Geometria Plana 03 Prof. Valdir

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Geometria Plana 03 Prof. Valdir"

Transcrição

1 Geometria lana 03 rof. Valdir TS TÁVEIS E U TRIÂGUL 1. RIETR É o ponto de equilíbrio ou centro de gravidade do triângulo. baricentro coincide com o ponto de intersecção das medianas do triângulo (na figura a seguir G). ediana é o segmento de reta que une um vértice ao ponto médio do lado oposto. omo consequência da propriedade a), temos que: IETR É o centro da circunferência inscrita no triângulo. incentro coincide com o ponto de intersecção das bissetrizes dos ângulos internos de um triângulo. issetriz interna é o segmento de reta que une um vértice com o lado oposto formando dois ângulos de mesma medida. mediana relativa ao lado mediana relativa ao lado mediana relativa ao lado G bissetriz do ângulo  bissetriz do ângulo bissetriz do ângulo I é o incentro do ropriedades: a) baricentro divide cada mediana em dois segmentos na razão de 2 para 1. Justificativa: onsiderando a figura anterior, como é médio de e é médio de, teremos: // e 2. e //, então G G. ssim: G 2.G G 2.G G 2.G Teoremas: 1) Teorema das bissetrizes internas: I bissetriz do ângulo interno de um triângulo determina sobre o lado oposto dois segmentos de reta de medidas proporcionais aos dois lados que formam o referido ângulo. b) Uma mediana divide o triângulo em dois triângulos de mesma área; Se é a bissetriz do ângulo Â, então, pode-se afirmar que: Veja: s triângulos e têm bases iguais ( ) e H como altura. ssim, eles têm áreas iguais. c) s três medianas dividem o triângulo em seis triângulos de mesma área. H plicando a lei dos senos nos triângulos e da figura a seguir, teremos: G 1 2 θ β 1

2 o triângulo : (1) sen senθ o triângulo : (2) sen senβ omo β + θ 180, temos que senθ senβ. ssim, dividindo (1) por (2), vem que: sen senθ (rovado) sen senβ 2) Teorema da bissetriz externa Se a bissetriz de um ângulo externo de um triângulo intercepta a reta que contém o lado oposto, então ela divide este lado oposto externamente em segmentos proporcionais aos lados adjacentes. : 3. IRUETR É o centro da circunferência circunscrita no triângulo. circuncentro coincide com o ponto de intersecção das mediatrizes dos lados do triângulo. ediatriz de um segmento de reta é o lugar geométrico do plano cujos pontos são equidistantes dos extremos do segmento. r é a mediatriz do lado s é a mediatriz do lado r s ircuncentro do triângulo Então,, e são segmentos de reta que têm a mesma medida do raio da circunferência que passa por, e. r plicando a lei dos senos nos triângulos e da figura a seguir, teremos: o triângulo : (1) sen(180 - ) senθ o triângulo : (2) sen senθ omo sen(180 -) sen, dividindo (1) por (2), teremos: sen(180 - ) senθ sen senθ (rovado) θ s bservações: a) um triângulo retângulo, o circuncentro é o ponto médio da hipotenusa e a mediana relativa à hipotenusa tem o comprimento do raio da circunferência circunscrita. ( raio, onde é a mediana relativa à hipotenusa). b) circuncentro () de um triângulo obtusângulo é um ponto exterior ao triângulo. (0 < < 180 ) 2

3 4. RTETR É o ponto de intersecção das alturas de um triângulo. 8 cm 10 cm S 12 S 12 cm elo texto, S é bissetriz do ângulo. ssim, pelo teorema das bissetrizes internas, vem que: é a altura relativa ao lado. é a altura relativa ao lado. é a altura relativa ao lado. é o ortocentro do triângulo. bservações: a) o triângulo retângulo, o ortocentro é o vértice do ângulo reto e, no triângulo obtusângulo, é um ponto exterior ao triângulo. b) triângulo cujos vértices são os pontos,, é chamado de triângulo órtico. ortocentro () do triângulo é o incentro do triângulo órtico. u seja, a circunferência inscrita no triângulo tem centro no ponto. c) s pontos,, e pertencem à circunferência de diâmetro. ssim como os pontos,, e pertencem à circunferência de diâmetro e os pontos,, e pertencem à circunferência de diâmetro. S S S 12- S 16 S omo é mediana, temos que: 6 cm. ssim, teremos: S S S 2 3 cm Resposta: S 2/3 cm 02. Seja o triângulo de lados, e respectivamente iguais a cm, 8 cm e 10 cm. Sejam e as bissetrizes interna e externa do triângulo no vértice com e pontos da reta que contém o lado. ssim, calcule o comprimento do segmento de reta. 10 θ θ 8 Usando os teoremas das bissetrizes, teremos: cm 36 cm ssim, teremos: + 40 cm Exercícios resolvidos: 01. ado o triângulo cujos lados medem 10 cm, 8 cm e 12. Seja S o segmento de reta que passa pelo centro da circunferência inscrita no triângulo e a mediana relativa ao lado. etermine o comprimento do segmento de reta S. Resposta: 40 cm (Letra E) 03. a figura a seguir, é um triângulo retângulo no vértice, E é bissetriz do ângulo  e é mediana relativa ao lado. Sabendo-se que o ângulo Ê mede e o ângulo ˆ E mede β, então calcule + β. S F β E 20 3

4 triângulo é retângulo em. ssim, o ponto, médio de, é o circuncentro do triângulo. que se pode concluir que. omo o triângulo é isósceles, o ângulo E mede 20 e o ângulo F mede 70 (complemento). Sendo E uma bissetriz, o ângulo E mede 35. elo teorema do ângulo externo, nos triângulos F e FE, temos que: + β Resposta: + β a figura a seguir, é um triângulo retângulo em sendo 3 cm e 4cm. segmento é uma bissetriz e uma mediana. Sendo assim, calcule a medida do segmento de reta. 3 cm onsiderando x, e aplicando o teorema das bissetrizes internas no, teremos: 3 4 2,5-x 2,5+x 3 4 7x 2,5 x 5/14 Resposta: 5/14 cm Relação de Stewart 4 cm 7,5 + 3x 10 4x Seja um triângulo e a ceviana relativa ao lado, sendo um ponto do lado, como mostra a figura a seguir. b m +x +2.x.m.cos β c n +x -2x.n.cos β ultiplicando a 1ª equação por n e a 2ª por m, teremos: b nm n+x n+2.x.m.n.cos β c mnm+x m-2x.n.mcos β dicionando as duas equações, teremos: b 2 n + c 2 m m 2 n + n 2 m + x 2 m + x 2 n b 2 n + c 2 m mn(m+n) + x 2 (m + n) n.b 2 + m.c 2 (m + n).(m.n + x 2 ) omo m + n a, vem que: n.b 2 + m.c 2 a(m.n + x 2 ) (Relação de Stewart) Exercícios resolvidos: 01. Seja o triângulo cujos lados, e medem, respectivamente 8 cm, cm, 10 cm. etermine o comprimento da mediana relativa ao lado. 8 plicando a relação de Stewart, teremos: 5 5 x 10 n.b 2 + m.c 2 a.(m.n + x 2 ) (5.5 + x 2 ) x 2 x 2 47,5 b x c Resposta: x 6, cm. m Sendo: x: comprimento da ceviana a, b, c: medidas dos lados do triângulo m, n: medidas dos segmentos e, partes do lado a β n 02. Seja o triângulo cujos lados, e medem, respectivamente 8 cm, 10 cm, cm. etermine o comprimento da bissetriz S relativa ao vértice. 8 x 10 relação de Stewart será: n.b 2 + m.c 2 a(m.n + x 2 ) plicando a lei dos cossenos nos triângulo e, teremos: b m +x -2.x.m.cos c n +x -2x.n.cosβ omo cos cosβ, teremos: alculando m e n pelo teorema das bissetrizes internas. m n m 10-m m 4 cm n 5 cm ssim, aplicando a relação de Stewart, teremos: n.b 2 + m.c 2 a.(m.n + x 2 ) (4.5 + x 2 ) x 2 x 2 35 x 5, cm Resposta: x 5, cm m S n 4

