Geometria Plana. Exterior do ângulo Ô:

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Geometria Plana. Exterior do ângulo Ô:"

Transcrição

1 Geometria Plana Ângulo é a união de duas semiretas de mesma origem, não sendo colineares. Interior do ângulo Ô: Exterior do ângulo Ô: Dois ângulos são consecutivos se, e somente se, apresentarem um lado em comum. Dois ângulos consecutivos são adjacentes se, e somente se, não apresentam pontos internos comuns. Ângulos opostos pelo vértice Bissetriz de um ângulo divide um ângulo em outros dois ângulos iguais. Ângulo reto Ângulo agudo Ângulo obtuso Ângulos complementares: quando a soma de dois ângulos é 90 Ângulos suplementares: quando a soma de dois ângulos é 180 Ângulos nulos: quando os lados que formam o ângulo são semiretas coincidentes (0 ) Ângulos rasos: quando os lados que formam o ângulo são semiretas opostas (180 ) Classificação dos triângulos quanto aos lados: Equiláteros quando há três lados congruentes Isósceles quando há dois lados congruentes Escaleno quando os lados não apresentam congruência Classificação dos triângulos quanto aos ângulos: Retângulos quando há um ângulo reto Acutângulos quando há três ângulos agudos Obtusângulo quando há um ângulo obtuso Dois triângulos são congruentes quando apresentam os mesmos ângulos e as mesmas medidas dos lados. Os casos de congruência são: LAL (Lado Ângulo Lado): se dois triângulos têm ordenadamente congruentes dois lados e o ângulo compreendido, então eles são congruentes. ALA (Ângulo Lado Ângulo): se dois triângulos têm ordenadamente congruentes um lado e os dois ângulos a ele adjacentes, então esses triângulos são congruentes. Página 1

2 LLL (Lado Lado Lado): se dois triângulos têm ordenadamente congruentes os três lados então são congruentes LAA (Lado Ângulo Ângulo): se dois triângulos têm ordenadamente congruentes um lado, um ângulo adjacente e o ângulo oposto a esse lado, então esses triângulos são congruentes. RHL (Ângulo reto Hipotenusa Lado): se dois triângulos retângulos têm ordenadamente congruentes um cateto e a hipotenusa, então esses triângulos são congruentes. O maior lado é sempre oposto ao maior ângulo e viceversa. Tendo o triângulo: Podese afirmar que: < <+ alternos internos: 3 5,4 6 alternos externos: 1 7,2 8 colaterais internos: 3 6,4 5 colaterais externos: 1 8,2 7 correspondentes: 1 5,2 6,3 7,4 8 Nos triângulos, qualquer ângulo externo é igual à soma dos dois ângulos internos não adjacentes a ele. =+ A soma dos ângulos de um triângulo é igual a =! Um quadrilátero tem duas diagonais, e a soma dos ângulos internos, assim como dos externos, é 360. Trapézio é um quadrilátero plano convexo que possui dois lados paralelos (as bases). Os outros dois lados não base podem ser congruentes, formando um trapézio isósceles ou podem ser não congruentes, formando um trapézio escaleno. E o trapézio que possui dois ângulos retos é chamado de trapézio retângulo. Propriedades dos trapézios: Em qualquer trapézio #$ (notação cíclica) de bases #%%%%, $ temse: #&+ = +$& =180 As diagonais e os ângulos das bases de um trapézio isósceles são congruentes. Página 2

3 Paralelogramo é um quadrilátero plano convexo que possui os lados opostos paralelos. %%%%// # %%%% $ e # %%%%// $ %%%% Propriedades dos paralelogramos: Ângulos opostos são congruentes: #& $& Lados opostos são congruentes: %%%% # $ %%%% $ %%%% # %%%% Retângulo é um paralelogramo que possui os quatro ângulos congruentes. #& $& Propriedade dos retângulos: As diagonais são congruentes Losango é um paralelogramo que possui os quatro lados congruentes. %%%% # $ %%%% $ %%%% # %%%% Propriedade dos losangos: As diagonais são perpendiculares Quadrado é um paralelogramo que possui os quatro ângulos e os quatro lados congruentes. #& $& %%%% # $ %%%% $ %%%% # %%%% Propriedade dos quadrados: Todo quadrado é retângulo e também é losango Bases médias do triângulo: quando um segmento tem extremidades nos pontos médios de dois lados de um triângulo; pois, assim, ele é a metade do terceiro lado e é paralelo a este lado. do trapézio: quando um segmento tem extremidades nos pontos médios dos lados não paralelos; pois, assim, ele é igual à semisoma das bases e é paralelo a estas. Página 3

4 Pontos notáveis do triângulo: Mediana é o seguimento de reta que liga um vértice ao ponto médio do lado oposto a este vértice. O comprimento da mediana pode ser calculado pela seguinte fórmula: * + =, ²/²0+², sendo o lado do triângulo que a mediana intercepta e e os outros lados. 1 Uma mediana divide um triângulo em duas regiões de áreas iguais. O encontro das medianas é o baricentro. A distância do vértice ao baricentro é o dobro da distância do baricentro ao lado oposto. Bissetriz interna é seguimento de reta que parte do vértice até o lado oposto e divide um ângulo em duas partes iguais. O comprimento da bissetriz interna pode ser calculado pela fórmula: 2 + = / 34(4 +), sendo 7 8 bissetriz interna traçado do vértice # ao lado oposto e 9 o semiperímetro do triângulo. Teorema das bissetrizes internas: tendo um triângulo ABC, partindo uma bissetriz de A, e sendo D a intersecção entre a bissetriz e o lado BC, temse que: %%%% : %%%%% = %%%% : %%%% O encontro das bissetrizes internas é o incentro, que é o centro da circunferência inscrita ao triângulo. Bissetriz externa é o seguimento de reta que divide o ângulo externo em duas partes iguais. O comprimento da bissetriz externa pode ser calculado pela fórmula: 2 + ; = 0 3(4 )(4 ), sendo 7 8 ; bissetriz externa traçado do vértice # ao prolongamento do lado oposto e 9 o semiperímetro do triângulo. Página 4

5 Mediatriz é seguimento de reta que passa pelo ponto médio de um lado e forma um ângulo reto com este. O encontro das mediatrizes é o circuncentro, que é centro da circunferência circunscrita ao triângulo. Se o circuncentro estiver localizado em um lado do triângulo o ângulo oposto a este lado será reto. Se o circuncentro estiver localizado dentro do triângulo o ângulo oposto a este lado será acutângulo. Se o circuncentro estiver localizado fora do triângulo o ângulo oposto a este lado será obtusângulo. Altura é o seguimento de reta perpendicular a um lado do triângulo ou ao seu prolongamento traçado pelo vértice oposto. A altura pode ser calculada pela seguinte fórmula: < = 34(4 +)(4 )(4 ), sendo h > a altura traçado do vértice C ao lado oposto e 9 o semiperímetro do triângulo. O encontro das alturas é o ortocentro. Triângulo acutângulo o ortocentro é interno ao triângulo. Triângulo retângulo o ortocentro é o vértice do ângulo reto. Triângulo obtusângulo o ortocentro é externo ao triângulo. Triângulo órtico é o triângulo formado a partir da ligação nos vértices D, E e F. Página 5

