Assunto: Razões Trigonométricas no Triângulo Retângulo. 1) Calcule o seno, o co-seno e a tangente dos ângulos indicados nas figuras:

Tamanho: px
Começar a partir da página:

Download "Assunto: Razões Trigonométricas no Triângulo Retângulo. 1) Calcule o seno, o co-seno e a tangente dos ângulos indicados nas figuras:"

Transcrição

1 Assunto: Razões Trigonométricas no Triângulo Retângulo 1) Calcule o seno, o co-seno e a tangente dos ângulos indicados nas figuras: b) 15 5 α α 1 resp: sen α =/5 cos α = /5 tgα=/ resp: sen α = 17 cos α = tgα= 17 ) Calcule x e y nas figuras: a) 0 Dado: sen α =/5 b) Dado: tg α =/ α x y resp: x= 18 e y= resp: x= 0 e y=1 x α y 16 ) Um garoto empina uma pipa com um fio esticado de 50m. Sabendo que o ângulo entre o fio e solo é de 0º, calcule a altura que está a pipa? resp: 5m ) Do alto da torre de uma plataforma de petróleo marítima, de 5m de altura, o ângulo de depressão em relação a proa de um barco é de 60º. A que distância o barco está da plataforma? resp: 15 m ou 5,95m 5)Um barco atravessa um rio e segue numa direção que forma com uma das margens um ângulo de 0º. Sabendo que a largura do rio é de 60m, Calcule a distância percorrida pelo barco para atravessar o rio? resp: 10m 6) Do alto de uma torre de 50m de altura, localizada numa ilha, avista-se a praia sob um ângulo de 5º em relação a horizontal. Para transportar material da praia até a ilha, um barqueiro cobra R$0,0 por metro navegado. Quanto ele recebe em cada transporte até a praia? resp: R$10,00 7) Um caminhão sobe uma rampa inclinada de 10º em relação ao plano horizontal. Se a rampa tem 0m de comprimento, a quantos metros o caminhão se eleva, verticalmente, após percorrer toda a rampa? resp: 5,10m dados: sen 10º=0,17 cos 10º = 0,98 tg 10º = 0,18 blog.portalpositivo.com.br/capitcar 1

2 8) Um projétil é lançado segundo uma trajetória de 60º com a horizontal com uma velocidade de 90m/s. Determine: a) a sua velocidade horizontal; resp: 5m/s b) a sua velocidade vertical; resp: 5 m/s c) após s a altura atingida pelo projétil. resp: 15 m/s 9) Sendo α um ângulo agudo de um triângulo retângulo e cos α = 5/1. Calcule: a) sen α resp: 1/1 b) tg α resp: 1/5 10) Sendo α um ângulo agudo de um triângulo retângulo e tg α = /. Calcule: a) sen α resp: 1 1 b) cos α resp: ) O acesso a um edifício é feito por uma escada de dois degraus, sendo que cada um tem 16 cm de altura. Para atender portadores de necessidades especiais, foi construída uma rampa. Respeitando a legislação em vigor, a rampa deve formar, com o solo, um ângulo de 6, conforme figura: A medida c do comprimento da rampa é, em metros, igual a a) 1,8. b),0. c),. d),9. e),. 1) (Unesp) Um ciclista sobe, em linha reta, uma rampa com inclinação de graus a uma velocidade constante de metros por segundo. A altura do topo da rampa em relação ao ponto de partida é 0 m. Use a aproximação sen = 0,05 e responda. O tempo, em minutos, que o ciclista levou para percorrer completamente a rampa é a),5. b) 7,5. c) 10. d) 15. e) 0. blog.portalpositivo.com.br/capitcar

3 Assunto: Razões trigonométricas no triangulo qualquer (leis do seno e do cosseno) 1) Num triângulo ABC, o lado BC = 8 cm,  = 0º e Ĉ = 5 o, calcule a medida do lado AB. Resp: 16cm ) Dois lados de um triângulo medem 6cm e 10cm, e formam entre si um ângulo de 60º. Determine a medida do terceiro lado desse triângulo. Resp: 19 cm )Calcule o valor de x nos triângulos abaixo: Resp: cm Resp: cm ) Dois lados consecutivos de um paralelogramo medem 6cm e cm e formam entre si um ângulo de 0º. Calcule as medidas das diagonais desse paralelogramo. Dado: cos 150º = - cos 0º Resp: d = cm e D = 1 cm 5) Um triângulo ABC está inscrito numa circunferência de raio cm. Sabe-se que  = 0º, calcule a media do lado a desse triângulo. Resp: cm 6) Um menino, sentado num muro, observa o topo e o pé de um prédio, conforme a figura abaixo. Determine a altura desse prédio. Resp: 56,78 cm blog.portalpositivo.com.br/capitcar

4 7) calcule a área do triângulo abaixo: Resp: cm 8) Dois lados de um triângulo medem respectivamente 8m e 10m e formam um ângulo agudo que mede X. Determine a medida do ângulo X, sabendo que a área do triangulo é de 0 m. Resp: 0 o 9) Um triangulo tem lados iguais a cm, 5cm e 6cm. Calcule o cosseno do maior ângulo interno desse triangulo. Resp: ¼ 10) Dois lados consecutivos de um paralelogramo medem cm e 5cm e formam um ângulo de 0 0. Calcule a área desse paralelogramo. Resp: 10 cm 11) (Vunesp) Os lados de um triângulo medem, 6 e +. Determine o ângulo oposto ao que mede 6. Resp: 0º 1) Calcular o raio da circunferência circunscrita a um triângulo ABC em que um lado mede 15 cm, e o ângulo oposto a esta lado mede 0º. Resp: 15 cm blog.portalpositivo.com.br/capitcar

5 Assuntos: Arcos e ângulos 1) Expresse em rad: a) 60º resp: π/ rad b) 10º resp: 7π/6 c) 50º resp: 5π/18 d) 150º resp: 5π/6 e) 1º resp: π/15 rad f) º resp: π/90 rad g) 67º0 resp: π/8rad h) 5º0 resp: 19π/15 ) Expresse em graus: a) 10π/9rad resp: 00º b) 11π/18rad resp: 110º c) rad resp: 171º58 1 d) 1rad resp: 57º19 1 ) Qual é, em radianos, o ângulo descrito pelo ponteiro dos minutos de um relógio, num período de 5 minutos? resp: 5π/6 rad ) Expresse em graus e em radianos : a) 1/6 da medida da circunferência. resp: 60º e π/rad b) /5 da medida da circunferência. resp: 1º e π/5rad 5) Determine o comprimento de uma circunferência de diâmetro 60cm. resp: 188,0cm 6) Sabendo uma pessoa dá voltas em torno de um canteiro circular de 1,5m de raio, calcule a distância percorrida pela pessoa. resp: 7,68m 7) Uma pessoa percorre 10m em torno de uma pista circular de raio 50m. Quantas voltas completas ela deu? resp: 10 8) O ponteiro dos minutos de um relógio mede 1cm. Qual distância que sua extremidade percorre durante 0 minutos? resp: 5,1cm 9) Determine o menor ângulo formado pelos ponteiros de um relógio: a) 9h10min resp: 15º b) 1h15min resp: 8º0 10) Um ciclista dá 10 voltas em torno da pista indicada na figura abaixo. 110m 0m 0m Calcule a distância percorrida. resp: 56m 11) Calcule a 1ª determinação positiva e escreva a expressão geral dos arcos côngruos a: a) 1550º resp: 1ª dp = 110º e AM = 110º+n.60º, n Ζ b) 165º resp: 1º dp = 55º e AM = 55º+n.60º, n Ζ blog.portalpositivo.com.br/capitcar 5

