Matemática. Resolução das atividades complementares. M2 Trigonometria nos Triângulos

Tamanho: px
Começar a partir da página:

Download "Matemática. Resolução das atividades complementares. M2 Trigonometria nos Triângulos"

Transcrição

1 Resolução das atividades complementares Matemática M Trigonometria nos Triângulos p. 1 Em cada caso, calcule o seno, o cosseno e a tangente do ângulo agudo assinalado. a) b) sen γ = cos γ = tg γ 1 sen β cos β 4 tg β 4 a) sen γ 1 cos γ tg γ 1 b) sen β = cos β = 4 tg β = 4 Sabendo que sen 10 0,17; sen 6 0,90 e cos 0 0,64, calcule: a) cos 0,90 b) cos 80 0,17 c) sen 40 0,64 a) cos sen 6 0,90 b) cos 80 sen 10 0,17 c) sen 40 cos 0 0,64 (UFG) Uma pessoa deseja subir uma rampa de comprimento d que forma um ângulo α com a orizontal. pós subir a rampa, esta pessoa estará metros acima da posição em que se encontrava inicialmente, como mostra a figura abaio. a) Que relação eiste entre os valores de α, e d? b) Supondo α 0 e 1 m, qual o valor de d? m cateto oposto a) sen α sen α ipotenusa d d b) sen 0 d m d d sen α d α d

2 4 (Fatec-SP) e dois observatórios, localizados nos pontos X e Y da superfície da Terra, é possível energar um balão meteorológico, sob ângulos de 4º e 60º, conforme é mostrado na figura a seguir. esprezando-se a curvatura da Terra, se 0 km separam X e Y, a altura, em quilômetros, do balão à superfície da Terra, é: a) 0 1 b) c) 60 0 d) 4 1 e) X 4 Z 60 Y 1) O triângulo XZ é retângulo e isósceles: XZ ) No triângulo ZY, como XY 0, tem-se ZY 0 e tg Æ ( ) ? 1 1 X 4 0 Z 60 0 Y (IME-SP) Em um dia de sol, uma esfera localizada sobre um plano orizontal projeta uma sombra de 10 metros, a partir do ponto em que está apoiada ao solo, como indica a figura. Sendo o centro da esfera, T o ponto de tangência de um raio de luz, T um segmento que passa por, perpendicular à sombra, raio de luz e admitindo,,, e T coplanares: a) justifique por que os triângulos e T são semelantes; b) calcule o raio da esfera, sabendo que a tangente do ângulo  é a) o enunciado, temos a figura, cotada em m, em que α e β são as medidas, em graus, dos ângulos  e Tˆ, respectivamente: r: medida do raio da circunferência r No triângulo, temos que ˆ = 90 e ˆ = β. No triângulo T, temos que Tˆ = 90 e ˆ = β. omo os triângulos e T têm dois ângulos com medidas iguais, eles são semelantes. b) No triângulo retângulo, temos: 1 1 tg α Æ Æ e r. 10 plicando o teorema de Pitágoras ao triângulo retângulo, temos: () = () + () () = + 10 =. omo os triângulos e T são semelantes, temos: T ( ) r r Æ Æ r 10? 10 m r ( ) m T β r raio de Luz 10 m sombra 10 m sombra α

3 6 Em uma circunferência de raio cm, considere o diâmetro e a corda, de modo que med (ˆ) 0. etermine. cm cos 0 Æ cos 0º cos 0 10 cm cm O 0 7 (Unic-MT) Uma escada de metros de comprimento está encostada num muro vertical formando com ele um ângulo de 0. Um omem, ao subir nessa escada, observa que, devido a problemas de aderência com o piso orizontal, esta escorrega sem se afastar do muro e pára no ponto em que o ângulo formado entre ela e o piso orizontal é de 0. Nessas condições, o deslocamento efetuado pela escada junto ao muro foi de: a) 1,8 m c),0 m e),00 m b) 0,8 m d) 4, m ados: sen 0 0, cos 0 0,87 sen 0,87? 4, m sen 0 y m 0 y y 0,?, m y 4,, 1,8 m 0 8 (UERJ) Na figura, observa-se um quadrado e dois triângulos eqüiláteros equivalentes. Se cada lado desses triângulos mede cm, calcule o lado l do quadrado. ( ) cm Para o triângulo da figura, temos: L 1 L L tg L L L l L L L L ( 11 ) 4 4 ( 1 ) L 1 ( ) cm aí, L L L 4 1 6

4 9 (Unisinos-RS) Observe o triângulo retângulo ao lado desenado, no qual as medidas dos catetos são 4 e + 4. O valor de é: a) 1 c) e) 4 b) d) tg Æ 1 Æ (Vunesp-SP) Um pequeno avião deveria partir de uma cidade rumo a uma cidade ao norte, distante 60 quilômetros de. Por um problema de orientação, o piloto seguiu erradamente rumo ao oeste. o perceber o erro, ele corrigiu a rota, fazendo um giro de 10 à direita em um ponto, de modo que o seu trajeto, juntamente com o trajeto que deveria ter sido seguido, formaram, aproimadamente, um triângulo retângulo, como mostra a figura. om base na figura, a distância, em quilômetros, que o avião voou partindo 10 de até cegar a foi: a) 0 c) 60 e) 90 b) 40 d) 80 sen cos 0 40 Æ 1 Æ (Oeste) (Norte) 1 ( ) km 60 km 11 ranura trapezoidal é utilizada na construção de guias para elementos de máquinas. mais comum é a ranura conecida como rabo de andorina, indicada na figura. etermine os valores de e y. 4,6 cm; y 7,76 cm tg Æ Æ 4,6 cm y 47 y 47? 4,6 y 7,76 cm 8 y 47 cm 8 cm

5 1 (efet-pr) Se na figura ao lado = 9 cm, o segmento F mede, em centímetros: E a) c) 8 e) 6 b) 4 d) 7 E cos 0 E EF tg 0 EF E Æ Æ F ~ EF (caso L) 9 Æ E 6 E EF Æ EF E 0 0 F F F EF F 6 cm 1 (Faap-SP) soma dos comprimentos das bases de um trapézio retângulo vale 0 m. base maior mede o dobro da menor. alcule a altura do trapézio, sabendo que seu ângulo agudo mede m m tg 0 Æ m 14 Num triângulo retângulo, a tangente de um dos ângulos agudos é 1,0 e a soma dos comprimentos dos catetos é 41 cm. Qual o comprimento da ipotenusa desse triângulo? 9 cm 0 b 1 c 41 cm tg α b 1,0 b 1,0c c 1,0c 1 c 41 c 0 cm b a b 1,0? 0 b 1 cm c a a a 9 cm

6 1 (UEE) Na figura, MNPQ é um trapézio isósceles, MN = 0 cm, QP = 10 cm e θ =. Então, a área desse trapézio, em centímetros quadrados, é: Q P a) c) 7 M θ N b) 6 d) 8 tg = QR QR Æ Æ QR MR S trapézio = MN 1 QP 0? QR 1 10? R Q S S trapézio = 7 cm M N P p (Fameca-SP) ois amigos, ndré e runo, estão num campo aberto empinando pipa. Eles estão, respectivamente, nas posições e. Os fios dessas pipas se enroscam e se rompem, fazendo com que as duas pipas caiam juntas num ponto, distante 40 m de ndré. distância de runo até as pipas é: a) 10 m b) 10 m c) 0 m d) 0 m e) 0 m m 0 4 sen sen 0 Æ Æ 0 m 40

