PROVAS DE MATEMÁTICA DO VESTIBULARES-2011 DA MACKENZIE RESOLUÇÃO: Profa. Maria Antônia Gouveia. 13 / 12 / 2010

Tamanho: px
Começar a partir da página:

Download "PROVAS DE MATEMÁTICA DO VESTIBULARES-2011 DA MACKENZIE RESOLUÇÃO: Profa. Maria Antônia Gouveia. 13 / 12 / 2010"

Transcrição

1 PROVAS DE MATEMÁTICA DO VESTIBULARES-0 DA MACKENZIE Profa. Maria Antônia Gouveia. / / 00 QUESTÃO N o 9 Dadas as funções reais definidas por f(x) x x e g(x) x x, considere I, II, III e IV abaixo. I) Ambas as funções possuem gráficos simétricos em relação ao eixo das ordenadas. II) O número de soluções reais da equação f(x) g(x) é. III) A soma de todas as raizes das funções dadas é. IV) Não existe x real tal que f(x) < g(x). O número de afirmações corretas é a) 0 b) c) d) e) I) FALSA. Analisando os gráficos I e II, verifica-se que apenas a função f(x) possui o gráfico simétrico em relação ao eixo das ordenadas, pois para todo x real, f(x) f( x). II) FALSA. Pela análise do gráfico III, verifica-se que o conjunto solução da equação f(x) g(x) é { 0, } { x R/x > }, então a equação tem infinitas soluções. III) VERDADEIRA. Pelo gráfico I vê-se que as raízes de f(x) são, 0 e e pelo gráfico II que as raízes de g(x) são 0 e. Logo a soma desses valores é IV) FALSA., 0 0,. Analisando o gráfico III conclui-se que f(x) < g(x) para todo x pertencente ao intervalo ] [ ] [ RESPOSTA: Alternativa b.

2 QUESTÃO N o 0 O lado, a altura e a área de um triângulo equilátero inscrito em um círculo formam, nesta ordem, uma progressão geométrica. A área do círculo é igual a a) π b) π c) π d) π e) π Num triângulo eqüilátero de lado l, a altura mede nessa ordem, em P.G.: ( ) l l l l l l l e a área l h. Como essas medidas estão, Como a altura de um triângulo eqüilátero, inscrito em um círculo de raio r, equivale a r, então r r. Logo a área do círculo é π. RESPOSTA: Alternativa c. QUESTÃO N o 7 π Considere o conjunto A,,,, 5 elementos que x pode assumir, para que y seja real, é a) b) c) d) e) 5 π e a igualdade y log log ( x x ). Em A, o número de + Para que y log log ( x x ) seja um número real, log ( x x + ) 0 + ( x x + ) 0 log ( x x + ) log x x + > 0 x x + > 0 > log x x e x x + > 0. > x + < x x + > 0 x x < 0 x(x ) < 0. x + > 0 x x + > 0 O trinômio x x + não tem raízes reais, pois, < 0 e como o coeficiente de x é um número positivo ele somente assume valores positivos. Sendo S S S, então S ] 0,[ Os valores de e RESPOSTA: Alternativa b. A 7 π,,, π, que x pode assumir são 5

3 QUESTÃO N o A área do quadrado assinalado na figura é igual a a) 5 b) 0 c) d) 8 e) 6 Na figura ao lado os triângulos retângulos BDG e FEC, x 5 portanto: x 5 SDEFG. x RESPOSTA: Alternativa a. QUESTÃO N o Uma circunferência de centro (,y), com y Z, é tangente às retas x + y 0 e x 7y + 0. O raio dessa circunferência é a) b) 5 c) d) 5 e) 6 R y 7y y 6 7y, considerando 50 ( + y) ( + y) 6 7y + y 0 y Z y y 6 y 0 y 8 Z + y 0 Substituindo y 8 em R 5. + y > 0 y > RESPOSTA: Alternativa d.

4 QUESTÃO N o I) sen < 0 II) Se a probabilidade de um casal ter um filho do sexo masculino é, então a probabilidade de o casal ter dois filhos de sexos diferentes é 8. III) O raio de um cilindro reto é aumentado de 5%; para que o volume do cilindro permaneça o mesmo, a sua altura deve ser diminuída de 6%. Considerando I, II e III acima, a) somente I está correta. b) somente I e III estão corretas. c) somente II e III estão corretas. d) somente III está correta. e) somente II está correta. I) FALSA.,,x 60 x,65 sen > 0. x 80 II) VERDADEIRA. Se a probabilidade de um casal ter um filho do sexo masculino é, então a probabilidade de o casal ter um filho do sexo feminino é. 6 Logo a probabilidade de o casal ter dois filhos de sexos diferentes é III) VERDADEIRA. Considere-se o volume do cilindro reto de raio R e altura H, como V πr H. Se o raio do cilindro passa a ser,5r e a altura 0,6H, o seu volume passará a ser V π(,5r) 0,6 H π,565r 0,6H πr H RESPOSTA: Alternativa c.

5 QUESTÃO N o 5 kx + ky 0 Relativas ao sistema, k R, considere as afirmações I, II e III abaixo. x + ky 8 I) Apresenta solução única para, exatamente, dois valores distintos de k. II) Apresenta mais de solução para um único valor de k. III) É impossível para um único valor de k. Dessa forma, a) somente I está correta. b) somente II e III estão corretas. c) somente I e III estão corretas. d) somente III está correta. e) I, II e III estão corretas. Pela Regra de Cramer: k k e k k 0 y 8. I) FALSA. k k kx + ky 0 0 k k 0 k 0 ou k O sistema, k R apresenta solução k x + ky 8 única para infinitos valores de k. II) VERDADEIRA. k 0 y 0 8k 0 k 0 O sistema apresenta mais de solução para k 0. 8 III) VERDADEIRA. O sistema é impossível para k. RESPOSTA: alternativa b. QUESTÃO N o 9 / / 00 Em uma sequência numérica, a soma dos n primeiros termos é n +, com n natural não nulo. O oitavo termo da sequência é a) 6 b) 9 c) d) e) 5 Tem-se que S 8 S 7 + a 8 a 8 S 8 S 7 S n n +, então, S 8 (8) + 9 e S 7 (7) + 9. Logo, a 8 S 8 S RESPOSTA: Alternativa e. Questão no0 A média aritmética de 0 números em progressão aritmética é 0. Retirados o primeiro e o último termos da progressão, a média aritmética dos restantes será 5

6 a) 0 b) 5 c) 0 d) 5 e) 0 Se a média aritmética de 0 números em progressão aritmética é 0, então a soma dos 0 termos é (a + a 0).0 Então, S (a + a 0) 800 (a + a 0) 80. Retirados o primeiro e o último termos da progressão, a média aritmética dos restantes será: RESPOSTA: Alternativa e. QUESTÃO N o Na figura, temos o gráfico da função real definida por y x + mx + (8 m). O valor de k + p é a) b) c) d) e) Como a parábola é tangente ao eixo Ox no ponto (k, 0), vértice da parábola: 0 m (8 m) 0 m + m 0 ± ± m m 8 ou m. m () k e k < 0 m k. 8 m p p 8 k + p +. RESPOSTA: Alternativa b. Questão no Assinale, dentre os valores abaixo, um possível valor de x tal que log x > log7 a) b) 5 c) 5 d) e) 5 logx logx log x > log7 > log7 log 0 < x < 7 Um possível valor de x é. > log 7 log x < log 7 x < 7 6

