Lista 1: Vetores -Turma L
|
|
- Raquel Alvarenga Cunha
- 5 Há anos
- Visualizações:
Transcrição
1 Lista 1: Vetores -Turma L Professora: Ivanete Zuchi Siple 1. Dados os vetores u e v da gura, mostrar num gráco um representante do vetor: (a) u v (b) v u (c) u + 4 v u v. Represente o vetor x = u + v w com origem no ponto O da gura abaixo, sendo u, v e w como na gura. u v O w. om base no paralelepípedo representado a seguir determine os seguintes vetores usando H como origem. (a) (E F ) + ( D) + ( D) (b) (G ) + ( ) D H G 4. Dado o trapézio D em que P em função de a e b. E = b, = a, 1 F D = b e D DP = 4, expressar D e
2 5. onsidere o tetraedro D dado a seguir, em que = a, D. Escreva o vetor X em função dos vetores a, b e c. X = 1 = b, D = c e D X 6. Sejam M e N os pontos médios das diagonais e D, respectivamente, do trapézio D representado na gura abaixo. Sendo a =, b = D e u = MN, escreva o vetor u como combinação linear de a e b. 7. Prove que o segmento que une os pontos médios de dois lados de um triângulo é paralelo ao terceiro e tem a metade de sua medida. 8. No triângulo retângulo abaixo, demonstre vetorialmente as seguintes relações: (a) O quadrado de um cateto é igual ao produto da hipotenusa pela projeção desse cateto sobre a hipotenusa, ou seja b = an e c = am. (b) O quadrado da altura é igual ao produto das projeções dos catetos sobre a hipotenusa, ou seja, h = mn 9. Prove que as diagonais de um losango são ortogonais entre si. 10. No paralelepípedo da gura abaixo tem-se que P (, 4, ).
3 z E D F P O y Determine: (a) os pontos,,, D, E, F e O. (b) D EF. (c) P P. x (d) OP O OE. 11. Determine a origem do segmento que representa o vetor u = (,, 1), sendo sua extremidade o ponto (0, 4, ). 1. Determine o ponto do eixo das ordenadas equidistante dos pontos (1, 1, ) e (,, 1). 1. Prove que o triângulo (1,, 0), (4, 0, 1) e (, 1, ) é equilátero. 14. Determine os pontos do plano xz cuja distância ao ponto (1, 1, 0) é e ao ponto (, 0, 1) é. 15. Determine o ponto P pertencente ao eixo z e equidista dos pontos (,, 0) e (0, 1, ). 16. Dados os vértices (9, 5, 1) e (6, 1, 19) de um paralelogramo D e P (4, 1, 7) o ponto de interseção de suas diagonais determine os vértices e D. 17. Dados os vetores u = i, v = i + j + k e w = i +6 j +6 k expresse w como combinação linear de u e v. 18. Dados os vetores u = (, 1) e v = ( 1, ) determine o vetor w tal que 4( u v) + w = u w. 19. Sabendo que o ângulo entre os vetores u e v é de 60, determinar o ângulo formado pelos vetores u e v. 0. Determine a e b de modo que sejam colineares os pontos (, a, b), (1, 5, 1) e (, 1, 7). 1. Na gura abaixo tem-se M = e N =. Prove que os segmentos MN e são paralelos, e que o comprimento do primeiro é 1 do comprimento do segundo. M N
4 . Sabendo que a distância entre os pontos ( 1,, ) e (1, 1, m) é 7 determine o valor de m.. Determine α para que o vetor u = ( 11, 1, α) seja unitário Prove que os pontos (5, 1, 5), (4,, ) e (,, 1) são vértices de um triângulo retângulo. 5. alcule o ângulo entre os vetores u e v, sabendo-se que u + v + w = 0 e u =, v = e w = alcule o ângulo entre os vetores a + b c e a + b c, sabendo-se que a = c = 1 e a, b e c são mutuamente ortogonais. 7. Um jovem parte de um ponto, caminha 100 metros para norte, até um ponto ; em seguida, orienta-se para o leste e caminha mais 50 metros do ponto até um ponto. (a) Determine o módulo do deslocamento resultante. (b) Encontre o ângulo formado pelo entre vetor que representa o deslocamento resultante e o vetor. 8. Encontre o vetor w de forma que w seja paralelo ao vetor r = ( u. v ) ( u v ), sendo u = i + j e v = (1,, ), w = 6 e w forme um ângulo agudo com o eixo das abscissas. 9. Dado o triângulo retângulo com ângulo reto em, determine a medida da projeção do cateto sobre a hipotenusa, sendo (0, 0, ), (,, 8) e (, 5, 10). 0. onsidere os pontos (, 4, 1), (,, 5) e (, 1, ). (a) O triângulo determinado pelos pontos é retângulo? Justique. (b) Determine a área do triângulo. 1. alcule x = j i, determine o versor de x e represente no gráco abaixo os vetores x e seu versor. z b = y x. alcule o valor de a para que o vetor v = ( 8, 0, 7 ) seja mutuamente ortogonal aos vetores w = a i + 5 j 4 k e u = (a 1) i + j + 4 k.. Os pontos (, 1, 1), ( 1,, 1) e (0, 1, ) formam um triângulo. (a) Determine a projeção do lado sobre o lado. (b) Obtenha, se possível, o valor de c para que o vetor v = (c + 4,, 9) seja colinear ao vetor projeção. 4
