcia de uma variável aleatória mede a dispersão em

Leia mais

ESTATÍSTICA EXPLORATÓRIA

ESTATÍSTICA EXPLORATÓRIA ESTATÍSTICA EXPLORATÓRIA Prof Paulo Reato A. Firmio praf6@gmail.com Aulas 19-0 1 Iferêcia Idutiva - Defiições Coceitos importates Parâmetro: fução diretamete associada à população É um valor fixo, mas

Leia mais

Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos

Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos Aálise de Algoritmos Aálise de Algoritmos Prof Dr José Augusto Baraauskas DFM-FFCLRP-USP A Aálise de Algoritmos é um campo da Ciêcia da Computação que tem como objetivo o etedimeto da complexidade dos

Leia mais

Definição: Seja a equação diferencial linear de ordem n e coeficientes variáveis:. x = +

Definição: Seja a equação diferencial linear de ordem n e coeficientes variáveis:. x = + Vléi Zum Medeios & Mihil Lemotov Resolução de Equções Difeeciis Liees po Séies Poto Odiáio (PO) e Poto Sigul (PS) Defiição: Sej equção difeecil lie de odem e coeficietes viáveis: ( ) ( ) b ( ) é dito poto

Leia mais

Seção 8: EDO s de 2 a ordem redutíveis à 1 a ordem

Seção 8: EDO s de 2 a ordem redutíveis à 1 a ordem Seção 8: EDO s de a odem edutíveis à a odem Caso : Equações Autônomas Definição Uma EDO s de a odem é dita autônoma se não envolve explicitamente a vaiável independente, isto é, se fo da foma F y, y, y

Leia mais

DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos:

DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos: 48 DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL LEI DOS GRANDES NÚMEROS Pretede-se estudar o seguite problema: À medida que o úmero de repetições de uma experiêcia cresce, a frequêcia relativa

Leia mais

Sucessão ou Sequência. Sucessão ou seqüência é todo conjunto que consideramos os elementos dispostos em certa ordem. janeiro,fevereiro,...

Sucessão ou Sequência. Sucessão ou seqüência é todo conjunto que consideramos os elementos dispostos em certa ordem. janeiro,fevereiro,... Curso Metor www.cursometor.wordpress.com Sucessão ou Sequêcia Defiição Sucessão ou seqüêcia é todo cojuto que cosideramos os elemetos dispostos em certa ordem. jaeiro,fevereiro,...,dezembro Exemplo : Exemplo

Leia mais

APONTAMENTOS DE COMPLEMENTOS DE MATEMÁTICA

APONTAMENTOS DE COMPLEMENTOS DE MATEMÁTICA UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA APONTAMENTOS DE COMPLEMENTOS DE MATEMÁTICA (CÁLCULO DIFERENCIAL EM ) ÁREA DEPARTAMENTAL DE ENGENHARIA CIVIL Cálculo Dieecial em Cálculo dieecial em

Leia mais

CAP. I - ESTUDO DE FUNÇÕES COM VÁRIAS VARIÁVEIS INDEPENDENTES.

CAP. I - ESTUDO DE FUNÇÕES COM VÁRIAS VARIÁVEIS INDEPENDENTES. Aálise Matemática II- ao lectivo 6/7 CAP. I - ESTUDO DE FUNÇÕES COM VÁRIAS VARIÁVEIS INDEPENDENTES. 1. Breves oções topológicas em 1.1 Distâcia etre dois potos R Dados dois potos x e y R, x = ( x1, x,...

Leia mais

Avaliação de Desempenho de Sistemas Discretos

Avaliação de Desempenho de Sistemas Discretos Distribuições Comus Avaliação de Desempeho de Sistemas Discretos Probabilidade e Estatística 2 Uiforme Normal Poisso Hipergeométrica Biomial Studet's Geométrica Logormal Expoecial Beta Gamma Qui-Quadrado

Leia mais

CAPITULO 4 SISTEMAS DE EQUAÇÕES NÃO LINEARES

CAPITULO 4 SISTEMAS DE EQUAÇÕES NÃO LINEARES 88 4.. INTRODUÇÃO CAPITULO 4 SISTEMAS DE EQUAÇÕES NÃO LINEARES O capítlo ateio se iicio com ma discssão sobe a modelaem matemática de sistemas físicos qe pemitisse sa aálise, cocepção e até mesmo poeto.

Leia mais

1- Resolução de Sistemas Lineares.

