PERÍMETRO O perímetro de um triângulo é igual à soma das medidas dos seus lados. Perímetro ABC = AB + AC + BC TRIÂNGULOS

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "PERÍMETRO O perímetro de um triângulo é igual à soma das medidas dos seus lados. Perímetro ABC = AB + AC + BC TRIÂNGULOS"

Transcrição

1 TRIÂNGULOS Conceito: Triângulo é um polígono de três lados. PERÍMETRO O perímetro de um triângulo é igual à soma das medidas dos seus lados. Perímetro ABC = AB + AC + BC CLASSIFICAÇÃO DOS TRIÂNGULOS Quanto aos lados os trângulos se classificam em: Equilátero quando tem os três lados congruentes. Isósceles quando tem dois lados congruentes Escaleno quando não temlados congruentes Na figura acima: Os pontos A,B e C são vértices do triângulo. Os segmentos AB, BC e CA, são os lados do triângulo. Os ângulos A, B e C são ângulos internos do triângulo ÂNGULOS EXTERNO Ângulo externo é o ângulo suplementar do ângulo interno. Quanto aos ângulos os triângulos se classificam em: Acutângulo quando te três ângulos agudos Retângulo quando tem um ângulo reto. Obtusângulo quando tem um angulo obtuso

2 Em um triângulo retângulo os lados que formam o ângulo reto chamam-se catetos e o lado oposto ao ângulo reto chama-se hipotenusa. 4) O perímetro do triângulo 34 cm. Determine o comprimento do menor lado. EXERCÍCIOS 1) Observe o triângulo retângulo e responda: 5)Classifique o triângulo de acordo com as medidas dos lados. a) Quais são os vértices? b) Quais são os lados? c) Quais são os ângulos? 2) O perímetro de um triângulo é 25 cm. Dois lados medem respectivamente 7,8 cm e 8,2 cm. Calcule a medida do terceiro lado? 3) Determine o comprimento do lado BC, sabendo que o perímetro do triângulo ABC é 48 cm. 6) Classifique o triângulo de acordo com as medidas dos ângulos ;

3 7) Observe a figura e responda: Para verificar a citada propriedade, procure construir um triângulo com as seguintes medidas 7 cm, 4 cm e 2 cm. a) Que nome recebe o lado BC? b) Que nome recebem os lados AB e AC? CONDIÇÕES DE EXISTÊNCIA DE UM TRIÂNGULO Em qualquer triângulo, cada lado é menor que a soma dos outros dois lados Exemplo É impossível, não? Logo não existe o triângulo cujos lados, medem 7cm, 4cm e 2cm. EXERCÍCIOS 1) Existe ou não um triângulo com lados medindo: a) 10 cm, 8cm e 7cm? b) 8 cm, 4cm e 3 cm? c) 2 cm, 4 cm e 6 cm? d) 3 cm, 4 cm e 5 cm? e) 3 cm, 5 cm e 6 cm? f) 4 cm, 10 cm e 5cm? Vamos comparar a medida de cada lado com a soma das medidas dos outros dois assim: 2) Dois Lados de um triângulo isósceles medem 38 cm e 15 cm. Qual poderá ser a medida do terceiro lado?

4 ELEMENTOS NOTÁVEIS DE UM TRIÂNGULO Mediana de um triângulo é o segmento que une um vértice ao ponto médio do lado oposto. Todo o triângulo tem três alturas que se encontram em um ponto chamado ortocentro SOMA DAS MEDIDAS DOS ANGULOS INTERNOS DE UM TRIÂNGULO Observe os triângulos e as medidas dos ângulos internos Todo triângulo tem três medianas que se encontram em um ponto chamado baricentro Bissetriz de um triângulo é o segmento da bissetriz de um ângulo interno que tem por extremidades o vértice desse ângulo e o ponto de encontro com o lado oposto. vamos à demonstração desse teorema. Todo triângulo tem três bissetrizes que se encontram em um ponto interior chamado incentro. TEOREMA Em qualquer triângulo, a soma das medidas dos ângulos internos é igual a 180 Prova Altura de um triângulo é o segmento de perpendicular traçada de um vértice ao lado oposto ou ao seu prolongamento