5 LÍGS VEXS bs.: um polígono regular, lados e ângulos são congruentes. Logo, teremos: i 2 e 2 i 3 e 3 i 1 i 2 i 3... i i S i / n e 1 e 2 e 3... e e S e / n e 1 i 1 i 4 e 4 4. ÚER E IGIS LÍG número de diagonais () de um polígono convexo de n lados é dado por:... n.(n-3) 2 bservando o polígono... da figura anterior, teremos: 1. ELEETS,,,,... vértices do polígono.,,, lados do polígono.,,,... diagonais do polígono. i 1, i 2, i 3,... medidas dos ângulos internos. e 1, e 2, e 3,... medidas dos ângulos externos. 2. S S ÂGULS EXTERS (S e ) onsiderando um polígono convexo de n lados, a soma dos seus ângulo externo será dada por: S e 360 bserva-se que e 1, e 2, e 3,... e n, são os desvios angulares, em cada, vértice quando consideramos uma trajetória que coincide com o polígono. ssim, para efetuar uma volta completa em, cominhando pelos lados do polígono, o desvio angular é de 360. essa forma, iagonal é um segmento de reta que liga dois vértices não consecutivos de um polígono convexo. ortanto, (n 3) é o número de diagonais que saem de cada vértice. u seja, de um vértice não sai diagonal para ele mesmo e nem para os dois vértices consecutivos a ele. onclui-se, então, que o número total de diagonais de um polígono convexo de n vértices é dado por n.(n-3) (rovado) 2 bs1.: Se o polígono for regular de n lados, teremos: a) Se n for par, n/2 diagonais passam pelo seu centro e assim, teremos n.(n 4)/2 diagonais que não passam pelo seu centro. b) Se n for ímpar, então nenhuma diagonal passa pelo centro do polígono. bs. 2.: Todo polígono regular é inscritível e circunscritível em uma circunferência. e 1 + e 2 + e e n 360 S e 360 (rovado) 3. S S ÂGULS ITERS (S i ) onsiderando um polígono convexo de n lados, a soma dos ângulos internos do polígono será dada por: S i (n 2).180 bserva-se que, em cada vértice do polígono, a soma das medidas dos ângulos interno e externo é 180. Então: e 1 + i e 2 + i e 3 + i e n + i n 180 dicionando as n parcelas, teremos: e 1 + e 2 + e e n + i 1 + i 2 + i i n n S i 180.n S i 180.n 360 S i (n 2).180 (rovado) Exercícios resolvidos: 01. Um polígono convexo de 15 lados tem as medidas de seus ângulos internos em progressão aritmética de razão igual a 2. etermine o maior ângulo interno desse polígono. Se os ângulos internos formam uma crescente de razão 2º, então, o termo central (i 8 ) é a média aritmética das medidas dos ângulos internos. ssim, S S (15-2).180 n o n 15 i8 156 medida do maior ângulo interno será: i 15 i r i Resposta:

6 02. Um polígono convexo tem dois ângulos de 150º e os outros medem 155º. etermine o número de diagonais desse polígono. Se i 1 150º e 1 30º e i 2 155º e 2 25º. ssim, como a soma dos ângulos externos é 360, teremos: L (n 2) º (n 2) n 2 12 n 14 alculando o número de diagonais, teremos: n.(n-3) 14.(14-3) Resposta: 77 diagonais. 02. erâmicas pentagonais regulares foram usadas para compor o piso de uma sala, como mostra a figura a seguir. bserva-se que, ao compor o piso, entre as peças justapostas aparece um espaço vazio na forma de um estrela de cinco pontas chamada pentagrama. onsiderando a figura e as informações do texto, determine: a) medida do ângulo θ de cada ponta da estrela. b) distância entre duas pontas consecutivas da estrela sabendo-se que a medida do lado da cerâmica pentagonal é 10 cm e cos 108-0,3. θ 03. o polígono regular EF... o número de diagonais é o triplo do número de lados. Sendo assim, determine a medida do ângulo formado pelas diagonais e E desse polígono. (Lembrete: todo polígono regular é inscritível). Sendo n o número de lados, teremos: n.(n-3) 3.n n 2 n 0 n (eneágono) 2 Inscrevendo o eneágono em um círculo, teremos: E a) a soma dos ângulos externos do pentágono regular, teremos: 5.e 360 e 72 i 108 ssim, no piso, teremos: θ + i + i + i 360 θ θ 36 Resposta: θ 36 b) distância entre duas pontas consecutivas da estrela é igual à medida da diagonal do pentágono regular. ssim, aplicando a lei dos cossenos no triângulço, teremos: cos (-0,3) m Resposta: 2 65 m i e 10 m 10 m G F omo o polígono tem lados, vem que: o 360 o 40 E 80 omo é um ângulo inscrito, teremos: E 40 2 Resposta: 40 6

Geometria Plana 03 Prof. Valdir

Geometria Plana 03 Prof. Valdir eometria lana 03 rof. Valdir TS TÁVEIS E U TRIÂUL 1. RIETR É o ponto de equilíbrio ou centro de gravidade do triângulo. baricentro coincide com o ponto de intersecção das medianas do triângulo (na figura

Leia mais

CURSO DE GEOMETRIA LISTA

CURSO DE GEOMETRIA LISTA GEOMETRI Ângulos Obs.: Dois ângulos são congruentes quando têm a mesma abertura. Exemplos: Ângulos complementares Soma (medida) 90º Ângulos suplementares Soma (medida) 180º issetriz bissetriz de um ângulo

Leia mais

AV1 - MA 13-2011 UMA SOLUÇÃO. b x

AV1 - MA 13-2011 UMA SOLUÇÃO. b x Questão 1. figura abaixo mostra uma sequência de circunferências de centros 1,,..., n com raios r 1, r,..., r n, respectivamente, todas tangentes às retas s e t, e cada circunferência, a partir da segunda,

Leia mais

Mediana, Altura, Bissetriz e Mediatriz de um Triângulo

Mediana, Altura, Bissetriz e Mediatriz de um Triângulo Mediana, Altura, Bissetriz e Mediatriz de um Triângulo Mediana Definição: Denomina-se mediana de um triângulo o segmento que liga um vértice ao ponto médio do lado oposto a este vértice. AM A é mediana