6 π c) rad 17π d) rad 7π 7π resp: 1ºdp = rad e AM = +n.π, n Ζ 5π 5π resp: 1º dp = rad e AM = + n.π, n Ζ 1) Verifique se são côngruos os arcos 1π 19π a) 190º e 100º resp: sim b) rad e rad resp: não 1) Quantas voltas completas dá e em que quadrante pára um móvel que, partindo da origem dos arcos, percorre um arco de: a) 1810º resp: 5 voltas e parou no 1º Q b ) 100º resp: 6 voltas e parou no º Q 5π c ) rad resp: voltas e parou no 1º Q 1) Uma semi-reta dá, em torno da origem, volta completas, no sentido positivo. Determine, em radianos, o ângulo gerado pela semi-reta no seu movimento. resp: 8π rad 15) Determine os arcos positivos côngruos a 10º e menores que 900º. resp: 0º e 700º 16) (PUC-SP) Qual dos pares de ângulos é côngruo de 10º? a) 0º e 190º b) 00º e 1560º c) 00º e 600º d) 100º e 0º e) nda. resp: a 17π 17) (UFPA) Um arco côngruo a rad é: 5 a) π/5 rad b) π rad c) π/5 rad d) π rad e) 7π/5 rad resp: e 18) (MACK-SP) A menor determinação positiva de 900º é: a) 100º b) 10º c) 0º d) 80º e) n.d.a resp: b 19) (Ueg 008) Duas importantes cidades estão localizadas sobre a linha do Equador: uma é a capital do Amapá e a outra é a capital do Equador, ambas na América do Sul. Suas longitudes são, respectivamente, 78 Oeste e 5 Oeste. Considerando que a Terra é uma esfera de raio 600 km, qual é a distância entre essas duas cidades? Resp:.90,76 km 0) (Fuvest) Considere um arco AB de 110 numa circunferência de raio 10 cm. Considere, a seguir, um arco A'B' de 60 numa circunferência de raio 5 cm. Dividindo-se o comprimento do arco AB pelo do arco A'B' (ambos medidos em cm), obtém-se: a) 11/6 b) c) 11/ d) / e) 11 blog.portalpositivo.com.br/capitcar 6

7 Assunto: Função Seno 1) Calcule: a) sen 170º resp: ½ b) sen 115º resp: / c) sen 100º resp: / d) sen 1π resp: 0 e) sen 1π resp: 0 f) sen17π/ resp: -1 ) Calcule o período das funções: a) y = -sen x resp. π b) y = +sen (x-0º) resp: π c) y = 5+6sen(x+5º) resp: π d) y = sen(x/10) resp: 0π e) y = -5sen(0x-60º) resp: π/10 f) y = sen(x/5) resp: 5π ) Calcule o valor da expressão y = sen(x)+ sen(x+180º) sen(5x) para x=π/rad. resp: - ) Construa o gráfico, e dê, o período, o domínio e a imagem das funções. a) y = sen(x) resp: D=R IM= [-;] P= π b) y = +sen(x) resp: D=R IM= [;] P=π c) y =1+sen(x) resp: D=R IM= [-;] P=π d) y = sen(x+π/) resp: D=R IM= [-1;1] P=π e) y = +sen(x-π) resp: D=R IM= [1;] P=π f) y = sen(x) resp: D=R IM=[-1;1] P=π/ 5) Calcule m nas igualdades: a) sen (x)=m+ resp: -5 x - b) sen (x)= m- resp: x 6) Um pêndulo descreve um movimento harmônico segundo a equação horária π h(t)= 10+.sen π. t +, em que t é o tempo em segundos e h(t) a altura em centímetros do pêndulo em relação ao solo.determine: a) a altura do pêndulo em relação ao solo no instante inicial do seu movimento. Resp:1 cm b) o período completo de oscilação do pêndulo. Resp: s c) as alturas máxima e mínima atingida pelo pêndulo em real,ao solo. Resp: máxima = 1cm e mínima 7cm blog.portalpositivo.com.br/capitcar 7

8 Assunto: Função Co-seno 1) Calcule: a) cos 1500º b) cos 180º c) cos 150º d) cos 05º e) cos 900º f) cos 150º g) cos 990º h) cos 10π i) cos 1π/ j) cos 19π/ l) cos 1π/ m) cosπ resp:a)1/ b) / c) 0 d) / e) 1 g) 0 h) 1 i) 0 j)0 l)1/ m)-1 ) Construa o gráfico das funções, e dê o domínio, o período e a imagem das funções: a) y = cos(x) resp: D=R P=π IM=[-;] b) y = +cos(x) resp: D=R P=π IM=[-1;5] c) y = -+cos(x) resp: D=R P=π IM=[-7;1] d) y = cos(x) resp: D=R P=π IM=[-;] e) y = 5cos(x/) resp; D=R P=8π IM=[-5;5] ) Encontre o período das funções : a) y = 6+cos(x) resp: P= π/ rad b) y = cos(5x+π/) resp: P= π/5 rad c) y = 10-5cos(x/8) resp; P= 16π rad d) y = cos(x) resp: P= π/ rad e) y = +cos 5(x+0º) resp: P= π/5 rad ) Calcule o valor das expressões: a) A= cos(17π) + cos (5π/)- sen (5π) resp: -1 b) B = cos (110º) + cos (160º) cos (10º) resp: 5/ c) C = sen (765º) cos (-115º) + sen (750º)- cos (0º) 5) Um corpo M movimenta-se de maneira uniforme sobre uma circunferencia. Já a projeção P desse corpo realiza um movimento sobre o eixo das abscissas chamado movimento harmônico simples. O espaço S, em centímetros, em realação a origen, que ese corpo ocupa em função do tempo t, em segundos, é dado pela equação S(t) = 5.cos t. π. Determine: a) O espaço da projeção após s. Resp: -5 cm b) O tempo gasto pelo corpo M para completar uma volta. s c) O gráfico dessa situação 6) Calcule o valor máximo e o valor mínimo da função y = +cos 5(x+0º). Resp: máximo = 5 e mínimo = -1 blog.portalpositivo.com.br/capitcar 8

9 Assunto: Função Tangente 1) Calcule: a) tg 750º b) tg 115º c) tg 810º d) tg 15π e) tg 7π/ f) tg 1080º Resp: a) b) 1 c) d) 0 e) f) 0 ) Determine o domínio e o período das funções: a) y = tg(x+60º) resp: D={x R/ x 10º+k.60º} P=π/ rad b) y = -5tg(6x) resp: D= { x R/ x 15º+k.0º} P=π/6 rad c) y = +tg( x-π/) resp: D= { x R/ x π+k. π} P=π d) y = tg( x-π) resp: D={ x R/ x π/6+k.π/} P=π/ ) Calcule o valor da expressão y= sen(x) +cos(x)-tg( 8 x ) para x=60º. resp: ) Calcule o valor da expressão A= 5 sen ( 1π/)-cos(0π)+tg(6π). resp:/ 5) Uma estaca foi cravada no chão e ficou com m de altura. Supondo que naquela região o Sol ilumine das 6h as 18h e que ao meio dia o comprimento de sua sombra seja zero, o tamanho (comprimento) da sombra da estaca em função do horário pode ser π dado pela função y =.tg ( x 1)., em y é o tamanho da sombra em metros e x é 1 o tempo em horas. Determine quais são os horários em que a sombra tem a mesma medida da estaca. Resp: 9h e 15h blog.portalpositivo.com.br/capitcar 9

10 Assuntos: Funções trigonométricas de um arco Relações trigonométricas 1) Determine o valor de: 17π a) cotg 990º resp: 0 b) cotg 10º resp: c) cotg resp: 1 d) sec 50º resp: -1 e) sec 9π resp: f) sec 750º resp: ) Calcule as funções trigonométricas de : a) 80º resp: sen 80º= / cos 80º= -l/ tg 80º= - cotg 80º= - / sec 80º= - cosec= / b) π/ rad resp: sen π/= / cos π/= - / tg π/= -l cotg π/= -l sec π/= - cosec π/= c) 570º resp: sen 570º = -l/ cos 570º= - / tg 570º= / cotg 570º= sec 570º= - / cosec570º= - d) 585º resp: sen 585º= - / cos 585º= - / tg 570º= l cotg 585º=l sec 585º= - cosec 585º= - 11π g) cosec (1800º) resp: h) cosec resp: -1 e) 100º resp: sen 90º= - / cos 90º= l/ tg 90º= - cotg 90º= - / sec 90º= cosec 90º= - / ) Dado cos x = - /5 com x º Q, calcule: a) sen x resp: 7/5 b) tg x resp: -7/ ) Dado cos x = /5 com x 1º Q, calcule: a) sec x resp: 5/ b) tg x resp: ¾ 5) Dado sen x = -1/ com x º Q, calcule: a) cossec x resp: - b) cotg x resp: 6) Dado tg x =, com 0 < x < π/, calcular: a) sen x resp: b) cos x resp: ½ 7) Dado cossec x =, com 0 < x < π/, calcular: a) sec x resp: b) cos x resp: blog.portalpositivo.com.br/capitcar 10