7 RESPOSTA: Alternativa a. QUESTÃO N o Na figura, ABCDEF é um hexágono regular e a distância do vértice D à diagonal FB é. A área do triângulo assinalado é a) b) c) d) e) 6 A diagonal BF é lado do triângulo equilátero BFD, então AD é perpendicular a BF e a medida de DH é igual a da medida do raio. Tem-se então r r 6 r. Como a medida do lado do hexágono regular inscrito numa circunferência é igual à medida do raio, AB AF O ângulo FÂB mede 0, assim a área do triângulo BAF é: S AF AB sen0. RESPOSTA: Alternativa a. QUESTÃO N o Os pontos (x,y) do plano tais que x + y 6, com x + y 6, definem uma região de área a) 6(π ) b) 9 π c) 9(π ) d) 6 π e) 8(π ) x + y 6 y x + 6. Os pontos (x,y) do plano tais que x + y 6, com x + y 6, definem uma região de área que é a interseção das regiões x + y 6 e y x + 6, conforme figura ao lado: A área da região destacada é então: π S ( r) π ( 6) S AOB 6 6 9π 8 9(π ) RESPOSTA: Alternativa c. 7

8 QUESTÃO N o 5 Cada um dos círculos da figura deverá ser pintado com uma cor, escolhida dentre três disponíveis. Sabendo que dois círculos consecutivos nunca serão pintados com a mesma cor, o número de formas de se pintar os círculos é a) 7 b 68 c) 60 d) 5 e) 8 O primeiro círculo da esquerda pode ser pintado com qualquer uma das três cores disponíveis. Escolhida a cor para pintá-lo, sobrarão cores para o o círculo; escolhida a cor para pintar o o, sobrarão cores para o o círculo e assim por diante, ou seja sempre haverá apenas opções de cores para os seguintes. Total de formas diferentes de pintar a figura: 8. RESPOSTA: Alternativa e. 6/06/0 PROVA DE RACIOCÍNIO LÓGICO-MATEMÁTICO QUESTÃO N o 6. Se a + 0, então a + é igual a a a a) 90 b) 9 c) 96 d) 98 e) 0 Elevando ao quadrado os dois membros da igualdade a + 0 a a + 0 a a a a a RESPOSTA: Alternativa d. QUESTÃO N o 7 João gastava 0% de seu salário com o pagamento mensal de dívida. Em um determinado mês, o salário do João aumentou de 8% e o valor do pagamento mensal da dívida aumentou de 0%, o que representou um aumento desse pagamento para, aproximadamente, a),00% do seu salário. 8

9 b),% do seu salário. c),% do seu salário. d) 9,99% do seu salário. e) 5,00% do seu salário. Salário inicial Pagamento mensal da dívida. Salário novo Novo pagamento mensal da dívida. x 0,x,08x, 0,x 0,8x Pagamento mensal Salário novo 0,8x,08 x RESPOSTA: Alternativa c. 0,...,%. 9 QUESTÃO N o 8 0 etiquetas numeradas, 0, na cor verde; 0, na cor branca; 0, na cor amarela e 0 na cor azul, foram colocadas em uma urna. Sorteadas, consecutivamente, duas delas, a probabilidade de serem ambas da mesma cor é 5 a) b) c) d) e) RESPOSTA: Alternativa b QUESTÃO N o 9 Em um processo de seleção, aplicado a 50 pessoas, a nota média dos homens foi,0, a nota média das mulheres foi 6,0 e a média geral de todos os participantes foi 5,. Participaram, do processo, a) 5 homens. d) homens. b) 8 homens. e) homens. c) 0 homens. Considerando como x o número de homens e como y o de mulheres, tem-se o sistema: x + y 50 x + y 50 x + y 50 x + y 00 y 5 x + 6y x + y. 5, 5, x + y 5 x + y 5 x

10 RESPOSTA: Alternativa a QUESTÃO N o 0 As soluções reais da equação x x são em número de a) b) c) 5 d) e) x, se x 0 Sendo x, então da equação x x, tem-se: x, se x < 0 x x ou x x x ou x x ou x x x As raízes da equação x x são x ou x. ( ) ( ) ( x ou x ) RESPOSTA: Alternativa e. QUESTÃO N o 9 7/06/0 M ATEMÁTICA No intervalo [0;π], seja k o número de valores reais de x tais que sen x cos x. Dessa forma, k k a) sen ( k) > 0 b) sen < 0 c) t g ( k) > 0 d) cos ( k) < 0 e) cos < 0 π π x e cos x cos x, para x 0, ou cos x cos x, para x, π, então, π sen x cosx, para x 0, cos x cos x cos x + cos x 0 sen x cosx π cos x cos x cos x cos x 0 sen x cosx, para x, π Se [ 0, π] ± + ± cosx ou ± + ± 5 cosx 5 cos x + 5 ou cos x 5 k α rad. 80 π rad α rad 60 k α,65 sen(k) < 0; sen( ) > 0;, tg(k) > 0; cos(k) > 0 e k cos > 0 0

11 Logo a única alternativa verdadeira é tg(k) > 0. RESPOSTA: Alternativa c. QUESTÃO N o 0 Seja t a reta bissetriz dos ângulos agudos formados pelas retas ( r) x + y 5 0 e (s) x y 0. Considere um ponto B t, cuja a distância à reta s seja. Dessa forma, a distância da intersecção das retas r e s à projeção de B sobre r é a) b) c) d) e) 5 Determinação do ponto A r s: 7 x 7 + y 5 x + y 5 7 x y x y 7 A, No triângulo retângulo ABC a medida de AB é a distância entre os pontos A r s e B pertencente à reta t, bissetriz bissetriz dos ângulos agudos formados pelas retas r e s, tem-se: BC 9 tg0 AC, AC AC RESPOSTA: Alternativa d. QUESTÃO N o

12 x y + z Os valores de k, para que o sistema x + ky + z não tenha solução real, são os primeiros x + y + kz termos de uma progressão aritmética de termos crescentes. Então, nessa PA, o logaritmo na base do quadragésimo terceiro termo é a) 8 b) 0 c) d) e) 6 Aplicando a Regra de Cramer ao sistema: x y + z x + ky + z x + y + kz Para o sistema não ter solução real k k k k + k k + k + ± 6 ± 0 k + k + 0 k k k ou k Então tem-se a progressão aritmética de termos crescentes: (,,,,... ) r ( ) O quadragésimo terceiro termo desta P.A. é: a + ( ) x x a log 8 log x. Logo: ( ) x 8 log RESPOSTA: Alternativa a. QUESTÃO N o Na figura, os raios das circunferências de centros M e N são, respectivamente, r e 5r. Se a área do quadrilátero AMBN é 6 6, o valor de r é: a) b) c) d) e) 5 de razão. Aplicando a Lei dos Cossenos no triângulo AMN em relação ao ângulo α: r 5r + 5r 5r 5r cosα 50r cosα cosα senα r cosα sen α 5 sen α Se cosα + sen α sen α senα Se a área do quadrilátero AMBN é 6 6, a área do triângulo AMN é 8 6, então: 8 6 5r 5r senα 8 RESPOSTA: Alternativa b. 6 5r r r r.

13 QUESTÃO N o Na figura, os catetos do triângulo medem e e o arco de circunferência tem centro A. Dentre as alternativas, fazendo π, o valor mais próximo da área assinalada é: a),5 b),5 c),8 d),60 e),68 O triângulo ABC é Pitagórico então BC 5. O raio do setor circular de centro A tem medida igual a da altura do triângulo ABC em relação à hipotenusa. Utilizando a relação ah bc, vem: 5r r,. A área procurada é: π(,) S RESPOSTA: Alternativa e. 5,76 6 6,,68 QUESTÃO N o Se m, n e p são inteiros positivos tais que de p, a soma m + n é igual a p m e n 8 p, então, para o menor valor possível 7 a) 0 b) 5 c) 8 d) 0 e) p p 7 Se p e m são inteiros positivos, para o menor valor possível de p, p 7 e m O valor de n é: 8 p 8 7. Então m + n RESPOSTA: Alternativa a. QUESTÃO N o 5 Considere todos os possíveis telefones celulares, com números de 8 algarismos e primeiro algarismo 9. Mantido o primeiro algarismo 9, se os telefones passarem a ter 9 algarismos, haverá um aumento de a) 0 7 números telefônicos. b) 0 8 números telefônicos. c) números telefônicos. d) números telefônicos. e) números telefônicos.