Leia mais

(A) 30 (B) 6 (C) 200 (D) 80 (E) 20 (A) 6 (B) 10 (C) 15 (D) 8 (E) 2 (A) 15 (B) 2 (C) 6 (D) 27 (E) 4 (A) 3 (B) 2 (C) 6 (D) 27 (E) 4

(A) 30 (B) 6 (C) 200 (D) 80 (E) 20 (A) 6 (B) 10 (C) 15 (D) 8 (E) 2 (A) 15 (B) 2 (C) 6 (D) 27 (E) 4 (A) 3 (B) 2 (C) 6 (D) 27 (E) 4 TEOREMA DE TALES. Na figura abaixo as retas r, s e t são (A) 0 (B) 6 (C) 00 (D) 80 (E) 0. Três retas paralelas são cortadas por duas Se AB = cm; BC = 6 cm e XY = 0 cm a medida, em cm, de XZ é: (A) 0 (B)

Leia mais

Matemática. Resolução das atividades complementares. M1 Geometria Métrica Plana

Matemática. Resolução das atividades complementares. M1 Geometria Métrica Plana Resolução das atividades complementares Matemática M Geometria Métrica Plana p. 0 Na figura a seguir tem-se r // s // t e y. diferença y é igual a: a) c) 6 e) b) d) 0 8 ( I) y 6 y (II) plicando a propriedade

Leia mais

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE. Professor: João Carmo

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE. Professor: João Carmo INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE Professor: João Carmo DEFINIÇÃO Triângulo ou trilátero é um polígono de três lados. Observações: a) O triângulo não possui diagonais;

Leia mais

CADERNO DE ATIVIDADES / MATEMÁTICA TECNOLOGIAS

CADERNO DE ATIVIDADES / MATEMÁTICA TECNOLOGIAS VSTIULR VILS 0. alcule x na figura: x + 0º x + 0º RNO TIVIS / MTMÁTI TNOLOGIS 0. Na figura, é o lado de um quadrado inscrito e é o lado do decágono regular. Qual a medida de x? x 0. Na figura a seguir,

Leia mais

Aula 10 Triângulo Retângulo

Aula 10 Triângulo Retângulo Aula 10 Triângulo Retângulo Projeção ortogonal Em um plano, consideremos um ponto e uma reta. Chama-se projeção ortogonal desse ponto sobre essa reta o pé da perpendicular traçada do ponto à reta. Na figura,

Leia mais

Geometria plana. Índice. Polígonos. Triângulos. Congruência de triângulos. Semelhança de triângulos. Relações métricas no triângulo retângulo

Geometria plana. Índice. Polígonos. Triângulos. Congruência de triângulos. Semelhança de triângulos. Relações métricas no triângulo retângulo Índice Geometria plana Polígonos Triângulos Congruência de triângulos Semelhança de triângulos Relações métricas no triângulo retângulo Quadriláteros Teorema de Tales Esquadros de madeira www.ser.com.br

Leia mais

Programa Olímpico de Treinamento. Aula 1. Curso de Geometria - Nível 2. Prof. Rodrigo Pinheiro

Programa Olímpico de Treinamento. Aula 1. Curso de Geometria - Nível 2. Prof. Rodrigo Pinheiro Programa Olímpico de Treinamento urso de Geometria - Nível 2 Prof. Rodrigo Pinheiro ula 1 Introdução Nesta aula, aprenderemos conceitos iniciais de geometria e alguns teoremas básicos que utilizaremos

Leia mais

Bissetrizes e suas propriedades.

Bissetrizes e suas propriedades. Semana Olímpica 013 - Prof. ícero Thiago - olégio ETP/SP issetrizes e suas propriedades. Teorema 1. Seja XOY umângulodadoep umpontoemseuinterior. Então, adistância de P a XO é igual à distância de P a

Leia mais

5 LG 1 - CIRCUNFERÊNCIA

5 LG 1 - CIRCUNFERÊNCIA 40 5 LG 1 - CIRCUNFERÊNCIA Propriedade: O lugar geométrico dos pontos do plano situados a uma distância constante r de um ponto fixo O é a circunferência de centro O e raio r. Notação: Circunf(O,r). Sempre

Leia mais

PONTOS NOTÁVEIS DE UM. Professora Joseane Fernandes TRIÂNGULO

PONTOS NOTÁVEIS DE UM. Professora Joseane Fernandes TRIÂNGULO PONTOS NOTÁVEIS DE UM Professora Joseane Fernandes TRIÂNGULO PONTOS NOTÁVEIS DE UM TRIÂNGULO. Baricentro; Incentro; Circuncentro; Ortocentro. BARICENTRO - MEDIANA Mediana segmento de reta que liga o ponto

Leia mais

Conceitos e fórmulas

Conceitos e fórmulas 1 Conceitos e fórmulas 1).- Triângulo: definição e elementos principais Definição - Denominamos triângulo (ou trilátero) a toda figura do plano euclidiano formada por três segmentos AB, BC e CA, tais que

Leia mais

Atividade 01 Ponto, reta e segmento 01

Atividade 01 Ponto, reta e segmento 01 Atividade 01 Ponto, reta e segmento 01 1. Crie dois pontos livres. Movimente-os. 2. Construa uma reta passando por estes dois pontos. 3. Construa mais dois pontos livres em qualquer lugar da tela, e o

Leia mais

Turma preparatória para Olimpíadas.

Turma preparatória para Olimpíadas. p: João Alvaro w: www.matemaniacos.com.br e: joao.baptista@iff.edu.br Turma preparatória para Olimpíadas. TRIÂNGULOS - V01 DEFINIÇÃO Sejam três pontos não colineares A, B e C, o triângulo ABC é uma figura

Leia mais

Polos Olímpicos de Treinamento. Aula 17. Curso de Geometria - Nível 2. Pontos Notáveis 3: Circuncentro e Ortocentro. Prof.

Polos Olímpicos de Treinamento. Aula 17. Curso de Geometria - Nível 2. Pontos Notáveis 3: Circuncentro e Ortocentro. Prof. Polos Olímpicos de Treinamento urso de Geometria - Nível 2 Prof. ícero Thiago ula 17 Pontos Notáveis 3: ircuncentro e Ortocentro Teorema 1. Sejam, e P três pontos distintos no plano. Temos que P = P se,

Leia mais

Propriedades do ortocentro

Propriedades do ortocentro Programa límpico de Treinamento Curso de Geometria - Nível 3 Prof. Rodrigo ula 4 Propriedades do ortocentro ortocentro é o ponto de encontro das três alturas de um triângulo arbitrário. Se o triângulo

Leia mais

Matemática 2. 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um. 02. Abaixo temos uma ilustração da Victoria Falls Bridge.