7 Em questões como a 17, as alternativas verdadeiras devem ser marcadas na coluna I e as falsas, na II. 17 (Ufes) No quadrilátero da figura ao lado, tem-se: ângulo  é reto; cm e 6 cm; ˆ 60º; a tangente de ˆ é o dobro da tangente de ˆ. Utilize as informações acima para analisar as afirmações seguintes: I II cm 1 1 O seno de um dos ângulos agudos no triângulo é igual a. cm O perímetro do quadrilátero é igual a ( ) cm cm 00. (verdadeira) tg (ˆ ) = tg (ˆ ) tg α tg β y Pitágoras: + y = Substituindo em, vem: 1 9 =? Æ y y Logo: y = y = (β) y = 6 y = 6 = 6 cm 11. (verdadeira) sen α = y sen α = 6 sen β = sen β = 7

8 . (verdadeira) Usando a Lei dos ossenos, temos: z = +??? cos z = + 6?? 6? 1 z = 7 z =. (falsa) perímetro p p ( ) cm 44. (falsa) cm Usando a Lei dos ossenos, temos: 1??? cos (60º + α) ( ) 1 6?? 6? [cos? cos α sen 60º? sen α] ?? (Fuvest-SP) Na figura abaio, = cm, = cm, a medida do ângulo  é 0 e =, onde é ponto do lado. medida do lado, em centímetros, é: a) b) c) d) 6 e) 7 0 α β () 1 ()??? cos 0 ( ) 1( )??? cos 0 1 4??? ??? cm 8

9 19 (Mackenzie-SP) Na figura, um octógono regular e um quadrado estão inscritos na circunferência de raio r =. área da região sombreada é: a) 4 1 b) ( ) c) 11 d) 8 7 o enunciado, temos a figura, em que O é o centro da circunferência: O O O O 4( 11) e) Sendo S: área do triângulo ; S 1 : área dos triângulos O e O; S : área do triângulo O, temos: S =? S 1 S 1 S =?? ( O )? ( O)? sen 4? S?? S = 1 área pedida é quatro vezes a área do triângulo, ou seja, 4( 1). 0 (UFPE) O círculo da ilustração abaio tem raio 6, o ângulo Ô mede e os ângulos Ô e Ô medem 0. Qual o inteiro mais próimo da área da região colorida? (Obs.: use a aproimação π,14.) 19 ( ) ( ) O? O a figura, obtemos: O área do setor O é igual 1 da área do círculo. Logo: O S 1 = 1? π? r S 1 = 1? π? 6 S 1 = 1π área do triângulo O é igual a: S = 1? O? O? sen 10 S = 1? 6? 6? S = 9 área do setor O é 1 da área do círculo. Logo: 6 S = 1 6? π? r S = 1 6? π? 6 S = 6π área do triângulo O (triângulo eqüilátero) é: S 4 = L S 4 4 = 6? 4 S 4 = 9 área S da região colorida é: S = S 1 S (S S 4 ) S = 1π 9 (6π 9 ) S = 6π S = 6?,14 S = 18,84

10 1 (Unesp-SP) Uma estátua de metros de altura e um poste de metros de altura estão localizados numa ladeira de inclinação igual a 4, como mostra a figura. distância da base do poste à base da estátua é 4 metros, e o poste tem uma lâmpada acesa na etremidade superior. dotando = 1,41 e sabendo que tanto o poste quanto a estátua estão na vertical, calcule: a) o comprimento aproimado da sombra da estátua projetada sobre a ladeira;,67 m b) a área do triângulo XYZ indicado na figura. 11,7 m o enunciado, temos a figura ao lado, cotada em m. a) Os triângulos PYQ e ZYX são semelantes. Logo: QY YX PQ ZX Æ QY PQ QY QY QY 1QX ZX Æ QY 1 4 Æ ssim, a medida aproimada da sombra é igual a,67 m. 8 Z m m 4 m 4 X P Z Q 4 4 Y sombra α Y sombra b) o item anterior, sabemos que QY 8. X 4 cão orizontal omo XY QX 1 QY, temos que XY 4 1 8, ou seja, XY 0. p. 0 área S pedida, em m, é tal que: S 1? ZX? XY? sen 4 S 1 0??? Æ S? 1, 41 dotando 1,41, temos que S, ou seja, S 11,7 m (Unifor-E) Um triângulo isósceles é tal que um de seus ângulos mede 10 e o lado oposto a esse ângulo mede 4 cm. área desse triângulo é, em centímetros quadrados: a) b) c) d) 4 e) 4 sen 10 Æ sen Æ 4 cm cm 0 S 1??? sen 10 S 1? 4? 4? S 4 cm 10

11 (UFES) No triângulo da figura ao lado, o cosseno do ângulo obtuso α é igual a: a) 1 9 b) 1 c) d) e) 4 α 0 4 sen α sen 0 4 Æ sen α sen α 1 4 cos α 1 ± 9 α > 90 Æ cos α 4 (UE) Um triângulo é tal que = = 4. Se  = 10, a medida do lado é: a) b) 4 c) d) 6 e) sen 10 sen 10 Æ Æ sen 0 sen Æ 4 (Un-F) Um observador, situado no ponto, distante 0 m do ponto, vê um edifício sob um ângulo de 0, conforme a figura. aseado nos dados da figura, determine a altura do edifício em metros e divida o resultado por. 1 m α 1 β 1 γ γ 180 γ 4 Pela Lei dos Senos, temos: sen 4 0 Æ sen sen 4 sen sen 0? Æ Æ 0?? 1 6 sen 4 tg 0 Æ Æ 1 m ados: 0 m med (Â) 0 med (Â) 7 med (ˆ ) med (Ĉ) 90 4 γ 0 a 7 b 0 m

12 6 O terreno E, representado pela figura ao lado, foi vendido a R$,00 o metro quadrado. Qual o seu valor? Use sen = 0,86. R$ 6 476,00 S E S 1 S EF 1 S F () ? 40? 8? cos () ? 1 0? m F 9 14 F 14 m S E 8? 40? sen ? 1? 0 m E 0 m m E 0 m F m 40 m 40 m 8 m 8 m S E 760? 0, ,60 preço:,00? 1 61,60 R$ 6 476,00 7 Qual é a área de um triângulo isósceles no qual cada lado congruente mede 10 cm e o ângulo adjacente à base mede 7? cm 10? 10? sen 0 100? 0, S 0 10 cm 10 cm S cm (Unisinos-RS) O paralelogramo da figura tem área 0,78 m. O comprimento do lado é 6 m. Então, o comprimento do lado será, em metros, aproimadamente igual a: a) c) e) 7 b) 4 d) 6 10 ados: sen sen 10 0,866 cos 60º cos 10 0, S? 1? 6?? sen 10 0,78 6?? 0,866 0,78,196 0,78 4 m

13 9 (Unicamp-SP) Sejam, e pontos de uma circunferência, tais que = km, = 1 km e a medida do ângulo seja de a) alcule o raio dessa circunferência. km b) alcule a área do triângulo. km cos 1 1 km 1 a) () 4 1 1?? 1? cos 1 (Lei dos ossenos) () sen 1 R 4 1? 1 1 R? sen 1 1? O km R 1 0 Podemos 1 calcular a área aproimada de um terreno irregular dividindo-o em triângulos formados a R? partir de um mesmo vértice, como mostra a figura. ê a área aproimada desse terreno. 0,1 m R km 40 m b) SS 1 S S S S 1 S 4 1 0??? 40 sen? 1 sen Æ S 1000? 866, 0 40? 70? sen ? 0, 969 1, 6 70? 60? sen 1 100? 60? S t S 1 1 S 1 S 1 S 4 0,1 m km R R R b) S 1484, 9? sen m 40 m 60 m 1?? km 1?? sen 1 0 m m 1 Æ S m 70 m km 1