14 Possibilidades de números de telefones celulares iniciando por 9 atualmente: 0 7. Mantido o primeiro algarismo 9, os telefones passarem a ter 9 algarismos, haverá um total de possibilidades igual a 0 8. Logo um aumento de (0 ) números telefônicos. RESPOSTA: Alternativa c.

FUVEST VESTIBULAR 2006. RESOLUÇÃO DA PROVA DA FASE 1. Por Professora Maria Antônia Conceição Gouveia. MATEMÁTICA

FUVEST VESTIBULAR 2006. RESOLUÇÃO DA PROVA DA FASE 1. Por Professora Maria Antônia Conceição Gouveia. MATEMÁTICA FUVEST VESTIBULAR 006. RESOLUÇÃO DA PROVA DA FASE 1. Por Professora Maria Antônia Conceição Gouveia. MATEMÁTICA 1. A partir de 64 cubos brancos, todos iguais, forma-se um novo cubo. A seguir, este novo

Leia mais

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2010 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2010 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 010 1 a Fase Profa Maria Antônia Gouveia QUESTÃO 01 Sobre números reais, é correto afirmar: (01) Se m é um número inteiro divisível por e n é um número inteiro divisível

Leia mais

RESOLUÇÀO DA PROVA DE MATEMÁTICA VESTIBULAR DA FUVEST_2007_ 2A FASE. RESOLUÇÃO PELA PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA

RESOLUÇÀO DA PROVA DE MATEMÁTICA VESTIBULAR DA FUVEST_2007_ 2A FASE. RESOLUÇÃO PELA PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA RESOLUÇÀO DA PROVA DE MATEMÁTICA VESTIBULAR DA FUVEST_007_ A FASE RESOLUÇÃO PELA PROFA MARIA ANTÔNIA CONCEIÇÃO GOUVEIA Questão Se Amélia der R$3,00 a Lúcia, então ambas ficarão com a mesma quantia Se Maria

Leia mais

Exercícios de Matemática Geometria Analítica - Circunferência

Exercícios de Matemática Geometria Analítica - Circunferência Exercícios de Matemática Geometria Analítica - Circunferência ) (Unicamp-000) Sejam A e B os pontos de intersecção da parábola y = x com a circunferência de centro na origem e raio. a) Quais as coordenadas

Leia mais

a = 6 m + = a + 6 3 3a + m = 18 3 a m 3a 2m = 0 = 2 3 = 18 a = 6 m = 36 3a 2m = 0 a = 24 m = 36

a = 6 m + = a + 6 3 3a + m = 18 3 a m 3a 2m = 0 = 2 3 = 18 a = 6 m = 36 3a 2m = 0 a = 24 m = 36 MATEMÁTICA Se Amélia der R$ 3,00 a Lúcia, então ambas ficarão com a mesma quantia. Se Maria der um terço do que tem a Lúcia, então esta ficará com R$ 6,00 a mais do que Amélia. Se Amélia perder a metade

Leia mais

2) Se z = (2 + i).(1 + i).i, então a) 3 i b) 1 3i c) 3 i d) 3 + i e) 3 + i. ,será dado por: quando x = i é:

2) Se z = (2 + i).(1 + i).i, então a) 3 i b) 1 3i c) 3 i d) 3 + i e) 3 + i. ,será dado por: quando x = i é: Aluno(a) Nº. Ano: º do Ensino Médio Exercícios para a Recuperação de MATEMÁTICA - Professores: Escossi e Luciano NÚMEROS COMPLEXOS 1) Calculando-se corretamente as raízes da função f(x) = x + 4x + 5, encontram-se

Leia mais

PROVA DE MATEMÁTICA DA UEFS VESTIBULAR 2012 2. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UEFS VESTIBULAR 2012 2. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UEFS VESTIBULAR 0 Profa. Maria Antônia Gouveia. Questão Em um grupo de 0 casas, sabe-se que 8 são brancas, 9 possuem jardim e possuem piscina. Considerando-se essa infomação e as

Leia mais

ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Considere os conjuntos S = {0,2,4,6}, T = {1,3,5} e U = {0,1} e as afirmações: I. {0} S e S U. II. {2} S\U e S T U={0,1}.

Leia mais

FUVEST VESTIBULAR 2005 FASE II RESOLUÇÃO: PROFA. MARIA ANTÔNIA GOUVEIA.

FUVEST VESTIBULAR 2005 FASE II RESOLUÇÃO: PROFA. MARIA ANTÔNIA GOUVEIA. FUVEST VESTIBULAR 00 FASE II PROFA. MARIA ANTÔNIA GOUVEIA. Q 0. Para a fabricação de bicicletas, uma empresa comprou unidades do produto A, pagando R$9, 00, e unidades do produto B, pagando R$8,00. Sabendo-se

Leia mais

MATEMÁTICA. 01. Considere a função f, com domínio e contradomínio o conjunto dos números

MATEMÁTICA. 01. Considere a função f, com domínio e contradomínio o conjunto dos números MATEMÁTICA 01. Considere a função f, com domínio e contradomínio o conjunto dos números reais, dada por f(x) = 3 cos x sen x, que tem parte de seu gráfico esboçado a seguir. Analise a veracidade das afirmações

Leia mais

Resolução da Prova da Escola Naval 2009. Matemática Prova Azul

Resolução da Prova da Escola Naval 2009. Matemática Prova Azul Resolução da Prova da Escola Naval 29. Matemática Prova Azul GABARITO D A 2 E 2 E B C 4 D 4 C 5 D 5 A 6 E 6 C 7 B 7 B 8 D 8 E 9 A 9 A C 2 B. Os 6 melhores alunos do Colégio Naval submeteram-se a uma prova

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 3. alternativa D. alternativa A. alternativa D. alternativa C

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 3. alternativa D. alternativa A. alternativa D. alternativa C Questão TIPO DE PROVA: A Se a circunferência de um círculo tiver o seu comprimento aumentado de 00%, a área do círculo ficará aumentada de: a) 00% d) 00% b) 400% e) 00% c) 50% Aumentando o comprimento

Leia mais

PROVA DE MATEMÁTICA VESTIBULAR 2013 - FGV CURSO DE ECONOMIA RESOLUÇÃO: Profa. Maria Antônia C. Gouveia

PROVA DE MATEMÁTICA VESTIBULAR 2013 - FGV CURSO DE ECONOMIA RESOLUÇÃO: Profa. Maria Antônia C. Gouveia PROVA DE MATEMÁTICA VESTIBULAR 0 - FGV CURSO DE ECONOMIA Profa. Maria Antônia C. Gouveia QUESTÃO 0 Laura caminha pelo menos km por dia. Rita também caminha todos os dias, e a soma das distâncias diárias

Leia mais

QUESTÕES de 01 a 08 INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de Respostas.

QUESTÕES de 01 a 08 INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de Respostas. Resolução por Maria Antônia Conceição Gouveia da Prova de Matemática _ Vestibular 5 da Ufba _ 1ª fase QUESTÕES de 1 a 8 INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados

Leia mais

FUVEST 2008 2 a Fase Matemática RESOLUÇÃO: Professora Maria Antônia Gouveia.