5 EXERCÍCIOS 1) Quanto vale a soma dos ângulos internos de um triângulo? EXERCÍCIOS RESOLVIDOS 1) Calcular x no triângulo abaixo: 2) Copie e complete o quadro, sendo A,B e C ângulos internos de um triângulo. 2) Calcule x no triângulo abaixo: 3) Determine x em cada um dos triângulos 3) Calcule x no triângulo abaixo:

6 4) Determine x em cada um dos triângulos:

7 5) Determine a medida dos ângulos x, y e z.

8 TEOREMA DO ÂNGULO EXTERNO Em qualquer triângulo, a medida de um ângulo externo é igual à soma das medidas dos ângulos internos nãoadjacentes. Prova:consideremos um triângulo ABC. vamos provar que m(ê) = m(â) + m (B) EXERCÍCIOS 1) Determine a medida do ângulo externo indicado em cada triângulo: Exemplos: Calcule o valor de x no triângulo abaixo:

9 3) Calcule o valor de x nos triângulos dados: 2) Calcule o valor de x nos triângulos dados: 4) Calcule o valor de x nos triângulos dados:

10 7) Calcule x: 5) Calcule o valor de x: CONGRUÊNCIA DE TRIÂNGULOS Intuitivamente, dois triângulos ABC e RST são congruentes se for possível transportar um deles sobre o outro, de modo que eles coincidam. 6) Calcule w e y :

11 Definição: Dois triângulos são chamados congruentes quando os lados e os ângulos correspondentes são congruentes. logo: 2º CASO L. A. L. (lado, ângulo, lado) Dois triângulos que têm dois lados e o ângulo por eles formados respectivamente congruentes são congruentes. CASOS DE CONGRUÊNCIA O estudo dos casos de congruência de dois triângulos tem por finalidade estabelecer o menor número de condições para que dois triângulos sejam congruentes. 3º CASO A. L. A. ( ângulo, lado, ângulo) Dois triângulos que tem um lado e dois ângulos adjacentes a esse lado respectivamente congruentes são congruentes. 1º CAS0 : L. L. L. ( lado, lado, lado) Dois triângulos que têm os três lados respectivamente congruentes são congruentes.

12 4º CASO : L. A. A ( lado, ângulo, ângulo oposto) Dois trângulos que têm um lado, um ângulo adjacente e um ângulo oposto a esse lado respectivamente congruentes são congruentes. EXERCÍCIOS 1) Cite, em cada item, o caso de congruência dos triângulos.

13

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE. Professor: João Carmo

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE. Professor: João Carmo INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE Professor: João Carmo DEFINIÇÃO Triângulo ou trilátero é um polígono de três lados. Observações: a) O triângulo não possui diagonais;

Leia mais

TRIÂNGULOS. Condição de existência de um triângulo

TRIÂNGULOS. Condição de existência de um triângulo TRIÂNGULOS Condição de existência de um triângulo Em todo triângulo, a soma das medidas de dois lados sempre tem que ser maior que a medida do terceiro lado. EXERCÍCIO 1º Será que conseguiríamos desenhar

Leia mais

Triângulos classificação

Triângulos classificação Triângulos classificação Quanto aos ângulos Acutângulo: possui três ângulos agudos. Quanto aos lados Equilátero: três lados de mesma medida. Obs.: os três ângulos internos têm medidas de 60º. Retângulo:

Leia mais

Desenho e Projeto de Tubulação Industrial Nível II

Desenho e Projeto de Tubulação Industrial Nível II Desenho e Projeto de Tubulação Industrial Nível II Módulo I Aula 04 TRIÂNGULOS Triângulo é um polígono de três lados. É o polígono que possui o menor número de lados. Talvez seja o polígono mais importante

Leia mais

O que é triângulo (*)

O que é triângulo (*) Escola SESI Jundiaí Anápolis Disciplina: Matemática Turma: 1º Ano Professor (a) : César Lopes de Assis O que é triângulo (*) Considere três pontos A, B e C não colineares. Chama-se triângulo à figura geométrica