6 Polígono é uma figura plana limitada por uma linha poligonal fechada. 3 lados triângulo 4 lados quadrilátero 5 lados pentágono 6 lados hexágono 7 lados heptágono 8 lados octógono 9 lados eneágono 10 lados decágono 11 lados undecágono 12 lados dodecágono 15 lados pentadecágono 20 lados icoságono Polígono simples divide o plano geométrico que o contém em duas regiões: a região interior ao polígono e a região exterior a ele. Quando um polígono não é simples, chamamos de complexo. Polígono convexo é o polígono que, quando se traça uma reta passando por dois de seus vértices consecutivos, deixa os demais vértices num mesmo semiplano. Quando um polígono não é convexo, chamamos de côncavo. Polígono equilátero possui lados congruentes. Polígono equiângulo possui ângulos congruentes. Um polígono convexo é regular se for equilátero e equiângulo simultaneamente. Número de diagonais de um polígono lados 3): B= C(C D) Soma dos ângulos internos de um polígono convexo lados 3): K L =(C ).! Soma dos ângulos externos de um polígono convexo: K N =DO! Ângulo interno de um polígono regular: Ângulo externo de um polígono regular: (C ).! + L = C + N = DO! C + L ++ N =! Todo polígono regular é inscritível e circunscritível em uma circunferência e o centro dessas circunferências é o próprio centro do polígono regular. + = DO! C Página 6

7 XU YQ YW hexágono 9óPa ( ) b b 2 b 3 V YW (V) b 3 b 2 b d C =,e(e 31e d C ), esta expressão permite saber o valor de um lado que seja múltiplo ao valor de um lado já conhecido, por exemplo, do V f (lado do hexágono), podese obter o de V gh (lado do dodecágono). Dois polígonos são congruentes se têm ângulos e lados congruentes. Dois polígonos são equivalentes se têm a mesma área. Dois polígonos são semelhantes se têm ângulos congruentes e lados correspondentes proporcionais. Circunferência é um conjunto de pontos de um plano, cuja distância a um ponto dado desse plano é igual a uma distância (não nula) dada. O ponto dado é o centro e a distância é o raio da circunferência. i(j k,l k ) $(,) Q RW =Q %%%% i$ >Q o ponto i é exterior à circunferência %%%% i$ =Q o ponto i está sobre o limite da circunferência %%%% i$ <Q o ponto i é interior à circunferência Corda, diâmetro e raio: Arco de circunferência e semicircunferência: Círculo é a união da circunferência com o seu interior. Setor circular, segmento circular e semicírculo: Página 7

8 Posição relativa de uma reta e uma circunferência: Y n,o <Q a reta será secante Y n,o =Q a reta será tangente Y n,o >Q a reta será exterior Obs.: toda tangente a uma circunferência é perpendicular ao raio no ponto de tangência. Posição relativa de duas circunferências: Circunferências exteriores (I). Circunferências tangentes exteriores (II). Circunferências tangentes interiores (III). Circunferências secantes (IV). Circunferência de menor raio e interior a outra (V). Circunferências concêntricas (VI). (I) (II) (V) (VI) (III) (IV) Se de um ponto i conduzirmos os segmentos %%%% i# %%%%, i ambos tangentes a uma circunferência, com # na circunferência, então %%%% i# %%%%. i Se um quadrilátero convexo é circunscrito a uma circunferência, a soma de dois lados opostos é igual à soma dos outros dois. p+q=r+s Se um quadrilátero convexo é inscritível a uma circunferência seus ângulos opostos são suplementares + =! +: =! t=u = ṯ = u Todo triângulo inscrito em uma semicircunferência é retângulo. Página 8

9 Um ângulo de segmento é a metade do ângulo central correspondente. = ṯ Ângulo excêntrico interior: r= / t Ângulo excêntrico exterior: r= 0 t Teorema de Tales: se duas retas são transversais de um feixe de retas paralelas, então a razão entre dois segmentos quaisquer de uma delas é igual à razão entre os respectivos segmentos correspondentes da outra. %%%% %%%% = v %%%%%%% v %%%%%%% v v Existe semelhança de triângulo quando dois triângulos possuem ângulos ordenadamente congruentes e os lados homólogos proporcionais. ;, ;, ; + + ; = ; = ; =w Página 9

10 Obs.: se x =1, os triângulos são congruentes (x é a razão de semelhança). se a razão de semelhança de dois triângulos é x, então a razão entre dois elementos lineares homólogos é x. Teorema fundamental: se uma reta paralela a um dos lados de um triângulo intercepta os outros dois em pontos distintos, então o triângulo que ela determina é semelhante ao primeiro. Casos de semelhança: se dois triângulos possuem dois ângulos ordenadamente congruentes, então eles são semelhantes. se dois lados de um triângulo são proporcionais aos homólogos de outro triângulo e os ângulos compreendidos são congruentes, então os triângulos são semelhantes. se dois triângulos têm os lados homólogos proporcionais, então eles são semelhantes. Potência de ponto: se duas cordas de uma mesma circunferência se interceptam, então o produto das medidas das duas partes de uma é igual ao produto das medidas das duas partes da outra. (y %%%%).(y %%%%)=(y.(y: %%%%%) se por um ponto i exterior a uma circunferência conduzimos dois segmentos secantes (i# %%%% e %%%%), i$ então o produto da medida do primeiro (i# %%%%) pela de sua parte exterior (i %%%%) é igual ao produto da medida do segundo (i$ %%%%) pela de sua parte exterior (i %%%%). (y %%%%).(y %%%%)=(y.(y: %%%%%) =(yz %%%%)² Relações métricas e teorema de Pitágoras (triângulos retângulos) I) ²=+.C ; ²=+.* II) <²=*.C III).=+.< IV).<=.C ;.<=.* V) +²=²+² Aplicações do teorema de Pitágoras Diagonal do quadrado: B=+ Altura do triângulo equilátero: <= + D Página 10

11 2NC = +pnp 4 2p ~ = +pnp +B +NCpN p = +pnp 4 2p <L4 pnc}2+ <L4 pnc}2+ +pnp +B +NCpN cos PT Triângulos pitagóricos N Lei dos senos (qualquer triângulo): + 2NC = 2NC = 2NC =e Lei dos cossenos (qualquer triângulo): ²=+²+² +.~ Reconhecimento da natureza de um triângulo: ²<²+² triângulo acutângulo ²=²+² triângulo retângulo ²>²+ triângulo obtusângulo sendo o maior lado e lembrando que: < <+ Relação de Stewart: +²s+²r q²=rs Página 11

12 Comprimento de uma circunferência: = e Comprimento de um arco de circunferência: ˆ= e!,4+ + N* +}2 ˆ=e,4+ + N* +BL+C 2 Obs.: chamase radiano todo arco de circunferência cujo comprimento é igual ao comprimento do raio da circunferência que o contem. Áreas de superfícies planas +B=! Œ Œ Retângulo: e =.< Quadrado: Ž =+² Paralelogramo: 4 =.< Triângulo: z =.< Triangulo equilátero: zn = +² D 1 Trapézio: z + = ( + )< Losango: ˆ = B. B Polígono regular: 4 d =4.* 9 W 7aR9QíaPQW a ayry YW 9óPa Área do triângulo em função dos lados: K=34(4 +)(4 )(4 ) 9 W 7aR9QíaPQW,, W7 V YW7 YW Área do triangulo em função dos lados e do raio da circunferência circunscrita: +.. K= 1e Área do triângulo em função de dois lados e do seno do ângulo compreendido:..2nc K= Área do círculo: =.e² Área de um setor circular de raio R e em radianos: 2Np = e² Área de um setor circular de raio R e em graus: 2Np = e² DO! Área de um setor circular de raio R e do comprimento L do arco: 2Np =ˆe Área do segmento circular em função do raio R, do ângulo central : 2N * = e ( 2NC ) Área da coroa circular: + = (e ) Área do triângulo em função dos lados e do raio da circunferência inscrita: K=4. 9 W 7aR9QíaPQW Q W Q RW Página 12