FUVEST 2008 2 a Fase Matemática RESOLUÇÃO: Professora Maria Antônia Gouveia. FUVEST 008 a Fase Matemática Professora Maria Antônia Gouveia Q0 João entrou na lanchonete BOG e pediu hambúrgueres, suco de laranja e cocadas, gastando R$,0 Na mesa ao lado, algumas pessoas pediram 8

Leia mais

PROVA DE MATEMÁTICA DA UFPE. VESTIBULAR 2013 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UFPE. VESTIBULAR 2013 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UFPE VESTIBULAR 0 a Fase Profa. Maria Antônia Gouveia. 0. A ilustração a seguir é de um cubo com aresta medindo 6cm. A, B, C e D são os vértices indicados do cubo, E é o centro da

Leia mais

PROVA DO VESTIBULAR DA FUVEST 2002 2ª etapa MATEMÁTICA. RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÕNIA GOUVEIA.

PROVA DO VESTIBULAR DA FUVEST 2002 2ª etapa MATEMÁTICA. RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÕNIA GOUVEIA. PROVA DO VESTIBULAR DA FUVEST 00 ª etapa MATEMÁTICA. RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÕNIA GOUVEIA. QUESTÃO.01.Carlos, Luis e Sílvio tinham, juntos, 100 mil reais para investir por um ano. Carlos

Leia mais

Assinale as proposições verdadeiras, some os valores obtidos e marque os resultados na Folha de Respostas.

Assinale as proposições verdadeiras, some os valores obtidos e marque os resultados na Folha de Respostas. PROVA APLICADA ÀS TURMAS DO O ANO DO ENSINO MÉDIO DO COLÉGIO ANCHIETA EM MARÇO DE 009. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA QUESTÕES DE 0 A 08.

Leia mais

UFPR_VESTIBULAR _2004 COMENTÁRIO E RESOLUÇÃO POR PROFA. MARIA ANTONIA GOUVEIA

UFPR_VESTIBULAR _2004 COMENTÁRIO E RESOLUÇÃO POR PROFA. MARIA ANTONIA GOUVEIA UFR_VESTIBULAR _004 COMENTÁRIO E RESOLUÇÃO OR ROFA. MARIA ANTONIA GOUVEIA QUESTÃO Um grupo de estudantes decidiu viajar de ônibus para participar de um encontro nacional. Ao fazerem uma pesquisa de preços,

Leia mais

Obs.: São cartesianos ortogonais os sistemas de coordenadas

Obs.: São cartesianos ortogonais os sistemas de coordenadas MATEMÁTICA NOTAÇÕES : conjunto dos números complexos : conjunto dos números racionais : conjunto dos números reais : conjunto dos números inteiros = {0,,, 3,...} * = {,, 3,...} Ø: conjunto vazio A\B =

Leia mais

NOTAÇÕES. +... + a n. , sendo n inteiro não negativo k =1. Observação: Os sistemas de coordenadas considerados são cartesianos retangulares.

NOTAÇÕES. +... + a n. , sendo n inteiro não negativo k =1. Observação: Os sistemas de coordenadas considerados são cartesianos retangulares. MATEMÁTICA NOTAÇÕES : conjunto dos números reais : conjunto dos números complexos i: unidade imaginária, i = z: módulo do número z Re(z): parte real do número z Im(z): parte imaginária do número z det

Leia mais

MATEMÁTICA. Prova resolvida. Material de uso exclusivo dos alunos do Universitário

MATEMÁTICA. Prova resolvida. Material de uso exclusivo dos alunos do Universitário Prova resolvida Material de uso exclusivo dos alunos do Universitário Prova de Matemática - UFRGS/00 0. Durante os jogos Pan-Americanos de Santo Domingo, os rasileiros perderam o ouro para os cuanos por

Leia mais

n! (n r)!r! P(A B) P(A B) = P(A)+P(B) P(A B) P(A/B) = 1 q, 0 < q < 1

n! (n r)!r! P(A B) P(A B) = P(A)+P(B) P(A B) P(A/B) = 1 q, 0 < q < 1 FORMULÁRIO DE MATEMÁTICA Análise Combinatória P n = n! = 1 n A n,r = Probabilidade P(A) = n! (n r)! número de resultados favoráveis a A número de resultados possíveis Progressões aritméticas a n = a 1

Leia mais

TIPO DE PROVA: A. Questão 3. Questão 1. Questão 2. Questão 4. alternativa E. alternativa A. alternativa B

TIPO DE PROVA: A. Questão 3. Questão 1. Questão 2. Questão 4. alternativa E. alternativa A. alternativa B Questão TIPO DE PROVA: A Em uma promoção de final de semana, uma montadora de veículos colocou à venda n unidades, ao preço único unitário de R$ 0.000,00. No sábado foram vendidos 9 dos Questão Na figura,

Leia mais

A Matemática no Vestibular do ITA. Material Complementar: Prova 2014. c 2014, Sergio Lima Netto sergioln@smt.ufrj.br

A Matemática no Vestibular do ITA. Material Complementar: Prova 2014. c 2014, Sergio Lima Netto sergioln@smt.ufrj.br A Matemática no Vestibular do ITA Material Complementar: Prova 01 c 01, Sergio Lima Netto sergioln@smtufrjbr 11 Vestibular 01 Questão 01: Das afirmações: I Se x, y R Q, com y x, então x + y R Q; II Se

Leia mais

Matemática. Subtraindo a primeira equação da terceira obtemos x = 1. Substituindo x = 1 na primeira e na segunda equação obtém-se o sistema

Matemática. Subtraindo a primeira equação da terceira obtemos x = 1. Substituindo x = 1 na primeira e na segunda equação obtém-se o sistema Matemática 01. A ilustração a seguir é de um cubo com aresta medindo 6 cm. A, B, C e D são os vértices indicados do cubo, E é o centro da face contendo C e D, e F é o pé da perpendicular a BD traçada a

Leia mais

REVISÃO Lista 07 Áreas, Polígonos e Circunferência. h, onde b representa a base e h representa a altura.

REVISÃO Lista 07 Áreas, Polígonos e Circunferência. h, onde b representa a base e h representa a altura. NOME: ANO: º Nº: POFESSO(A): Ana Luiza Ozores DATA: Algumas definições Áreas: Quadrado: EVISÃO Lista 07 Áreas, Polígonos e Circunferência A, onde representa o lado etângulo: A b h, onde b representa a

Leia mais

RESOLUÇÃO Matemática APLICADA FGV Administração - 14.12.14

RESOLUÇÃO Matemática APLICADA FGV Administração - 14.12.14 FGV Administração - 1.1.1 VESTIBULAR FGV 015 1/1/01 RESOLUÇÃO DAS 10 QUESTÕES DE MATEMÁTICA DA PROVA DA TARDE MÓDULO DISCURSIVO QUESTÃO 1 Um mapa de um pequeno parque é uma região em forma de quadrilátero,

Leia mais

Aula 10 Triângulo Retângulo

Aula 10 Triângulo Retângulo Aula 10 Triângulo Retângulo Projeção ortogonal Em um plano, consideremos um ponto e uma reta. Chama-se projeção ortogonal desse ponto sobre essa reta o pé da perpendicular traçada do ponto à reta. Na figura,

Leia mais

www.exatas.clic3.net

www.exatas.clic3.net www.exatas.clic.net 8)5*6±0$7(0È7,&$± (67$59$6(5 87,/,=$'66 6(*8,7(66Ì0%/6(6,*,),&$'6 i: unidade imaginária número complexo : a +bi; a, b números reais log x: logaritmo de x na base 0 cos x: cosseno de

Leia mais

FUVEST 2008 1 a Fase Matemática RESOLUÇÃO: Professora Maria Antônia Gouveia.