11 Assuntos: Adição e subtração de arcos 1) Usando as formulas da adição e subtração de arcos, calcule: 6 + a) sen 105º resp: b) cos 15º resp: c) cos 195º resp: d) sen 5º resp: ) Demonstre, utilizando as fórmulas da adição e subtração de arcos: π a) sen (π-x) = sen x b) cos (π+x) = cos x c) tg (π-x) = -tg x d) sen ( -x) = -cos x ) Dados sen a = /5 e cos b = /, com 0 < a e b < π/, determine: a) sen(a+b) resp: b) cos (a-b) resp: c) tg (a+b) resp: π ) Dado sen x = 1/, com 0 < x < π/, calcular sen ( x). resp: 6 6 5) Se tg (x+y) = e tg y = 1, calcular tg x. resp: 1/ 6) Simplifique a expressão y = π sen( x).sen( π + x) cos( π x).cos(π x) 7) Dado x = 11,5º, calcule o valor da expressão A = tg x + tg x 1- tg x. tg x. Resp: 1 8) Calcule o valor da expressão A = cos 80º.cos 0º + sen 80º. sen 0º + 1 Resp: / tg + 67º - tg º. tg 67º.tg º blog.portalpositivo.com.br/capitcar 11

12 1) Dado sen 18º = 0,1, calcule: Assuntos: Arco duplo e Arco metade a) sen 6º resp: 0,59 b) cos 6º resp: 0,81 c) tg 6º resp: 0,7 ) Calcule sen x, se sen x =/, com x Є º Q. resp: ) Dado tg x = ½, com x Є 1º Q, calcule: a) tg x resp: / b) cotg x resp: ¾ 8 7 ) Se sen x + cos x = 1, calcule sen x. resp: -8/9 5) Sabendo que a Є º Q e tg a = ¾, calcule: a) sen a resp: /5 b) cos a resp: 7/5 6) Se cos 6º = 0,, calcule: a) sen º resp: 0,5 b) cos º resp: 0,85 c) tg º resp: 0,6 7) Calcule sen º 0. resp: x 8) Sabendo que sen x = 5/1, com x Є º Q, calcule tg. resp: 5 a 9) Dado cos a = ½, com a Є 1º Q, calcule cos. resp: a 10) Dado sen a = ½, com a Є 1º Q, calcule sen. resp: blog.portalpositivo.com.br/capitcar 1

13 Assuntos: Equações trigonométricas e Funções Inversas 1) Resolva as equações no intervalo de 0 à π. a) sen x = -1 resp: S = {π/} b) cos x = resp: S = { π / ; π/ } c) tg x = 1 resp: S = { π / ; 5π/ } d) sen(x) +1 = 0 S = { -π/18 ; 7π/18} e) cos x - = 0 resp: S = {± π/6} f).sen x + 5.sen x = 0 resp: S = { π/6 ; 5π/6} ) Resolva em R as equações: a) cos x = -1 resp: S = { x R/ x = π + n. π, n Z} b) sen x = - ½ resp: S = { x R/ x = 7π/6 + n. π ou x = 11π/6 + n. π, n Z} c) tg x = - resp: S = { x R/ x = π/ + n.π, n Z} ) Determine o valor de y sendo: a) y = arc sen π π, com y resp: π/ 1 b) y = arc cos (- ), com 0 y π resp: π/ c) y = arc tg π π, com y resp: π/6 1 ) (UEM-PR) Considerando os valores principais, a expressão E = arc sen + arc tg vale : a) π / b) π / c) π /6 d) π / e) π / resp: d 5) (Mack-SP) O valor de tg ( 5.arc tg 1 - arc sen ) pode ser dado por: a) 0 b) 1 c) -1 d) -1/ e) ½ resp: c blog.portalpositivo.com.br/capitcar 1

Assunto: Razões Trigonométricas no Triângulo Retângulo. 1) Calcule o seno, o co-seno e a tangente dos ângulos indicados nas figuras:

Assunto: Razões Trigonométricas no Triângulo Retângulo. 1) Calcule o seno, o co-seno e a tangente dos ângulos indicados nas figuras: Assunto: Razões Trigonométricas no Triângulo Retângulo 1) Calcule o seno, o co-seno e a tangente dos ângulos indicados nas figuras: b) 15 5 α α 1 resp: sen α =/5 cos α = /5 tgα=/ resp: sen α = 17 cos α

Leia mais

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 9

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 9 RACIOCÍNIO LÓGICO AULA 9 TRIGONOMETRIA TRIÂNGULO RETÂNGULO Considere um triângulo ABC, retângulo em  ( = 90 ), onde a é a medida da hipotenusa, b e c, são as medidas dos catetos e a, β são os ângulos

Leia mais

Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota:

Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Questão 1 (OBMEP RJ) Num triângulo retângulo, definimos o cosseno de seus ângulos agudos O triângulo retângulo da figura

Leia mais

Sistema Internacional de unidades (SI). 22/06/1799 sistema métrico na França

Sistema Internacional de unidades (SI). 22/06/1799 sistema métrico na França CURSO DE ENGENHARIA CARTOGRÁFICA Carlos Aurélio Nadal Doutor em Ciências Geodésicas Professor Titular do Departamento de Geomática - Setor de Ciências da Terra Sistema Internacional de unidades (SI). 22/06/1799

Leia mais

MATEMÁTICA C PROFº LAWRENCE. Material Extra 2011

MATEMÁTICA C PROFº LAWRENCE. Material Extra 2011 Material Extra 011 MATEMÁTICA C PROFº LAWRENCE 01. (Cefet - MG) Um menino com altura de 1,0m empina um papagaio, em local apropriado, com um carretel de 10m de linha, conforme a figura abaixo. A altura

Leia mais

MÓDULO 29. Trigonometria I. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA. Fórmulas do arco duplo: 1) sen (2a) = 2) cos (2a) =

MÓDULO 29. Trigonometria I. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA. Fórmulas do arco duplo: 1) sen (2a) = 2) cos (2a) = Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA MÓDULO 9 Trigonometria I Resumo das principais fórmulas da trigonometria Arcos Notáveis: Fórmulas do arco duplo: ) sen (a) = ) cos (a) = 3)

Leia mais

(c) 30% (d) 25% aprovados. é a quantidade de: Em uma indústria é fabricado um produto ao custo de

(c) 30% (d) 25% aprovados. é a quantidade de: Em uma indústria é fabricado um produto ao custo de QUESTÃO - EFOMM 0 QUESTÃO - EFOMM 0 Se tgx sec x, o valor de senx cos x vale: ( 7 ( ( ( ( O lucro obtido pela venda de cada peça de roupa é de, sendo o preço da venda e 0 o preço do custo quantidade vendida

Leia mais

Prof. Weber Campos webercampos@gmail.com. 2012 Copyri'ght. Curso Agora eu Passo - Todos os direitos reservados ao autor.

Prof. Weber Campos webercampos@gmail.com. 2012 Copyri'ght. Curso Agora eu Passo - Todos os direitos reservados ao autor. EP FISL Raciocínio Lógico - GEOMETRI ÁSI - TRIGONOMETRI webercampos@gmail.com 01 opyri'ght. urso gora eu Passo - Todos os direitos reservados ao autor. ÍNDIE Exercícios Resolvidos de GEOMETRI 0 Exercícios

Leia mais

LISTÃO DE EXERCÍCIOS DE REVISÃO IFMA PROFESSOR: ARI

LISTÃO DE EXERCÍCIOS DE REVISÃO IFMA PROFESSOR: ARI 01.: A figura mostra um edifício que tem 15 m de altura, com uma escada colocada a 8 m de sua base ligada ao topo do edifício. comprimento dessa escada é de: a) 12 m. b) 30 m. c) 15 m. d) 17 m. e) 20 m.

Leia mais

Triângulo Retângulo. Exemplo: O ângulo do vértice em. é a hipotenusa. Os lados e são os catetos. O lado é oposto ao ângulo, e é adjacente ao ângulo.