Matemática 2. 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um. 02. Abaixo temos uma ilustração da Victoria Falls Bridge. Matemática 2 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um paralelepípedo retângulo acoplado a um prisma triangular. 1,6m 1m 1,4m Calcule o volume da estrutura, em dm 3, e indique

Leia mais

Matemática. Resolução das atividades complementares. M20 Geometria Analítica: Circunferência

Matemática. Resolução das atividades complementares. M20 Geometria Analítica: Circunferência Resolução das atividades complementares Matemática M Geometria Analítica: ircunferência p. (Uneb-A) A condição para que a equação 6 m 9 represente uma circunferência é: a), m, ou, m, c) < m < e), m, ou,

Leia mais

Geometria Plana - Aula 05

Geometria Plana - Aula 05 Geometria Plana - Aula 05 Elaine Pimentel Universidade Federal de Minas Gerais, Departamento de Matemática Geometria Plana Especialização 2008 - p. 1 Esquema da aula Quadrilátero - definição e. Quadriláteros

Leia mais

Geometria plana. Resumo teórico e exercícios.

Geometria plana. Resumo teórico e exercícios. Geometria plana. Resumo teórico e eercícios. 3º olegial / urso tensivo. utor - Lucas ctavio de Souza (Jeca) Relação das aulas. Página ula 01 - onceitos iniciais... 0 ula 0 - Pontos notáveis de um triângulo...

Leia mais

Geometria Plana. Exterior do ângulo Ô:

Geometria Plana. Exterior do ângulo Ô: Geometria Plana Ângulo é a união de duas semiretas de mesma origem, não sendo colineares. Interior do ângulo Ô: Exterior do ângulo Ô: Dois ângulos são consecutivos se, e somente se, apresentarem um lado

Leia mais

Lista 1. Sistema cartesiano ortogonal. 1. Observe a figura e determine os pontos, ou seja, dê suas coordenadas: a) A b) B c) C d) D e) E

Lista 1. Sistema cartesiano ortogonal. 1. Observe a figura e determine os pontos, ou seja, dê suas coordenadas: a) A b) B c) C d) D e) E Sistema cartesiano ortogonal Lista. Observe a figura e determine os pontos, ou seja, dê suas coordenadas: a) A b) B c) C d) D e) E. Marque num sistema de coordenadas cartesianas ortogonais os pontos: a)

Leia mais

Módulo de Triângulo Retângulo, Lei dos Senos e Cossenos, Poĺıgonos Regulares. 9 o ano E.F.

Módulo de Triângulo Retângulo, Lei dos Senos e Cossenos, Poĺıgonos Regulares. 9 o ano E.F. Módulo de Triângulo Retângulo, Lei dos Senos e ossenos, Poĺıgonos Regulares. Relações Métricas em Poĺıgonos Regulares 9 o ano.. Triângulo Retângulo, Lei dos Senos e ossenos, Polígonos Regulares. Relações

Leia mais

Geometria Euclidiana Plana Parte I

Geometria Euclidiana Plana Parte I CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.1 Geometria Euclidiana Plana Parte I Joyce Danielle de Araújo - Engenharia de Produção Lucas Araújo dos Santos - Engenharia de Produção O que veremos

Leia mais

Triângulos DEFINIÇÃO ELEMENTOS

Triângulos DEFINIÇÃO ELEMENTOS Triângulos DEFINIÇÃO Do latim - triangulu, é um polígono de três lados e três ângulos. Os três ângulos de um triângulo são designados por três letras maiúsculas, B e C e os lados opostos a eles, pelas

Leia mais

RETAS PARALELAS INTERCEPTADAS POR UMA TRANSVERSAL

RETAS PARALELAS INTERCEPTADAS POR UMA TRANSVERSAL GEOMETRIA PLANA MEDIDAS DE ÂNGULOS: Raso, se é igual a 180º; Nulo, se, é igual a 0º; Reto:é igual a 90 ; Agudo: é maior que 0 e menor que 90 ; Obtuso: é maior que 90 e menor que 180. IMPORTANTE: se a soma

Leia mais

Ortocentro, Reta de Euler e a Circunferência dos 9 pontos

Ortocentro, Reta de Euler e a Circunferência dos 9 pontos Prof. ícero Thiago - cicerothmg@gmail.com rtocentro, Reta de uler e a ircunferência dos 9 pontos Propriedade 1. Seja o centro da circunferência circunscrita ao triângulo acutângulo e seja a projeção de

Leia mais

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%) Probabilidade 10 (0,95%)

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%) Probabilidade 10 (0,95%) Distribuição das.08 Questões do I T A 9 (8,97%) 0 (9,9%) 69 (6,58%) Equações Irracionais 09 (0,86%) Equações Exponenciais (, 0 (9,6%) Geo. Analítica Conjuntos (,96%) Geo. Espacial Funções Binômio de Newton

Leia mais

Prof. Weber Campos webercampos@gmail.com. 2012 Copyri'ght. Curso Agora eu Passo - Todos os direitos reservados ao autor.

Prof. Weber Campos webercampos@gmail.com. 2012 Copyri'ght. Curso Agora eu Passo - Todos os direitos reservados ao autor. EP FISL Raciocínio Lógico - GEOMETRI ÁSI - TRIGONOMETRI webercampos@gmail.com 01 opyri'ght. urso gora eu Passo - Todos os direitos reservados ao autor. ÍNDIE Exercícios Resolvidos de GEOMETRI 0 Exercícios

Leia mais

REVISÃO Lista 07 Áreas, Polígonos e Circunferência. h, onde b representa a base e h representa a altura.

REVISÃO Lista 07 Áreas, Polígonos e Circunferência. h, onde b representa a base e h representa a altura. NOME: ANO: º Nº: POFESSO(A): Ana Luiza Ozores DATA: Algumas definições Áreas: Quadrado: EVISÃO Lista 07 Áreas, Polígonos e Circunferência A, onde representa o lado etângulo: A b h, onde b representa a

Leia mais

ÁREAS. 01 (UFMG) Um terreno tem a forma da figura abaixo. Se AB AD, BC CD, AB = 10 m, BC = 70 m, CD = 40 m e AD = 80 m, então a área do terreno é

ÁREAS. 01 (UFMG) Um terreno tem a forma da figura abaixo. Se AB AD, BC CD, AB = 10 m, BC = 70 m, CD = 40 m e AD = 80 m, então a área do terreno é ÁRES 01 (UFMG) Um terreno tem a forma da figura abaixo. Se,, = 10 m, = 70 m, = 40 m e = 80 m, então a área do terreno é a) 1 500 m b) 1 600 m c) 1 700 m d) 1 800 m 0 (FMMG) - Observe a figura. Nessa figura,

Leia mais

Construções Fundamentais. r P r

Construções Fundamentais. r P r 1 Construções Fundamentais 1. De um ponto traçar a reta paralela à reta dada. + r 2. De um ponto traçar a perpendicular à reta r, sabendo que o ponto é exterior a essa reta; e de um ponto P traçar a perpendicular

Leia mais

1. Considere os pontos notáveis de um triângulo, sendo: B Baricentro C Circuncentro I Incentro O Ortocentro

1. Considere os pontos notáveis de um triângulo, sendo: B Baricentro C Circuncentro I Incentro O Ortocentro Lista de Exercícios Geometria Plana - loco I - Pontos notáveis do triângulo 1. Considere os pontos notáveis de um triângulo, sendo: aricentro C Circuncentro I Incentro rtocentro Preencha os parênteses:

Leia mais

Desenho geométrico. Ponto: Elemento geométrico considerado sem dimensão, apenas com posição. Reta:

Desenho geométrico. Ponto: Elemento geométrico considerado sem dimensão, apenas com posição. Reta: Desenho geométrico Ponto: Elemento geométrico considerado sem dimensão, apenas com posição. Reta: Linha que estabelece a menor distância entre 2 pontos. Por 1 ponto podem passar infinitas retas. Por 2

Leia mais

Geometria Plana Noções Primitivas

Geometria Plana Noções Primitivas Geometria Plana Noções Primitivas Questão 1 (CESGRANRIO-85) Numa carpintaria, empilham-se 50 tábuas, umas de 2 cm e outras de 5 cm de espessura. A altura da pilha é de 154 cm. A diferença entre o número

Leia mais

Relações Métricas nos. Dimas Crescencio. Triângulos

Relações Métricas nos. Dimas Crescencio. Triângulos Relações Métricas nos Dimas Crescencio Triângulos Trigonometria A palavra trigonometria é de origem grega, onde: Trigonos = Triângulo Metrein = Mensuração - Relação entre ângulos e distâncias; - Origem

Leia mais

Aula 09 (material didático produzido por Paula Rigo)

Aula 09 (material didático produzido por Paula Rigo) EMBAP ESCOLA DE MÚSICA E BELAS ARTES DO PARANÁ DISCIPLINA DE DESENHO GEOMÉTRICO E GEOMETRIA DESCRITIVA Profª Eliane Dumke e-mail: eliane.dumke@gmail.com Aula 09 (material didático produzido por Paula Rigo)

Leia mais

17 TRIÂNGULOS 17.1 PONTOS NOTÁVEIS DE UM TRIÂNGULO. Definição: O encontro das mediatrizes dos lados de um triângulo é único e chama-se circuncentro.

17 TRIÂNGULOS 17.1 PONTOS NOTÁVEIS DE UM TRIÂNGULO. Definição: O encontro das mediatrizes dos lados de um triângulo é único e chama-se circuncentro. 97 17 TRIÂNGULOS 17.1 PONTOS NOTÁVEIS DE UM TRIÂNGULO Definição: O encontro das mediatrizes dos lados de um triângulo é único e chama-se circuncentro. Propriedades: 1) O circuncentro é o centro da circunferência

Leia mais

Pontos notáveis de um triângulo

Pontos notáveis de um triângulo Pontos notáveis de um triângulo Sadao Massago Maio de 2010 Sumário 1 onceitos preliminares................................. 1 2 Incentro......................................... 2 3 ircuncentro.......................................

Leia mais

5. DESENHO GEOMÉTRICO

5. DESENHO GEOMÉTRICO 5. DESENHO GEOMÉTRICO 5.1. Retas Paralelas e Perpendiculares No traçado de retas paralelas ou perpendiculares é indispensável o manejo adequado dos esquadros. Na construção das retas perpendiculares e

Leia mais

(A) 30 (B) 6 (C) 200 (D) 80 (E) 20 (A) 6 (B) 10 (C) 15 (D) 8 (E) 2 (A) 15 (B) 2 (C) 6 (D) 27 (E) 4 (A) 3 (B) 2 (C) 6 (D) 27 (E) 4

(A) 30 (B) 6 (C) 200 (D) 80 (E) 20 (A) 6 (B) 10 (C) 15 (D) 8 (E) 2 (A) 15 (B) 2 (C) 6 (D) 27 (E) 4 (A) 3 (B) 2 (C) 6 (D) 27 (E) 4 TEOREMA DE TALES 1. Na figura abaixo as retas r, s e t são (A) 0 (B) 6 (C) 00 (E) 0. Três retas paralelas são cortadas por duas Se AB = cm; BC = 6 cm e XY = 10 cm a medida, em cm, de XZ é: (A) 0 (B) 10

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 05/04/14 PROFESSOR: MALTEZ

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 05/04/14 PROFESSOR: MALTEZ RESOLUÇÃO VLIÇÃO E MTEMÁTI o NO O ENSINO MÉIO T: 05/0/1 PROFESSOR: MLTEZ QUESTÃO 01 São dados os triângulos retângulos E e TE conforme a figura ao lado; T se = E = E = 60 cm, então: E Os triângulos e TE

Leia mais

MA13 Geometria I Avaliação

MA13 Geometria I Avaliação 13 eometria I valiação 011 abarito Questão 1 (,0) figura abaixo mostra um triângulo equilátero e suas circunferências inscrita e circunscrita. circunferência menor tem raio 1. alcule a área da região sombreada.

Leia mais

TERCEIRA SÉRIE ENSINO MÉDIO INTEGRADO

TERCEIRA SÉRIE ENSINO MÉDIO INTEGRADO 1 TEREIR SÉRIE ENSINO MÉDIO INTEGRDO TRIÂNGULOS E POLÍGONOS ONVEXOS Prof. Rogério Rodrigues NOME :... NÚMERO :... TURM :... 2 III - TRIÂNGULOS E POLÍGONOS ONVEXOS III. 1 ) DEFINIÇÃO E ELEMENTOS : Todo

Leia mais

LISTÃO DE EXERCÍCIOS DE REVISÃO IFMA PROFESSOR: ARI

LISTÃO DE EXERCÍCIOS DE REVISÃO IFMA PROFESSOR: ARI 01.: A figura mostra um edifício que tem 15 m de altura, com uma escada colocada a 8 m de sua base ligada ao topo do edifício. comprimento dessa escada é de: a) 12 m. b) 30 m. c) 15 m. d) 17 m. e) 20 m.

Leia mais

SAGRADO REDE DE EDUCAÇÃO PROFESSORA :MÁRCIA CONTE 3º ANO ENSINO MÉDIO 2012

SAGRADO REDE DE EDUCAÇÃO PROFESSORA :MÁRCIA CONTE 3º ANO ENSINO MÉDIO 2012 SAGRADO REDE DE EDUCAÇÃO PROFESSORA :MÁRCIA CONTE 3º ANO ENSINO MÉDIO 2012 -POLÍGONOS REGULARES -APÓTEMAS DE BASES REGULARES -PONTOS NOTÁVEIS NO TRIÂNGULO -COMPRIMENTO DA CIRCUNFERÊNCIA -ÁREA DO CÍRCULO

Leia mais

Exercícios Triângulos (1)

Exercícios Triângulos (1) Exercícios Triângulos (1) 1. Na figura dada, sabe-se que r // s. Calcule x. 2. Nas figuras abaixo, calcule o valor de x. 5. (PUC-SP) Na figura seguinte, as retas r e s são paralelas. Encontre os ângulos

Leia mais

Segmento de reta GEOMETRIA PLANA

Segmento de reta GEOMETRIA PLANA GEOMETRIA PLANA Noções primitivas Os elementos primitivos da geometria são o ponto, a reta e o plano, cujas definições são impossíveis de serem enunciadas, pois só se tem uma noção intuitiva do que sejam.

Leia mais

CPV O cursinho que mais aprova na fgv

CPV O cursinho que mais aprova na fgv O cursinho que mais aprova na fgv FGV economia a Fase 0/novembro/008 MTEMÁTI 0. umentando a base de um triângulo em 0% e reduzindo a altura relativa a essa base em 0%, a área do triângulo aumenta em %.