FUVEST 2008 1 a Fase Matemática RESOLUÇÃO: Professora Maria Antônia Gouveia. FUVEST 008 a Fase Matemática Professora Maria Antônia Gouveia..0. Sabendo que os anos bissextos são os múltiplos de 4 e que o primeiro dia de 007 foi segunda-feira, o próximo ano a começar também em uma

Leia mais

1ª Parte Questões de Múltipla Escolha

1ª Parte Questões de Múltipla Escolha MATEMÁTICA 11 a 1ª Parte Questões de Múltipla Escolha A soma dos cinco primeiros termos de uma PA vale 15 e o produto desses termos é zero. Sendo a razão da PA um número inteiro e positivo, o segundo termo

Leia mais

UFRGS 2005 - MATEMÁTICA. 01) Considere as desigualdades abaixo. 2 2 3 3. 1 1 3 3. III) 3 2. II) Quais são verdadeiras?

UFRGS 2005 - MATEMÁTICA. 01) Considere as desigualdades abaixo. 2 2 3 3. 1 1 3 3. III) 3 2. II) Quais são verdadeiras? UFRGS 005 - MATEMÁTICA 0) Considere as desigualdades abaixo. I) 000 3000 3. II) 3 3. III) 3 3. Quais são verdadeiras? a) Apenas I. b) Apenas II. Apenas I e II. d) Apenas I e III e) Apenas II e III 0) Observe

Leia mais

RESOLUÇÃO: RESPOSTA: Alternativa 01. Questão 03. (UEFS BA)

RESOLUÇÃO: RESPOSTA: Alternativa 01. Questão 03. (UEFS BA) RESOLUÇÃO DA a AVALIAÇÃO DE MATEMÁTICA COLÉGIO ANCHIETA-BA - UNIDADE II-013 ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. PROFA, MARIA ANTÔNIA C. GOUVEIA Questão 01. (UEPB) Dados os conjuntos A = {1,

Leia mais

TIPO DE PROVA: A. Questão 4. Questão 1. Questão 2. Questão 5. Questão 3. Questão 6. alternativa D. alternativa C. alternativa D.

TIPO DE PROVA: A. Questão 4. Questão 1. Questão 2. Questão 5. Questão 3. Questão 6. alternativa D. alternativa C. alternativa D. Questão TIPO DE PROVA: A Um pintor pintou 0% de um muro e outro pintou 60% do que sobrou. A porcentagem do muro que falta pintar é: a) 0% b) % c) % d) 8% e) % O primeiro pintou 0% do muro, logo restou

Leia mais

01) 551 02) 552 03) 553 04) 554 05) 555

01) 551 02) 552 03) 553 04) 554 05) 555 Questão 01 PROVA DE MATEMÁTICA - TURMAS DO 3 o ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - SETEMBRO DE 011. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA (FUVEST010)

Leia mais

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2009 2 a Fase. RESOLUÇÃO: Professora Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2009 2 a Fase. RESOLUÇÃO: Professora Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 9 a Fase Professora Maria Antônia Gouveia Questão Na impressão de 8 cópias de uma mesma prova, foram usadas duas impressoras, A e B, sendo que B trabalhou dez minutos

Leia mais

MATEMÁTICA. 01. O gráfico a seguir ilustra o lucro semestral de uma empresa, em milhares de reais, de 2003 a 2005.

MATEMÁTICA. 01. O gráfico a seguir ilustra o lucro semestral de uma empresa, em milhares de reais, de 2003 a 2005. MTEMÁTI 01. O gráfico a seguir ilustra o lucro semestral de uma empresa, em milhares de reais, de 2003 a 2005. 80 60 40 20 0 1 /03 2 /03 1º/04 2º/04 1º/05 2º/05 Lucro 50 60 45 70 55 65 0-0) O lucro médio

Leia mais

PROVA DE MATEMÁTICA DA UFBA. VESTIBULAR 2013 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UFBA. VESTIBULAR 2013 2 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UFBA VETIBULAR 0 a Fase Profa. Maria Antônia Gouveia. Questão 0 Um lote de livros foi impresso nas gráficas A, B, e C, satisfazendo os percentuais de impressão sobre o total de 5%,

Leia mais

1 A AVALIAÇÃO ESPECIAL UNIDADE I -2014 COLÉGIO ANCHIETA-BA ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. RESOLUÇÃO: PROFA. MARIA ANTÔNIA C.

1 A AVALIAÇÃO ESPECIAL UNIDADE I -2014 COLÉGIO ANCHIETA-BA ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. 1 A AVALIAÇÃO ESPECIAL UNIDADE I -014 COLÉGIO ANCHIETA-BA ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. PROFA. MARIA ANTÔNIA C. GOUVEIA Questão 01. (UESC-Adaptada) (x + )!(x + )! O valor de x N, que

Leia mais

(a) 9. (b) 8. (c) 7. (d) 6. (e) 5.

(a) 9. (b) 8. (c) 7. (d) 6. (e) 5. 41. Num supermercado, são vendidas duas marcas de sabão em pó, Limpinho, a mais barata, e Cheiroso, 30% mais cara do que a primeira. Dona Nina tem em sua carteira uma quantia que é suficiente para comprar

Leia mais

1. Sendo (x+2, 2y-4) = (8x, 3y-10), determine o valor de x e de y. 2. Dado A x B = { (1,0); (1,1); (1,2) } determine os conjuntos A e B. 3. (Fuvest) Sejam A=(1, 2) e B=(3, 2) dois pontos do plano cartesiano.

Leia mais

Matemática 2. 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um. 02. Abaixo temos uma ilustração da Victoria Falls Bridge.

Matemática 2. 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um. 02. Abaixo temos uma ilustração da Victoria Falls Bridge. Matemática 2 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um paralelepípedo retângulo acoplado a um prisma triangular. 1,6m 1m 1,4m Calcule o volume da estrutura, em dm 3, e indique

Leia mais

MATEMÁTICA TIPO C. 01. A função tem como domínio e contradomínio o conjunto dos números reais e é definida por ( ). Analise a

MATEMÁTICA TIPO C. 01. A função tem como domínio e contradomínio o conjunto dos números reais e é definida por ( ). Analise a 1 MATEMÁTICA TIPO C 01. A função tem como domínio e contradomínio o conjunto dos números reais e é definida por ( ). Analise a veracidade das afirmações seguintes sobre, cujo gráfico está esboçado a seguir.

Leia mais

Questão 1. Questão 2. Questão 3. Resposta. Resposta

Questão 1. Questão 2. Questão 3. Resposta. Resposta Questão Carlos, Luís e Sílvio tinham, juntos, 00 mil reais para investir por um ano. Carlos escolheu uma aplicação que rendia 5% ao ano. Luís, uma que rendia 0% ao ano. Sílvio aplicou metade de seu dinheiro

Leia mais

Objetivas 2012. Qual dos números abaixo é o mais próximo de 0,7? A) 1/2 B) 2/3 C) 3/4 D) 4/5 E) 5/7 *

Objetivas 2012. Qual dos números abaixo é o mais próximo de 0,7? A) 1/2 B) 2/3 C) 3/4 D) 4/5 E) 5/7 * Objetivas 01 1 Qual dos números abaixo é o mais próximo de 0,7? A) 1/ B) /3 C) 3/4 D) 4/5 E) 5/7 * Considere três números, a, b e c. A média aritmética entre a e b é 17 e a média aritmética entre a, b

Leia mais

Soluções das Questões de Matemática do Processo Seletivo de Admissão ao Colégio Naval PSACN

Soluções das Questões de Matemática do Processo Seletivo de Admissão ao Colégio Naval PSACN Soluções das Questões de Matemática do Processo Seletivo de Admissão ao Colégio Naval PSACN Questão Concurso 00 Seja ABC um triângulo com lados AB 5, AC e BC 8. Seja P um ponto sobre o lado AC, tal que