Leia mais

Geometria plana. Índice. Polígonos. Triângulos. Congruência de triângulos. Semelhança de triângulos. Relações métricas no triângulo retângulo

Geometria plana. Índice. Polígonos. Triângulos. Congruência de triângulos. Semelhança de triângulos. Relações métricas no triângulo retângulo Índice Geometria plana Polígonos Triângulos Congruência de triângulos Semelhança de triângulos Relações métricas no triângulo retângulo Quadriláteros Teorema de Tales Esquadros de madeira www.ser.com.br

Leia mais

COLÉGIO MARQUES RODRIGUES - SIMULADO

COLÉGIO MARQUES RODRIGUES - SIMULADO COLÉGIO MRQUES RODRIGUES - SIMULDO PROFESSOR HENRIQUE LEL DISCIPLIN MTEMÁTIC SIMULDO: P5 Estrada da Água Branca, 2551 Realengo RJ Tel: (21) 3462-7520 www.colegiomr.com.br LUNO TURM 801 Questão 1 Qual dos

Leia mais

Geometria plana. Índice. Polígonos. Triângulos. Congruência de triângulos. Semelhança de triângulos. Relações métricas no triângulo retângulo

Geometria plana. Índice. Polígonos. Triângulos. Congruência de triângulos. Semelhança de triângulos. Relações métricas no triângulo retângulo Índice Geometria plana Polígonos Triângulos Congruência de triângulos Semelhança de triângulos Relações métricas no triângulo retângulo Quadriláteros Teorema de Tales Esquadros de madeira www.ser.com.br

Leia mais

O que é triângulo (*) (*) Extraído do livro: Vencendo com a matemática; Miguel Asis Name, Editora Brasil

O que é triângulo (*) (*) Extraído do livro: Vencendo com a matemática; Miguel Asis Name, Editora Brasil Escola SESI Jundiaí Anápolis Disciplina: Matemática Turma: Geometria 1º Ano Professor (a) : César Lopes de Assis O que é triângulo (*) (*) Extraído do livro: Vencendo com a matemática; Miguel Asis Name,

Leia mais

MATEMÁTICA. Capítulo 2 LIVRO 1. Triângulos. Páginas: 157 à169

MATEMÁTICA. Capítulo 2 LIVRO 1. Triângulos. Páginas: 157 à169 MATEMÁTICA LIVRO 1 Capítulo 2 Triângulos Páginas: 157 à169 I. Soma dos Ângulos Internos Teorema demonstração: a soma das medidas dos ângulos internos de qualquer triângulo vale 180 x B β y r // AC A γ

Leia mais

Hewlett-Packard TRIÂNGULOS. AULAS 01 a 04. Prof. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos

Hewlett-Packard TRIÂNGULOS. AULAS 01 a 04. Prof. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Hewlett-Packard TRIÂNGULOS AULAS 01 a 04 Prof. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Sumário TRIÂNGULOS... 1 DEFINIÇÃO E ELEMENTOS... 1 SOMA DAS MEDIDAS DOS ÂNGULOS INTERNOS DE UM TRIÂNGULO...

Leia mais

Equilátero Isósceles Escaleno

Equilátero Isósceles Escaleno TRIÂNGULOS Triângulo são polígonos formados por três lados. Os polígonos, por sua vez, são figuras geométricas formadas por segmentos de reta que, dois a dois, tocam-se em seus pontos extremos, mas que

Leia mais

Hewlett-Packard TRIÂNGULOS. AULAS 01 a 04. Prof. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos

Hewlett-Packard TRIÂNGULOS. AULAS 01 a 04. Prof. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Hewlett-Packard TRIÂNGULOS AULAS 01 a 04 Prof. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Sumário TRIÂNGULOS... 1 DEFINIÇÃO E ELEMENTOS... 1 SOMA DAS MEDIDAS DOS ÂNGULOS INTERNOS DE UM TRIÂNGULO...