14 1 (Fuvest-SP) Na figura seguinte, E é o ponto de intersecção das diagonais do quadrilátero e θ é o ângulo agudo Ê. Se E = 1, E = 4, E = e E =, então a área do quadrilátero será: a) 1 sen θ b) 8 sen θ c) 6 sen θ d) 10 cos θ e) 8 cos θ E θ S S E 1 S E 1 S E 1 S E (I) S E 1? 1? 4? sen (180 θ) sen θ 4 S E 1? 4?? sen θ 6 sen θ 1 E S E 1??? sen (180º θ) sen θ S E 1?? 1? sen θ sen θ Substituindo em (I), temos: S sen θ 1 6 sen θ 1 sen θ 1 sen θ S 1 sen θ 14

M2 - Trigonometria nos Triângulos

M2 - Trigonometria nos Triângulos M - Trigonometria nos Triângulos (Vunesp-S) Um pequeno avião deveria partir de uma cidade rumo a uma cidade ao Norte, distante 60 quilômetros de. or um problema de orientação, o piloto seguiu erradamente

Leia mais

Matemática. Resolução das atividades complementares. M1 Geometria Métrica Plana

Matemática. Resolução das atividades complementares. M1 Geometria Métrica Plana Resolução das atividades complementares Matemática M Geometria Métrica Plana p. 0 Na figura a seguir tem-se r // s // t e y. diferença y é igual a: a) c) 6 e) b) d) 0 8 ( I) y 6 y (II) plicando a propriedade

Leia mais

LISTÃO DE EXERCÍCIOS DE REVISÃO IFMA PROFESSOR: ARI

LISTÃO DE EXERCÍCIOS DE REVISÃO IFMA PROFESSOR: ARI 01.: A figura mostra um edifício que tem 15 m de altura, com uma escada colocada a 8 m de sua base ligada ao topo do edifício. comprimento dessa escada é de: a) 12 m. b) 30 m. c) 15 m. d) 17 m. e) 20 m.

Leia mais

P rua PQ Q rua QR. 2 km 4 km. 3 km. av. SR. rua SQ. rua TP. 3 km. rua TS

P rua PQ Q rua QR. 2 km 4 km. 3 km. av. SR. rua SQ. rua TP. 3 km. rua TS Resolução das atividades complementares Matemática M1 Geometria Plana 1 (UFF-RJ) O circuito triangular de uma corrida está esquematizado na figura a seguir: P rua PQ Q rua QR km km R T rua TP 3 km rua

Leia mais

CADERNO DE ATIVIDADES / MATEMÁTICA TECNOLOGIAS

CADERNO DE ATIVIDADES / MATEMÁTICA TECNOLOGIAS VSTIULR VILS 0. alcule x na figura: x + 0º x + 0º RNO TIVIS / MTMÁTI TNOLOGIS 0. Na figura, é o lado de um quadrado inscrito e é o lado do decágono regular. Qual a medida de x? x 0. Na figura a seguir,

Leia mais

ÁREAS. 01 (UFMG) Um terreno tem a forma da figura abaixo. Se AB AD, BC CD, AB = 10 m, BC = 70 m, CD = 40 m e AD = 80 m, então a área do terreno é

ÁREAS. 01 (UFMG) Um terreno tem a forma da figura abaixo. Se AB AD, BC CD, AB = 10 m, BC = 70 m, CD = 40 m e AD = 80 m, então a área do terreno é ÁRES 01 (UFMG) Um terreno tem a forma da figura abaixo. Se,, = 10 m, = 70 m, = 40 m e = 80 m, então a área do terreno é a) 1 500 m b) 1 600 m c) 1 700 m d) 1 800 m 0 (FMMG) - Observe a figura. Nessa figura,

Leia mais

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 9

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 9 RACIOCÍNIO LÓGICO AULA 9 TRIGONOMETRIA TRIÂNGULO RETÂNGULO Considere um triângulo ABC, retângulo em  ( = 90 ), onde a é a medida da hipotenusa, b e c, são as medidas dos catetos e a, β são os ângulos

Leia mais

Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota:

Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Questão 1 (OBMEP RJ) Num triângulo retângulo, definimos o cosseno de seus ângulos agudos O triângulo retângulo da figura

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 05/04/14 PROFESSOR: MALTEZ

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 05/04/14 PROFESSOR: MALTEZ RESOLUÇÃO VLIÇÃO E MTEMÁTI o NO O ENSINO MÉIO T: 05/0/1 PROFESSOR: MLTEZ QUESTÃO 01 São dados os triângulos retângulos E e TE conforme a figura ao lado; T se = E = E = 60 cm, então: E Os triângulos e TE

Leia mais

Prof. Weber Campos webercampos@gmail.com. 2012 Copyri'ght. Curso Agora eu Passo - Todos os direitos reservados ao autor.

Prof. Weber Campos webercampos@gmail.com. 2012 Copyri'ght. Curso Agora eu Passo - Todos os direitos reservados ao autor. EP FISL Raciocínio Lógico - GEOMETRI ÁSI - TRIGONOMETRI webercampos@gmail.com 01 opyri'ght. urso gora eu Passo - Todos os direitos reservados ao autor. ÍNDIE Exercícios Resolvidos de GEOMETRI 0 Exercícios

Leia mais

Matemática. Resolução das atividades complementares. M20 Geometria Analítica: Circunferência

Matemática. Resolução das atividades complementares. M20 Geometria Analítica: Circunferência Resolução das atividades complementares Matemática M Geometria Analítica: ircunferência p. (Uneb-A) A condição para que a equação 6 m 9 represente uma circunferência é: a), m, ou, m, c) < m < e), m, ou,

Leia mais

TRIÂNGULO RETÂNGULO. Triângulo retângulo é todo triângulo que tem um ângulo reto. O triângulo ABC é retângulo em A e seus elementos são:

TRIÂNGULO RETÂNGULO. Triângulo retângulo é todo triângulo que tem um ângulo reto. O triângulo ABC é retângulo em A e seus elementos são: TRIÂNGULO RETÂNGULO Triângulo retângulo é todo triângulo que tem um ângulo reto. O triângulo ABC é retângulo em A e seus elementos são: a: hipotenusa b e c: catetos h: altura relativa a hipotenusa m e

Leia mais

AV1 - MA 13-2011 UMA SOLUÇÃO. b x

AV1 - MA 13-2011 UMA SOLUÇÃO. b x Questão 1. figura abaixo mostra uma sequência de circunferências de centros 1,,..., n com raios r 1, r,..., r n, respectivamente, todas tangentes às retas s e t, e cada circunferência, a partir da segunda,

Leia mais

Aula 10 Triângulo Retângulo

Aula 10 Triângulo Retângulo Aula 10 Triângulo Retângulo Projeção ortogonal Em um plano, consideremos um ponto e uma reta. Chama-se projeção ortogonal desse ponto sobre essa reta o pé da perpendicular traçada do ponto à reta. Na figura,

Leia mais

Relações Métricas nos. Dimas Crescencio. Triângulos

Relações Métricas nos. Dimas Crescencio. Triângulos Relações Métricas nos Dimas Crescencio Triângulos Trigonometria A palavra trigonometria é de origem grega, onde: Trigonos = Triângulo Metrein = Mensuração - Relação entre ângulos e distâncias; - Origem

Leia mais

ÁREA DAS FIGURAS GEOMÉTRICAS PLANAS

ÁREA DAS FIGURAS GEOMÉTRICAS PLANAS 1 ÁREA DAS FIGURAS GEOMÉTRICAS PLANAS 1.Área da região retangular temos: É o paralelogramo que possui os quatro ângulos internos retos, num retângulo, A = B. P = B + d = B + Exemplo: Num retângulo, uma

Leia mais

Matemática 2. 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um. 02. Abaixo temos uma ilustração da Victoria Falls Bridge.