5 4. alcule a área do paralelogramo que tem um vértice no ponto (,, 1) e uma diagonal de extremidades (1, 1, 1) e (0, 1, ). 5. Determine o vetor unitário ortogonal aos vetores u = (,, 1) e v = (1, 1, ). 6. Verique se os pontos (, 1, ), (,, 4), ( 1, 1, 1) e D(0, 1, 1) são coplanares. 7. Determine o valor de k para que os seguintes vetores sejam coplanares: a = (, k, 1), b = (1,, k) e c = (, 0, ). 8. alcule o volume de um paralelepípedo determinado pelos vetores u, v e w, onde u = ( 1,, ), v = (, 1, ) e w = v ( u v ). 9. onsidere o tetraedro D, ilustrado a seguir, cujos vértices da base são: (,, 1), (,, 1) e (, 1, 0). alcular as coordenadas do vértice D, sobre o eixo x, de forma que o volume do tetraedro seja 8 unidades. 40. onsidere os vetores u e w, tais que u = (1, 1, 4), w = 6 e o ângulo entre u e w é Determine: (a) a projeção do vetor w sobre o vetor u. (b) a área do paralelogramo determinado pelos vetores a = u + w e b = u w. 41. onsidere os pontos (1, 1, 1), (, 1, ), (0,, ) e D( 1, 0, ). lassique as armações abaixo em verdadeiras ou falsas e justique sua resposta. (a) Os pontos,, e D são vértices de um tetraedro com volume igual a 6 u.v.. (b) O vetor 1 ( D) é um representante do versor de D. (c) Os pontos, e D são colineares. 4. Determine um vetor que tenha módulo igual a 44, que esteja no segundo octante e que seja simultaneamente ortogonal aos vetores u = j k e v = (1,, 1). Respostas: 1... π. O 5
6 . (a) HF ; (b) H 4. D = ( a + b) e P = a 7 b 4 5. X = a + b + 1 c 6. u = a b 7. Prove, usando soma de vetores, que MN =, sendo M o ponto médio do lado e N o ponto médio do lado. 8. Use soma de vetores. 9. Use soma de vetores (a) (, 0, 0); (, 4, 0); (0, 4, 0); D(0, 4, ); E(0, 0, ); F (, 0, ); O(0, 0, 0). (b) Zero, pois os vetores são ortogonais. (c) 1 i. (d) (, 1, ) 1. ( 0, 1, 0) 1. Prove que = = 14. (, 0, ) ( 1 e, 0, ) P (0, 0, ) 16. ( 1,, ) e D(,, 5). 17. w = u + 6 v ( 18. w = 1, 11 ) a = 1 e b = 1. Dica: Use soma de vetores.. m = 9 ou m =. α = ± Dica: verique que um dos ângulos é reto , 5 6
7 (a) 111,8m; (b) 6, w = (, 4, 4) (a) Não (Justique!); (b) = 1. x = k e versor de x = k 11 u.a.. a = 1. (a) ( 16 17, 16 17, 4 ) ; (b) não existe c = 77u.a. 5. ± ( 7 5, 1, 1 5 ) 6. Sim. 7. k = ou k = 8. Os pontos são coplanares, logo não há paralelepípedo denido. 9. D 40.. ( 51, 0, 0 (a) ) ou D ( 45, 0, 0 ) ( , 10, 6 ) 5 5 (b) 1 15u.a (a) Falso, esses pontos são coplanares e não denem um tetraedro. (b) Falso, é um representante do versor o vetor oposto a D, ou seja é um representante do versor de D. (c) Falso, pois os vetores D e não são paralelos. 4. ( 6,, ). 7
Lista 1: Vetores - Engenharia Mecânica. Professora: Elisandra Bär de Figueiredo
Professora: Elisandra är de Figueiredo Lista 1: Vetores - Engenharia Mecânica 1. Dados os vetores u e v da gura, mostrar num gráco um representante do vetor: (a) u v (b) v u (c) u + 4 v u v. Represente
Lista 1: Vetores. Professora: Elisandra Bär de Figueiredo. 1. Dados os vetores u e v da gura, mostrar num gráco um representante do vetor:
Lista 1: Vetores Professora: Elisandra är de Figueiredo 1. Dados os vetores u e v da gura, mostrar num gráco um representante do vetor: (a) u v (b) v u (c) u + 4 v u v. Represente o vetor x = u + v w com
02 Determine o módulo, a direção e o sentido dos seguintes vetores: a) A = 5 Λ i + 3 Λ j, b) B = 10 Λ i -7 Λ j, c) C = 2 Λ i - 3 Λ j + 4 Λ k.
Exercícios de apoio à disciplina Geometria Analítica e Cálculo Vetorial 1 01 Três vetores A, B e C possuem as seguintes componentes nas direções x e y: A x = 6, A y = -3; B x = -3, B y =4; C x =2, C y
GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar
GAAL - 201/1 - Simulado - 1 Vetores e Produto Escalar SOLUÇÕES Exercício 1: Determinar os três vértices de um triângulo sabendo que os pontos médios de seus lados são M = (5, 0, 2), N = (, 1, ) e P = (4,
Lista 1. Sistema cartesiano ortogonal. 1. Observe a figura e determine os pontos, ou seja, dê suas coordenadas: a) A b) B c) C d) D e) E
Sistema cartesiano ortogonal Lista. Observe a figura e determine os pontos, ou seja, dê suas coordenadas: a) A b) B c) C d) D e) E. Marque num sistema de coordenadas cartesianas ortogonais os pontos: a)
2. Na gura abaixo, representa-se um cubo. Desenhe a echa de origem H que representa ! DN =! DC
1 Universidade Estadual de Santa Catarina Centro de Ciências Tecnológicas -DMAT ALG- CCI Professores: Ivanete, Elisandra e Rodrigo I Lista - vetores, retas e planos 1. Dados os vetores ~u e ~v da gura,
Módulo de Geometria Anaĺıtica 1. Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano. 3 a série E.M.