Triângulo Retângulo. Exemplo: O ângulo do vértice em. é a hipotenusa. Os lados e são os catetos. O lado é oposto ao ângulo, e é adjacente ao ângulo. Triângulo Retângulo São triângulos nos quais algum dos ângulos internos é reto. O maior dos lados de um triângulo retângulo é oposto ao vértice onde se encontra o ângulo reto e á chamado de hipotenusa.

Leia mais

1. Examine cada relação e escreva se é uma função de A em B ou não. Em caso afirmativo determine o domínio, a imagem e o contradomínio.

1. Examine cada relação e escreva se é uma função de A em B ou não. Em caso afirmativo determine o domínio, a imagem e o contradomínio. 1. Examine cada relação e escreva se é uma função de A em B ou não. Em caso afirmativo determine o domínio, a imagem e o contradomínio. 2. (Fgv) Um vendedor recebe mensalmente um salário fixo de R$ 800,00

Leia mais

α rad, assinale a alternativa falsa.

α rad, assinale a alternativa falsa. Nome: ºANO / CURSO TURMA: DATA: 0 / 09 / 0 Professor: Paulo (G - ifce 0) Considere um relógio analógico de doze horas O ângulo obtuso formado entre os ponteiros que indicam a hora e o minuto, quando o

Leia mais

TECNÓLOGO EM CONSTRUÇÃO DE EDIFÍCIOS

TECNÓLOGO EM CONSTRUÇÃO DE EDIFÍCIOS 1 TECNÓLOGO EM CONSTRUÇÃO DE EDIFÍCIOS Aula 8 Funções Trigonométricas Professor Luciano Nóbrega 2º Bimestre GABARITO: 1) 20 m TESTANDO OS CONHECIMENTOS 1 (UFRN) Observe a figura a seguir e determine a

Leia mais

Questão 1 (UFMG) Sendo A = 88 o 20', B = 31 o 40' e C = radianos, a expressão A + B - C é igual a: a) radianos b) 116 o 40' ;

Questão 1 (UFMG) Sendo A = 88 o 20', B = 31 o 40' e C = radianos, a expressão A + B - C é igual a: a) radianos b) 116 o 40' ; APOSTILAS (ENEM) VOLUME COMPLETO Exame Nacional de Ensino Médio (ENEM) 4 VOLUMES APOSTILAS IMPRESSAS E DIGITAIS Questão 1 (UFMG) Sendo A = 88 o 20', B = 31 o 40' e C = radianos, a expressão A + B - C é

Leia mais

Matemática. Resolução das atividades complementares. M1 Trigonometria no ciclo. 1 Expresse: p 4 rad. rad em graus. 4 rad 12 p b) 330 em radianos.

Matemática. Resolução das atividades complementares. M1 Trigonometria no ciclo. 1 Expresse: p 4 rad. rad em graus. 4 rad 12 p b) 330 em radianos. Resolução das atividades comlementares Matemática M Trigonometria no ciclo. 7 Eresse: a) em radianos c) em radianos e) rad em graus rad rad b) 0 em radianos d) rad em graus f) rad 0 rad em graus a) 80

Leia mais

Curso Wellington Matemática Trigonometria Lei dos Senos e Cossenos Prof Hilton Franco

Curso Wellington Matemática Trigonometria Lei dos Senos e Cossenos Prof Hilton Franco 1. A figura a seguir apresenta o delta do rio Jacuí, situado na região metropolitana de Porto Alegre. Nele se encontra o parque estadual Delta do Jacuí, importante parque de preservação ambiental. Sua

Leia mais

Lista 1 Cinemática em 1D, 2D e 3D

Lista 1 Cinemática em 1D, 2D e 3D UNIVERSIDADE ESTADUAL DO SUDOESTE DA BAHIA DEPARTAMENTO DE ESTUDOS BÁSICOS E INSTRUMENTAIS CAMPUS DE ITAPETINGA PROFESSOR: ROBERTO CLAUDINO FERREIRA DISCIPLINA: FÍSICA I Aluno (a): Data: / / NOTA: Lista

Leia mais

TRIÂNGULO RETÂNGULO. Triângulo retângulo é todo triângulo que tem um ângulo reto. O triângulo ABC é retângulo em A e seus elementos são:

TRIÂNGULO RETÂNGULO. Triângulo retângulo é todo triângulo que tem um ângulo reto. O triângulo ABC é retângulo em A e seus elementos são: TRIÂNGULO RETÂNGULO Triângulo retângulo é todo triângulo que tem um ângulo reto. O triângulo ABC é retângulo em A e seus elementos são: a: hipotenusa b e c: catetos h: altura relativa a hipotenusa m e

Leia mais

e-mail: ederaldoazevedo@yahoo.com.br

e-mail: ederaldoazevedo@yahoo.com.br Assunto: Revisão Matemática Prof. Ederaldo Azevedo Aula 2 e-mail: ederaldoazevedo@yahoo.com.br Metro é uma unidade básica para representação de medidas de comprimento no Sistema Internacional(SI). Prefixos

Leia mais

7] As polias indicadas na figura se movimentam em rotação uniforme, ligados por um eixo fixo.

7] As polias indicadas na figura se movimentam em rotação uniforme, ligados por um eixo fixo. Colégio Militar de Juiz de Fora Lista de Exercícios C PREP Mil Prof.: Dr. Carlos Alessandro A. Silva Cinemática: Vetores, Cinemática Vetorial, Movimento Circular e Lançamento de Projéteis. Nível I 1] Dois

Leia mais

Exercícios Trigonometria

Exercícios Trigonometria Exercícios Trigonometria Temas Abordados: Funções Trigonométricas e Equações; Arcos na Circunferência; Redução ao Primeiro Quadrante; Razões Trigonométricas.. (Upe 0) Um relógio quebrou e está marcando

Leia mais

Relações Métricas nos. Dimas Crescencio. Triângulos

Relações Métricas nos. Dimas Crescencio. Triângulos Relações Métricas nos Dimas Crescencio Triângulos Trigonometria A palavra trigonometria é de origem grega, onde: Trigonos = Triângulo Metrein = Mensuração - Relação entre ângulos e distâncias; - Origem

Leia mais

Função Logarítmica Função Exponencial

Função Logarítmica Função Exponencial ROTEIRO DE ESTUDO MATEMÁTICA 2014 Aluno (a): nº 1ª Série Turma: Data: /10/2014. 3ª Etapa Professor: WELLINGTON SCHÜHLI DE CARVALHO Caro aluno, O objetivo desse roteiro é orientá-lo em relação aos conteúdos

Leia mais

REVISÃO Lista 07 Áreas, Polígonos e Circunferência. h, onde b representa a base e h representa a altura.

REVISÃO Lista 07 Áreas, Polígonos e Circunferência. h, onde b representa a base e h representa a altura. NOME: ANO: º Nº: POFESSO(A): Ana Luiza Ozores DATA: Algumas definições Áreas: Quadrado: EVISÃO Lista 07 Áreas, Polígonos e Circunferência A, onde representa o lado etângulo: A b h, onde b representa a

Leia mais

MATEMÁTICA - 1 o ANO MÓDULO 42 TRIGONOMETRIA: CÍRCULOS E LINHAS TRIGONOMÉTRICAS

MATEMÁTICA - 1 o ANO MÓDULO 42 TRIGONOMETRIA: CÍRCULOS E LINHAS TRIGONOMÉTRICAS MATEMÁTICA - 1 o ANO MÓDULO 42 TRIGONOMETRIA: CÍRCULOS E LINHAS TRIGONOMÉTRICAS O R I y 90º 180º II Q I Q + 0º/360º III Q IV Q - 270º 1290º 210 360º 3 Como pode cair no enem (ENEM) As cidades de Quito

Leia mais

A abordagem do assunto será feita inicialmente explorando uma curva bastante conhecida: a circunferência. Escolheremos como y

A abordagem do assunto será feita inicialmente explorando uma curva bastante conhecida: a circunferência. Escolheremos como y 5 Taxa de Variação Neste capítulo faremos uso da derivada para resolver certos tipos de problemas relacionados com algumas aplicações físicas e geométricas. Nessas aplicações nem sempre as funções envolvidas

Leia mais

Exercícios Triângulos (1)

Exercícios Triângulos (1) Exercícios Triângulos (1) 1. Na figura dada, sabe-se que r // s. Calcule x. 2. Nas figuras abaixo, calcule o valor de x. 5. (PUC-SP) Na figura seguinte, as retas r e s são paralelas. Encontre os ângulos

Leia mais

UNITAU APOSTILA TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO PROF. CARLINHOS

UNITAU APOSTILA TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO PROF. CARLINHOS ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO PROF. CARLINHOS NOME DO ALUNO: Nº TURMA: blog.portalpositivo.com.br/capitcar 1 TRIGONOMETRIA A palavra Trigonometria

Leia mais

1. (Unesp 2003) Cinco cidades, A, B, C, D e E, são interligadas por rodovias, conforme mostra

1. (Unesp 2003) Cinco cidades, A, B, C, D e E, são interligadas por rodovias, conforme mostra GEOMETRIA PLANA: SEMELHANÇA DE TRIÂNGULOS 2 1. (Unesp 2003) Cinco cidades, A, B, C, D e E, são interligadas por rodovias, conforme mostra a figura. A rodovia AC tem 40km, a rodovia AB tem 50km, os ângulos

Leia mais

ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma.

ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma. 2ª Fase Matemática Introdução A prova de matemática da segunda fase é constituída de 12 questões, geralmente apresentadas em ordem crescente de dificuldade. As primeiras questões procuram avaliar habilidades

Leia mais

Potenciação no Conjunto dos Números Inteiros - Z

Potenciação no Conjunto dos Números Inteiros - Z Rua Oto de Alencar nº 5-9, Maracanã/RJ - tel. 04-98/4-98 Potenciação no Conjunto dos Números Inteiros - Z Podemos epressar o produto de quatro fatores iguais a.... por meio de uma potência de base e epoente

Leia mais

Aula 10 Triângulo Retângulo

Aula 10 Triângulo Retângulo Aula 10 Triângulo Retângulo Projeção ortogonal Em um plano, consideremos um ponto e uma reta. Chama-se projeção ortogonal desse ponto sobre essa reta o pé da perpendicular traçada do ponto à reta. Na figura,

Leia mais

A Determine o comprimento do raio da circunferência.

A Determine o comprimento do raio da circunferência. Lista de exercícios Trigonometria Prof. Lawrence 1. Um terreno tem a forma de um triângulo retângulo. Algumas de suas medidas estão indicadas, em metros, na figura. Determine as medidas x e y dos lados

Leia mais

Exercícios de Matemática Geometria Analítica - Circunferência

Exercícios de Matemática Geometria Analítica - Circunferência Exercícios de Matemática Geometria Analítica - Circunferência ) (Unicamp-000) Sejam A e B os pontos de intersecção da parábola y = x com a circunferência de centro na origem e raio. a) Quais as coordenadas

Leia mais

O conhecimento é a nossa propaganda.

O conhecimento é a nossa propaganda. Lista de Exercícios 1 Trigonometria Gabaritos Comentados dos Questionários 01) (UFSCAR 2002) O valor de x, 0 x π/2, tal que 4.(1 sen 2 x).(sec 2 x 1) = 3 é: a) π/2. b) π/3. c) π/4. d) π/6. e) 0. 4.(1 sen

Leia mais

SIMULADO. Matemática 2 (PUC-RS) 1 (Unimontes-MG)

SIMULADO. Matemática 2 (PUC-RS) 1 (Unimontes-MG) (Unimontes-MG) (PUC-RS) Quando um relógio está marcando horas e minutos, o menor ângulo formado pelos seus ponteiros é de: Considere o relógio localizado na entrada do MCT. a) º0 b) º0 c) 7º d) º Considerando

Leia mais

2) (PUC-Camp) Uma pessoa encontra-se num ponto A, localizado na base de um prédio, conforme mostra a figura adiante.

2) (PUC-Camp) Uma pessoa encontra-se num ponto A, localizado na base de um prédio, conforme mostra a figura adiante. ATIVIDADES PARA RECUPERAÇÃO PARALELA - MATEMÁTICA PROFESSOR: CLAUZIR PAIVA NASCIMENTO TURMA: 9º ANO REVISÃO 1) (Cesesp-PE) Do alto de uma torre de 50 metros de altura, localizada numa ilha, avista-se a

Leia mais

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%) Probabilidade 10 (0,95%)

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%) Probabilidade 10 (0,95%) Distribuição das.08 Questões do I T A 9 (8,97%) 0 (9,9%) 69 (6,58%) Equações Irracionais 09 (0,86%) Equações Exponenciais (, 0 (9,6%) Geo. Analítica Conjuntos (,96%) Geo. Espacial Funções Binômio de Newton

Leia mais

115% x + 120% + (100 + p)% = 93 2 2. 120% y + 120% + (100 + p)% = 106 2 2 x + y + z = 100

115% x + 120% + (100 + p)% = 93 2 2. 120% y + 120% + (100 + p)% = 106 2 2 x + y + z = 100 MATEMÁTICA Carlos, Luís e Sílvio tinham, juntos, 00 mil reais para investir por um ano. Carlos escolheu uma aplicação que rendia 5% ao ano. Luís, uma que rendia 0% ao ano. Sílvio aplicou metade de seu

Leia mais

UNIDADE DE ENSINO POTENCIALMENTE SIGNIFICATIVA PARA TÓPICOS DE MECÂNICA VETORIAL

UNIDADE DE ENSINO POTENCIALMENTE SIGNIFICATIVA PARA TÓPICOS DE MECÂNICA VETORIAL UNIVERSIDADE SEVERINO SOMBA PROGRAMA DE PÓS-GRADUAÇÃO STRICTO SENSU MESTRADO PROFISSIONAL EM EDUCAÇÃO MATEMÁTICA UNIDADE DE ENSINO POTENCIALMENTE SIGNIFICATIVA PARA TÓPICOS DE MECÂNICA VETORIAL BRUNO NUNES

Leia mais

Função Quadrática Função do 2º Grau

Função Quadrática Função do 2º Grau Colégio Adventista Portão EIEFM MATEMÁTICA Função Quadrática 1º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 5 º Bimestre/13 Aluno(a): Número: Turma: Função Quadrática

Leia mais

Lista de exercícios Trigonometria Problemas Gerais. Parte 1 : Tangente da soma e da diferença de arcos e tangente do dobro de um arco

Lista de exercícios Trigonometria Problemas Gerais. Parte 1 : Tangente da soma e da diferença de arcos e tangente do dobro de um arco Lista de eercícios Trigonometria Problemas Gerais Prof ºFernandinho Parte 1 : Tangente da soma e da diferença de arcos e tangente do dobro de um arco 01.(Fuvest) Se é um ângulo tal que 0 < < 90 e sen =,

Leia mais

Universidade Estadual de Mato Grosso do Sul - UEMS 1 a LISTA DE EXERCÍCIOS DE MECÂNICA - NOTURNO. Sejam 3 vetores a, b e c dados por.

Universidade Estadual de Mato Grosso do Sul - UEMS 1 a LISTA DE EXERCÍCIOS DE MECÂNICA - NOTURNO. Sejam 3 vetores a, b e c dados por. Universidade Estadual de Mato Grosso do Sul - UEMS 1 a LISTA DE EXERCÍCIOS DE MECÂNICA - NOTURNO Questão 1 Sejam 3 vetores a, b e c dados por a = (2, 1, 3), b = ( 1, 1, 0) e c = (0, 2, 1). Determine: a)

Leia mais

3)Seno de alguns arcos importantes

3)Seno de alguns arcos importantes Aula 4-A -Funções trigonométricas no ciclo trigonométrico ) Função seno (definição) )Gráfico da função seno )Seno de alguns arcos imortantes 4) Equações e inequações 5) Resolução de exercícios ) Função

Leia mais

CADERNO DE ATIVIDADES / MATEMÁTICA TECNOLOGIAS

CADERNO DE ATIVIDADES / MATEMÁTICA TECNOLOGIAS VSTIULR VILS 0. alcule x na figura: x + 0º x + 0º RNO TIVIS / MTMÁTI TNOLOGIS 0. Na figura, é o lado de um quadrado inscrito e é o lado do decágono regular. Qual a medida de x? x 0. Na figura a seguir,

Leia mais

Nível B3 TRIGONOMETRIA DO TRIÂNGULO RECTÂNGULO

Nível B3 TRIGONOMETRIA DO TRIÂNGULO RECTÂNGULO Nível B3 TRIGONOMETRIA DO TRIÂNGULO RECTÂNGULO Razões trigonométricas A palavra trigonometria significa medir triângulos. Na figura, α e β são ângulos agudos do triângulo rectângulo. [CB] é a hipotenusa.