Matemática 2. 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um. 02. Abaixo temos uma ilustração da Victoria Falls Bridge. Matemática 2 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um paralelepípedo retângulo acoplado a um prisma triangular. 1,6m 1m 1,4m Calcule o volume da estrutura, em dm 3, e indique

Leia mais

REVISÃO Lista 07 Áreas, Polígonos e Circunferência. h, onde b representa a base e h representa a altura.

REVISÃO Lista 07 Áreas, Polígonos e Circunferência. h, onde b representa a base e h representa a altura. NOME: ANO: º Nº: POFESSO(A): Ana Luiza Ozores DATA: Algumas definições Áreas: Quadrado: EVISÃO Lista 07 Áreas, Polígonos e Circunferência A, onde representa o lado etângulo: A b h, onde b representa a

Leia mais

Triângulo Retângulo. Exemplo: O ângulo do vértice em. é a hipotenusa. Os lados e são os catetos. O lado é oposto ao ângulo, e é adjacente ao ângulo.

Triângulo Retângulo. Exemplo: O ângulo do vértice em. é a hipotenusa. Os lados e são os catetos. O lado é oposto ao ângulo, e é adjacente ao ângulo. Triângulo Retângulo São triângulos nos quais algum dos ângulos internos é reto. O maior dos lados de um triângulo retângulo é oposto ao vértice onde se encontra o ângulo reto e á chamado de hipotenusa.

Leia mais

Curso Wellington Matemática Trigonometria Lei dos Senos e Cossenos Prof Hilton Franco

Curso Wellington Matemática Trigonometria Lei dos Senos e Cossenos Prof Hilton Franco 1. A figura a seguir apresenta o delta do rio Jacuí, situado na região metropolitana de Porto Alegre. Nele se encontra o parque estadual Delta do Jacuí, importante parque de preservação ambiental. Sua

Leia mais

1. Examine cada relação e escreva se é uma função de A em B ou não. Em caso afirmativo determine o domínio, a imagem e o contradomínio.

1. Examine cada relação e escreva se é uma função de A em B ou não. Em caso afirmativo determine o domínio, a imagem e o contradomínio. 1. Examine cada relação e escreva se é uma função de A em B ou não. Em caso afirmativo determine o domínio, a imagem e o contradomínio. 2. (Fgv) Um vendedor recebe mensalmente um salário fixo de R$ 800,00

Leia mais

LISTÃO UNIDADE IV. Mensagem:

LISTÃO UNIDADE IV. Mensagem: LISTÃO UNIDADE IV Mensagem: A Matemática é uma ciência poderosa e bela; problemiza ao mesmo tempo a harmonia divina do universo e a grandeza do espírito humano. (F. Gomes Teieira) 01. Efetue as operações:

Leia mais

Programa Olímpico de Treinamento. Aula 1. Curso de Geometria - Nível 2. Prof. Rodrigo Pinheiro

Programa Olímpico de Treinamento. Aula 1. Curso de Geometria - Nível 2. Prof. Rodrigo Pinheiro Programa Olímpico de Treinamento urso de Geometria - Nível 2 Prof. Rodrigo Pinheiro ula 1 Introdução Nesta aula, aprenderemos conceitos iniciais de geometria e alguns teoremas básicos que utilizaremos

Leia mais

Quinta lista de exercícios.

Quinta lista de exercícios. MA092 Geometria plana e analítica Segundo semestre de 2015 Quinta lista de exercícios. Triângulos retângulos. Polígonos regulares. Áreas de superfícies planas. 1. Qual deve ser o comprimento de uma escada

Leia mais

Lista 1. Sistema cartesiano ortogonal. 1. Observe a figura e determine os pontos, ou seja, dê suas coordenadas: a) A b) B c) C d) D e) E

Lista 1. Sistema cartesiano ortogonal. 1. Observe a figura e determine os pontos, ou seja, dê suas coordenadas: a) A b) B c) C d) D e) E Sistema cartesiano ortogonal Lista. Observe a figura e determine os pontos, ou seja, dê suas coordenadas: a) A b) B c) C d) D e) E. Marque num sistema de coordenadas cartesianas ortogonais os pontos: a)

Leia mais

LISTA DE MATEMÁTICA II

LISTA DE MATEMÁTICA II Ensino Médio Unidade São Judas Tadeu Professora: Oscar Aluno (a): Série: 3ª Data: / / 2015. LISTA DE MATEMÁTICA II 1) (Fuvest-SP) Um lateral L faz um lançamento para um atacante A, situado 32 m à sua frente

Leia mais

Matemática. Resolução das atividades complementares. M2 Trigonometria nos triângulos

Matemática. Resolução das atividades complementares. M2 Trigonometria nos triângulos Resolução das atividades complementares Matemática M Trigonometria nos triângulos p. 4 ipotenusa de um triângulo retângulo mede 0 cm e o ângulo ˆ mede 60. Qual é a medida dos catetos? 5 cm; 5 cm y 60 o

Leia mais

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%) Probabilidade 10 (0,95%)

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%) Probabilidade 10 (0,95%) Distribuição das.08 Questões do I T A 9 (8,97%) 0 (9,9%) 69 (6,58%) Equações Irracionais 09 (0,86%) Equações Exponenciais (, 0 (9,6%) Geo. Analítica Conjuntos (,96%) Geo. Espacial Funções Binômio de Newton

Leia mais

1. (Unesp 2003) Cinco cidades, A, B, C, D e E, são interligadas por rodovias, conforme mostra

1. (Unesp 2003) Cinco cidades, A, B, C, D e E, são interligadas por rodovias, conforme mostra GEOMETRIA PLANA: SEMELHANÇA DE TRIÂNGULOS 2 1. (Unesp 2003) Cinco cidades, A, B, C, D e E, são interligadas por rodovias, conforme mostra a figura. A rodovia AC tem 40km, a rodovia AB tem 50km, os ângulos

Leia mais

(A) 30 (B) 6 (C) 200 (D) 80 (E) 20 (A) 6 (B) 10 (C) 15 (D) 8 (E) 2 (A) 15 (B) 2 (C) 6 (D) 27 (E) 4 (A) 3 (B) 2 (C) 6 (D) 27 (E) 4

(A) 30 (B) 6 (C) 200 (D) 80 (E) 20 (A) 6 (B) 10 (C) 15 (D) 8 (E) 2 (A) 15 (B) 2 (C) 6 (D) 27 (E) 4 (A) 3 (B) 2 (C) 6 (D) 27 (E) 4 TEOREMA DE TALES. Na figura abaixo as retas r, s e t são (A) 0 (B) 6 (C) 00 (D) 80 (E) 0. Três retas paralelas são cortadas por duas Se AB = cm; BC = 6 cm e XY = 0 cm a medida, em cm, de XZ é: (A) 0 (B)

Leia mais

TRABALHO DE DEPENDÊNCIA TURMA: 2ª SÉRIE CONTEÚDOS RELATIVOS AO 1º E 2º BIMESTRE MATEMÁTICA 2 PROFESSOR ROGERIO

TRABALHO DE DEPENDÊNCIA TURMA: 2ª SÉRIE CONTEÚDOS RELATIVOS AO 1º E 2º BIMESTRE MATEMÁTICA 2 PROFESSOR ROGERIO TRABALHO DE DEPENDÊNCIA TURMA: 2ª SÉRIE CONTEÚDOS RELATIVOS AO 1º E 2º BIMESTRE MATEMÁTICA 2 PROFESSOR ROGERIO OBSERVAÇÕES: 1) AS QUESTÕES OBRIGATORIAMENTE DEVEM SER ENTREGUES EM UMA FOLHA A PARTE COM

Leia mais

Atividade 01 Ponto, reta e segmento 01

Atividade 01 Ponto, reta e segmento 01 Atividade 01 Ponto, reta e segmento 01 1. Crie dois pontos livres. Movimente-os. 2. Construa uma reta passando por estes dois pontos. 3. Construa mais dois pontos livres em qualquer lugar da tela, e o

Leia mais

CPV O cursinho que mais aprova na fgv

CPV O cursinho que mais aprova na fgv O cursinho que mais aprova na fgv FGV economia a Fase 0/novembro/008 MTEMÁTI 0. umentando a base de um triângulo em 0% e reduzindo a altura relativa a essa base em 0%, a área do triângulo aumenta em %.