Módulo de Geometria Anaĺıtica 1 Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano a série EM Geometria Analítica 1 Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano 1 Exercícios
Aula 10 Triângulo Retângulo
Aula 10 Triângulo Retângulo Projeção ortogonal Em um plano, consideremos um ponto e uma reta. Chama-se projeção ortogonal desse ponto sobre essa reta o pé da perpendicular traçada do ponto à reta. Na figura,
TRIÂNGULO RETÂNGULO. Triângulo retângulo é todo triângulo que tem um ângulo reto. O triângulo ABC é retângulo em A e seus elementos são:
TRIÂNGULO RETÂNGULO Triângulo retângulo é todo triângulo que tem um ângulo reto. O triângulo ABC é retângulo em A e seus elementos são: a: hipotenusa b e c: catetos h: altura relativa a hipotenusa m e
CADERNO DE ATIVIDADES / MATEMÁTICA TECNOLOGIAS
VSTIULR VILS 0. alcule x na figura: x + 0º x + 0º RNO TIVIS / MTMÁTI TNOLOGIS 0. Na figura, é o lado de um quadrado inscrito e é o lado do decágono regular. Qual a medida de x? x 0. Na figura a seguir,
Ponto, reta e plano no espaço tridimensional, cont.
Ponto, reta e plano no espaço tridimensional, cont. Matemática para arquitetura Ton Marar 1. Posições relativas Posição relativa entre pontos Dois pontos estão sempre alinhados. Três pontos P 1 = (x 1,
1 Módulo ou norma de um vetor
Álgebra Linear I - Aula 3-2005.2 Roteiro 1 Módulo ou norma de um vetor A norma ou módulo do vetor ū = (u 1, u 2, u 3 ) de R 3 é ū = u 2 1 + u2 2 + u2 3. Geometricamente a fórmula significa que o módulo
Matemática. Resolução das atividades complementares. M1 Geometria Métrica Plana
Resolução das atividades complementares Matemática M Geometria Métrica Plana p. 0 Na figura a seguir tem-se r // s // t e y. diferença y é igual a: a) c) 6 e) b) d) 0 8 ( I) y 6 y (II) plicando a propriedade
1 COMO ESTUDAR GEOMETRIA
Matemática 2 Pedro Paulo GEOMETRIA ESPACIAL I 1 COMO ESTUDAR GEOMETRIA Só relembrando a primeira aula de Geometria Plana, aqui vão algumas dicas bem úteis para abordagem geral de uma questão de geometria:
Universidade Tecnológica Federal do Paraná Câmpus Campo Mourão Departamento de Matemáica
Universidade Tecnológica ederal do Paraná âmpus ampo Mourão epartamento de Matemáica 1. Verdadeiro ou falso? GX1 - Geometria nalítica e Álgebra Linear Lista de xercícios: Produto de Vetores Prof. Lilian
O B. Podemos decompor a pirâmide ABCDE em quatro tetraedros congruentes ao tetraedro BCEO. ABCDE tem volume igual a V = a2.oe
GABARITO - QUALIFICAÇÃO - Setembro de 0 Questão. (pontuação: ) No octaedro regular duas faces opostas são paralelas. Em um octaedro regular de aresta a, calcule a distância entre duas faces opostas. Obs:
MATEMÁTICA GEOMETRIA ANALÍTICA I PROF. Diomedes. E2) Sabendo que a distância entre os pontos A e B é igual a 6, calcule a abscissa m do ponto B.
I- CONCEITOS INICIAIS - Distância entre dois pontos na reta E) Sabendo que a distância entre os pontos A e B é igual a 6, calcule a abscissa m do ponto B. d(a,b) = b a E: Dados os pontos A e B de coordenadas
Aula 5 Quadriláteros Notáveis
Aula 5 Quadriláteros Notáveis Paralelogramo Definição: É o quadrilátero convexo que possui os lados opostos paralelos. A figura mostra um paralelogramo ABCD. Teorema 1: Se ABCD é um paralelogramo, então:
REVISÃO Lista 07 Áreas, Polígonos e Circunferência. h, onde b representa a base e h representa a altura.