Geometria plana. Índice. Polígonos. Triângulos. Congruência de triângulos. Semelhança de triângulos. Relações métricas no triângulo retângulo

Geometria plana. Índice. Polígonos. Triângulos. Congruência de triângulos. Semelhança de triângulos. Relações métricas no triângulo retângulo Índice Geometria plana Polígonos Triângulos Congruência de triângulos Semelhança de triângulos Relações métricas no triângulo retângulo Quadriláteros Teorema de Tales Esquadros de madeira www.ser.com.br

Leia mais

RETAS PARALELAS INTERCEPTADAS POR UMA TRANSVERSAL

RETAS PARALELAS INTERCEPTADAS POR UMA TRANSVERSAL GEOMETRIA PLANA MEDIDAS DE ÂNGULOS: Raso, se é igual a 180º; Nulo, se, é igual a 0º; Reto:é igual a 90 ; Agudo: é maior que 0 e menor que 90 ; Obtuso: é maior que 90 e menor que 180. IMPORTANTE: se a soma

Leia mais

Semi-Reta: é uma parte da reta limitada por apenas um ponto. É representada como mostra a figura acima.

Semi-Reta: é uma parte da reta limitada por apenas um ponto. É representada como mostra a figura acima. 01. Conceitos Primitivos: Ponto: é representado por uma letra maiúscula do nosso alfabeto. Reta: é representado por uma letra minúscula do nosso alfabeto. Plano: é representado por uma letra grega. 0.

Leia mais

DESENHO TÉCNICO ( AULA 02)

DESENHO TÉCNICO ( AULA 02) DESENHO TÉCNICO ( AULA 02) Posições da reta e do plano no espaço A geometria, ramo da Matemática que estuda as figuras geométricas, preocupa-se também com a posição que os objetos ocupam no espaço. A reta

Leia mais

DESENHO GEOMÉTRICO Matemática - Unioeste Definição 1. Poligonal é uma figura formada por uma sequência de pontos (vértices)

DESENHO GEOMÉTRICO Matemática - Unioeste Definição 1. Poligonal é uma figura formada por uma sequência de pontos (vértices) DESENHO GEOMÉTRICO Matemática - Unioeste - 2010 1 Polígonos Definição 1. Poligonal é uma figura formada por uma sequência de pontos (vértices) A 1, A 2,..., A n e pelos segmentos (lados) A 1 A 2, A 2 A

Leia mais

GEOMETRIA PLANA. Segmentos congruentes: Dois segmentos ou ângulos são congruentes quando têm as mesmas medidas.

GEOMETRIA PLANA. Segmentos congruentes: Dois segmentos ou ângulos são congruentes quando têm as mesmas medidas. PARTE 01 GEOMETRIA PLANA Introdução A Geometria está apoiada sobre alguns postulados, axiomas, definições e teoremas, sendo que essas definições e postulados são usados para demonstrar a validade de cada

Leia mais

MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON

MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON PROFJWPS@GMAIL.COM DEFINIÇÕES GEOMETRIA PLANA Ponto: Um elemento do espaço que define uma posição. Reta: Conjunto infinito de pontos. Dois pontos são

Leia mais

1ª Aula. Introdução à Geometria Plana GEOMETRIA. 3- Ângulos Consecutivos: 1- Conceitos Primitivos: a) Ponto A. b) Reta c) Semi-reta

1ª Aula. Introdução à Geometria Plana GEOMETRIA. 3- Ângulos Consecutivos: 1- Conceitos Primitivos: a) Ponto A. b) Reta c) Semi-reta 1ª Aula 3- Ângulos Consecutivos: Introdução à Geometria Plana 1- Conceitos Primitivos: a) Ponto A Na figura, os ângulos AÔB e BÔC são consecutivos, portanto AÔC=AÔB+AÔC b) Reta c) Semi-reta d) Segmento

Leia mais

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE. Professor: João Carmo

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE. Professor: João Carmo INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE Professor: João Carmo DEFINIÇÃO Triângulo ou trilátero é um polígono de três lados. Observações: a) O triângulo não possui diagonais;

Leia mais

Aula 09 (material didático produzido por Paula Rigo)

Aula 09 (material didático produzido por Paula Rigo) EMBAP ESCOLA DE MÚSICA E BELAS ARTES DO PARANÁ DISCIPLINA DE DESENHO GEOMÉTRICO E GEOMETRIA DESCRITIVA Profª Eliane Dumke e-mail: eliane.dumke@gmail.com Aula 09 (material didático produzido por Paula Rigo)

Leia mais

CURSO DE GEOMETRIA LISTA

CURSO DE GEOMETRIA LISTA GEOMETRI Ângulos Obs.: Dois ângulos são congruentes quando têm a mesma abertura. Exemplos: Ângulos complementares Soma (medida) 90º Ângulos suplementares Soma (medida) 180º issetriz bissetriz de um ângulo

Leia mais

Geometria Plana - Aula 05

Geometria Plana - Aula 05 Geometria Plana - Aula 05 Elaine Pimentel Universidade Federal de Minas Gerais, Departamento de Matemática Geometria Plana Especialização 2008 - p. 1 Esquema da aula Quadrilátero - definição e. Quadriláteros

Leia mais

MATEMÁTICA 3 GEOMETRIA PLANA Professor Renato Madeira. MÓDULO 5 Quadriláteros

MATEMÁTICA 3 GEOMETRIA PLANA Professor Renato Madeira. MÓDULO 5 Quadriláteros MATEMÁTICA 3 GEOMETRIA PLANA Professor Renato Madeira MÓDULO 5 Quadriláteros Os dois dias mais importantes da sua vida são o dia em que você nasceu e o dia em que você descobre o porquê. (Mark Twain) SUMÁRIO

Leia mais

Desenho e Projeto de Tubulação Industrial Nível II

Desenho e Projeto de Tubulação Industrial Nível II Desenho e Projeto de Tubulação Industrial Nível II Módulo I Aula 04 TRIÂNGULOS Triângulo é um polígono de três lados. É o polígono que possui o menor número de lados. Talvez seja o polígono mais importante

Leia mais

Aula 21 - Baiano GEOMETRIA PLANA

Aula 21 - Baiano GEOMETRIA PLANA Aula 21 - Baiano GEOMETRIA PLANA Definição: Polígono de quatro lados formado por quatro vértices não colineares dois a dois. A D S i = 180º (n 2)= 180º (4 2)= 360º S e = 360º B C d = n. (n - 3) 2 = 4.

Leia mais

ATIVIDADES COM GEOPLANO QUADRANGULAR

ATIVIDADES COM GEOPLANO QUADRANGULAR ATIVIDADES COM GEOPLANO QUADRANGULAR Observações. Os pinos do geoplano quadrangular são chamados de pontos. A distância horizontal ou vertical entre dois pontos consecutivos é estabelecida como a unidade

Leia mais

ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO. 1- Ângulos Definição: Chama-se ângulo à porção de plano limitada por duas semirretas com a mesma origem.

ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO. 1- Ângulos Definição: Chama-se ângulo à porção de plano limitada por duas semirretas com a mesma origem. ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO 1ª Ficha Informativa MATEMÁTICA - A 10º Ano 2012/2013 1- Ângulos Definição: Chama-se ângulo à porção de plano limitada por duas semirretas com a mesma origem. Definição:

Leia mais

Geometria Euclidiana Plana Parte I

Geometria Euclidiana Plana Parte I CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.2 Geometria Euclidiana Plana Parte I Joyce Danielle de Araújo - Engenharia de Produção Vitor Bruno Santos Pereira - Engenharia Civil CURSO INTRODUTÓRIO

Leia mais

GEOMETRIA. Esse quadradinho no ângulo O significa que é um ângulo reto e sua medida equivale a 90 graus.

GEOMETRIA. Esse quadradinho no ângulo O significa que é um ângulo reto e sua medida equivale a 90 graus. GEOMETRIA Ângulos É a abertura existente entre duas semi-retas que tem a mesma origem. Ângulo reto é formado por duas semi-retas perpendiculares, ou seja, uma horizontal e uma vertical sendo o ponto de

Leia mais

Circunferência. MA092 Geometria plana e analítica. Interior e exterior. Circunferência e círculo. Francisco A. M. Gomes

Circunferência. MA092 Geometria plana e analítica. Interior e exterior. Circunferência e círculo. Francisco A. M. Gomes Circunferência MA092 Geometria plana e analítica Francisco A. M. Gomes UNICAMP - IMECC Setembro de 2016 A circunferência é o conjunto dos pontos de um plano que estão a uma mesma distância (denominada

Leia mais

NOME: ANO: 3º Nº: PROFESSOR(A):

NOME: ANO: 3º Nº: PROFESSOR(A): NOME: ANO: º Nº: PROFESSOR(A): Ana Luiza Ozores DATA: Algumas definições Triângulos: REVISÃO Lista 06 Triângulos e Quadriláteros Classificação quanto aos lados: Escaleno (todos os lados diferentes), Isósceles

Leia mais

I - INTRODUÇÃO II LUGARES GEOMÉTRICOS, ÂNGULOS E SEGMENTOS 1. POSTULADOS DO DESENHO GEOMÉTRICO

I - INTRODUÇÃO II LUGARES GEOMÉTRICOS, ÂNGULOS E SEGMENTOS 1. POSTULADOS DO DESENHO GEOMÉTRICO MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPARTAMENTO DE EXPRESSÃO GRÁFICA Professores: Deise Maria Bertholdi Costa, Luzia Vidal de Souza, Paulo Henrique Siqueira,

Leia mais

SOLUCÃO DAS ATIVIDADES COM VARETAS

SOLUCÃO DAS ATIVIDADES COM VARETAS SOLUCÃO DAS ATIVIDADES COM VARETAS Em todas as atividades é usado o Material: Varetas. Nos casos específicos onde o trabalho é realizado com varetas congruentes será especificado como Material: varetas

Leia mais

CONTEÚDO E HABILIDADES MATEMÁTICA REVISÃO 1 REVISÃO 2 REVISÃO 3. Conteúdo:

CONTEÚDO E HABILIDADES MATEMÁTICA REVISÃO 1 REVISÃO 2 REVISÃO 3. Conteúdo: 2 Conteúdo: Aula Revisão 1: Geometria Polígonos: Classificação, nome, cálculo das diagonais e a soma dos ângulos internos. Congruência e Semelhança de triângulos 3 Conteúdo: Aula Revisão 2: Álgebra Polinômios:

Leia mais

Turma preparatória para Olimpíadas.

Turma preparatória para Olimpíadas. p: João Alvaro w: www.matemaniacos.com.br e: joao.baptista@iff.edu.br Turma preparatória para Olimpíadas. TRIÂNGULOS - V01 DEFINIÇÃO Sejam três pontos não colineares A, B e C, o triângulo ABC é uma figura

Leia mais

RETAS E CIRCUNFERÊNCIAS

RETAS E CIRCUNFERÊNCIAS RETAS E CIRCUNFERÊNCIAS Diâmetro Corda que passa pelo centro da circunferência [EF] e [GH] Raio Segmento de reta que une o centro a um ponto da circunferência [OD] [AB], [IJ], [GH], são cordas - segmentos

Leia mais

Av. João Pessoa, 100 Magalhães Laguna / Santa Catarina CEP

Av. João Pessoa, 100 Magalhães Laguna / Santa Catarina CEP Disciplina: Matemática Curso: Ensino Médio Professor(a): Flávio Calônico Júnior Turma: 3ª Série E M E N T A II Trimestre 2013 Conteúdos Programáticos Data 21/maio 28/maio Conteúdo FUNÇÃO MODULAR Interpretação

Leia mais

SOLUCÃO DAS ATIVIDADES COM GEOPLANO QUADRANGULAR

SOLUCÃO DAS ATIVIDADES COM GEOPLANO QUADRANGULAR SOLUCÃO DAS ATIVIDADES COM GEOPLANO QUADRANGULAR Observações. Os pinos do geoplano quadrangular são chamados de pontos. A distância horizontal ou vertical entre dois pontos consecutivos é estabelecida

Leia mais

SAGRADO REDE DE EDUCAÇÃO PROFESSORA :MÁRCIA CONTE 3º ANO ENSINO MÉDIO 2012

SAGRADO REDE DE EDUCAÇÃO PROFESSORA :MÁRCIA CONTE 3º ANO ENSINO MÉDIO 2012 SAGRADO REDE DE EDUCAÇÃO PROFESSORA :MÁRCIA CONTE 3º ANO ENSINO MÉDIO 2012 -POLÍGONOS REGULARES -APÓTEMAS DE BASES REGULARES -PONTOS NOTÁVEIS NO TRIÂNGULO -COMPRIMENTO DA CIRCUNFERÊNCIA -ÁREA DO CÍRCULO

Leia mais

Aula 3 Polígonos Convexos

Aula 3 Polígonos Convexos MODULO 1 - AULA 3 Aula 3 Polígonos Convexos Conjunto convexo Definição: Um conjunto de pontos chama-se convexo se, quaisquer que sejam dois pontos distintos desse conjunto, o segmento que tem esses pontos

Leia mais

GEOMETRIA PLANA. Prof. Fabiano

GEOMETRIA PLANA. Prof. Fabiano GEOMETRIA PLANA Prof. Fabiano POLÍGONOS REGULARES R.. a. O O O a R a R R = Raio - raio da circunf. circunscrita - distância do centro a um vértice a = Apótema - Raio da circunferência inscrita - distância

Leia mais

Propriedades do ortocentro

Propriedades do ortocentro Programa límpico de Treinamento Curso de Geometria - Nível 3 Prof. Rodrigo ula 4 Propriedades do ortocentro ortocentro é o ponto de encontro das três alturas de um triângulo arbitrário. Se o triângulo

Leia mais

GEOMETRIA PLANA. 1) (UFRGS) Na figura abaixo, o vértice A do retângulo OABC está a 6 cm do vértice C. O raio do círculo mede

GEOMETRIA PLANA. 1) (UFRGS) Na figura abaixo, o vértice A do retângulo OABC está a 6 cm do vértice C. O raio do círculo mede GEOMETRI PLN 1) (UFRGS) Na figura abaixo, o vértice do retângulo O está a 6 cm do vértice. O raio do círculo mede O (a) 5 cm (b) 6 cm (c) 8 cm (d) 9 cm (e) 10 cm ) (UFRGS) Na figura abaixo, é o centro

Leia mais

EMENTA ESCOLAR III Trimestre Ano 2014

EMENTA ESCOLAR III Trimestre Ano 2014 EMENTA ESCOLAR III Trimestre Ano 2014 Disciplina: Matemática Professor: Flávio Calônico Júnior Turma: 8 ano do Ensino Fundamental II Data 16/setembro 18/setembro 19/setembro 23/setembro 25/setembro 26/setembro

Leia mais

ATIVIDADES COM VARETAS

ATIVIDADES COM VARETAS ATIVIDADES COM VARETAS Em todas as atividades é usado o Material: Varetas. Nos casos específicos onde o trabalho é realizado com varetas congruentes será especificado como Material: varetas do mesmo comprimento.