Leia mais

NOME: ANO: 3º Nº: PROFESSOR(A):

NOME: ANO: 3º Nº: PROFESSOR(A): NOME: ANO: º Nº: PROFESSOR(A): Ana Luiza Ozores DATA: Algumas definições Triângulos: REVISÃO Lista 06 Triângulos e Quadriláteros Classificação quanto aos lados: Escaleno (todos os lados diferentes), Isósceles

Leia mais

MATEMÁTICA FRENTE IV. Capítulo 2 LIVRO 1. Triângulos

MATEMÁTICA FRENTE IV. Capítulo 2 LIVRO 1. Triângulos MATEMÁTICA FRENTE IV LIVRO 1 Capítulo 2 Triângulos I. Soma dos Ângulos Internos Teorema demonstração: a soma das medidas dos ângulos internos de qualquer triângulo vale 180 x B β y r // AC A α γ C Deseja-se

Leia mais

Plano de Recuperação Final EF2

Plano de Recuperação Final EF2 Professores: Pupo/Cintia Turma: 8º ano Objetivos: Proporcionar ao aluno a oportunidade de resgatar os conteúdos trabalhados em Desenho geométrico nos quais ele apresentou defasagens que sejam pré-requisitos

Leia mais

MATEMÁTICA III. Pág 404. Prof. Eloy Machado 2015 EFMN

MATEMÁTICA III. Pág 404. Prof. Eloy Machado 2015 EFMN MATEMÁTICA III Pág 404 2015 EFMN Prof. Eloy Machado ESTRUTURAS NÃO TRIANGULARES ESTRUTURAS NÃO TRIANGULARES ESTRUTURAS NÃO TRIANGULARES TRIÂNGULOS ESTRUTURAS TRIANGULARES O QUE SÃO TRIÂNGULOS CONGRUENTES?

Leia mais

Aula 09 (material didático produzido por Paula Rigo)

Aula 09 (material didático produzido por Paula Rigo) EMBAP ESCOLA DE MÚSICA E BELAS ARTES DO PARANÁ DISCIPLINA DE DESENHO GEOMÉTRICO E GEOMETRIA DESCRITIVA Profª Eliane Dumke e-mail: eliane.dumke@gmail.com Aula 09 (material didático produzido por Paula Rigo)

Leia mais

(A) 30 (B) 6 (C) 200 (D) 80 (E) 20 (A) 6 (B) 10 (C) 15 (D) 8 (E) 2 (A) 15 (B) 2 (C) 6 (D) 27 (E) 4 (A) 3 (B) 2 (C) 6 (D) 27 (E) 4

(A) 30 (B) 6 (C) 200 (D) 80 (E) 20 (A) 6 (B) 10 (C) 15 (D) 8 (E) 2 (A) 15 (B) 2 (C) 6 (D) 27 (E) 4 (A) 3 (B) 2 (C) 6 (D) 27 (E) 4 TEOREMA DE TALES 1. Na figura abaixo as retas r, s e t são (A) 0 (B) 6 (C) 00 (E) 0. Três retas paralelas são cortadas por duas Se AB = cm; BC = 6 cm e XY = 10 cm a medida, em cm, de XZ é: (A) 0 (B) 10

Leia mais

1º Banco de Questões do 4º Bimestre de Matemática (REVISÃO)

1º Banco de Questões do 4º Bimestre de Matemática (REVISÃO) Aluno(a): Professora: Deise Ilha Turno: Matutino. Componente Curricular: Matemática Data: / / 2016.. 1º Banco de Questões do 4º Bimestre de Matemática (REVISÃO) QUESTÃO 01 Tipo A (Julgar Certo ou Errado)

Leia mais

Matemática Régis Cortes GEOMETRIA PLANA

Matemática Régis Cortes GEOMETRIA PLANA GEOMETRIA PLANA 1 GEOMETRIA PLANA Congruência: dois segmentos ou ângulos são congruentes quando têm as mesmas medidas.  + Î = 180 graus Ê + Ô = 180 graus  + Ê + Î + Ô = 360 graus Quadrado l A = l 2 d

Leia mais

17 TRIÂNGULOS 17.1 PONTOS NOTÁVEIS DE UM TRIÂNGULO. Definição: O encontro das mediatrizes dos lados de um triângulo é único e chama-se circuncentro.