NOME: ANO: º Nº: POFESSO(A): Ana Luiza Ozores DATA: Algumas definições Áreas: Quadrado: EVISÃO Lista 07 Áreas, Polígonos e Circunferência A, onde representa o lado etângulo: A b h, onde b representa a
Capítulo 3. Cálculo Vetorial. 3.1 Segmentos Orientados
Capítulo 3 Cálculo Vetorial O objetivo deste capítulo é o estudo de vetores de um ponto de vista geométrico e analítico. De acordo com a necessidade, a abordagem do assunto será formal ou informal. O estudo
I CAPÍTULO 19 RETA PASSANDO POR UM PONTO DADO
Matemática Frente I CAPÍTULO 19 RETA PASSANDO POR UM PONTO DADO 1 - RECORDANDO Na última aula, nós vimos duas condições bem importantes: Logo, se uma reta passa por um ponto e tem um coeficiente angular,
Módulo de Geometria Anaĺıtica Parte 2. Distância entre Ponto e Reta. Professores Tiago Miranda e Cleber Assis
Módulo de Geometria Anaĺıtica Parte Distância entre Ponto e Reta a série E.M. Professores Tiago Miranda e Cleber Assis Geometria Analítica Parte Distância entre Ponto e Reta 1 Exercícios Introdutórios
Matemática. Resolução das atividades complementares. M20 Geometria Analítica: Circunferência
Resolução das atividades complementares Matemática M Geometria Analítica: ircunferência p. (Uneb-A) A condição para que a equação 6 m 9 represente uma circunferência é: a), m, ou, m, c) < m < e), m, ou,
TRIÂNGULO RETÂNGULO. Os triângulos AHB e AHC são semelhantes, então podemos estabelecer algumas relações métricas importantes:
TRIÂNGULO RETÂNGULO Num triângulo retângulo, os lados perpendiculares, aqueles que formam um ângulo de 90º, são denominados catetos e o lado oposto ao ângulo de 90º recebe o nome de hipotenusa. O teorema
Aula 12 Áreas de Superfícies Planas
MODULO 1 - AULA 1 Aula 1 Áreas de Superfícies Planas Superfície de um polígono é a reunião do polígono com o seu interior. A figura mostra uma superfície retangular. Área de uma superfície é um número
(b) { (ρ, θ);1 ρ 2 e π θ } 3π. 5. Representar graficamente
Universidade Federal de Uberlândia Faculdade de Matemática isciplina : Geometria nalítica (GM003) ssunto: sistemas de coordenadas; vetores: operações com vetores, produto escalar, produto vetorial, produto
Bissetrizes e suas propriedades.
Semana Olímpica 013 - Prof. ícero Thiago - olégio ETP/SP issetrizes e suas propriedades. Teorema 1. Seja XOY umângulodadoep umpontoemseuinterior. Então, adistância de P a XO é igual à distância de P a
POLÍGONOS TRIÂNGULOS E QUADRILÁTEROS
7º ANO POLÍGONOS TRIÂNGULOS E QUADRILÁTEROS Áreas de alguns quadriláteros Nuno Marreiros Recorda Área do retângulo Para todo e qualquer retângulo de base (b) e altura (h), pode-se escrever: Área do Retângulo
Vetores. Definição geométrica de vetores
Vetores Várias grandezas físicas, tais como por exemplo comprimento, área, olume, tempo, massa e temperatura são completamente descritas uma ez que a magnitude (intensidade) é dada. Tais grandezas são
AV1 - MA 13-2011 UMA SOLUÇÃO. b x
Questão 1. figura abaixo mostra uma sequência de circunferências de centros 1,,..., n com raios r 1, r,..., r n, respectivamente, todas tangentes às retas s e t, e cada circunferência, a partir da segunda,
CURSO DE GEOMETRIA LISTA
GEOMETRI Ângulos Obs.: Dois ângulos são congruentes quando têm a mesma abertura. Exemplos: Ângulos complementares Soma (medida) 90º Ângulos suplementares Soma (medida) 180º issetriz bissetriz de um ângulo
Nesta aula iremos continuar com os exemplos de revisão.
Capítulo 8 Nesta aula iremos continuar com os exemplos de revisão. 1. Exemplos de revisão Exemplo 1 Ache a equação do círculo C circunscrito ao triângulo de vértices A = (7, 3), B = (1, 9) e C = (5, 7).
. f3 = 4 e 1 3 e 2. f2 = e 1 e 3, g 1 = e 1 + e 2 + e 3, 2 g 2 = e 1 + e 2,
INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO MAT-457 Álgebra Linear para Engenharia I Segunda Lista de Exercícios - Professor: Equipe da Disciplina EXERCÍCIOS 1. Dê a matriz de mudança
GA Estudo das Retas. 1. (Pucrj 2013) O triângulo ABC da figura abaixo tem área 25 e vértices A = (4, 5), B = (4, 0) e C = (c, 0).
GA Estudo das Retas 1. (Pucrj 01) O triângulo ABC da figura abaixo tem área 5 e vértices A = (, 5), B = (, 0) e C = (c, 0). A equação da reta r que passa pelos vértices A e C é: a) y x 7 x b) y 5 x c)
4.2 Produto Vetorial. Orientação sobre uma reta r
94 4. Produto Vetorial Dados dois vetores u e v no espaço, vamos definir um novo vetor, ortogonal a u e v, denotado por u v (ou u v, em outros textos) e denominado produto vetorial de u e v. Mas antes,
Módulo de Geometria Anaĺıtica 1. Paralelismo e Perpendicularismo. 3 a série E.M.