1- Resolução de Sistemas Lineares. MÉTODOS NUMÉRICOS PR EQUÇÕES DIFERENCIIS PRCIIS 1- Resolução de Sistemas Lieares. 1.1- Matrizes e Vetores. 1.2- Resolução de Sistemas Lieares de Equações lgébricas por Métodos Exatos (Diretos). 1.3- Resolução

Leia mais

GERADORES. Figura 5.1 (a) Gerador não ideal. (b) Gerador não ideal com a resistência interna r explicita no diagrama.

GERADORES. Figura 5.1 (a) Gerador não ideal. (b) Gerador não ideal com a resistência interna r explicita no diagrama. ELEICIDADE CAPÍULO 5 GEADOES Cofome visto o Capítulo, o geado é uma máquia elética capaz de estabelece uma difeeça de potecial elético (ddp) costate (ou fime) ete os extemos de um coduto elético, de maeia

Leia mais

Cap. VI Histogramas e Curvas de Distribuição

Cap. VI Histogramas e Curvas de Distribuição TLF /11 Capítulo VI Histogramas e curvas de distribuição 6.1. Distribuições e histogramas. 6 6.. Distribuição limite 63 6.3. Sigificado da distribuição limite: frequêcia esperada e probabilidade de um

Leia mais

Universidade Federal de Pelotas Disciplina de Microeconomia 1 Professor Rodrigo Nobre Fernandez Lista 4 - Soluções

Universidade Federal de Pelotas Disciplina de Microeconomia 1 Professor Rodrigo Nobre Fernandez Lista 4 - Soluções Univesidade Fedeal de Pelotas Disciplina de Micoeconomia Pofesso Rodigo Nobe Fenandez Lista 4 - Soluções ) Resolva o poblema de maximização dos lucos de uma fima com a tecnologia Cobb Douglas f x,x ) x

Leia mais

Departamento de Informática. Modelagem Analítica. Desempenho de Sistemas de Computação. Arranjos: Amostras Ordenadas. Exemplo

Departamento de Informática. Modelagem Analítica. Desempenho de Sistemas de Computação. Arranjos: Amostras Ordenadas. Exemplo Depatameto de Ifomática Disciplia: Modelagem Aalítica do Desempeho de Sistemas de Computação Elemetos de Aálise Combiatóia Pof. Ségio Colche colche@if.puc-io.b Teoema: Elemetos de Aálise Combiatóia Modelagem

Leia mais

ORIENTAÇÃO DE IMAGENS AÉREAS USANDO LINHAS RETAS

ORIENTAÇÃO DE IMAGENS AÉREAS USANDO LINHAS RETAS Aais do Simpósio Basileio de Geomática, Pesidete Pudete - SP, 9- de julho de. p.34-. ORIENTAÇÃO DE IMAGENS AÉREAS USANDO LINHAS RETAS CHRISTIANE NOGUEIRA DE CARALHO KOKUBUM ANTONIO MARIA GARCIA TOMMASELLI

Leia mais

Capítulo 5- Introdução à Inferência estatística.

Capítulo 5- Introdução à Inferência estatística. Capítulo 5- Itrodução à Iferêcia estatística. 1.1) Itrodução.(184) Na iferêcia estatística, aalisamos e iterpretamos amostras com o objetivo de tirar coclusões acerca da população de ode se extraiu a amostra.

Leia mais

Matemática do Ensino Médio vol.2

Matemática do Ensino Médio vol.2 Matemática do Ensino Médio vol.2 Cap.11 Soluções 1) a) = 10 1, = 9m = 9000 litos. b) A áea do fundo é 10 = 0m 2 e a áea das paedes é (10 + + 10 + ) 1, = 51,2m 2. Como a áea que seá ladilhada é 0 + 51,2

Leia mais

1. Revisão Matemática

1. Revisão Matemática Se x é um elemeto do cojuto Notação S: x S Especificação de um cojuto : S = xx satisfaz propriedadep Uião de dois cojutos S e T : S T Itersecção de dois cojutos S e T : S T existe ; para todo f : A B sigifica

Leia mais

CPV O cursinho que mais aprova na GV

CPV O cursinho que mais aprova na GV RJ_MATEMATICA_9_0_08 FGV-RJ A dministação Economia Dieito C Administação 26 26 das 200 vagas da GV têm ficado paa os alunos do CPV CPV O cusinho que mais apova na GV Ciências Sociais ociais GV CPV. ociais

Leia mais