17 TRIÂNGULOS 17.1 PONTOS NOTÁVEIS DE UM TRIÂNGULO. Definição: O encontro das mediatrizes dos lados de um triângulo é único e chama-se circuncentro. 97 17 TRIÂNGULOS 17.1 PONTOS NOTÁVEIS DE UM TRIÂNGULO Definição: O encontro das mediatrizes dos lados de um triângulo é único e chama-se circuncentro. Propriedades: 1) O circuncentro é o centro da circunferência

Leia mais

3.6 TRIÂNGULOS. Definição: Dados três pontos A, B e C, no plano e não-colineares, a figura formada pelos segmentos AB, BC e AC chamamos de triângulo.

3.6 TRIÂNGULOS. Definição: Dados três pontos A, B e C, no plano e não-colineares, a figura formada pelos segmentos AB, BC e AC chamamos de triângulo. 21 3.6 TRIÂNGULOS Definição: Dados três pontos A, B e C, no plano e não-colineares, a figura formada pelos segmentos AB, BC e AC chamamos de triângulo. Propriedades P1. Num triângulo qualquer, a soma das

Leia mais

CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE

CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE CURSO DE MATEMÁTICA BÁSICA Trigonometria Aula 0: Matrizes e Determinantes Trigonometria Deduzindo da própria palavra, trigonometria é a parte da geometria que estabelece relações métricas e angulares entre

Leia mais

MATEMÁTICA 2 Ângulos PROFESSOR: TÚLIO 1. b) 52º10 25 d) 127º12 15

MATEMÁTICA 2 Ângulos PROFESSOR: TÚLIO 1. b) 52º10 25 d) 127º12 15 Ângulos 01 O ângulo de 2º 8 25 equivale a: a) 9180 b) 2825 c) 625 d) 7705 02 25347 corresponde a: a) 8º 9 54 b) 9º 25 42 c) 2º 53 47 d) 5º 12 35 e) 7º 2 27 03 (ESA/2000) A transformação de 9º em segundos

Leia mais

Triângulos DEFINIÇÃO ELEMENTOS

Triângulos DEFINIÇÃO ELEMENTOS Triângulos DEFINIÇÃO Do latim - triangulu, é um polígono de três lados e três ângulos. Os três ângulos de um triângulo são designados por três letras maiúsculas, B e C e os lados opostos a eles, pelas

Leia mais

ATIVIDADES COM GEOPLANO ISOMÉTRICO

ATIVIDADES COM GEOPLANO ISOMÉTRICO ATIVIDADES COM GEOPLANO ISOMÉTRICO Observações. Os pinos ou pregos do geoplano isométrico são chamados de pontos. A menor distância entre dois pontos consecutivos é estabelecida como a unidade de comprimento

Leia mais

Ângulos, Triângulos e Quadriláteros. Prof Carlos

Ângulos, Triângulos e Quadriláteros. Prof Carlos Ângulos, Triângulos e Quadriláteros. Prof Carlos RECORDANDO... Ângulos formados por duas retas paralelas cortadas por uma transversal 2 1 3 4 6 5 7 8 Correspondentes: 1 e 5, 2 e 6, 3 e 7, 4 e 8. Alternos

Leia mais

RETAS PARALELAS INTERCEPTADAS POR UMA TRANSVERSAL

RETAS PARALELAS INTERCEPTADAS POR UMA TRANSVERSAL GEOMETRIA PLANA MEDIDAS DE ÂNGULOS: Raso, se é igual a 180º; Nulo, se, é igual a 0º; Reto:é igual a 90 ; Agudo: é maior que 0 e menor que 90 ; Obtuso: é maior que 90 e menor que 180. IMPORTANTE: se a soma