Leia mais

Matemática. Resolução das atividades complementares. M2 Trigonometria nos Triângulos

Matemática. Resolução das atividades complementares. M2 Trigonometria nos Triângulos Resolução das atividades complementares Matemática M Trigonometria nos Triângulos p. 1 Em cada caso, calcule o seno, o cosseno e a tangente do ângulo agudo assinalado. a) b) sen γ = cos γ = tg γ 1 sen

Leia mais

QUADRILÁTEROS. Um quadrilátero é um polígono de quatro lados. Pode ser dito que é porção do plano limitada por uma poligonal fechada,

QUADRILÁTEROS. Um quadrilátero é um polígono de quatro lados. Pode ser dito que é porção do plano limitada por uma poligonal fechada, QUADRILÁTEROS Um quadrilátero é um polígono de quatro lados. Pode ser dito que é porção do plano limitada por uma poligonal fechada, A B C Lados: AB BC CD AD Vértices: A B C D Diagonais: AC BD D Algumas

Leia mais

Desenho e Projeto de Tubulação Industrial Nível II

Desenho e Projeto de Tubulação Industrial Nível II Desenho e Projeto de Tubulação Industrial Nível II Módulo I Aula 04 TRIÂNGULOS Triângulo é um polígono de três lados. É o polígono que possui o menor número de lados. Talvez seja o polígono mais importante

Leia mais

Aulas Particulares on-line

Aulas Particulares on-line Esse material é parte integrante do ulas Particulares on-line do IESE RSIL S/, MTEMÁTI PRÉ-VESTIULR LIVRO O PROFESSOR 006-009 IESE rasil S.. É proibida a reprodução, mesmo parcial, por qualquer processo,

Leia mais

Polos Olímpicos de Treinamento. Aula 16. Curso de Geometria - Nível 2. Pontos Notáveis 2: Incentro. Prof. Cícero Thiago

Polos Olímpicos de Treinamento. Aula 16. Curso de Geometria - Nível 2. Pontos Notáveis 2: Incentro. Prof. Cícero Thiago Polos Olímpicos de Treinamento urso de Geometria - Nível Prof. ícero Thiago ula 16 Pontos Notáveis : ncentro Teorema 1. Seja XOY umângulodadoep umpontoemseuinterior. Então, adistância de P a XO é igual

Leia mais

C A r. GABARITO MA13 Geometria I - Avaliação /2. A área de um triângulo ABC será denotada por (ABC).

C A r. GABARITO MA13 Geometria I - Avaliação /2. A área de um triângulo ABC será denotada por (ABC). GRITO 13 Geometria I - valiação 3-01/ área de um triângulo será denotada por (). Questão 1. (pontuação: ) figura abaio mostra as semirretas perpendiculares r e s, três circunferências pequenas cada uma

Leia mais

Exercícios de Matemática Geometria Analítica - Circunferência

Exercícios de Matemática Geometria Analítica - Circunferência Exercícios de Matemática Geometria Analítica - Circunferência ) (Unicamp-000) Sejam A e B os pontos de intersecção da parábola y = x com a circunferência de centro na origem e raio. a) Quais as coordenadas

Leia mais

Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota:

Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Questão 1 (OBMEP RJ) Num triângulo retângulo, definimos o cosseno de seus ângulos agudos O triângulo retângulo da figura

Leia mais

MATEMÁTICA ANGULOS ENTRE RETAS E TRIÂNGULOS. 3. A medida do complemento: a) do ângulo de 27º 31 é: b) do ângulo de 16º 15 28 é:

MATEMÁTICA ANGULOS ENTRE RETAS E TRIÂNGULOS. 3. A medida do complemento: a) do ângulo de 27º 31 é: b) do ângulo de 16º 15 28 é: MATEMÁTICA Prof. Adilson ANGULOS ENTRE RETAS E TRIÂNGULOS 1. Calcule o valor de x e y observando as figuras abaixo: a) b) 2. Calcule a medida de x nas seguintes figuras: 3. A medida do complemento: a)

Leia mais

TRIÂNGULO RETÂNGULO. Triângulo retângulo é todo triângulo que tem um ângulo reto. O triângulo ABC é retângulo em A e seus elementos são:

TRIÂNGULO RETÂNGULO. Triângulo retângulo é todo triângulo que tem um ângulo reto. O triângulo ABC é retângulo em A e seus elementos são: TRIÂNGULO RETÂNGULO Triângulo retângulo é todo triângulo que tem um ângulo reto. O triângulo ABC é retângulo em A e seus elementos são: a: hipotenusa b e c: catetos h: altura relativa a hipotenusa m e

Leia mais

Triângulo Retângulo. Exemplo: O ângulo do vértice em. é a hipotenusa. Os lados e são os catetos. O lado é oposto ao ângulo, e é adjacente ao ângulo.

Triângulo Retângulo. Exemplo: O ângulo do vértice em. é a hipotenusa. Os lados e são os catetos. O lado é oposto ao ângulo, e é adjacente ao ângulo. Triângulo Retângulo São triângulos nos quais algum dos ângulos internos é reto. O maior dos lados de um triângulo retângulo é oposto ao vértice onde se encontra o ângulo reto e á chamado de hipotenusa.

Leia mais

Aula 8 Distância entre pontos do plano euclidiano

Aula 8 Distância entre pontos do plano euclidiano Distância entre pontos do plano euclidiano MÓDULO - AULA 8 Aula 8 Distância entre pontos do plano euclidiano Objetivos Nesta aula, você: Usará o sistema de coordenadas para calcular a distância entre dois

Leia mais

Construções Elementares com Régua e Compasso

Construções Elementares com Régua e Compasso TERCEIRLISTDEEXERCÍCIOS Fundamentos da Matemática II MTEMÁTIC DCET UESC Humberto José ortolossi Construções Elementares com Régua e Compasso (Entregar todos os exercícios até o dia 20/04/2004) 1 Construindo

Leia mais

PROVA OBJETIVA DE MATEMÁTICA VESTIBULAR 2013 - FGV CURSO DE ADMINISTRAÇÃO RESOLUÇÃO: Profa. Maria Antônia C. Gouveia

PROVA OBJETIVA DE MATEMÁTICA VESTIBULAR 2013 - FGV CURSO DE ADMINISTRAÇÃO RESOLUÇÃO: Profa. Maria Antônia C. Gouveia PROVA OBJETIVA DE MATEMÁTICA VESTIBULAR 0 - FGV CURSO DE ADMINISTRAÇÃO Profa. Maria Antônia C. Gouveia. O PIB per capita de um país, em determinado ano, é o PIB daquele ano dividido pelo número de habitantes.