Leia mais

Arcos na Circunferência

Arcos na Circunferência Arcos na Circunferência 1. (Fuvest 013) Uma das primeiras estimativas do raio da Terra é atribuída a Eratóstenes, estudioso grego que viveu, aproximadamente, entre 75 a.c. e 195 a.c. Sabendo que em Assuã,

Leia mais

Matemática - 2C16/26 Lista 2

Matemática - 2C16/26 Lista 2 Matemática - 2C16/26 Lista 2 1) (G1 - cp2 2008) Uma empresa cultiva eucaliptos para a produção de celulose. Com o objetivo de proteger sua plantação contra incêndios, esta empresa tem um sistema de segurança

Leia mais

Trigonometria na circunferência

Trigonometria na circunferência Módulo 2 Unidade 20 Trigonometria na circunferência Para início de conversa... Figura 1: Reportagem do jornal O Globo da década de 1990 mostra o relógio da Central do Brasil, no Rio de Janeiro, sendo limpo

Leia mais

TESTES. 5. (UFRGS) Os ponteiros de um relógio marcam duas. horas e vinte minutos. O menor ângulo entre os ponteiros é

TESTES. 5. (UFRGS) Os ponteiros de um relógio marcam duas. horas e vinte minutos. O menor ângulo entre os ponteiros é TESTES (UFRGS) O valor de sen 0 o cos 60 o é 0 (Ufal) Se a medida de um arco, em graus, é igual a 8, sua medida em radianos é igual a ( /) 7 (6/) (6/) (UFRGS) Os ponteiros de um relógio marcam duas horas

Leia mais

APROFUNDAMENTO/REFORÇO

APROFUNDAMENTO/REFORÇO Colégio Adventista Portão EIEFM MATEMÁTICA Trigonometria º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista º Bimestre Aluno(: Número: Turma: 1) Resolva os problemas: Calcule

Leia mais

COLÉGIO SHALOM 1 ANO Professora: Bethânia Rodrigues 65 Geometria. Aluno(a):. Nº.

COLÉGIO SHALOM 1 ANO Professora: Bethânia Rodrigues 65 Geometria. Aluno(a):. Nº. COLÉGIO SHALOM 1 ANO Professora: Bethânia Rodrigues 65 Geometria Aluno(a):. Nº. TRABALHO DE RECUPERAÇÃO E a receita é uma só: fazer as pazes com você mesmo, diminuir a expectativa e entender que felicidade

Leia mais

Matemática. Resolução das atividades complementares. M2 Trigonometria nos Triângulos

Matemática. Resolução das atividades complementares. M2 Trigonometria nos Triângulos Resolução das atividades complementares Matemática M Trigonometria nos Triângulos p. 1 Em cada caso, calcule o seno, o cosseno e a tangente do ângulo agudo assinalado. a) b) sen γ = cos γ = tg γ 1 sen

Leia mais

TIPO DE PROVA: A. Questão 3. Questão 1. Questão 2. Questão 4. alternativa E. alternativa A. alternativa B

TIPO DE PROVA: A. Questão 3. Questão 1. Questão 2. Questão 4. alternativa E. alternativa A. alternativa B Questão TIPO DE PROVA: A Em uma promoção de final de semana, uma montadora de veículos colocou à venda n unidades, ao preço único unitário de R$ 0.000,00. No sábado foram vendidos 9 dos Questão Na figura,

Leia mais

Vestibular 2ª Fase Resolução das Questões Discursivas

Vestibular 2ª Fase Resolução das Questões Discursivas COMISSÃO PERMANENTE DE SELEÇÃO COPESE PRÓ-REITORIA DE GRADUAÇÃO PROGRAD CONCURSO VESTIBULAR 010 Prova de Matemática Vestibular ª Fase Resolução das Questões Discursivas São apresentadas abaixo possíveis

Leia mais

LISTA DE MATEMÁTICA II

LISTA DE MATEMÁTICA II Ensino Médio Unidade São Judas Tadeu Professora: Oscar Aluno (a): Série: 3ª Data: / / 2015. LISTA DE MATEMÁTICA II 1) (Fuvest-SP) Um lateral L faz um lançamento para um atacante A, situado 32 m à sua frente

Leia mais

a = 6 m + = a + 6 3 3a + m = 18 3 a m 3a 2m = 0 = 2 3 = 18 a = 6 m = 36 3a 2m = 0 a = 24 m = 36

a = 6 m + = a + 6 3 3a + m = 18 3 a m 3a 2m = 0 = 2 3 = 18 a = 6 m = 36 3a 2m = 0 a = 24 m = 36 MATEMÁTICA Se Amélia der R$ 3,00 a Lúcia, então ambas ficarão com a mesma quantia. Se Maria der um terço do que tem a Lúcia, então esta ficará com R$ 6,00 a mais do que Amélia. Se Amélia perder a metade

Leia mais

Resolução dos Exercícios sobre Derivadas

Resolução dos Exercícios sobre Derivadas Resolução dos Eercícios sobre Derivadas Eercício Utilizando a idéia do eemplo anterior, encontre a reta tangente à curva nos pontos onde e Vamos determinar a reta tangente à curva nos pontos de abscissas

Leia mais

Prova Final de Matemática

Prova Final de Matemática PROVA FINAL DO 3.º CICLO do Ensino BÁSICO Decreto-Lei n.º 139/01, de 5 de julho Prova Final de Matemática 3.º Ciclo do Ensino Básico Prova 9/1.ª Chamada 8 Páginas Duração da Prova: 90 minutos. Tolerância:

Leia mais

Lista 1. Sistema cartesiano ortogonal. 1. Observe a figura e determine os pontos, ou seja, dê suas coordenadas: a) A b) B c) C d) D e) E

Lista 1. Sistema cartesiano ortogonal. 1. Observe a figura e determine os pontos, ou seja, dê suas coordenadas: a) A b) B c) C d) D e) E Sistema cartesiano ortogonal Lista. Observe a figura e determine os pontos, ou seja, dê suas coordenadas: a) A b) B c) C d) D e) E. Marque num sistema de coordenadas cartesianas ortogonais os pontos: a)

Leia mais

AS QUESTÕES OBRIGATORIAMENTE DEVEM SER ENTREGUES EM UMA FOLHA À PARTE COM ESTA EM ANEXO.

AS QUESTÕES OBRIGATORIAMENTE DEVEM SER ENTREGUES EM UMA FOLHA À PARTE COM ESTA EM ANEXO. ENSINO MÉDIO Conteúdos da 1ª Série 1º/2º Bimestre 2015 Trabalho de Dependência Nome: N. o : Turma: Professor(a): Daniel/Rogério Data: / /2015 Unidade: Cascadura Mananciais Méier Taquara Matemática Resultado

Leia mais

Ano: 2º ano Ensino Médio Data: / /2017 Disciplina: Matemática Professor: Sergio Monachesi ROTEIRO DE ESTUDO REGULAÇÃO CONTEÚDO DO 2º BIMESTRE

Ano: 2º ano Ensino Médio Data: / /2017 Disciplina: Matemática Professor: Sergio Monachesi ROTEIRO DE ESTUDO REGULAÇÃO CONTEÚDO DO 2º BIMESTRE Nome: Nº: Ano: 2º ano Ensino Médio Data: / /2017 Disciplina: Matemática Professor: Sergio Monachesi a) Conteúdos : ROTEIRO DE ESTUDO REGULAÇÃO CONTEÚDO DO 2º BIMESTRE Razões trigonométricas no triângulo

Leia mais

Treino Matemática Planificação de Sólidos e Trigonometria Básica

Treino Matemática Planificação de Sólidos e Trigonometria Básica 1.Observe o prisma hexagonal regular ilustrado a seguir: Dentre as alternativas a seguir, a que representa uma planificação para esse sólido é.ao fazer um molde de um copo, em cartolina, na forma de cilindro

Leia mais

PROGRESSÕES 1. PROGRESSÃO ARITMÉTICA

PROGRESSÕES 1. PROGRESSÃO ARITMÉTICA PROGRESSÕES 1. PROGRESSÃO ARITMÉTICA Vamos considerar as seqüências numéricas a) (, 4, 6, 8, 10, 1). Veja que a partir do º termo a diferença entre cada termo e o seu antecessor, é constante: a - a 1 =

Leia mais

GA Estudo das Retas. 1. (Pucrj 2013) O triângulo ABC da figura abaixo tem área 25 e vértices A = (4, 5), B = (4, 0) e C = (c, 0).