Leia mais

Matemática Essencial: Alegria Financeira Fundamental Médio Geometria Trigonometria Superior Cálculos

Matemática Essencial: Alegria Financeira Fundamental Médio Geometria Trigonometria Superior Cálculos Matemática Essencial: Alegria Financeira Fundamental Médio Geometria Trigonometria Superior Cálculos Geometria Plana: Áreas de regiões poligonais Triângulo e região triangular O conceito de região poligonal

Leia mais

Com base nos dados apresentados nessa figura, é correto afirmar que a área do terreno reservado para o parque mede:

Com base nos dados apresentados nessa figura, é correto afirmar que a área do terreno reservado para o parque mede: ÁREAS 1. A prefeitura de certa cidade reservou um terreno plano, com o formato de um quadrilátero, para construir um parque, que servirá de área de lazer para os habitantes dessa cidade. O quadrilátero

Leia mais

CURSO DE GEOMETRIA LISTA

CURSO DE GEOMETRIA LISTA GEOMETRI Ângulos Obs.: Dois ângulos são congruentes quando têm a mesma abertura. Exemplos: Ângulos complementares Soma (medida) 90º Ângulos suplementares Soma (medida) 180º issetriz bissetriz de um ângulo

Leia mais

Aula 12 Áreas de Superfícies Planas

Aula 12 Áreas de Superfícies Planas MODULO 1 - AULA 1 Aula 1 Áreas de Superfícies Planas Superfície de um polígono é a reunião do polígono com o seu interior. A figura mostra uma superfície retangular. Área de uma superfície é um número

Leia mais

Quarta lista de exercícios.

Quarta lista de exercícios. MA092 Geometria plana e analítica Segundo semestre de 2015 Quarta lista de exercícios. Circunferência e círculo. Teorema de Tales. Semelhança de triângulos. 1. (Dolce/Pompeo) Um ponto P dista 7 cm do centro

Leia mais

1. Sendo (x+2, 2y-4) = (8x, 3y-10), determine o valor de x e de y. 2. Dado A x B = { (1,0); (1,1); (1,2) } determine os conjuntos A e B. 3. (Fuvest) Sejam A=(1, 2) e B=(3, 2) dois pontos do plano cartesiano.

Leia mais

Bissetrizes e suas propriedades.

Bissetrizes e suas propriedades. Semana Olímpica 013 - Prof. ícero Thiago - olégio ETP/SP issetrizes e suas propriedades. Teorema 1. Seja XOY umângulodadoep umpontoemseuinterior. Então, adistância de P a XO é igual à distância de P a

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2014 DA FUVEST-FASE 1. POR PROFA. MARIA ANTÔNIA C. GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2014 DA FUVEST-FASE 1. POR PROFA. MARIA ANTÔNIA C. GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 014 DA FUVEST-FASE 1. POR PROFA. MARIA ANTÔNIA C. GOUVEIA Q ) Um apostador ganhou um premio de R$ 1.000.000,00 na loteria e decidiu investir parte do valor

Leia mais

Construções Fundamentais. r P r

Construções Fundamentais. r P r 1 Construções Fundamentais 1. De um ponto traçar a reta paralela à reta dada. + r 2. De um ponto traçar a perpendicular à reta r, sabendo que o ponto é exterior a essa reta; e de um ponto P traçar a perpendicular

Leia mais

Lista 1: Vetores -Turma L

Lista 1: Vetores -Turma L Lista 1: Vetores -Turma L Professora: Ivanete Zuchi Siple 1. Dados os vetores u e v da gura, mostrar num gráco um representante do vetor: (a) u v (b) v u (c) u + 4 v u v. Represente o vetor x = u + v w

Leia mais

Assinale as proposições verdadeiras, some os valores obtidos e marque os resultados na Folha de Respostas.

Assinale as proposições verdadeiras, some os valores obtidos e marque os resultados na Folha de Respostas. PROVA APLICADA ÀS TURMAS DO O ANO DO ENSINO MÉDIO DO COLÉGIO ANCHIETA EM MARÇO DE 009. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA QUESTÕES DE 0 A 08.

Leia mais

115% x + 120% + (100 + p)% = 93 2 2. 120% y + 120% + (100 + p)% = 106 2 2 x + y + z = 100

115% x + 120% + (100 + p)% = 93 2 2. 120% y + 120% + (100 + p)% = 106 2 2 x + y + z = 100 MATEMÁTICA Carlos, Luís e Sílvio tinham, juntos, 00 mil reais para investir por um ano. Carlos escolheu uma aplicação que rendia 5% ao ano. Luís, uma que rendia 0% ao ano. Sílvio aplicou metade de seu

Leia mais

Avaliação 1 - MA13-2015.2 - Gabarito. Sendo dados os segmentos de medidas a e b, descreva como construir com régua e compasso a medida ab.

Avaliação 1 - MA13-2015.2 - Gabarito. Sendo dados os segmentos de medidas a e b, descreva como construir com régua e compasso a medida ab. MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL Avaliação 1 - MA13-2015.2 - Gabarito Questão 01 [ 2,00 pts ] Sendo dados os segmentos de medidas a e b, descreva como construir com régua e compasso

Leia mais

2) (PUC-Camp) Uma pessoa encontra-se num ponto A, localizado na base de um prédio, conforme mostra a figura adiante.

2) (PUC-Camp) Uma pessoa encontra-se num ponto A, localizado na base de um prédio, conforme mostra a figura adiante. ATIVIDADES PARA RECUPERAÇÃO PARALELA - MATEMÁTICA PROFESSOR: CLAUZIR PAIVA NASCIMENTO TURMA: 9º ANO REVISÃO 1) (Cesesp-PE) Do alto de uma torre de 50 metros de altura, localizada numa ilha, avista-se a

Leia mais

Prof. Jorge. Estudo de Polígonos

Prof. Jorge. Estudo de Polígonos Estudo de Polígonos Enchendo a piscina A piscina de um clube de minha cidade, vista de cima, tem formato retangular. O comprimento dela é de 18 m. o fundo é uma rampa reta. Vista lateralmente, ela tem

Leia mais

LISTA de RECUPERAÇÃO MATEMÁTICA

LISTA de RECUPERAÇÃO MATEMÁTICA LISTA de RECUPERAÇÃO Professor: ARGENTINO Recuperação: O ANO DATA: 0 / 06 / 015 MATEMÁTICA 1. A figura representa duas raias de uma pista de atletismo plana. Fábio (F) e André (A) vão apostar uma corrida

Leia mais

GA Estudo das Retas. 1. (Pucrj 2013) O triângulo ABC da figura abaixo tem área 25 e vértices A = (4, 5), B = (4, 0) e C = (c, 0).

GA Estudo das Retas. 1. (Pucrj 2013) O triângulo ABC da figura abaixo tem área 25 e vértices A = (4, 5), B = (4, 0) e C = (c, 0). GA Estudo das Retas 1. (Pucrj 01) O triângulo ABC da figura abaixo tem área 5 e vértices A = (, 5), B = (, 0) e C = (c, 0). A equação da reta r que passa pelos vértices A e C é: a) y x 7 x b) y 5 x c)

Leia mais

PROFESSOR: DENYS YOSHIDA

PROFESSOR: DENYS YOSHIDA APOSTILA 015 DESENHO GEOMÉTRICO PROFESSOR: DENYS YOSHIDA DESENHO GEOMÉTRICO 1º ANO - ENSINO MÉDIO - 015 1 Sumário 1. Trigonometria no triangulo retângulo...3 1.1 Triângulo retângulo...4 1. Teorema de Pitágoras...,,,,,,,...4

Leia mais

COLÉGIO SHALOM 1 ANO Professora: Bethânia Rodrigues 65 Geometria. Aluno(a):. Nº.