Leia mais

ROTEIRO DE ESTUDO - 2013 VP4 MATEMÁTICA 3 a ETAPA 6 o ao 9º Ano INTEGRAL ENSINO FUNDAMENTAL 1º E 2º ANOS INTEGRAIS ENSINO MÉDIO

ROTEIRO DE ESTUDO - 2013 VP4 MATEMÁTICA 3 a ETAPA 6 o ao 9º Ano INTEGRAL ENSINO FUNDAMENTAL 1º E 2º ANOS INTEGRAIS ENSINO MÉDIO 6 o ANO MATEMÁTICA I Adição e subtração de frações: Frações com denominadores iguais. Frações com denominadores diferentes. Multiplicação de um número natural por uma fração. Divisão entre um número natural

Leia mais

Se ele optar pelo pagamento em duas vezes, pode aplicar o restante à taxa de 25% ao mês (30 dias), então. tem-se

Se ele optar pelo pagamento em duas vezes, pode aplicar o restante à taxa de 25% ao mês (30 dias), então. tem-se "Gigante pela própria natureza, És belo, és forte, impávido colosso, E o teu futuro espelha essa grandeza Terra adorada." 01. Um consumidor necessita comprar um determinado produto. Na loja, o vendedor

Leia mais

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2011 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2011 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UFBA VESTIBULAR a Fase Profa. Maria Antônia Gouveia. Questão. Considerando-se as funções f: R R e g: R R definidas por f(x) = x e g(x) = log(x² + ), é correto afirmar: () A função

Leia mais

( ) = = MATEMÁTICA. Prova: 28/07/13. Questão 17. Questão 18

( ) = = MATEMÁTICA. Prova: 28/07/13. Questão 17. Questão 18 Prova: 8/07/13 MATEMÁTICA Questão 17 A equação x 3 4 x + 5x + 3 = 0 possui as raízes m, p e q. O valor da expressão m + p + q é pq mq mp (A). (B) 3. (C). (D) 3. Gabarito: Letra A. A expressão é igual a:

Leia mais

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%) Probabilidade 10 (0,95%)

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%) Probabilidade 10 (0,95%) Distribuição das.08 Questões do I T A 9 (8,97%) 0 (9,9%) 69 (6,58%) Equações Irracionais 09 (0,86%) Equações Exponenciais (, 0 (9,6%) Geo. Analítica Conjuntos (,96%) Geo. Espacial Funções Binômio de Newton

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2009 1 a Fase Professora Maria Antônia Gouveia.

RESOLUÇÃO DA PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2009 1 a Fase Professora Maria Antônia Gouveia. RESOLUÇÃO DA PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 009 1 a Fase Professora Maria Antônia Gouveia. QUESTÕES de 01 a 08 INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados

Leia mais

RASCUNHO {a, e} X {a, e, i, o}?

RASCUNHO {a, e} X {a, e, i, o}? 01. Qual o número de conjuntos X que satisfazem a relação {a, e} X {a, e, i, o}? a) d) 7 b) 4 e) 5 c) 6 0. Considere os conjuntos A = {n.a n N} e B = {n.b n N} tal que a e b são números naturais não nulos.

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2014 DA FUVEST-FASE 1. POR PROFA. MARIA ANTÔNIA C. GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2014 DA FUVEST-FASE 1. POR PROFA. MARIA ANTÔNIA C. GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 014 DA FUVEST-FASE 1. POR PROFA. MARIA ANTÔNIA C. GOUVEIA Q ) Um apostador ganhou um premio de R$ 1.000.000,00 na loteria e decidiu investir parte do valor

Leia mais

Nível B3 TRIGONOMETRIA DO TRIÂNGULO RECTÂNGULO

Nível B3 TRIGONOMETRIA DO TRIÂNGULO RECTÂNGULO Nível B3 TRIGONOMETRIA DO TRIÂNGULO RECTÂNGULO Razões trigonométricas A palavra trigonometria significa medir triângulos. Na figura, α e β são ângulos agudos do triângulo rectângulo. [CB] é a hipotenusa.

Leia mais

Considere um triângulo eqüilátero T 1

Considere um triângulo eqüilátero T 1 Considere um triângulo eqüilátero T de área 6 cm. Unindo-se os pontos médios dos lados desse triângulo, obtém-se um segundo triângulo eqüilátero T, que tem os pontos médios dos lados de T como vértices.

Leia mais

CPV O cursinho que mais aprova na fgv

CPV O cursinho que mais aprova na fgv O cursinho que mais aprova na fgv FGV economia a Fase 17/dezembro/006 RACIOCÍNIO MATEMÁTICO 01. Em uma pesquisa de mercado feita com 50 entrevistados, todos responderam o seguinte questionário: I. Assinale

Leia mais

115% x + 120% + (100 + p)% = 93 2 2. 120% y + 120% + (100 + p)% = 106 2 2 x + y + z = 100

115% x + 120% + (100 + p)% = 93 2 2. 120% y + 120% + (100 + p)% = 106 2 2 x + y + z = 100 MATEMÁTICA Carlos, Luís e Sílvio tinham, juntos, 00 mil reais para investir por um ano. Carlos escolheu uma aplicação que rendia 5% ao ano. Luís, uma que rendia 0% ao ano. Sílvio aplicou metade de seu

Leia mais

Vestibular 2ª Fase Resolução das Questões Discursivas

Vestibular 2ª Fase Resolução das Questões Discursivas COMISSÃO PERMANENTE DE SELEÇÃO COPESE PRÓ-REITORIA DE GRADUAÇÃO PROGRAD CONCURSO VESTIBULAR 010 Prova de Matemática Vestibular ª Fase Resolução das Questões Discursivas São apresentadas abaixo possíveis

Leia mais

Prova de Matemática: 13/12/12 PROVA ITA

Prova de Matemática: 13/12/12 PROVA ITA Prova de Matemática: // PROVA ITA matemática Gabarito ITA Prova de Matemática: // matemática : conjunto dos números naturais : conjunto dos números inteiros : conjunto dos números reais M m x n ( ): conjunto

Leia mais

QUESTÕES OBJETIVAS. N ọ DE INSCRIÇÃO:

QUESTÕES OBJETIVAS. N ọ DE INSCRIÇÃO: Prova QUESTÕES OBJETIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: INSTRUÇÕES PARA A REALIZAÇÃO DA PROVA. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, que constam na etiqueta fixada

Leia mais

no de Questões A Unicamp comenta suas provas

no de Questões A Unicamp comenta suas provas Cad no de Questões A Unicamp comenta suas provas 99 SEGUNDA FASE 4 de Janeiro de 998 Matemática 0 prova de Matemática do Vestibular Unicamp procura identificar nos candidatos um conhecimento crítico e

Leia mais

Lista 1. Sistema cartesiano ortogonal. 1. Observe a figura e determine os pontos, ou seja, dê suas coordenadas: a) A b) B c) C d) D e) E

Lista 1. Sistema cartesiano ortogonal. 1. Observe a figura e determine os pontos, ou seja, dê suas coordenadas: a) A b) B c) C d) D e) E Sistema cartesiano ortogonal Lista. Observe a figura e determine os pontos, ou seja, dê suas coordenadas: a) A b) B c) C d) D e) E. Marque num sistema de coordenadas cartesianas ortogonais os pontos: a)

Leia mais

TRIÂNGULO RETÂNGULO. Os triângulos AHB e AHC são semelhantes, então podemos estabelecer algumas relações métricas importantes:

TRIÂNGULO RETÂNGULO. Os triângulos AHB e AHC são semelhantes, então podemos estabelecer algumas relações métricas importantes: TRIÂNGULO RETÂNGULO Num triângulo retângulo, os lados perpendiculares, aqueles que formam um ângulo de 90º, são denominados catetos e o lado oposto ao ângulo de 90º recebe o nome de hipotenusa. O teorema