Módulo de Geometria Anaĺıtica 1 Paralelismo e Perpendicularismo 3 a série EM Geometria Analítica 1 Paralelismo e Perpendicularismo 1 Exercícios Introdutórios Exercício 1 Determine se as retas de equações
MAT2454 - Cálculo Diferencial e Integral para Engenharia II
MAT454 - Cálculo Diferencial e Integral para Engenharia II a Lista de Exercícios -. Ache os pontos do hiperboloide x y + z = onde a reta normal é paralela à reta que une os pontos (,, ) e (5,, 6).. Encontre
RESOLUÇÀO DA PROVA DE MATEMÁTICA VESTIBULAR DA FUVEST_2007_ 2A FASE. RESOLUÇÃO PELA PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA
RESOLUÇÀO DA PROVA DE MATEMÁTICA VESTIBULAR DA FUVEST_007_ A FASE RESOLUÇÃO PELA PROFA MARIA ANTÔNIA CONCEIÇÃO GOUVEIA Questão Se Amélia der R$3,00 a Lúcia, então ambas ficarão com a mesma quantia Se Maria
6. Calcular as equações paramétricas de uma reta s que passa pelo ponto A(1, 1, 1) e é ortogonal x 2
Lista 2: Retas, Planos e Distâncias - Engenharia Mecânica Professora: Elisandra Bär de Figueiredo x = 2 + 2t 1. Determine os valores de m para que as retas r : y = mt z = 4 + 5t sejam: (a) ortogonais (b)
Matemática. Resolução das atividades complementares. M2 Trigonometria nos Triângulos
Resolução das atividades complementares Matemática M Trigonometria nos Triângulos p. 1 Em cada caso, calcule o seno, o cosseno e a tangente do ângulo agudo assinalado. a) b) sen γ = cos γ = tg γ 1 sen
Lista 8 - Geometria Analítica
Lista 8 - Geometria Analítica Posição Relativa, Distância e Ângulos e paralelo a reta x = y = z 7 1 Estude a posição relativa das retas r e s. Se as retas forem concorrentes encontre o ponto de intersecção
Prof. José Carlos Morilla
1 Cálculo Vetorial e Geometria Analítica Santos 009 1 CÁLCULO VETORIAL... 4 1.1 Segmentos Orientados... 4 1. Vetores... 4 1..1 Soma de um ponto com um vetor... 5 1.. Adição de vetores... 5 1..3 Diferença
MA71B - Geometria Analítica e Álgebra Linear Prof a Dr a Diane Rizzotto Rossetto. LISTA 2 - Álgebra Vetorial
Ministério da Educação Universidade Tecnológica Federal do Paraná Campus Curitiba - DAMAT MA71B - Geometria Analítica e Álgebra Linear Prof a Dr a Diane Rizzotto Rossetto LISTA 2 - Álgebra Vetorial Desenvolvidas
Vestibular 1ª Fase Resolução das Questões Objetivas
COMISSÃO PERMANENTE DE SELEÇÃO COPESE PRÓ-REITORIA DE GRADUAÇÃO PROGRAD CONCURSO VESTIBULAR 00 Prova de Matemática Vestibular ª Fase Resolução das Questões Objetivas São apresentadas abaixo possíveis soluções
94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%) Probabilidade 10 (0,95%)
Distribuição das.08 Questões do I T A 9 (8,97%) 0 (9,9%) 69 (6,58%) Equações Irracionais 09 (0,86%) Equações Exponenciais (, 0 (9,6%) Geo. Analítica Conjuntos (,96%) Geo. Espacial Funções Binômio de Newton
5 LG 1 - CIRCUNFERÊNCIA
40 5 LG 1 - CIRCUNFERÊNCIA Propriedade: O lugar geométrico dos pontos do plano situados a uma distância constante r de um ponto fixo O é a circunferência de centro O e raio r. Notação: Circunf(O,r). Sempre
3. São dadas as coordenadas de u e v em relação a uma base ortonormal fixada. Calcule a medida angular entre u e v.
1 a Produto escalar, produto vetorial 2 a Lista de Exercícios MAT 105 1. Sendo ABCD um tetraedro regular de aresta unitária, calcule AB, DA. 2. Determine x de modo que u e v sejam ortogonais. (a) u = (x
Unidade: Vetores e Forças. Unidade I:
Unidade I: 0 Unidade: Vetores e Forças 2.VETORES 2.1 Introdução Os vetores são definidos como entes matemáticos que dão noção de intensidade, direção e sentido. De forma prática, o conceito de vetor pode
Retas e Planos. Equação Paramétrica da Reta no Espaço
Retas e lanos Equações de Retas Equação aramétrica da Reta no Espaço Considere o espaço ambiente como o espaço tridimensional Um vetor v = (a, b, c) determina uma direção no espaço Dado um ponto 0 = (x
Lista 2 - Vetores II. Prof. Edu Física 2. O que é necessário para determinar (caracterizar) uma: a) grandeza escalar? b) grandeza vetorial?