GA Estudo das Retas. 1. (Pucrj 2013) O triângulo ABC da figura abaixo tem área 25 e vértices A = (4, 5), B = (4, 0) e C = (c, 0). GA Estudo das Retas 1. (Pucrj 01) O triângulo ABC da figura abaixo tem área 5 e vértices A = (, 5), B = (, 0) e C = (c, 0). A equação da reta r que passa pelos vértices A e C é: a) y x 7 x b) y 5 x c)

Leia mais

2) Se z = (2 + i).(1 + i).i, então a) 3 i b) 1 3i c) 3 i d) 3 + i e) 3 + i. ,será dado por: quando x = i é:

2) Se z = (2 + i).(1 + i).i, então a) 3 i b) 1 3i c) 3 i d) 3 + i e) 3 + i. ,será dado por: quando x = i é: Aluno(a) Nº. Ano: º do Ensino Médio Exercícios para a Recuperação de MATEMÁTICA - Professores: Escossi e Luciano NÚMEROS COMPLEXOS 1) Calculando-se corretamente as raízes da função f(x) = x + 4x + 5, encontram-se

Leia mais

Tópico 02: Movimento Circular Uniforme; Aceleração Centrípeta

Tópico 02: Movimento Circular Uniforme; Aceleração Centrípeta Aula 03: Movimento em um Plano Tópico 02: Movimento Circular Uniforme; Aceleração Centrípeta Caro aluno, olá! Neste tópico, você vai aprender sobre um tipo particular de movimento plano, o movimento circular

Leia mais

Aula 12 Áreas de Superfícies Planas

Aula 12 Áreas de Superfícies Planas MODULO 1 - AULA 1 Aula 1 Áreas de Superfícies Planas Superfície de um polígono é a reunião do polígono com o seu interior. A figura mostra uma superfície retangular. Área de uma superfície é um número

Leia mais

1. Determine x no caso a seguir: 2. No triângulo ABC a seguir, calcule o perímetro.

1. Determine x no caso a seguir: 2. No triângulo ABC a seguir, calcule o perímetro. 1. Determine x no caso a seguir: 2. No triângulo ABC a seguir, calcule o perímetro. 3. (Ufrrj) Milena, diante da configuração representada abaixo, pede ajuda aos vestibulandos para calcular o comprimento

Leia mais

Teste Intermédio Matemática. 9.º Ano de Escolaridade. Versão 1. Duração do Teste: 30 min (Caderno 1) + 60 min (Caderno 2) 21.03.

Teste Intermédio Matemática. 9.º Ano de Escolaridade. Versão 1. Duração do Teste: 30 min (Caderno 1) + 60 min (Caderno 2) 21.03. Teste Intermédio Matemática Versão 1 Duração do Teste: 30 min (Caderno 1) + 60 min (Caderno 2) 21.03.2014 9.º Ano de Escolaridade Indica de forma legível a versão do teste. O teste é constituído por dois

Leia mais

Atividade 01 Ponto, reta e segmento 01

Atividade 01 Ponto, reta e segmento 01 Atividade 01 Ponto, reta e segmento 01 1. Crie dois pontos livres. Movimente-os. 2. Construa uma reta passando por estes dois pontos. 3. Construa mais dois pontos livres em qualquer lugar da tela, e o

Leia mais

LISTA de RECUPERAÇÃO MATEMÁTICA

LISTA de RECUPERAÇÃO MATEMÁTICA LISTA de RECUPERAÇÃO Professor: ARGENTINO Recuperação: O ANO DATA: 0 / 06 / 015 MATEMÁTICA 1. A figura representa duas raias de uma pista de atletismo plana. Fábio (F) e André (A) vão apostar uma corrida

Leia mais

Matemática Ensino Médio Anotações de aula Trigonometira

Matemática Ensino Médio Anotações de aula Trigonometira Matemática Ensino Médio Anotações de aula Trigonometira Prof. José Carlos Ferreira da Silva 2016 1 ÍNDICE Trigonometria Introdução... 04 Ângulos na circunferência...04 Relações trigonométricas no triângulo

Leia mais

Universidade Federal de Viçosa Departamento de Matemática 3 a Lista de exercícios de Cálculo III - MAT 241

Universidade Federal de Viçosa Departamento de Matemática 3 a Lista de exercícios de Cálculo III - MAT 241 Universidade Federal de Viçosa Departamento de Matemática a Lista de exercícios de Cálculo III - MAT 41 1. Calcule, se existirem, as derivadas parciais f f (0, 0) e (0, 0) sendo: x + 4 (a) f(x, ) = x,

Leia mais

2. Função polinomial do 2 o grau

2. Função polinomial do 2 o grau 2. Função polinomial do 2 o grau Uma função f: IR IR que associa a cada IR o número y=f()=a 2 +b+c com a,b,c IR e a0 é denominada função polinomial do 2 o grau ou função quadrática. Forma fatorada: a(-r

Leia mais

1. Sendo (x+2, 2y-4) = (8x, 3y-10), determine o valor de x e de y. 2. Dado A x B = { (1,0); (1,1); (1,2) } determine os conjuntos A e B. 3. (Fuvest) Sejam A=(1, 2) e B=(3, 2) dois pontos do plano cartesiano.

Leia mais

FUNÇÕES TRIGONOMÉTRICAS. Teorema de Pitágoras Razões trigonométricas Circunferência trigonométrica

FUNÇÕES TRIGONOMÉTRICAS. Teorema de Pitágoras Razões trigonométricas Circunferência trigonométrica FUNÇÕES TRIGONOMÉTRICAS Teorema de Pitágoras Razões trigonométricas Circunferência trigonométrica Teorema de Pitágoras Em qualquer triângulo retângulo, o quadrado da medida da hipotenusa é igual à soma

Leia mais

UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DE MATEMÁTICA

UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DE MATEMÁTICA UNIVERSIDADE FEDERAL DE OURO PRETO INSTITUTO DE CIÊNCIAS EXATAS E BIOLÓGICAS DEPARTAMENTO DE MATEMÁTICA Quarta lista de Eercícios de Cálculo Diferencial e Integral I - MTM 1 1. Nos eercícios a seguir admita

Leia mais

GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar

GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar GAAL - 201/1 - Simulado - 1 Vetores e Produto Escalar SOLUÇÕES Exercício 1: Determinar os três vértices de um triângulo sabendo que os pontos médios de seus lados são M = (5, 0, 2), N = (, 1, ) e P = (4,

Leia mais

Taxas Relacionadas. Começaremos nossa discussão com um exemplo que descreve uma situação real.

Taxas Relacionadas. Começaremos nossa discussão com um exemplo que descreve uma situação real. 6/0/008 Fatec/Tatuí Calculo II - Taxas Relacionadas 1 Taxas Relacionadas Um problema envolvendo taxas de variação de variáveis relacionadas é chamado de problema de taxas relacionadas. Os passos a seguir

Leia mais

RESOLUÇÀO DA PROVA DE MATEMÁTICA VESTIBULAR DA FUVEST_2007_ 2A FASE. RESOLUÇÃO PELA PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA

RESOLUÇÀO DA PROVA DE MATEMÁTICA VESTIBULAR DA FUVEST_2007_ 2A FASE. RESOLUÇÃO PELA PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA RESOLUÇÀO DA PROVA DE MATEMÁTICA VESTIBULAR DA FUVEST_007_ A FASE RESOLUÇÃO PELA PROFA MARIA ANTÔNIA CONCEIÇÃO GOUVEIA Questão Se Amélia der R$3,00 a Lúcia, então ambas ficarão com a mesma quantia Se Maria

Leia mais

CONTEÚDO: Razões trigonométricas no Triangulo Retângulo e em Triângulo qualquer.