Leia mais

MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON

MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON PROFJWPS@GMAIL.COM DEFINIÇÕES GEOMETRIA PLANA Ponto: Um elemento do espaço que define uma posição. Reta: Conjunto infinito de pontos. Dois pontos são

Leia mais

DESENHO GEOMÉTRICO Matemática - Unioeste Definição 1. Poligonal é uma figura formada por uma sequência de pontos (vértices)

DESENHO GEOMÉTRICO Matemática - Unioeste Definição 1. Poligonal é uma figura formada por uma sequência de pontos (vértices) DESENHO GEOMÉTRICO Matemática - Unioeste - 2010 1 Polígonos Definição 1. Poligonal é uma figura formada por uma sequência de pontos (vértices) A 1, A 2,..., A n e pelos segmentos (lados) A 1 A 2, A 2 A

Leia mais

ELIPSES INSCRITAS NUM TRIÂNGULO

ELIPSES INSCRITAS NUM TRIÂNGULO ELIPSES INSCRITAS NUM TRIÂNGULO SERGIO ALVES IME-USP Freqüentemente apresentada como um exemplo notável de sistema dedutivo, a Geometria tem, em geral, seus aspectos indutivos relegados a um segundo plano.

Leia mais

APOSTILA DE Geometria Plana MATEMÁTICA

APOSTILA DE Geometria Plana MATEMÁTICA 1 RESUO E TETI https://uehelenacarvalhowordpresscom/ PROF RNILO LOPES POSTIL E GEOETRI - RESUO PROF RNILO LOPES POSTIL E Geometria Plana TEÁTI Visite nosso site https://uehelenacarvalhowordpresscom/ Nele

Leia mais

Matemática Essencial: Alegria Financeira Fundamental Médio Geometria Trigonometria Superior Cálculos

Matemática Essencial: Alegria Financeira Fundamental Médio Geometria Trigonometria Superior Cálculos Matemática Essencial: Alegria Financeira Fundamental Médio Geometria Trigonometria Superior Cálculos Geometria Plana: Áreas de regiões poligonais Triângulo e região triangular O conceito de região poligonal

Leia mais

ÁREA DAS FIGURAS GEOMÉTRICAS PLANAS

ÁREA DAS FIGURAS GEOMÉTRICAS PLANAS 1 ÁREA DAS FIGURAS GEOMÉTRICAS PLANAS 1.Área da região retangular temos: É o paralelogramo que possui os quatro ângulos internos retos, num retângulo, A = B. P = B + d = B + Exemplo: Num retângulo, uma

Leia mais

MA13 Geometria I Avaliação

MA13 Geometria I Avaliação 13 Geometria I valiação 1 2012 SOLUÇÕS Questão 1. (pontuação: 2) O ponto pertence ao lado do triângulo. Sabe-se que = = e que o ângulo mede 21 o. etermine a medida do ângulo. 21 o omo =, seja = =. O ângulo

Leia mais

Aula 5 Quadriláteros Notáveis

Aula 5 Quadriláteros Notáveis Aula 5 Quadriláteros Notáveis Paralelogramo Definição: É o quadrilátero convexo que possui os lados opostos paralelos. A figura mostra um paralelogramo ABCD. Teorema 1: Se ABCD é um paralelogramo, então:

Leia mais

1º Banco de Questões do 4º Bimestre de Matemática (REVISÃO)

1º Banco de Questões do 4º Bimestre de Matemática (REVISÃO) Aluno(a): Professora: Deise Ilha Turno: Matutino. Componente Curricular: Matemática Data: / / 2016.. 1º Banco de Questões do 4º Bimestre de Matemática (REVISÃO) QUESTÃO 01 Tipo A (Julgar Certo ou Errado)

Leia mais

ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Considere os conjuntos S = {0,2,4,6}, T = {1,3,5} e U = {0,1} e as afirmações: I. {0} S e S U. II. {2} S\U e S T U={0,1}.

Leia mais

Colégio Anglo de Sete Lagoas Professor: Luiz Daniel (31) 2106-1750

Colégio Anglo de Sete Lagoas Professor: Luiz Daniel (31) 2106-1750 Lista de exercícios de Geometria Espacial PRISMAS 1) Calcular a medida da diagonal de um paralelepípedo retângulo de dimensões 10 cm, 8 cm e 6 cm 10 2 cm 2) Determine a capacidade em dm 3 de um paralelepípedo

Leia mais

Polos Olímpicos de Treinamento. Aula 6. Curso de Geometria - Nível 3. Prof. Cícero Thiago. Teorema 1. (Fórmula tradicional.) BC AD.

Polos Olímpicos de Treinamento. Aula 6. Curso de Geometria - Nível 3. Prof. Cícero Thiago. Teorema 1. (Fórmula tradicional.) BC AD. Polos Olímpicos de Treinamento urso de Geometria - Nível 3 Prof. ícero Thiago ula 6 Relações entre áreas Teorema 1. (Fórmula tradicional.) área do triângulo pode ser calculada por [ ] =. Teorema. (Área

Leia mais

EXERCÍCIOS RESOLVIDOS TRIÂNGULOS

EXERCÍCIOS RESOLVIDOS TRIÂNGULOS 1 EXERCÍCIOS RESOLVIDOS TRIÂNGULOS 1. CONSTRUIR UM TRIÂNGULO ESCALENO DE BASE 10 CM E ÂNGULOS ADJASCENTES À BASE DE 75 E 45. Sejam dados a base AB e os ângulos adjacentes à base. Primeiro transporte o

Leia mais

DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS DA NATUREZA CRITÉRIOS ESPECÍFICOS DE AVALIAÇÃO

DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS DA NATUREZA CRITÉRIOS ESPECÍFICOS DE AVALIAÇÃO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS DA NATUREZA CRITÉRIOS ESPECÍFICOS DE AVALIAÇÃO (Aprovados em Conselho Pedagógico de 27 de outubro de 2015) AGRUPAMENTO DE CLARA DE RESENDE CÓD. 152 870 No caso específico

Leia mais

FUVEST VESTIBULAR 2005 FASE II RESOLUÇÃO: PROFA. MARIA ANTÔNIA GOUVEIA.

FUVEST VESTIBULAR 2005 FASE II RESOLUÇÃO: PROFA. MARIA ANTÔNIA GOUVEIA. FUVEST VESTIBULAR 00 FASE II PROFA. MARIA ANTÔNIA GOUVEIA. Q 0. Para a fabricação de bicicletas, uma empresa comprou unidades do produto A, pagando R$9, 00, e unidades do produto B, pagando R$8,00. Sabendo-se

Leia mais

I - INTRODUÇÃO 1. POSTULADOS DO DESENHO GEOMÉTRICO

I - INTRODUÇÃO 1. POSTULADOS DO DESENHO GEOMÉTRICO MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPARTAMENTO DE EXPRESSÃO GRÁFICA Professora Deise Maria Bertholdi Costa Disciplina CD046 Expressão Gráfica I Curso Engenharia

Leia mais

Equilátero Isósceles Escaleno

Equilátero Isósceles Escaleno TRIÂNGULOS Triângulo são polígonos formados por três lados. Os polígonos, por sua vez, são figuras geométricas formadas por segmentos de reta que, dois a dois, tocam-se em seus pontos extremos, mas que

Leia mais

Semi-Reta: é uma parte da reta limitada por apenas um ponto. É representada como mostra a figura acima.

Semi-Reta: é uma parte da reta limitada por apenas um ponto. É representada como mostra a figura acima. 01. Conceitos Primitivos: Ponto: é representado por uma letra maiúscula do nosso alfabeto. Reta: é representado por uma letra minúscula do nosso alfabeto. Plano: é representado por uma letra grega. 0.