Lista 2 - Vetores II O que é necessário para determinar (caracterizar) uma: a) grandeza escalar? grandeza vetorial?. Em que consiste a orientação espacial? 2. lassifique os itens abaixo em grandeza escalar
Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota:
Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Questão 1 (OBMEP RJ) Num triângulo retângulo, definimos o cosseno de seus ângulos agudos O triângulo retângulo da figura
1 a Lista de Exercícios MAT 105 Geometria Analitica
1 a Lista de Exercícios MAT 105 Geometria Analitica - 2017 1 a parte: Vetores, operações com vetores 1. Demonstre que o segmento que une os pontos médios dos lados não paralelos de um trapézio é paralelo
Gabarito - Matemática - Grupos I/J
1 a QUESTÃO: (1,0 ponto) Avaliador Revisor Para a estréia de um espetáculo foram emitidos 1800 ingressos, dos quais 60% foram vendidos até a véspera do dia de sua realização por um preço unitário de R$
Álgebra Linear I - Aula 9. Roteiro
Álgebra Linear I - Aula 9 1. Distância de um ponto a uma reta. 2. Distância de um ponto a um plano. 3. Distância entre uma reta e um plano. 4. Distância entre dois planos. oteiro 1 Distância de um ponto
LISTA EXTRA DE EXERCÍCIOS MAT /I
LISTA EXTRA DE EXERCÍCIOS MAT 008/I. Dados os vetores v = (0,, 3), v = (-, 0, 4) e v 3 = (, -, 0), efetuar as operações indicadas: (a) v 3-4v R.: (4,-,-6) (b) v -3v +v 3 R.: (3,0,-6). Determine: (a) x,
QUADRILÁTEROS. Um quadrilátero é um polígono de quatro lados. Pode ser dito que é porção do plano limitada por uma poligonal fechada,
QUADRILÁTEROS Um quadrilátero é um polígono de quatro lados. Pode ser dito que é porção do plano limitada por uma poligonal fechada, A B C Lados: AB BC CD AD Vértices: A B C D Diagonais: AC BD D Algumas
GEOMETRIA ANALÍTICA :: LISTA DE EXERCÍCIOS 04
GEOETRI LÍTI :: LIST E EXERÍIOS 04 Exercício 1. ostre que o segmento que une os pontos médios dos lados não paralelos de um trapézio é paralelo às bases, e sua medida é a média aritmética das medidas das
TRABALHO DE DEPENDÊNCIA TURMA: 2ª SÉRIE CONTEÚDOS RELATIVOS AO 1º E 2º BIMESTRE MATEMÁTICA 2 PROFESSOR ROGERIO
TRABALHO DE DEPENDÊNCIA TURMA: 2ª SÉRIE CONTEÚDOS RELATIVOS AO 1º E 2º BIMESTRE MATEMÁTICA 2 PROFESSOR ROGERIO OBSERVAÇÕES: 1) AS QUESTÕES OBRIGATORIAMENTE DEVEM SER ENTREGUES EM UMA FOLHA A PARTE COM
Vetores no R 2 : = OP e escreve-se: v = (x, y), identificando-se as coordenadas de P com as componentes de v.
Vetores no R 2 : O conjunto R 2 = R x R = {(x, y) / x, y Є R} é interpretado geometricamente como sendo o plano cartesiano xoy. Qualquer vetor AB considerado neste plano tem sempre um representante OP
PONTO MÉDIO LEMBRA? OUTRO PONTO MÉDIO! DOIS PONTOS MÉDIOS LEMBRAM? BASE MÉDIA! Cícero Thiago Magalhães
PONTO MÉDIO LEMBRA? OUTRO PONTO MÉDIO! DOIS PONTOS MÉDIOS LEMBRAM? BASE MÉDIA! Cícero Thiago Magalhães Nível Iniciante Propriedade 1 Num triângulo retângulo ABC, a mediana BM relativa à hipotenusa mede
Agrupamento de Escolas de Diogo Cão, Vila Real
grupamento de scolas de iogo ão, Vila Real 2015/2016 MTMÁTI FIH TRLHO Nº 8 º PRÍOO MIO Nome: Nº Turma: 7º ata: 1 Observa o polígono da figura 2. fig. 2 1. 1) Indica o número de ângulos internos. 1. 2)
PROFº. LUIS HENRIQUE MATEMÁTICA
Geometria Analítica A Geometria Analítica, famosa G.A., ou conhecida como Geometria Cartesiana, é o estudo dos elementos geométricos no plano cartesiano. PLANO CARTESIANO O sistema cartesiano de coordenada,
UNIVERSIDADE ESTADUAL DE SANTA CRUZ - UESC DEPARTAMENTO DE CIÊNCIAS EXATAS E TECNOLÓGICAS - DCET GEOMETRIA ANALÍTICA ASSUNTO: CÔNICAS
UNIVERSIDADE ESTADUAL DE SANTA CRUZ - UESC DEPARTAMENTO DE CIÊNCIAS EXATAS E TECNOLÓGICAS - DCET GEOMETRIA ANALÍTICA ASSUNTO: CÔNICAS. Usando a definição de parábola determinar, em cada um dos itens a
Colégio Anglo de Sete Lagoas Professor: Luiz Daniel (31) 2106-1750
Lista de exercícios de Geometria Espacial PRISMAS 1) Calcular a medida da diagonal de um paralelepípedo retângulo de dimensões 10 cm, 8 cm e 6 cm 10 2 cm 2) Determine a capacidade em dm 3 de um paralelepípedo
Relações Métricas nos. Dimas Crescencio. Triângulos
Relações Métricas nos Dimas Crescencio Triângulos Trigonometria A palavra trigonometria é de origem grega, onde: Trigonos = Triângulo Metrein = Mensuração - Relação entre ângulos e distâncias; - Origem
Produtos. 4.1 Produtos escalares
Capítulo 4 Produtos 4.1 Produtos escalares Neste tópico iremos estudar um novo tipo de operação entre vetores do plano e do espaço. Vamos fazer inicialmente uma consideração geométrica, como segue. Seja
(A) 30 (B) 6 (C) 200 (D) 80 (E) 20 (A) 6 (B) 10 (C) 15 (D) 8 (E) 2 (A) 15 (B) 2 (C) 6 (D) 27 (E) 4 (A) 3 (B) 2 (C) 6 (D) 27 (E) 4
TEOREMA DE TALES. Na figura abaixo as retas r, s e t são (A) 0 (B) 6 (C) 00 (D) 80 (E) 0. Três retas paralelas são cortadas por duas Se AB = cm; BC = 6 cm e XY = 0 cm a medida, em cm, de XZ é: (A) 0 (B)
Desenho geométrico. Ponto: Elemento geométrico considerado sem dimensão, apenas com posição. Reta:
Desenho geométrico Ponto: Elemento geométrico considerado sem dimensão, apenas com posição. Reta: Linha que estabelece a menor distância entre 2 pontos. Por 1 ponto podem passar infinitas retas. Por 2
Relação de Euler nos prismas V= número de vértices A= número de arestas F= número de faces
Prismas A reunião dos infinitos segmentos, paralelos a s, que têm um de seus extremos no polígono ABCDEF contido em e outro extremo pertencente ao plano, constitui um sólido geométrico chamado prisma.