Leia mais

ATIVIDADES COM GEOTIRAS

ATIVIDADES COM GEOTIRAS ATIVIDADES COM GEOTIRAS 1. Material: Geotiras i. Represente varias retas paralelas. ii. Represente duas retas concorrentes em um ponto. 2. Material: Geotiras Represente as seguintes poligonais: i. Poligonal

Leia mais

Definição de Polígono

Definição de Polígono Definição de Polígono Figura plana limitada por segmentos de recta, chamados lados dos polígonos onde cada segmento de recta, intersecta exactamente dois outros extremos; se os lados forem todos iguais

Leia mais

1. Primeiros conceitos

1. Primeiros conceitos UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Geometria Plana I Prof.:

Leia mais

E.E.M.FRANCISCO HOLANDA MONTENEGRO PLANO DE CURSO ENSINO MÉDIO

E.E.M.FRANCISCO HOLANDA MONTENEGRO PLANO DE CURSO ENSINO MÉDIO E.E.M.FRANCISCO HOLANDA MONTENEGRO PLANO DE CURSO ENSINO MÉDIO DISCIPLINA: GEOMETRIA SÉRIE: 1º ANO (B, C e D) 2015 PROFESSORES: Crislany Bezerra Moreira Dias BIM. 1º COMPETÊNCIAS/ HABILIDADES D48 - Identificar

Leia mais

MATEMÁTICA ANGULOS ENTRE RETAS E TRIÂNGULOS. 3. A medida do complemento: a) do ângulo de 27º 31 é: b) do ângulo de 16º 15 28 é:

MATEMÁTICA ANGULOS ENTRE RETAS E TRIÂNGULOS. 3. A medida do complemento: a) do ângulo de 27º 31 é: b) do ângulo de 16º 15 28 é: MATEMÁTICA Prof. Adilson ANGULOS ENTRE RETAS E TRIÂNGULOS 1. Calcule o valor de x e y observando as figuras abaixo: a) b) 2. Calcule a medida de x nas seguintes figuras: 3. A medida do complemento: a)

Leia mais

Lugares geométricos básicos I

Lugares geométricos básicos I Lugares geométricos básicos I M13 - Unidade 5 Resumo elaborado por Eduardo Wagner baseado no texto:. Caminha M. Neto. Geometria. Coleção PROFMT Definição Lugar Geométrico da propriedade P é o conjunto

Leia mais

POLÍGONOS TRIÂNGULOS E QUADRILÁTEROS

POLÍGONOS TRIÂNGULOS E QUADRILÁTEROS 7º ANO POLÍGONOS TRIÂNGULOS E QUADRILÁTEROS Polígonos Nuno Marreiros Antes de começar Não é possível pois uma circunferência não é formada por segmentos de reta. Nem tudo o que parece é Segmento de reta

Leia mais

EXERCÍCIOS RESOLVIDOS TRIÂNGULOS

EXERCÍCIOS RESOLVIDOS TRIÂNGULOS 1 EXERCÍCIOS RESOLVIDOS TRIÂNGULOS 1. CONSTRUIR UM TRIÂNGULO ESCALENO DE BASE 10 CM E ÂNGULOS ADJASCENTES À BASE DE 75 E 45. Sejam dados a base AB e os ângulos adjacentes à base. Primeiro transporte o

Leia mais

1. POSTULADOS DO DESENHO GEOMÉTRICO

1. POSTULADOS DO DESENHO GEOMÉTRICO MINISTÉRIO DA EDUCAÇÃO - UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS - DEPARTAMENTO DE EXPRESSÃO GRÁFICA Professora Deise Maria Bertholdi Costa - Disciplina CD027 Expressão Gráfica I Curso

Leia mais

CIRCUNFERÊNCIA E CÍRCULO

CIRCUNFERÊNCIA E CÍRCULO IRUNFRÊNI ÍRUL 01 ( FUVST) medida do ângulo ˆ inscrito na circunferência de centro é, em graus, ) 100 ) 110 ) 10 ) 15 35º 0 0 ( U ) bserve a figura. la mostra dois círculos de mesmo raio com centros em

Leia mais

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE. Professor: João Carmo

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE. Professor: João Carmo INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE Professor: João Carmo INTRODUÇÃO Circunferência é uma linha curva, plana, fechada e que tem todos os pontos que a constitui, equidistantes

Leia mais

Desenho Geométrico. Desenho Geométrico. Desenho Geométrico. Desenho Geometrico

Desenho Geométrico. Desenho Geométrico. Desenho Geométrico. Desenho Geometrico UNIVERSIDADE ESTADUAL VALE DO ACARAÚ- UVA DEPARTAMENTO DE MATEMÁTICA Desenho Geométrico Desenho Geométrico Desenho Geométrico Desenho Geometrico Daniel Caetano de Figueiredo Daniel Caetano de Figueiredo

Leia mais

I - INTRODUÇÃO 1. POSTULADOS DO DESENHO GEOMÉTRICO

I - INTRODUÇÃO 1. POSTULADOS DO DESENHO GEOMÉTRICO MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPARTAMENTO DE EXPRESSÃO GRÁFICA Professora Deise Maria Bertholdi Costa Disciplina CD046 Expressão Gráfica I Curso Engenharia

Leia mais

I - INTRODUÇÃO 1. POSTULADOS DO DESENHO GEOMÉTRICO

I - INTRODUÇÃO 1. POSTULADOS DO DESENHO GEOMÉTRICO UNIVERSIDADE FEDERAL DO PARANÁ DEPARTAMENTO DE EXPRESSÃO GRÁFICA DISCIPLINA: EXPRESSÃO GRÁFICA I CURSO: ARQUITETURA AUTORES: Luzia Vidal de Souza Deise Maria Bertholdi Costa Paulo Henrique Siqueira I -

Leia mais

Professor Alexandre Assis. Lista de exercícios de Geometria

Professor Alexandre Assis. Lista de exercícios de Geometria 1. A figura representa três círculos idênticos no interior do triângulo retângulo isósceles ABC. 3. Observando a figura a seguir, determine (em cm): a) o valor de x. b) a medida do segmento AN, sabendo

Leia mais

Geometria Euclidiana Plana Parte I

Geometria Euclidiana Plana Parte I CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.1 Geometria Euclidiana Plana Parte I Joyce Danielle de Araújo - Engenharia de Produção Lucas Araújo dos Santos - Engenharia de Produção O que veremos

Leia mais

Lista 3. Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 2.5, pág. 81 em diante.