COLÉGIO SHALOM 1 ANO Professora: Bethânia Rodrigues 65 Geometria. Aluno(a):. Nº. COLÉGIO SHALOM 1 ANO Professora: Bethânia Rodrigues 65 Geometria Aluno(a):. Nº. TRABALHO DE RECUPERAÇÃO E a receita é uma só: fazer as pazes com você mesmo, diminuir a expectativa e entender que felicidade

Leia mais

Módulo de Triângulo Retângulo, Lei dos Senos e Cossenos, Poĺıgonos Regulares. 9 o ano E.F.

Módulo de Triângulo Retângulo, Lei dos Senos e Cossenos, Poĺıgonos Regulares. 9 o ano E.F. Módulo de Triângulo Retângulo, Lei dos Senos e ossenos, Poĺıgonos Regulares. Relações Métricas em Poĺıgonos Regulares 9 o ano.. Triângulo Retângulo, Lei dos Senos e ossenos, Polígonos Regulares. Relações

Leia mais

XXIII OLIMPÍADA PAULISTA DE MATEMÁTICA

XXIII OLIMPÍADA PAULISTA DE MATEMÁTICA III OLIMPÍD PULIST DE MTEMÁTI 1999 - PROV D FSE FINL a SÉRIE - ENSINO FUNDMENTL Instruções: FOLH DE PERGUNTS duração desta prova é de 3 horas. O tempo mínimo de permanência é de 1h 30min. Nesta prova há

Leia mais

Assunto: Razões Trigonométricas no Triângulo Retângulo. 1) Calcule o seno, o co-seno e a tangente dos ângulos indicados nas figuras:

Assunto: Razões Trigonométricas no Triângulo Retângulo. 1) Calcule o seno, o co-seno e a tangente dos ângulos indicados nas figuras: Assunto: Razões Trigonométricas no Triângulo Retângulo 1) Calcule o seno, o co-seno e a tangente dos ângulos indicados nas figuras: b) 15 5 α α 1 resp: sen α =/5 cos α = /5 tgα=/ resp: sen α = 17 cos α

Leia mais

Áreas e Aplicações em Geometria

Áreas e Aplicações em Geometria 1. Introdução Áreas e Aplicações em Geometria Davi Lopes Olimpíada Brasileira de Matemática 18ª Semana Olímpica São José do Rio Preto, SP Nesse breve material, veremos uma rápida revisão sobre áreas das

Leia mais

UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DE MATEMÁTICA

UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DE MATEMÁTICA UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DE MATEMÁTICA Quarta lista de Eercícios de Cálculo Diferencial e Integral I - MTM 1 1. Nos eercícios a seguir admita

Leia mais

3ª série EM - Lista de Questões para a RECUPERAÇÃO FINAL - MATEMÁTICA

3ª série EM - Lista de Questões para a RECUPERAÇÃO FINAL - MATEMÁTICA 3ª série EM - Lista de Questões para a RECUPERAÇÃO FINAL - MATEMÁTICA 01. Um topógrafo pretende calcular o comprimento da ponte OD que passa sobre o rio mostrado na figura abaio. Para isto, toma como referência

Leia mais

POLÍGONOS TRIÂNGULOS E QUADRILÁTEROS

POLÍGONOS TRIÂNGULOS E QUADRILÁTEROS 7º ANO POLÍGONOS TRIÂNGULOS E QUADRILÁTEROS Áreas de alguns quadriláteros Nuno Marreiros Recorda Área do retângulo Para todo e qualquer retângulo de base (b) e altura (h), pode-se escrever: Área do Retângulo

Leia mais

01- Assunto: Equação do 2º grau. Se do quadrado de um número real positivo x subtrairmos 4 unidades, vamos obter o número 140. Qual é o número x?

01- Assunto: Equação do 2º grau. Se do quadrado de um número real positivo x subtrairmos 4 unidades, vamos obter o número 140. Qual é o número x? EXERCÍCIO COMPLEMENTARES - MATEMÁTICA - 9º ANO - ENSINO FUNDAMENTAL - ª ETAPA ============================================================================================== 01- Assunto: Equação do º grau.

Leia mais

(c) 30% (d) 25% aprovados. é a quantidade de: Em uma indústria é fabricado um produto ao custo de

(c) 30% (d) 25% aprovados. é a quantidade de: Em uma indústria é fabricado um produto ao custo de QUESTÃO - EFOMM 0 QUESTÃO - EFOMM 0 Se tgx sec x, o valor de senx cos x vale: ( 7 ( ( ( ( O lucro obtido pela venda de cada peça de roupa é de, sendo o preço da venda e 0 o preço do custo quantidade vendida

Leia mais

AB AC BC. k PQ PR QR GEOMETRIA PLANA CONCEITOS BÁSICOS SEMELHANÇA DE TRIÂNGULOS. Triângulos isósceles

AB AC BC. k PQ PR QR GEOMETRIA PLANA CONCEITOS BÁSICOS SEMELHANÇA DE TRIÂNGULOS. Triângulos isósceles GEOMETRIA PLANA Triângulos isósceles CONCEITOS BÁSICOS Retas paralelas cortadas por uma transversal São aqueles que possuem dois lados iguais. Ligando o vértice A ao ponto médio da base BC, geramos dois

Leia mais

1 COMO ESTUDAR GEOMETRIA

1 COMO ESTUDAR GEOMETRIA Matemática 2 Pedro Paulo GEOMETRIA ESPACIAL I 1 COMO ESTUDAR GEOMETRIA Só relembrando a primeira aula de Geometria Plana, aqui vão algumas dicas bem úteis para abordagem geral de uma questão de geometria:

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 20/04/13 PROFESSOR: MALTEZ

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 20/04/13 PROFESSOR: MALTEZ RSLUÇÃ VLIÇÃ MTMÁTI o N NSIN MÉI T: 0/0/1 PRFSSR: MLTZ QUSTÃ 01 Para determinar a atura do edifício, o síndico usou um artifício. Mediu a sombra do prédio que deu 6 metros e a sua própria sombra, que deu

Leia mais

Anual de Física 2014 1ª Lista de embasamento Espelhos Planos e Esféricos

Anual de Física 2014 1ª Lista de embasamento Espelhos Planos e Esféricos nual de Física 2014 Questão 01 figura mostra um par de espelhos E 1 e E 2 verticais distanciados 40 cm entre si. Dois pontos e encontram-se alinhados verticalmente e equidistantes dos dois espelhos como

Leia mais

TRIÂNGULO RETÂNGULO. Os triângulos AHB e AHC são semelhantes, então podemos estabelecer algumas relações métricas importantes:

TRIÂNGULO RETÂNGULO. Os triângulos AHB e AHC são semelhantes, então podemos estabelecer algumas relações métricas importantes: TRIÂNGULO RETÂNGULO Num triângulo retângulo, os lados perpendiculares, aqueles que formam um ângulo de 90º, são denominados catetos e o lado oposto ao ângulo de 90º recebe o nome de hipotenusa. O teorema

Leia mais

15 + 17 + 19 +... + 35 + 37 = 312

15 + 17 + 19 +... + 35 + 37 = 312 MATEMÁTICA 1 Para uma apresentação de dança, foram convidadas 31 bailarinas. Em uma de suas coreografias, elas se posicionaram em círculos. No primeiro círculo, havia 15 bailarinas. Para cada um dos círculos