Leia mais

Questão 2. Questão 1. Questão 3. Resposta. Resposta

Questão 2. Questão 1. Questão 3. Resposta. Resposta Instruções: Indique claramente as respostas dos itens de cada questão, fornecendo as unidades, caso existam. Apresente de forma clara e ordenada os passos utilizados na resolução das questões. Expressões

Leia mais

27. O algarismo das unidades de 99 9-4 44 é. 28. Por qual potência de 10 deve ser multiplicado. 29. Considere os gráficos das funções f, g e h,

27. O algarismo das unidades de 99 9-4 44 é. 28. Por qual potência de 10 deve ser multiplicado. 29. Considere os gráficos das funções f, g e h, MATEMÁnCA 26. A expressão (0,125) 15 é equivalente a {A) 545. (B) 5--4 5 (C) 245. (D) 2--4 5 (E) (-2)45. 27. O algarismo das unidades de 99 9-4 44 é (A) 1. (B) 2.. (C). (D) 4. (E) 5. 28. Por qual potência

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2013 DA UNICAMP-FASE 2. RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2013 DA UNICAMP-FASE 2. RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA RESOLUÇÃO D PROV DE MTEMÁTIC DO VESTIBULR 0 D UNICMP-FSE. PROF. MRI NTÔNI C. GOUVEI. Em de outubro de 0, Feli Baumgartner uebrou o recorde de velocidade em ueda livre. O salto foi monitorado oficialmente

Leia mais

Professor Mascena Cordeiro

Professor Mascena Cordeiro www.mascenacordeiro.com Professor Mascena Cordeiro º Ano Ensino Médio M A T E M Á T I C A. Determine os valores de m pertencentes ao conjunto dos números reais, tal que os pontos (0, -), (, m) e (-, -)

Leia mais

EXAME DE ACESSO PROFMAT - 2015 - SOLUÇÕES (B) 7 (E) 12

EXAME DE ACESSO PROFMAT - 2015 - SOLUÇÕES (B) 7 (E) 12 EXAME DE ACESSO PROFMAT - 015 - SOLUÇÕES 1. Se x é um número real tal que x + 1 x = 3, então x + 1 é igual a: x (A) 6 (D) 9 Resposta: B) (B) 7 (E) 1 (C) 8 Elevando ambos os membros da equação x + 1 = 3

Leia mais

ESCOLA DE ESPECIALISTAS DE AERONÁUTICA COLETÂNEA DE PROVAS DE MATEMÁTICA DO EXAME DE ADMISSÃO AO CURSO DE FORMAÇÃO DE SARGENTOS.

ESCOLA DE ESPECIALISTAS DE AERONÁUTICA COLETÂNEA DE PROVAS DE MATEMÁTICA DO EXAME DE ADMISSÃO AO CURSO DE FORMAÇÃO DE SARGENTOS. ESCOLA DE ESPECIALISTAS DE AERONÁUTICA COLETÂNEA DE PROVAS DE MATEMÁTICA DO EXAME DE ADMISSÃO AO CURSO DE FORMAÇÃO DE SARGENTOS ÁLGEBRA I: 003 a 013 Funções: definição de função; funções definidas por

Leia mais

MATEMÁTICA Abril 2015

MATEMÁTICA Abril 2015 152547 - Agrupamento de Escolas D. António Ferreira Gomes 342592 - Escola E.B. 2,3 D. António Ferreira Gomes INFORMAÇÃO - PROVA FINAL A NÍVEL DE ESCOLA MATEMÁTICA Abril 2015 3.º Ciclo do Ensino Básico

Leia mais

PROVAS DE MATEMÁTICA DA UFMG. VESTIBULAR 2013 2 a ETAPA. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVAS DE MATEMÁTICA DA UFMG. VESTIBULAR 2013 2 a ETAPA. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVAS DE MATEMÁTICA DA UFMG VESTIBULAR 01 a ETAPA Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA A - a Etapa o DIA QUESTÃO 01 Janaína comprou um eletrodoméstico financiado, com taxa de 10% ao mês,

Leia mais

(c) 30% (d) 25% aprovados. é a quantidade de: Em uma indústria é fabricado um produto ao custo de

(c) 30% (d) 25% aprovados. é a quantidade de: Em uma indústria é fabricado um produto ao custo de QUESTÃO - EFOMM 0 QUESTÃO - EFOMM 0 Se tgx sec x, o valor de senx cos x vale: ( 7 ( ( ( ( O lucro obtido pela venda de cada peça de roupa é de, sendo o preço da venda e 0 o preço do custo quantidade vendida

Leia mais

O B. Podemos decompor a pirâmide ABCDE em quatro tetraedros congruentes ao tetraedro BCEO. ABCDE tem volume igual a V = a2.oe

O B. Podemos decompor a pirâmide ABCDE em quatro tetraedros congruentes ao tetraedro BCEO. ABCDE tem volume igual a V = a2.oe GABARITO - QUALIFICAÇÃO - Setembro de 0 Questão. (pontuação: ) No octaedro regular duas faces opostas são paralelas. Em um octaedro regular de aresta a, calcule a distância entre duas faces opostas. Obs:

Leia mais

GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar

GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar GAAL - 201/1 - Simulado - 1 Vetores e Produto Escalar SOLUÇÕES Exercício 1: Determinar os três vértices de um triângulo sabendo que os pontos médios de seus lados são M = (5, 0, 2), N = (, 1, ) e P = (4,

Leia mais

Construções Fundamentais. r P r

Construções Fundamentais. r P r 1 Construções Fundamentais 1. De um ponto traçar a reta paralela à reta dada. + r 2. De um ponto traçar a perpendicular à reta r, sabendo que o ponto é exterior a essa reta; e de um ponto P traçar a perpendicular

Leia mais

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 9

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 9 RACIOCÍNIO LÓGICO AULA 9 TRIGONOMETRIA TRIÂNGULO RETÂNGULO Considere um triângulo ABC, retângulo em  ( = 90 ), onde a é a medida da hipotenusa, b e c, são as medidas dos catetos e a, β são os ângulos

Leia mais

TRIÂNGULO RETÂNGULO. Triângulo retângulo é todo triângulo que tem um ângulo reto. O triângulo ABC é retângulo em A e seus elementos são:

TRIÂNGULO RETÂNGULO. Triângulo retângulo é todo triângulo que tem um ângulo reto. O triângulo ABC é retângulo em A e seus elementos são: TRIÂNGULO RETÂNGULO Triângulo retângulo é todo triângulo que tem um ângulo reto. O triângulo ABC é retângulo em A e seus elementos são: a: hipotenusa b e c: catetos h: altura relativa a hipotenusa m e

Leia mais

(A) (B) (C) (D) (E) RESPOSTA: (A)

(A) (B) (C) (D) (E) RESPOSTA: (A) 1. Assinale, dentre as regiões a seguir, pintadas de cinza, aquela que é formada pelos pontos do quadrado cuja distância a qualquer um dos vértices não é maior do que o comprimento do lado do quadrado.

Leia mais

Gabarito - Matemática - Grupos I/J

Gabarito - Matemática - Grupos I/J 1 a QUESTÃO: (1,0 ponto) Avaliador Revisor Para a estréia de um espetáculo foram emitidos 1800 ingressos, dos quais 60% foram vendidos até a véspera do dia de sua realização por um preço unitário de R$

Leia mais

Matemática. Resolução das atividades complementares. M20 Geometria Analítica: Circunferência

Matemática. Resolução das atividades complementares. M20 Geometria Analítica: Circunferência Resolução das atividades complementares Matemática M Geometria Analítica: ircunferência p. (Uneb-A) A condição para que a equação 6 m 9 represente uma circunferência é: a), m, ou, m, c) < m < e), m, ou,

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 2. Questão 4. Questão 5. Questão 3. alternativa C. alternativa E. alternativa C.