Lista 3. Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 2.5, pág. 81 em diante. MA13 Exercícios das Unidades 4 e 5 2014 Lista 3 Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 2.5, pág. 81 em diante. 1) Seja ABCD um quadrilátero qualquer. Prove que os pontos médios

Leia mais

Revisional 3 Bim - MARCELO

Revisional 3 Bim - MARCELO 6º Ano Revisional 3 Bim - MARCELO 1) Represente no papel quatro pontos distintos e, por eles, determine dois segmentos de reta distintos. 2) Observe os segmentos de reta na figura. Escreva quantos são

Leia mais

GEOMETRIA MÉTRICA ESPACIAL

GEOMETRIA MÉTRICA ESPACIAL GEOMETRIA MÉTRICA ESPACIAL .. PARALELEPÍPEDOS RETÂNGULOS Um paralelepípedo retângulo é um prisma reto cujas bases são retângulos. AB CD A' B' C' D' a BC AD B' C' A' D' b COMPRIMENTO LARGURA AA' BB' CC'

Leia mais

1. Posição de retas 11 Construindo retas paralelas com régua e compasso 13

1. Posição de retas 11 Construindo retas paralelas com régua e compasso 13 Sumário CAPÍTULO 1 Construindo retas e ângulos 1. Posição de retas 11 Construindo retas paralelas com régua e compasso 13 2. Partes da reta 14 Construindo segmentos congruentes com régua e compasso 15

Leia mais

1. Área do triângulo

1. Área do triângulo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Geometria Plana II Prof.:

Leia mais

Conteúdo programático por disciplina Matemática 6 o ano

Conteúdo programático por disciplina Matemática 6 o ano 60 Conteúdo programático por disciplina Matemática 6 o ano Caderno 1 UNIDADE 1 Significados das operações (adição e subtração) Capítulo 1 Números naturais O uso dos números naturais Seqüência dos números

Leia mais

6. ( CN - 83 ) Se o lado de um quadrado aumentar de 30% de seu comprimento, a sua área aumentará de: A) 55% B) 47% C) 30% D) 69% E) 90%

6. ( CN - 83 ) Se o lado de um quadrado aumentar de 30% de seu comprimento, a sua área aumentará de: A) 55% B) 47% C) 30% D) 69% E) 90% 1 1. ( CN - 8 ) Duas retas tangenciam uma circunferência, de centro P e 8cm de raio, nos pontos R e S. O ângulo entre essas tangentes é de 10. A área do triângulo PRS em cm, é: 16 B) 16 C) 16 D) 8 E) 8.

Leia mais

UMA ANÁLISE INTRODUTÓRIA E COMPARATIVA DA GEOMETRIA ESTUDADA NO ENSINO FUNDAMENTAL II

UMA ANÁLISE INTRODUTÓRIA E COMPARATIVA DA GEOMETRIA ESTUDADA NO ENSINO FUNDAMENTAL II UMA ANÁLISE INTRODUTÓRIA E COMPARATIVA DA GEOMETRIA ESTUDADA NO ENSINO FUNDAMENTAL II Autores: Beatriz Alexandre Ramos Kamila Rodrigues Moura Orientador: Prof. Dr João Luzeilton de Oliveira Faculdade de

Leia mais

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE. Professor: João Carmo

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE. Professor: João Carmo INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE Professor: João Carmo INTRODUÇÃO Os ângulos são formados por duas semi-retas que têm a mesma origem O. OBS.: o ângulo é denominado

Leia mais

MA13 Geometria I Avaliação

MA13 Geometria I Avaliação 13 Geometria I valiação 1 2012 SOLUÇÕS Questão 1. (pontuação: 2) O ponto pertence ao lado do triângulo. Sabe-se que = = e que o ângulo mede 21 o. etermine a medida do ângulo. 21 o omo =, seja = =. O ângulo

Leia mais

LINHAS PROPORCIONAIS Geometria Plana. PROF. HERCULES SARTI Mestre

LINHAS PROPORCIONAIS Geometria Plana. PROF. HERCULES SARTI Mestre LINHAS PROPORCIONAIS Geometria Plana PROF. HERCULES SARTI Mestre Exemplo 4: apostila Determine o perímetro do quadrilátero ABCD, circunscritível, da figura. Resolução: Exemplo 4: apostila Determine o perímetro

Leia mais

17 TRIÂNGULOS 17.1 PONTOS NOTÁVEIS DE UM TRIÂNGULO. Definição: O encontro das mediatrizes dos lados de um triângulo é único e chama-se circuncentro.

17 TRIÂNGULOS 17.1 PONTOS NOTÁVEIS DE UM TRIÂNGULO. Definição: O encontro das mediatrizes dos lados de um triângulo é único e chama-se circuncentro. 97 17 TRIÂNGULOS 17.1 PONTOS NOTÁVEIS DE UM TRIÂNGULO Definição: O encontro das mediatrizes dos lados de um triângulo é único e chama-se circuncentro. Propriedades: 1) O circuncentro é o centro da circunferência

Leia mais

Geometria Plana 03 Prof. Valdir

Geometria Plana 03 Prof. Valdir eometria lana 03 rof. Valdir TS TÁVEIS E U TRIÂUL 1. RIETR É o ponto de equilíbrio ou centro de gravidade do triângulo. baricentro coincide com o ponto de intersecção das medianas do triângulo (na figura

Leia mais

1. Considere os pontos notáveis de um triângulo, sendo: B Baricentro C Circuncentro I Incentro O Ortocentro

1. Considere os pontos notáveis de um triângulo, sendo: B Baricentro C Circuncentro I Incentro O Ortocentro Lista de Exercícios Geometria Plana - loco I - Pontos notáveis do triângulo 1. Considere os pontos notáveis de um triângulo, sendo: aricentro C Circuncentro I Incentro rtocentro Preencha os parênteses:

Leia mais

SOLUÇÃO DAS ATIVIDADES COM GEOPLANO CIRCULAR

SOLUÇÃO DAS ATIVIDADES COM GEOPLANO CIRCULAR SOLUÇÃO DAS ATIVIDADES COM GEOPLANO CIRCULAR Observações. O geoplano circular utilizado tem 4 pinos no círculo. Os pinos do geoplano circular são chamados de pontos. Os pontos do círculo são enumerados

Leia mais

Módulo de Triângulo Retângulo, Lei dos Senos e Cossenos, Poĺıgonos Regulares. 9 o ano E.F.

Módulo de Triângulo Retângulo, Lei dos Senos e Cossenos, Poĺıgonos Regulares. 9 o ano E.F. Módulo de Triângulo Retângulo, Lei dos Senos e ossenos, Poĺıgonos Regulares. Relações Métricas em Poĺıgonos Regulares 9 o ano.. Triângulo Retângulo, Lei dos Senos e ossenos, Polígonos Regulares. Relações

Leia mais

Aula 11 Polígonos Regulares

Aula 11 Polígonos Regulares MODULO 1 - AULA 11 Aula 11 Polígonos Regulares Na Aula 3, em que apresentamos os polígonos convexos, vimos que um polígono regular é um polígono convexo tal que: a) todos os lados são congruentes entre

Leia mais

1.0. Conceitos Utilizar os critérios de divisibilidade por 2, 3, 5 e Utilizar o algoritmo da divisão de Euclides.

1.0. Conceitos Utilizar os critérios de divisibilidade por 2, 3, 5 e Utilizar o algoritmo da divisão de Euclides. Conteúdo Básico Comum (CBC) Matemática - do Ensino Fundamental do 6º ao 9º ano Os tópicos obrigatórios são numerados em algarismos arábicos Os tópicos complementares são numerados em algarismos romanos

Leia mais

ENSINO PRÉ-UNIVERSITÁRIO PROFESSOR(A) TURNO. 01. Determine a distância entre dois pontos A e B do plano cartesiano.