Leia mais

Exercícios de Matemática Geometria Analítica Cônicas

Exercícios de Matemática Geometria Analítica Cônicas Eercícios de Matemática Geometria Analítica Cônicas ) (ITA-004) Considere todos os números z = + i que têm módulo e estão na elipse + 4 = 4. Então, o produto deles é igual a 9 49 8 4 ) (VUNESP-00) A figura

Leia mais

. Calcule a medida do segmento CD. 05. No triângulo retângulo da figura ao lado, BC = 13m

. Calcule a medida do segmento CD. 05. No triângulo retângulo da figura ao lado, BC = 13m 05. No triângulo retângulo da figura ao lado, = 1m, D = 8m e D = 4m. alcule a medida do segmento D. LIST DE EXERÍIOS GEOMETRI PLN PROF. ROGERINHO 1º Ensino Médio Triângulo retângulo, razões trigonométricas,

Leia mais

Geometria Plana 03 Prof. Valdir

Geometria Plana 03 Prof. Valdir Geometria lana 03 rof. Valdir TS TÁVEIS E U TRIÂGUL 1. RIETR É o ponto de equilíbrio ou centro de gravidade do triângulo. baricentro coincide com o ponto de intersecção das medianas do triângulo (na figura

Leia mais

Objetivas 2012. Qual dos números abaixo é o mais próximo de 0,7? A) 1/2 B) 2/3 C) 3/4 D) 4/5 E) 5/7 *

Objetivas 2012. Qual dos números abaixo é o mais próximo de 0,7? A) 1/2 B) 2/3 C) 3/4 D) 4/5 E) 5/7 * Objetivas 01 1 Qual dos números abaixo é o mais próximo de 0,7? A) 1/ B) /3 C) 3/4 D) 4/5 E) 5/7 * Considere três números, a, b e c. A média aritmética entre a e b é 17 e a média aritmética entre a, b

Leia mais

Desenho e Projeto de Tubulação Industrial Nível II

Desenho e Projeto de Tubulação Industrial Nível II Desenho e Projeto de Tubulação Industrial Nível II Módulo I Aula 04 SUPERFÍCIE E ÁREA Medir uma superfície é compará-la com outra, tomada como unidade. O resultado da comparação é um número positivo, ao

Leia mais

A Matemática no Vestibular do ITA. Material Complementar: Prova 2014. c 2014, Sergio Lima Netto sergioln@smt.ufrj.br

A Matemática no Vestibular do ITA. Material Complementar: Prova 2014. c 2014, Sergio Lima Netto sergioln@smt.ufrj.br A Matemática no Vestibular do ITA Material Complementar: Prova 01 c 01, Sergio Lima Netto sergioln@smtufrjbr 11 Vestibular 01 Questão 01: Das afirmações: I Se x, y R Q, com y x, então x + y R Q; II Se

Leia mais

C A r. GABARITO MA13 Geometria I - Avaliação /2. A área de um triângulo ABC será denotada por (ABC).

C A r. GABARITO MA13 Geometria I - Avaliação /2. A área de um triângulo ABC será denotada por (ABC). GRITO 13 Geometria I - valiação 3-01/ área de um triângulo será denotada por (). Questão 1. (pontuação: ) figura abaio mostra as semirretas perpendiculares r e s, três circunferências pequenas cada uma

Leia mais

GABARITO. tg B = tg B = TC BC, com B = 60 e tg 60 = 3 BC BC. 3 = TC BC = TC 3. T Substituindo (2) em (1): TC. 3 = 3TC 160.

GABARITO. tg B = tg B = TC BC, com B = 60 e tg 60 = 3 BC BC. 3 = TC BC = TC 3. T Substituindo (2) em (1): TC. 3 = 3TC 160. Matemática Intensivo V. Eercícios 0) No triângulo abaio: teto adjacente ao ângulo. omo 5 e,8 km, vamos relacionar essas informações através da razão tangente: tg cat. oposto cat. adjacente y om: 5, cateto

Leia mais

Considere um triângulo eqüilátero T 1

Considere um triângulo eqüilátero T 1 Considere um triângulo eqüilátero T de área 6 cm. Unindo-se os pontos médios dos lados desse triângulo, obtém-se um segundo triângulo eqüilátero T, que tem os pontos médios dos lados de T como vértices.

Leia mais

IFSP - EAD - GEOMETRIA TRIÂNGULO RETÂNGULO CONCEITUAÇÃO :

IFSP - EAD - GEOMETRIA TRIÂNGULO RETÂNGULO CONCEITUAÇÃO : IFSP - EAD - GEOMETRIA TRIÂNGULO RETÂNGULO CONCEITUAÇÃO : Como já sabemos, todo polígono que possui três lados é chamado triângulo. Assim, ele também possui três vértices e três ângulos internos cuja soma

Leia mais

Questão 1. Questão 2. Questão 3. Resposta. Resposta

Questão 1. Questão 2. Questão 3. Resposta. Resposta Questão Carlos, Luís e Sílvio tinham, juntos, 00 mil reais para investir por um ano. Carlos escolheu uma aplicação que rendia 5% ao ano. Luís, uma que rendia 0% ao ano. Sílvio aplicou metade de seu dinheiro

Leia mais

ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma.

ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma. 2ª Fase Matemática Introdução A prova de matemática da segunda fase é constituída de 12 questões, geralmente apresentadas em ordem crescente de dificuldade. As primeiras questões procuram avaliar habilidades

Leia mais

MATEMÁTICA. 01. O gráfico a seguir ilustra o lucro semestral de uma empresa, em milhares de reais, de 2003 a 2005.

MATEMÁTICA. 01. O gráfico a seguir ilustra o lucro semestral de uma empresa, em milhares de reais, de 2003 a 2005. MTEMÁTI 01. O gráfico a seguir ilustra o lucro semestral de uma empresa, em milhares de reais, de 2003 a 2005. 80 60 40 20 0 1 /03 2 /03 1º/04 2º/04 1º/05 2º/05 Lucro 50 60 45 70 55 65 0-0) O lucro médio

Leia mais

Centro Federal de Educação Tecnológica Departamento Acadêmico da Construção Civil Curso Técnico de Geomensura Disciplina: Matemática Aplicada

Centro Federal de Educação Tecnológica Departamento Acadêmico da Construção Civil Curso Técnico de Geomensura Disciplina: Matemática Aplicada Centro Federal de Educação Tecnológica Departamento Acadêmico da Construção Civil Curso Técnico de Geomensura Disciplina: Matemática Aplicada MATEMÁTICA APLICADA 1. SISTEMA ANGULAR INTERNACIONAL...2 2.

Leia mais

Exercícios Extras-Relações Métricas no Triângulo Retângulo-Lei dos Cossenos e Senos- 1 s anos-2015

Exercícios Extras-Relações Métricas no Triângulo Retângulo-Lei dos Cossenos e Senos- 1 s anos-2015 Exercícios Extras-Relações Métricas no Triângulo Retângulo-Lei dos Cossenos e Senos- 1 s anos-015 1. (Ufsj 013) Um triângulo isósceles inscrito em um círculo de raio igual a 8 cm possui um lado que mede

Leia mais

Desenho geométrico. Ponto: Elemento geométrico considerado sem dimensão, apenas com posição. Reta:

Desenho geométrico. Ponto: Elemento geométrico considerado sem dimensão, apenas com posição. Reta: Desenho geométrico Ponto: Elemento geométrico considerado sem dimensão, apenas com posição. Reta: Linha que estabelece a menor distância entre 2 pontos. Por 1 ponto podem passar infinitas retas. Por 2

Leia mais

Exercícios de Matemática Geometria Analítica - Circunferência

Exercícios de Matemática Geometria Analítica - Circunferência Exercícios de Matemática Geometria Analítica - Circunferência ) (Unicamp-000) Sejam A e B os pontos de intersecção da parábola y = x com a circunferência de centro na origem e raio. a) Quais as coordenadas