Leia mais

A Matemática no Vestibular do ITA. Material Complementar: Prova 2014. c 2014, Sergio Lima Netto sergioln@smt.ufrj.br

A Matemática no Vestibular do ITA. Material Complementar: Prova 2014. c 2014, Sergio Lima Netto sergioln@smt.ufrj.br A Matemática no Vestibular do ITA Material Complementar: Prova 01 c 01, Sergio Lima Netto sergioln@smtufrjbr 11 Vestibular 01 Questão 01: Das afirmações: I Se x, y R Q, com y x, então x + y R Q; II Se

Leia mais

Unidade didáctica: circunferência e polígonos. Matemática 9º ano

Unidade didáctica: circunferência e polígonos. Matemática 9º ano Unidade didáctica: circunferência e polígonos Matemática 9º ano POLÍGONOS. Ângulos de um polígono DEFINIÇÃO: Um polígono é uma superfície plana limitada por uma linha poligonal fechada. Em qualquer polígono

Leia mais

MATEMÁTICA 3 A SÉRIE - E. MÉDIO

MATEMÁTICA 3 A SÉRIE - E. MÉDIO 1 MTEMÁTI 3 SÉRIE - E. MÉDIO Prof. Rogério Rodrigues O TEOREM DE TLES NOME :... NÚMERO :... TURM :... 2 VI - O TEOREM DE TLES VI. 1) Tudo é água Do último terço do séc. VII à primeira metade do séc. VI

Leia mais

TRABALHO DE DEPENDÊNCIA TURMA: 2ª SÉRIE CONTEÚDOS RELATIVOS AO 1º E 2º BIMESTRE MATEMÁTICA 2 PROFESSOR ROGERIO

TRABALHO DE DEPENDÊNCIA TURMA: 2ª SÉRIE CONTEÚDOS RELATIVOS AO 1º E 2º BIMESTRE MATEMÁTICA 2 PROFESSOR ROGERIO TRABALHO DE DEPENDÊNCIA TURMA: 2ª SÉRIE CONTEÚDOS RELATIVOS AO 1º E 2º BIMESTRE MATEMÁTICA 2 PROFESSOR ROGERIO OBSERVAÇÕES: 1) AS QUESTÕES OBRIGATORIAMENTE DEVEM SER ENTREGUES EM UMA FOLHA A PARTE COM

Leia mais

Definição de Polígono

Definição de Polígono Definição de Polígono Figura plana limitada por segmentos de recta, chamados lados dos polígonos onde cada segmento de recta, intersecta exactamente dois outros extremos; se os lados forem todos iguais

Leia mais

2) Se z = (2 + i).(1 + i).i, então a) 3 i b) 1 3i c) 3 i d) 3 + i e) 3 + i. ,será dado por: quando x = i é:

2) Se z = (2 + i).(1 + i).i, então a) 3 i b) 1 3i c) 3 i d) 3 + i e) 3 + i. ,será dado por: quando x = i é: Aluno(a) Nº. Ano: º do Ensino Médio Exercícios para a Recuperação de MATEMÁTICA - Professores: Escossi e Luciano NÚMEROS COMPLEXOS 1) Calculando-se corretamente as raízes da função f(x) = x + 4x + 5, encontram-se

Leia mais

MAT 240- Lista de Exercícios. 1. Dado o ABC, seja G o baricentro deste triângulo e M o ponto médio do lado BC. Prove que AG = 2GM.

MAT 240- Lista de Exercícios. 1. Dado o ABC, seja G o baricentro deste triângulo e M o ponto médio do lado BC. Prove que AG = 2GM. 1 MAT 240- Lista de Exercícios 1. Dado o ABC, seja G o baricentro deste triângulo e M o ponto médio do lado BC. Prove que AG = 2GM. 2. Seja G o baricentro e O o circuncentro do ABC. Na reta que contém

Leia mais

MATEMÁTICA PARA CONCURSOS II

MATEMÁTICA PARA CONCURSOS II 1 MATEMÁTICA PARA CONCURSOS II Fonte: http://www.migmeg.com.br/ MÓDULO II Estudaremos neste módulo geometria espacial e volume dos principais sólidos geométricos. Mas antes de começar a aula, segue uma

Leia mais

PROVA DO VESTIBULAR DA FUVEST 2002 2ª etapa MATEMÁTICA. RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÕNIA GOUVEIA.

PROVA DO VESTIBULAR DA FUVEST 2002 2ª etapa MATEMÁTICA. RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÕNIA GOUVEIA. PROVA DO VESTIBULAR DA FUVEST 00 ª etapa MATEMÁTICA. RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÕNIA GOUVEIA. QUESTÃO.01.Carlos, Luis e Sílvio tinham, juntos, 100 mil reais para investir por um ano. Carlos

Leia mais

GEOMETRIA PLANA. Prof. Fabiano

GEOMETRIA PLANA. Prof. Fabiano GEOMETRIA PLANA Prof. Fabiano POLÍGONOS REGULARES R.. a. O O O a R a R R = Raio - raio da circunf. circunscrita - distância do centro a um vértice a = Apótema - Raio da circunferência inscrita - distância

Leia mais

GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar

GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar GAAL - 201/1 - Simulado - 1 Vetores e Produto Escalar SOLUÇÕES Exercício 1: Determinar os três vértices de um triângulo sabendo que os pontos médios de seus lados são M = (5, 0, 2), N = (, 1, ) e P = (4,

Leia mais

CIRCUNFERÊNCIA E POLÍGONOS. ROTAÇÕES

CIRCUNFERÊNCIA E POLÍGONOS. ROTAÇÕES B3 CIRCUNFERÊNCIA E POLÍGONOS. ROTAÇÕES Circunferência Circunferência é um conjunto de pontos do plano situados à mesma distância de um ponto fixo (centro). Corda é um segmento de recta cujos extremos

Leia mais

Prof. Jorge. Estudo de Polígonos

Prof. Jorge. Estudo de Polígonos Estudo de Polígonos Enchendo a piscina A piscina de um clube de minha cidade, vista de cima, tem formato retangular. O comprimento dela é de 18 m. o fundo é uma rampa reta. Vista lateralmente, ela tem

Leia mais

Congruência de triângulos II

Congruência de triângulos II ongruência de triângulos II M13 - Unidade 2 Resumo elaborado por Eduardo Wagner baseado no texto:. aminha M. Neto. Geometria. oleção PROFMT Triângulo isósceles Os ângulos da base de um triângulo isósceles

Leia mais

Aula 11 Conseqüências da semelhança de

Aula 11 Conseqüências da semelhança de onseqüências da semelhança de triângulos MÓULO 1 - UL 11 ula 11 onseqüências da semelhança de triângulos Objetivos presentar o Teorema de Pitágoras presentar o teorema da bissetriz interna. O Teorema de

Leia mais

Aulas Particulares on-line

Aulas Particulares on-line Esse material é parte integrante do ulas Particulares on-line do IESE RSIL S/, MTEMÁTI PRÉ-VESTIULR LIVRO O PROFESSOR 006-009 IESE rasil S.. É proibida a reprodução, mesmo parcial, por qualquer processo,

Leia mais