ENSINO PRÉ-UNIVERSITÁRIO PROFESSOR(A) TURNO. 01. Determine a distância entre dois pontos A e B do plano cartesiano. SÉRIE ITA/IME ENSINO PRÉ-UNIVERSITÁRIO PROFESSOR(A) ALUNO(A) TURMA MARCELO MENDES TURNO SEDE DATA Nº / / TC MATEMÁTICA Geometria Analítica Exercícios de Fixação Conteúdo: A reta Parte I Exercícios Tópicos

Leia mais

Geometria. Nome: N.ª: Ano: Turma: POLÍGONOS = POLI (muitos) + GONOS (ângulos)

Geometria. Nome: N.ª: Ano: Turma: POLÍGONOS = POLI (muitos) + GONOS (ângulos) MATEMÁTICA 3º CICLO FICHA 16 Geometria regular inscrito numa circunferência Nome: N.ª: Ano: Turma: Data: / / 20 POLÍGONOS = POLI (muitos) + GONOS (ângulos) é uma figura plana limitada por segmentos de

Leia mais

Matemática Régis Cortes GEOMETRIA PLANA

Matemática Régis Cortes GEOMETRIA PLANA GEOMETRIA PLANA 1 GEOMETRIA PLANA Congruência: dois segmentos ou ângulos são congruentes quando têm as mesmas medidas.  + Î = 180 graus Ê + Ô = 180 graus  + Ê + Î + Ô = 360 graus Quadrado l A = l 2 d

Leia mais

3.6 TRIÂNGULOS. Definição: Dados três pontos A, B e C, no plano e não-colineares, a figura formada pelos segmentos AB, BC e AC chamamos de triângulo.

3.6 TRIÂNGULOS. Definição: Dados três pontos A, B e C, no plano e não-colineares, a figura formada pelos segmentos AB, BC e AC chamamos de triângulo. 21 3.6 TRIÂNGULOS Definição: Dados três pontos A, B e C, no plano e não-colineares, a figura formada pelos segmentos AB, BC e AC chamamos de triângulo. Propriedades P1. Num triângulo qualquer, a soma das

Leia mais

Conceitos básicos de Geometria:

Conceitos básicos de Geometria: Conceitos básicos de Geometria: Os conceitos de ponto, reta e plano não são definidos. Compreendemos estes conceitos a partir de um entendimento comum utilizado cotidianamente dentro e fora do ambiente

Leia mais

a < 0 / > 0 a < 0 / = 0 a < 0 / < 0

a < 0 / > 0 a < 0 / = 0 a < 0 / < 0 FUNÇÃO DO 2 GRAU (QUADRÁTICA) a < 0 / > 0 a) Definição Denomina-se função do 2 grau toda função f : IR IR definida por f(x) = ax 2 + bx + c, com a, b, c IR e a O. b) Raízes ou zeros As raízes da função

Leia mais

ÍNDICE: Relações Métricas num Triângulo Retângulo página: 2. Triângulo Retângulo página: 4. Áreas de Polígonos página: 5

ÍNDICE: Relações Métricas num Triângulo Retângulo página: 2. Triângulo Retângulo página: 4. Áreas de Polígonos página: 5 ÍNDICE: Relações Métricas num Triângulo Retângulo página: Triângulo Retângulo página: 4 Áreas de Polígonos página: 5 Área do Círculo e suas partes página: 11 Razão entre áreas de figuras planas semelhantes

Leia mais

araribá matemática Quadro de conteúdos e objetivos Quadro de conteúdos e objetivos Unidade 1 Potências Unidade 2 Radiciação

araribá matemática Quadro de conteúdos e objetivos Quadro de conteúdos e objetivos Unidade 1 Potências Unidade 2 Radiciação Unidade 1 Potências 1. Recordando potências Calcular potências com expoente natural. Calcular potências com expoente inteiro negativo. Conhecer e aplicar em expressões as propriedades de potências com

Leia mais

Ficha Formativa de Matemática 7º Ano Tema 5 Figuras Geométricas

Ficha Formativa de Matemática 7º Ano Tema 5 Figuras Geométricas 1. Observa as linhas seguintes. 1.1. Identifica: a) as linhas poligonais; b) as linhas poligonais simples; c) as linhas poligonais fechadas. 1.2. Das linhas poligonais, identifica as que definem: a) polígonos

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA

UNIVERSIDADE FEDERAL DA BAHIA APOSTILA DE DESENHO GEOMÉTRICO E GEOMETRIA DESCRITIVA PARTE I PROF. LUÍS GUSTAVO HENRIQUES DO AMARAL PROF. DENNIS COELHO CRUZ BARREIRAS, NOVEMBRO DE 2012 SUMÁRIO PARTE I UNIDADE 1 INTRODUÇÃO... 5 1.1 DEFINIÇÃO

Leia mais

MATEMÁTICA Polígonos e circunferências. Circunferência

MATEMÁTICA Polígonos e circunferências. Circunferência MTEMÁTI ircunferência hama-se circunferência de centro e raio r ao conjuntos de pontos do plano cuja a distância ao ponto é igual a r. Uma circunferência de centro e raio r designa-se geralmente por (,

Leia mais

da população têm cabelos pretos e olhos castanhos e que a população que tem cabelos pretos é 10%

da população têm cabelos pretos e olhos castanhos e que a população que tem cabelos pretos é 10% 0 Três pessoas resolveram percorrer um trajeto da seguinte maneira: a primeira andaria a metade do percurso mais km, a segunda a metade do que falta mais km e finalmente a terceira que andaria a metade

Leia mais

Quadrilátero convexo

Quadrilátero convexo EMBAP ESCOLA DE MÚSICA E BELAS ARTES DO PARANÁ DISCIPLINA DE DESENHO GEOMÉTRICO E GEOMETRIA DESCRITIVA Profª Eliane Dumke e-mail: eliane.dumke@gmail.com Aula 10 (material didático produzido por Paula Rigo)

Leia mais

GEOMETRIA MÉTRICA. As bases são polígonos congruentes. Os prismas são designados de acordo com o número de lados dos polígonos das bases.