TIPO DE PROVA: A. Questão 1. Questão 2. Questão 4. Questão 5. Questão 3. alternativa C. alternativa E. alternativa C. Questão TIPO DE PROVA: A José possui dinheiro suficiente para comprar uma televisão de R$ 900,00, e ainda lhe sobrarem da quantia inicial. O valor que so- 5 bra para José é a) R$ 50,00. c) R$ 800,00. e)

Leia mais

Questão 1. Questão 3. Questão 2. alternativa B. alternativa C. alternativa D. Os trabalhadores A e B, trabalhando separadamente,

Questão 1. Questão 3. Questão 2. alternativa B. alternativa C. alternativa D. Os trabalhadores A e B, trabalhando separadamente, Questão Os trabalhadores A e B, trabalhando separadamente, levam cada um 9 e 0 horas, respectivamente, para construir um mesmo muro de tijolos Trabalhando juntos no serviço, sabe-se que eles assentam 0

Leia mais

Aula 12 Áreas de Superfícies Planas

Aula 12 Áreas de Superfícies Planas MODULO 1 - AULA 1 Aula 1 Áreas de Superfícies Planas Superfície de um polígono é a reunião do polígono com o seu interior. A figura mostra uma superfície retangular. Área de uma superfície é um número

Leia mais

AV1 - MA 13-2011 UMA SOLUÇÃO. b x

AV1 - MA 13-2011 UMA SOLUÇÃO. b x Questão 1. figura abaixo mostra uma sequência de circunferências de centros 1,,..., n com raios r 1, r,..., r n, respectivamente, todas tangentes às retas s e t, e cada circunferência, a partir da segunda,

Leia mais

MÓDULO 29. Trigonometria I. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA. Fórmulas do arco duplo: 1) sen (2a) = 2) cos (2a) =

MÓDULO 29. Trigonometria I. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA. Fórmulas do arco duplo: 1) sen (2a) = 2) cos (2a) = Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA MÓDULO 9 Trigonometria I Resumo das principais fórmulas da trigonometria Arcos Notáveis: Fórmulas do arco duplo: ) sen (a) = ) cos (a) = 3)

Leia mais

Questão 01. Questão 02

Questão 01. Questão 02 PROVA DE MATEMÁTICA - TURMAS DO 3 O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - MARÇO DE 011. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA Questão 01 Sabendo

Leia mais

Atividade 01 Ponto, reta e segmento 01

Atividade 01 Ponto, reta e segmento 01 Atividade 01 Ponto, reta e segmento 01 1. Crie dois pontos livres. Movimente-os. 2. Construa uma reta passando por estes dois pontos. 3. Construa mais dois pontos livres em qualquer lugar da tela, e o

Leia mais

PROVAS DE MATEMÁTICA DO VESTIBULAR-2012 DA MACKENZIE RESOLUÇÃO: Profa. Maria Antônia Gouveia. 14/12/2011

PROVAS DE MATEMÁTICA DO VESTIBULAR-2012 DA MACKENZIE RESOLUÇÃO: Profa. Maria Antônia Gouveia. 14/12/2011 PROVAS DE MATEMÁTICA DO VESTIBULAR-0 DA MACKENZIE Profa. Maria Antônia Gouveia. //0 QUESTÃO N o 9 Turma N o de alunos Média das notas obtidas A 0,0 B 0,0 C 0,0 D 0,0 A tabela acima refere-se a uma prova

Leia mais

Geometria Métrica Espacial. Geometria Métrica Espacial

Geometria Métrica Espacial. Geometria Métrica Espacial UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA 1. Prismas Geometria Métrica

Leia mais

Teste Intermédio Matemática. 9.º Ano de Escolaridade. Versão 1. Duração do Teste: 30 min (Caderno 1) + 60 min (Caderno 2) 21.03.

Teste Intermédio Matemática. 9.º Ano de Escolaridade. Versão 1. Duração do Teste: 30 min (Caderno 1) + 60 min (Caderno 2) 21.03. Teste Intermédio Matemática Versão 1 Duração do Teste: 30 min (Caderno 1) + 60 min (Caderno 2) 21.03.2014 9.º Ano de Escolaridade Indica de forma legível a versão do teste. O teste é constituído por dois

Leia mais

SIMULADO INTENSIVO MATEMÁTICA

SIMULADO INTENSIVO MATEMÁTICA P R É - V E S T I B U L A R 03.09 MATEMÁTICA QUESTÃO 11 (PUC- SP) Em uma urna há 10 cartões, cada qual marcado com apenas um dos números: 2, 5, 6, 7, 9, 13, 14, 19, 21 e 24. Para compor uma potência, devem

Leia mais

EXAME NACIONAL DE QUALIFICAÇÃO 2013-2 GABARITO. Questão 1.

EXAME NACIONAL DE QUALIFICAÇÃO 2013-2 GABARITO. Questão 1. EXAME NACIONAL DE QUALIFICAÇÃO 0 - Questão. GABARITO Considere um triângulo equilátero de lado e seja A sua área. Ao ligar os pontos médios de cada lado, obtemos um segundo triângulo equilátero de área

Leia mais

Seu pé direito nas melhores faculdades

Seu pé direito nas melhores faculdades Seu pé direito nas melhores faculdades IBMEC 0/junho/007 NÁLISE QUNTITTIV E LÓGIC OBJETIV. Numa lanchonete, um salgado e um refrigerante custam, respectivamente, X e Y reais. Pedro, que comprou X salgados

Leia mais

As assíntotas são retas que passam no centro da hipérbole e tem coeficiente angular m = b / a e m = b / a, logo temos:

As assíntotas são retas que passam no centro da hipérbole e tem coeficiente angular m = b / a e m = b / a, logo temos: Exercício 01. Dada à hipérbole de equação 5x 2 4y 2 20x 8y 4 = 0 determine os focos e as equações das assintotas. Escrevendo a hipérbole da maneira convencional teríamos 5[x 2 4x + 4 4] 4[y 2 + 2y + 1]

Leia mais

Prova Final de Matemática

Prova Final de Matemática PROVA FINAL DO 3.º CICLO do Ensino BÁSICO Decreto-Lei n.º 139/01, de 5 de julho Prova Final de Matemática 3.º Ciclo do Ensino Básico Prova 9/1.ª Chamada 8 Páginas Duração da Prova: 90 minutos. Tolerância:

Leia mais

ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma.

ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma. 2ª Fase Matemática Introdução A prova de matemática da segunda fase é constituída de 12 questões, geralmente apresentadas em ordem crescente de dificuldade. As primeiras questões procuram avaliar habilidades

Leia mais

PROVA OBJETIVA DE MATEMÁTICA VESTIBULAR 2013 - FGV CURSO DE ADMINISTRAÇÃO RESOLUÇÃO: Profa. Maria Antônia C. Gouveia

PROVA OBJETIVA DE MATEMÁTICA VESTIBULAR 2013 - FGV CURSO DE ADMINISTRAÇÃO RESOLUÇÃO: Profa. Maria Antônia C. Gouveia PROVA OBJETIVA DE MATEMÁTICA VESTIBULAR 0 - FGV CURSO DE ADMINISTRAÇÃO Profa. Maria Antônia C. Gouveia. O PIB per capita de um país, em determinado ano, é o PIB daquele ano dividido pelo número de habitantes.

Leia mais

PROFº. LUIS HENRIQUE MATEMÁTICA

PROFº. LUIS HENRIQUE MATEMÁTICA Geometria Analítica A Geometria Analítica, famosa G.A., ou conhecida como Geometria Cartesiana, é o estudo dos elementos geométricos no plano cartesiano. PLANO CARTESIANO O sistema cartesiano de coordenada,

Leia mais