Leia mais

Exercícios Triângulos (1)

Exercícios Triângulos (1) Exercícios Triângulos (1) 1. Na figura dada, sabe-se que r // s. Calcule x. 2. Nas figuras abaixo, calcule o valor de x. 5. (PUC-SP) Na figura seguinte, as retas r e s são paralelas. Encontre os ângulos

Leia mais

PROVA OBJETIVA DE MATEMÁTICA VESTIBULAR 2013 - FGV CURSO DE ADMINISTRAÇÃO RESOLUÇÃO: Profa. Maria Antônia C. Gouveia

PROVA OBJETIVA DE MATEMÁTICA VESTIBULAR 2013 - FGV CURSO DE ADMINISTRAÇÃO RESOLUÇÃO: Profa. Maria Antônia C. Gouveia PROVA OBJETIVA DE MATEMÁTICA VESTIBULAR 0 - FGV CURSO DE ADMINISTRAÇÃO Profa. Maria Antônia C. Gouveia. O PIB per capita de um país, em determinado ano, é o PIB daquele ano dividido pelo número de habitantes.

Leia mais

NOME: ANO: 3º Nº: PROFESSOR(A):

NOME: ANO: 3º Nº: PROFESSOR(A): NOME: ANO: º Nº: PROFESSOR(A): Ana Luiza Ozores DATA: Algumas definições Triângulos: REVISÃO Lista 06 Triângulos e Quadriláteros Classificação quanto aos lados: Escaleno (todos os lados diferentes), Isósceles

Leia mais

MATEMÁTICA - 3ª ETAPA/2015. Aluno: Nº. 1) Calcule o valor de x, sabendo que o perímetro do quadrilátero é de 8,6 m.

MATEMÁTICA - 3ª ETAPA/2015. Aluno: Nº. 1) Calcule o valor de x, sabendo que o perímetro do quadrilátero é de 8,6 m. MATEMÁTICA - ª ETAPA/015 Ensino Fundamental Ano: 8º Professora: Thaís Sadala Turma: Atividade: Estude Mais 10 Data: Aluno: Nº 1) Calcule o valor de x, sabendo que o perímetro do quadrilátero é de 8,6 m.,4

Leia mais

PROVA DO VESTIBULAR DA FUVEST 2002 2ª etapa MATEMÁTICA. RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÕNIA GOUVEIA.

PROVA DO VESTIBULAR DA FUVEST 2002 2ª etapa MATEMÁTICA. RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÕNIA GOUVEIA. PROVA DO VESTIBULAR DA FUVEST 00 ª etapa MATEMÁTICA. RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÕNIA GOUVEIA. QUESTÃO.01.Carlos, Luis e Sílvio tinham, juntos, 100 mil reais para investir por um ano. Carlos

Leia mais

Nível B3 TRIGONOMETRIA DO TRIÂNGULO RECTÂNGULO

Nível B3 TRIGONOMETRIA DO TRIÂNGULO RECTÂNGULO Nível B3 TRIGONOMETRIA DO TRIÂNGULO RECTÂNGULO Razões trigonométricas A palavra trigonometria significa medir triângulos. Na figura, α e β são ângulos agudos do triângulo rectângulo. [CB] é a hipotenusa.

Leia mais

RETÂNGULO ÁREAS DE FIGURAS PLANAS PARALELOGRAMO. Exemplo: Calcule a área de um terreno retangular cuja basemede 3meaaltura 45m.

RETÂNGULO ÁREAS DE FIGURAS PLANAS PARALELOGRAMO. Exemplo: Calcule a área de um terreno retangular cuja basemede 3meaaltura 45m. ÁREAS DE FIGURAS PLANAS RETÂNGULO PARALELOGRAMO Exemplo: Calcule a área de um paralelogramo que tem,4 cmdebasee1,3cmdealtura. Resposta: A= B h A=,4x1,3 A=3,1 cm² 01. Calcule a área do paralelogramo, sabendo-se

Leia mais

1. Determine x no caso a seguir: 2. No triângulo ABC a seguir, calcule o perímetro.

1. Determine x no caso a seguir: 2. No triângulo ABC a seguir, calcule o perímetro. 1. Determine x no caso a seguir: 2. No triângulo ABC a seguir, calcule o perímetro. 3. (Ufrrj) Milena, diante da configuração representada abaixo, pede ajuda aos vestibulandos para calcular o comprimento

Leia mais

2) Se z = (2 + i).(1 + i).i, então a) 3 i b) 1 3i c) 3 i d) 3 + i e) 3 + i. ,será dado por: quando x = i é:

2) Se z = (2 + i).(1 + i).i, então a) 3 i b) 1 3i c) 3 i d) 3 + i e) 3 + i. ,será dado por: quando x = i é: Aluno(a) Nº. Ano: º do Ensino Médio Exercícios para a Recuperação de MATEMÁTICA - Professores: Escossi e Luciano NÚMEROS COMPLEXOS 1) Calculando-se corretamente as raízes da função f(x) = x + 4x + 5, encontram-se

Leia mais

A A A A A A A A A A A A A A A

A A A A A A A A A A A A A A A MTEMÁTIC ViajeBem é uma empresa de aluguel de veículos de passeio que cobra uma tarifa diária de R$ 60,00 mais R$,50 por quilômetro percorrido, em carros de categoria. lucar é uma outra empresa que cobra

Leia mais

Aula 5 Quadriláteros Notáveis

Aula 5 Quadriláteros Notáveis Aula 5 Quadriláteros Notáveis Paralelogramo Definição: É o quadrilátero convexo que possui os lados opostos paralelos. A figura mostra um paralelogramo ABCD. Teorema 1: Se ABCD é um paralelogramo, então:

Leia mais

Matemática B Intensivo V. 1

Matemática B Intensivo V. 1 Matemática Intensivo V. Eercícios 0) No triângulo abaio: teto adjacente ao ângulo. omo 5 e,8 km, vamos relacionar essas informações através da razão tangente: tg cat. oposto cat. adjacente y om: 5, cateto

Leia mais

PROBLEMAS DE OTIMIZAÇÃO

PROBLEMAS DE OTIMIZAÇÃO (Tóp. Teto Complementar) PROBLEMAS DE OTIMIZAÇÃO 1 PROBLEMAS DE OTIMIZAÇÃO Este teto estuda um grupo de problemas, conhecido como problemas de otimização, em tais problemas, quando possuem soluções, é

Leia mais

Raio é o segmento de recta que une um ponto da circunferência com o seu centro.

Raio é o segmento de recta que une um ponto da circunferência com o seu centro. Catarina Ribeiro 1 Vamos Recordar: Circunferência de centro C e raio r é o lugar geométrico de todos os pontos do plano que estão à mesma distância r de um ponto fixo C. Círculo de centro C e raio r é

Leia mais

DIDÁTIKA - RESOLUÇÕES DOS EXERCÍCIOS EXTRAS

DIDÁTIKA - RESOLUÇÕES DOS EXERCÍCIOS EXTRAS DIDÁTIKA - RESOLUÇÕES DOS EXERCÍCIOS EXTRAS 01. Na figura, ABCD é um quadrado e ADE é um triângulo retângulo em E. Se P é o centro do quadrado, prove que a semirreta EP é a bissetriz do ângulo AED. Resolução.

Leia mais

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 4 Professor Marco Costa

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 4 Professor Marco Costa 1 Projeto Jovem Nota 10 1. (Ufscar 2001) Considere o triângulo de vértices A, B, C, representado a seguir. a) Dê a expressão da altura h em função de c (comprimento do lado AB) e do ângulo A (formado pelos

Leia mais