GEOMETRIA MÉTRICA. As bases são polígonos congruentes. Os prismas são designados de acordo com o número de lados dos polígonos das bases. GEOMETRIA MÉTRICA 1- I- PRISMA 1- ELEMENTOS E CLASSIFICAÇÃO Considere o prisma: As bases são polígonos congruentes. Os prismas são designados de acordo com o número de lados dos polígonos das bases. BASES

Leia mais

esquerda e repetia esse processo até chegar ao ponto A novamente. a) Faça um esboço dessa figura com os três primeiros segmentos.

esquerda e repetia esse processo até chegar ao ponto A novamente. a) Faça um esboço dessa figura com os três primeiros segmentos. ATIVIDADES PARA RECUPERAÇÃO PARALELA - MATEMÁTICA PROFESSOR: CLAUZIR PAIVA NASCIMENTO TURMA: 8º ANO REVISÃO 1) A medida de um ângulo interno de um polígono é o dobro da medida do seu ângulo externo. Qual

Leia mais

AB AC BC. k PQ PR QR GEOMETRIA PLANA CONCEITOS BÁSICOS SEMELHANÇA DE TRIÂNGULOS. Triângulos isósceles

AB AC BC. k PQ PR QR GEOMETRIA PLANA CONCEITOS BÁSICOS SEMELHANÇA DE TRIÂNGULOS. Triângulos isósceles GEOMETRIA PLANA Triângulos isósceles CONCEITOS BÁSICOS Retas paralelas cortadas por uma transversal São aqueles que possuem dois lados iguais. Ligando o vértice A ao ponto médio da base BC, geramos dois

Leia mais

Relações Trigonométricas nos Triângulos

Relações Trigonométricas nos Triângulos Relações Trigonométricas nos Triângulos Introdução - Triângulos Um triângulo é uma figura geométric a plana, constituída por três lados e três ângulos internos. Esses ângulos, tradicionalmente, são medidos

Leia mais

FIGURAS GEOMÉTRICAS. MEDIDA

FIGURAS GEOMÉTRICAS. MEDIDA 7º ANO FIGURAS GEOMÉTRICAS. MEDIDA Alfabeto Grego. Linhas poligonais e polígonos. Nuno Marreiros Antes de começar Não é possível pois uma circunferência não é formada por segmentos de reta. Nem tudo o

Leia mais

PONTOS NOTÁVEIS DE UM. Professora Joseane Fernandes TRIÂNGULO

PONTOS NOTÁVEIS DE UM. Professora Joseane Fernandes TRIÂNGULO PONTOS NOTÁVEIS DE UM Professora Joseane Fernandes TRIÂNGULO PONTOS NOTÁVEIS DE UM TRIÂNGULO. Baricentro; Incentro; Circuncentro; Ortocentro. BARICENTRO - MEDIANA Mediana segmento de reta que liga o ponto

Leia mais

CONSTRUÇÕES GEOMÉTRICAS FUNDAMENTAIS

CONSTRUÇÕES GEOMÉTRICAS FUNDAMENTAIS UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPARTAMENTO DE EXPRESSÃO GRÁFICA CONSTRUÇÕES GEOMÉTRICAS FUNDAMENTAIS 2 1 NOÇÕES DE GEOMETRIA PLANA 1.1 GEOMETRIA A necessidade de medir terras

Leia mais

Propriedades geométricas e combinatórias dos polígonos convexos

Propriedades geométricas e combinatórias dos polígonos convexos Propriedades geométricas e combinatórias dos polígonos convexos Definição 1. Dados os pontos,,..., pontos no plano, tais que quaisquer três deles não são colineares, chamaremos de polígono a reunião dos

Leia mais

2 ÁREAS E VOLUME DO TETRAEDRO REGULAR 1 TETRAEDRO REGULAR. 2.1 Área lateral. 2.2 Área da base. 2.3 Área total. 2.4 Volume

2 ÁREAS E VOLUME DO TETRAEDRO REGULAR 1 TETRAEDRO REGULAR. 2.1 Área lateral. 2.2 Área da base. 2.3 Área total. 2.4 Volume Matemática Pedro Paulo GEOMETRIA ESPACIAL VI são 1 TETRAEDRO REGULAR É uma piramide regular triangular, cujas faces triângulos equiláteros de lado 2 ÁREAS E VOLUME DO TETRAEDRO REGULAR 2.1 Área lateral

Leia mais

ASSUNTO: Conteúdo para Prova Oficial e Prova Geral

ASSUNTO: Conteúdo para Prova Oficial e Prova Geral DISCIPLINA: GEOMETRIA 1ª Unidade Letiva / 2016 TURMA: PROFESSORA: ROSANA CARVALHO DISPONÍVEL EM: 29/03/15 8º ANO ASSUNTO: Conteúdo para Prova Oficial e Prova Geral RETAS PARALELAS CORTADAS POR UMA TRANSVERSAL

Leia mais

Coordenadas Cartesianas

Coordenadas Cartesianas 1 Coordenadas Cartesianas 1.1 O produto cartesiano Para compreender algumas notações utilizadas ao longo deste texto, é necessário entender o conceito de produto cartesiano, um produto entre conjuntos

Leia mais

Polos Olímpicos de Treinamento. Aula 17. Curso de Geometria - Nível 2. Pontos Notáveis 3: Circuncentro e Ortocentro. Prof.

Polos Olímpicos de Treinamento. Aula 17. Curso de Geometria - Nível 2. Pontos Notáveis 3: Circuncentro e Ortocentro. Prof. Polos Olímpicos de Treinamento urso de Geometria - Nível 2 Prof. ícero Thiago ula 17 Pontos Notáveis 3: ircuncentro e Ortocentro Teorema 1. Sejam, e P três pontos distintos no plano. Temos que P = P se,

Leia mais

TRABALHO SOBRE ÂNGULOS E POLÍGONOS - 8º ANO- ENSINO FUNDAMENTAL VALOR: 4,0 PONTOS INSTRUÇÕES - LEIA COM MUITA ATENÇÃO

TRABALHO SOBRE ÂNGULOS E POLÍGONOS - 8º ANO- ENSINO FUNDAMENTAL VALOR: 4,0 PONTOS INSTRUÇÕES - LEIA COM MUITA ATENÇÃO TRABALHO SOBRE ÂNGULOS E POLÍGONOS - 8º ANO- ENSINO FUNDAMENTAL - 2014 - VALOR: 4,0 PONTOS INSTRUÇÕES - LEIA COM MUITA ATENÇÃO - O envio das respostas será aceito até: 16/04/2014, às 23h59min. Faça seu

Leia mais

Geometria plana. Resumo teórico e exercícios.

Geometria plana. Resumo teórico e exercícios. Geometria plana. Resumo teórico e eercícios. 3º olegial / urso tensivo. utor - Lucas ctavio de Souza (Jeca) Relação das aulas. Página ula 01 - onceitos iniciais... 0 ula 0 - Pontos notáveis de um triângulo...

Leia mais

MATEMÁTICA MÓDULO 16 CONE E CILINDRO. Professor Haroldo Filho

MATEMÁTICA MÓDULO 16 CONE E CILINDRO. Professor Haroldo Filho MATEMÁTICA Professor Haroldo Filho MÓDULO 16 CONE E CILINDRO 1. CILINDRO CIRCULAR Considere dois planos paralelos, α e β, seja R um círculo no plano α, seja s uma reta secante aos dois planos que não intersecta

Leia mais

Atividade 01 Ponto, reta e segmento 01

Atividade 01 Ponto, reta e segmento 01 Atividade 01 Ponto, reta e segmento 01 1. Crie dois pontos livres. Movimente-os. 2. Construa uma reta passando por estes dois pontos. 3. Construa mais dois pontos livres em qualquer lugar da tela, e o

Leia mais

MATEMÁTICA II LISTA DE GEOMETRIA PLANA - III

MATEMÁTICA II LISTA DE GEOMETRIA PLANA - III MATEMÁTICA II LISTA DE GEOMETRIA PLANA - III 0 Dois círculos de centros A e B são tangentes exteriormente e tangenciam interiormente um círculo de centro C. Se AB = cm, AC = 7 cm e BC = 3 cm, então o raio

Leia mais

5. Desenhos geométricos

5. Desenhos geométricos 17 Exercícios: 1. Na folha A4 impressa escreva o alfabeto com letras maiúsculas e minúsculas e a numeração de 0 a 9, com letras verticias. Faça ainda a legenda da folha 2. Na folha A4 impressa escreva

Leia mais