CONTEÚDO: Razões trigonométricas no Triangulo Retângulo e em Triângulo qualquer. LISTA DE EXERCICIOS - ESTUDO PARA A PROVA PR1 3ºTRIMESTRE PROF. MARCELO CONTEÚDO: Razões trigonométricas no Triangulo Retângulo e em Triângulo qualquer. (seno, cosseno e tangente; lei dos senos e lei dos

Leia mais

Considere um triângulo eqüilátero T 1

Considere um triângulo eqüilátero T 1 Considere um triângulo eqüilátero T de área 6 cm. Unindo-se os pontos médios dos lados desse triângulo, obtém-se um segundo triângulo eqüilátero T, que tem os pontos médios dos lados de T como vértices.

Leia mais

Proposta para Abordagem da Trigonometria da Primeira Volta Utilizando o Software Sintesoft Trigonometria 2.0

Proposta para Abordagem da Trigonometria da Primeira Volta Utilizando o Software Sintesoft Trigonometria 2.0 Programa de Pós-Graduação em Ensino de Ciências Exatas, Curso de Licenciatura em Ciências Exatas, com habilitação integrada em Física, Química e Matemática Atividades desenvolvidas na pesquisa Inserção

Leia mais

Matemática 2. 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um. 02. Abaixo temos uma ilustração da Victoria Falls Bridge.

Matemática 2. 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um. 02. Abaixo temos uma ilustração da Victoria Falls Bridge. Matemática 2 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um paralelepípedo retângulo acoplado a um prisma triangular. 1,6m 1m 1,4m Calcule o volume da estrutura, em dm 3, e indique

Leia mais

Centro Federal de Educação Tecnológica Departamento Acadêmico da Construção Civil Curso Técnico de Geomensura Disciplina: Matemática Aplicada

Centro Federal de Educação Tecnológica Departamento Acadêmico da Construção Civil Curso Técnico de Geomensura Disciplina: Matemática Aplicada Centro Federal de Educação Tecnológica Departamento Acadêmico da Construção Civil Curso Técnico de Geomensura Disciplina: Matemática Aplicada MATEMÁTICA APLICADA 1. SISTEMA ANGULAR INTERNACIONAL...2 2.

Leia mais

Neste ano estudaremos a Mecânica, que divide-se em dois tópicos:

Neste ano estudaremos a Mecânica, que divide-se em dois tópicos: CINEMÁTICA ESCALAR A Física objetiva o estudo dos fenômenos físicos por meio de observação, medição e experimentação, permite aos cientistas identificar os princípios e leis que regem estes fenômenos e

Leia mais

CARLOS EDUARDO DE OLIVEIRA TRIGONOMETRIA DO ENSINO MÉDIO E APROXIMAÇÃO DE FUNÇÕES POR POLINÔMIOS TRIGONOMÉTRICOS

CARLOS EDUARDO DE OLIVEIRA TRIGONOMETRIA DO ENSINO MÉDIO E APROXIMAÇÃO DE FUNÇÕES POR POLINÔMIOS TRIGONOMÉTRICOS CARLOS EDUARDO DE OLIVEIRA TRIGONOMETRIA DO ENSINO MÉDIO E APROXIMAÇÃO DE FUNÇÕES POR POLINÔMIOS TRIGONOMÉTRICOS CAMPINAS 014 i ii UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE MATEMÁTICA, ESTATÍSTICA

Leia mais

Topografia Aula 2 Unidades Usuais e Revisão de Trigonometria

Topografia Aula 2 Unidades Usuais e Revisão de Trigonometria Topografia Aula 2 Unidades Usuais e Revisão de Trigonometria Agronomia / Arquitetura e Urbanismo / Engenharia Civil Prof. Luiz Miguel de Barros luizmiguel.barros@yahoo.com.br Revisão Aula 1 O que é topografia?

Leia mais

LISTÃO UNIDADE IV. Mensagem:

LISTÃO UNIDADE IV. Mensagem: LISTÃO UNIDADE IV Mensagem: A Matemática é uma ciência poderosa e bela; problemiza ao mesmo tempo a harmonia divina do universo e a grandeza do espírito humano. (F. Gomes Teieira) 01. Efetue as operações:

Leia mais

Questão 1. Questão 2. Questão 3. Resposta. Resposta

Questão 1. Questão 2. Questão 3. Resposta. Resposta Questão Carlos, Luís e Sílvio tinham, juntos, 00 mil reais para investir por um ano. Carlos escolheu uma aplicação que rendia 5% ao ano. Luís, uma que rendia 0% ao ano. Sílvio aplicou metade de seu dinheiro

Leia mais

IFRN - INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RN PROFESSOR: MARCELO SILVA MATEMÁTICA. Resolução de triângulos retângulos

IFRN - INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RN PROFESSOR: MARCELO SILVA MATEMÁTICA. Resolução de triângulos retângulos IFRN - INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RN PROFESSOR: MARCELO SILVA MATEMÁTICA Resolução de triângulos retângulos 1. A polícia federal localizou na floresta amazônica uma pista de

Leia mais

PROVAS DE MATEMÁTICA DA UFMG. VESTIBULAR 2013 2 a ETAPA. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVAS DE MATEMÁTICA DA UFMG. VESTIBULAR 2013 2 a ETAPA. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVAS DE MATEMÁTICA DA UFMG VESTIBULAR 01 a ETAPA Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA A - a Etapa o DIA QUESTÃO 01 Janaína comprou um eletrodoméstico financiado, com taxa de 10% ao mês,

Leia mais

MENINO JESUS P R O B L E M Á T I C A 2. 1. Calcule as potências e marque a alternativa que contém as respostas corretas de I, II

MENINO JESUS P R O B L E M Á T I C A 2. 1. Calcule as potências e marque a alternativa que contém as respostas corretas de I, II Centro Educacional MENINO JESUS Aluno (a): Data: / / Professor (a): Disciplina: Matemática 8ª série / 9º ano: P R O B L E M Á T I C A 2 1. Calcule as potências e marque a alternativa que contém as respostas

Leia mais

MATEMÁTICA TRIGONOMETRIA

MATEMÁTICA TRIGONOMETRIA MATEMÁTICA TRIGONOMETRIA 1. UFGO Considere segmentos de reta AE e BD, interceptando-se no ponto C, os triângulos retângulos ABC e CDE, e o triângulo BCE, conforme a figura abaixo. 1 Sabendo-se que as medidas

Leia mais

b) Qual deve ser a aceleração centrípeta, para que com esta velocidade, ele faça uma trajetória circular com raio igual a 2m?

b) Qual deve ser a aceleração centrípeta, para que com esta velocidade, ele faça uma trajetória circular com raio igual a 2m? 1 - Dadas as medidas da bicicleta abaixo: a) Sabendo que um ciclista pedala com velocidade constante de tal forma que o pedal dá duas voltas em um segundo. Qual a velocidade linear, em km/h da bicicleta?

Leia mais

PROBLEMAS DE OTIMIZAÇÃO

PROBLEMAS DE OTIMIZAÇÃO (Tóp. Teto Complementar) PROBLEMAS DE OTIMIZAÇÃO 1 PROBLEMAS DE OTIMIZAÇÃO Este teto estuda um grupo de problemas, conhecido como problemas de otimização, em tais problemas, quando possuem soluções, é

Leia mais

Prof. Rogério Porto. Assunto: Cinemática em uma Dimensão - I

Prof. Rogério Porto. Assunto: Cinemática em uma Dimensão - I Questões COVEST Física Mecânica Prof. Rogério Porto Assunto: Cinemática em uma Dimensão - I 1. A imprensa pernambucana, em reportagem sobre os riscos que correm os adeptos da "direção perigosa", observou

Leia mais

n! (n r)!r! P(A B) P(A B) = P(A)+P(B) P(A B) P(A/B) = 1 q, 0 < q < 1

n! (n r)!r! P(A B) P(A B) = P(A)+P(B) P(A B) P(A/B) = 1 q, 0 < q < 1 FORMULÁRIO DE MATEMÁTICA Análise Combinatória P n = n! = 1 n A n,r = Probabilidade P(A) = n! (n r)! número de resultados favoráveis a A número de resultados possíveis Progressões aritméticas a n = a 1

Leia mais

Questão 2. Questão 1. Questão 3. Resposta. Resposta

Questão 2. Questão 1. Questão 3. Resposta. Resposta Instruções: Indique claramente as respostas dos itens de cada questão, fornecendo as unidades, caso existam. Apresente de forma clara e ordenada os passos utilizados na resolução das questões. Expressões

Leia mais