Åaxwell Mariano de Barros
ÍÒ Ú Ö Ö Ð ÓÅ Ö Ò Ó Ô ÖØ Ñ ÒØÓ Å Ø Ñ Ø ÒØÖÓ Ò Ü Ø Ì ÒÓÐÓ ÆÓØ ÙÐ ¹¼ ÐÙÐÓÎ ØÓÖ Ð ÓÑ ØÖ Ò Ð Ø Åaxwell Mariano de Barros ¾¼½½ ËÓÄÙ ¹ÅA ËÙÑ Ö Ó 1 Vetores no Espaço 2 1.1 Bases.........................................
Geometria Área de Quadriláteros
ENEM Geometria Área de Quadriláteros Wallace Alves da Silva DICAS MATEMÁTICAS [Escolha a data] Áreas de quadriláteros Olá Galera, 1 QUADRILÁTEROS Quadrilátero é um polígono com quatro lados. A soma dos
115% x + 120% + (100 + p)% = 93 2 2. 120% y + 120% + (100 + p)% = 106 2 2 x + y + z = 100
MATEMÁTICA Carlos, Luís e Sílvio tinham, juntos, 00 mil reais para investir por um ano. Carlos escolheu uma aplicação que rendia 5% ao ano. Luís, uma que rendia 0% ao ano. Sílvio aplicou metade de seu
a = 6 m + = a + 6 3 3a + m = 18 3 a m 3a 2m = 0 = 2 3 = 18 a = 6 m = 36 3a 2m = 0 a = 24 m = 36
MATEMÁTICA Se Amélia der R$ 3,00 a Lúcia, então ambas ficarão com a mesma quantia. Se Maria der um terço do que tem a Lúcia, então esta ficará com R$ 6,00 a mais do que Amélia. Se Amélia perder a metade
Programa Olímpico de Treinamento. Aula 1. Curso de Geometria - Nível 2. Prof. Rodrigo Pinheiro
Programa Olímpico de Treinamento urso de Geometria - Nível 2 Prof. Rodrigo Pinheiro ula 1 Introdução Nesta aula, aprenderemos conceitos iniciais de geometria e alguns teoremas básicos que utilizaremos
Álgebra Linear I - Aula 6. Roteiro
Álgebra Linear I - Aula 6 1. Posições relativas e sistemas de equações. 2. Distância de um ponto a uma reta. 3. Distância de um ponto a um plano. Roteiro 1 Sistemas de equações lineares (posição relativa
MATEMÁTICA 3 A SÉRIE - E. MÉDIO
1 MTEMÁTI 3 SÉRIE - E. MÉDIO Prof. Rogério Rodrigues O TEOREM DE TLES NOME :... NÚMERO :... TURM :... 2 VI - O TEOREM DE TLES VI. 1) Tudo é água Do último terço do séc. VII à primeira metade do séc. VI
Definição de Polígono
Definição de Polígono Figura plana limitada por segmentos de recta, chamados lados dos polígonos onde cada segmento de recta, intersecta exactamente dois outros extremos; se os lados forem todos iguais
( y + 4) = 16 16 = 0 y + 4 = 0 y = 4
UFJF MÓDULO III DO PISM TRIÊNIO 00-0 GABARITO DA PROVA DE MATEMÁTICA Questão Uma circunferência de equação x + y 8x + 8y + 6 = 0 é tangente ao eixo das abscissas no ponto M e tangente ao eixo das ordenadas
QUESTÕES de 01 a 08 INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de Respostas.
Resolução por Maria Antônia Conceição Gouveia da Prova de Matemática _ Vestibular 5 da Ufba _ 1ª fase QUESTÕES de 1 a 8 INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados
Questão 01. Questão 02
PROVA DE MATEMÁTICA - TURMAS DO 3 O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - MARÇO DE 011. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA Questão 01 Sabendo
ÁREA DAS FIGURAS GEOMÉTRICAS PLANAS
1 ÁREA DAS FIGURAS GEOMÉTRICAS PLANAS 1.Área da região retangular temos: É o paralelogramo que possui os quatro ângulos internos retos, num retângulo, A = B. P = B + d = B + Exemplo: Num retângulo, uma
Unidade 4 Formas geométricas planas
Sugestões de atividades Unidade 4 Formas geométricas planas 6 MTMÁTI 1 Matemática 1. O relógio, representado abaixo, indica exatamente 8 horas. TracieGrant/Shutterstock c) um ângulo de 120 ; d) um ângulo
PROVA DO VESTIBULAR DA FUVEST 2002 2ª etapa MATEMÁTICA. RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÕNIA GOUVEIA.
PROVA DO VESTIBULAR DA FUVEST 00 ª etapa MATEMÁTICA. RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÕNIA GOUVEIA. QUESTÃO.01.Carlos, Luis e Sílvio tinham, juntos, 100 mil reais para investir por um ano. Carlos
PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2010 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.
PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 010 1 a Fase Profa Maria Antônia Gouveia QUESTÃO 01 Sobre números reais, é correto afirmar: (01) Se m é um número inteiro divisível por e n é um número inteiro divisível
MATEMÁTICA - 3ª ETAPA/2015. Aluno: Nº. 1) Calcule o valor de x, sabendo que o perímetro do quadrilátero é de 8,6 m.
MATEMÁTICA - ª ETAPA/015 Ensino Fundamental Ano: 8º Professora: Thaís Sadala Turma: Atividade: Estude Mais 10 Data: Aluno: Nº 1) Calcule o valor de x, sabendo que o perímetro do quadrilátero é de 8,6 m.,4
CÁLCULO II. Lista Semanal 3-06/04/2018
CÁLCULO II Prof. Juaci Picanço Prof. Jerônimo Monteiro Lista Semanal 3-06/04/2018 Questão 1. Um tetraedro é um sólido com quatro vértices P, Q, R e S e quatro faces triangulares e seu volume é um terço
Áreas e Aplicações em Geometria
1. Introdução Áreas e Aplicações em Geometria Davi Lopes Olimpíada Brasileira de Matemática 18ª Semana Olímpica São José do Rio Preto, SP Nesse breve material, veremos uma rápida revisão sobre áreas das
ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR
ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Considere os conjuntos S = {0,2,4,6}, T = {1,3,5} e U = {0,1} e as afirmações: I. {0} S e S U. II. {2} S\U e S T U={0,1}.
Conceitos e fórmulas
1 Conceitos e fórmulas 1).- Triângulo: definição e elementos principais Definição - Denominamos triângulo (ou trilátero) a toda figura do plano euclidiano formada por três segmentos AB, BC e CA, tais que
Nome: N.º: endereço: data: Telefone: E-mail: PARA QUEM CURSA A 1 ạ SÉRIE DO ENSINO MÉDIO EM 2014. Disciplina: MaTeMÁTiCa
Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA A 1 ạ SÉRIE DO ENSINO MÉDIO EM 201 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 16 Em um paralelogramo, as medidas de dois ângulos
Escola da Imaculada. Estudo da Pirâmide. Aluno (a): Professora: Jucélia 2º ano ensino médio
Escola da Imaculada Estudo da Pirâmide Aluno (a): Professora: Jucélia 2º ano ensino médio Estudo da Pirâmide 1- Definição As pirâmides são poliedros cuja base é uma região poligonal e as faces laterais
1. (Unesp 2003) Cinco cidades, A, B, C, D e E, são interligadas por rodovias, conforme mostra
GEOMETRIA PLANA: SEMELHANÇA DE TRIÂNGULOS 2 1. (Unesp 2003) Cinco cidades, A, B, C, D e E, são interligadas por rodovias, conforme mostra a figura. A rodovia AC tem 40km, a rodovia AB tem 50km, os ângulos
1. Sendo (x+2, 2y-4) = (8x, 3y-10), determine o valor de x e de y. 2. Dado A x B = { (1,0); (1,1); (1,2) } determine os conjuntos A e B. 3. (Fuvest) Sejam A=(1, 2) e B=(3, 2) dois pontos do plano cartesiano.
C A r. GABARITO MA13 Geometria I - Avaliação /2. A área de um triângulo ABC será denotada por (ABC).
GRITO 13 Geometria I - valiação 3-01/ área de um triângulo será denotada por (). Questão 1. (pontuação: ) figura abaio mostra as semirretas perpendiculares r e s, três circunferências pequenas cada uma
Questão 1. Questão 2. Questão 3. Resposta. Resposta
Questão Carlos, Luís e Sílvio tinham, juntos, 00 mil reais para investir por um ano. Carlos escolheu uma aplicação que rendia 5% ao ano. Luís, uma que rendia 0% ao ano. Sílvio aplicou metade de seu dinheiro
MATEMÁTICA. 01. O gráfico a seguir ilustra o lucro semestral de uma empresa, em milhares de reais, de 2003 a 2005.
MTEMÁTI 01. O gráfico a seguir ilustra o lucro semestral de uma empresa, em milhares de reais, de 2003 a 2005. 80 60 40 20 0 1 /03 2 /03 1º/04 2º/04 1º/05 2º/05 Lucro 50 60 45 70 55 65 0-0) O lucro médio
Exercícios de Matemática Geometria Analítica - Circunferência
Exercícios de Matemática Geometria Analítica - Circunferência ) (Unicamp-000) Sejam A e B os pontos de intersecção da parábola y = x com a circunferência de centro na origem e raio. a) Quais as coordenadas
Matemática. Subtraindo a primeira equação da terceira obtemos x = 1. Substituindo x = 1 na primeira e na segunda equação obtém-se o sistema
Matemática 01. A ilustração a seguir é de um cubo com aresta medindo 6 cm. A, B, C e D são os vértices indicados do cubo, E é o centro da face contendo C e D, e F é o pé da perpendicular a BD traçada a
ESCOLA BÁSICA VASCO DA GAMA - SINES
ESCOLA BÁSICA VASCO DA GAMA - SINES ANO LECTIVO 2009/2010 FICHA DE TRABALHO MATEMÁTICA - 6º ANO Nome: N.º Turma: Data: 1. Observa o ângulo que se segue. Assinala a resposta correcta em cada caso. 2. Assinala
5. DESENHO GEOMÉTRICO
5. DESENHO GEOMÉTRICO 5.1. Retas Paralelas e Perpendiculares No traçado de retas paralelas ou perpendiculares é indispensável o manejo adequado dos esquadros. Na construção das retas perpendiculares e