Leia mais

ATIVIDADES COM GEOPLANO QUADRANGULAR

ATIVIDADES COM GEOPLANO QUADRANGULAR ATIVIDADES COM GEOPLANO QUADRANGULAR Observações. Os pinos do geoplano quadrangular são chamados de pontos. A distância horizontal ou vertical entre dois pontos consecutivos é estabelecida como a unidade

Leia mais

DESENHO GEOMÉTRICO Matemática - Unioeste Definição 1. Poligonal é uma figura formada por uma sequência de pontos (vértices)

DESENHO GEOMÉTRICO Matemática - Unioeste Definição 1. Poligonal é uma figura formada por uma sequência de pontos (vértices) DESENHO GEOMÉTRICO Matemática - Unioeste - 2010 1 Polígonos Definição 1. Poligonal é uma figura formada por uma sequência de pontos (vértices) A 1, A 2,..., A n e pelos segmentos (lados) A 1 A 2, A 2 A

Leia mais

Turma preparatória para Olimpíadas.

Turma preparatória para Olimpíadas. p: João Alvaro w: www.matemaniacos.com.br e: joao.baptista@iff.edu.br Turma preparatória para Olimpíadas. TRIÂNGULOS - V01 DEFINIÇÃO Sejam três pontos não colineares A, B e C, o triângulo ABC é uma figura

Leia mais

GEOMETRIA PLANA. Prof. Fabiano

GEOMETRIA PLANA. Prof. Fabiano GEOMETRIA PLANA Prof. Fabiano POLÍGONOS REGULARES R.. a. O O O a R a R R = Raio - raio da circunf. circunscrita - distância do centro a um vértice a = Apótema - Raio da circunferência inscrita - distância

Leia mais

Matemática. Nesta aula iremos aprender as. 1 Ponto, reta e plano. 2 Posições relativas de duas retas

Matemática. Nesta aula iremos aprender as. 1 Ponto, reta e plano. 2 Posições relativas de duas retas Matemática Aula 5 Geometria Plana Alexandre Alborghetti Londero Nesta aula iremos aprender as noções básicas de Geometria Plana. 1 Ponto, reta e plano Estes elementos primitivos da geometria euclidiana

Leia mais

MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON

MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON PROFJWPS@GMAIL.COM DEFINIÇÕES GEOMETRIA PLANA Ponto: Um elemento do espaço que define uma posição. Reta: Conjunto infinito de pontos. Dois pontos são

Leia mais

O que aprendi neste capítulo 3 POLÍGONOS: TRIÂNGULOS E PARALELOGRAMOS

O que aprendi neste capítulo 3 POLÍGONOS: TRIÂNGULOS E PARALELOGRAMOS O que aprendi neste capítulo 3 POLÍGONOS: TRIÂNGULOS E PARALELOGRAMOS POLÍGONOS: PROPRIEDADES E CLASSIFICAÇÃO se prolongarmos os lados de um polígono obtêm-se os ângulos externos; Num polígono: os ângulos

Leia mais

Geometria Plana. Exterior do ângulo Ô:

Geometria Plana. Exterior do ângulo Ô: Geometria Plana Ângulo é a união de duas semiretas de mesma origem, não sendo colineares. Interior do ângulo Ô: Exterior do ângulo Ô: Dois ângulos são consecutivos se, e somente se, apresentarem um lado

Leia mais

EXERCÍCIOS RESOLVIDOS TRIÂNGULOS

EXERCÍCIOS RESOLVIDOS TRIÂNGULOS 1 EXERCÍCIOS RESOLVIDOS TRIÂNGULOS 1. CONSTRUIR UM TRIÂNGULO ESCALENO DE BASE 10 CM E ÂNGULOS ADJASCENTES À BASE DE 75 E 45. Sejam dados a base AB e os ângulos adjacentes à base. Primeiro transporte o

Leia mais

EXERCÍCIOS DE FIXAÇÃO DE RECUPERAÇÃO DE GEOMETRIA 2ª ETAPA

EXERCÍCIOS DE FIXAÇÃO DE RECUPERAÇÃO DE GEOMETRIA 2ª ETAPA 8º ANOA( ) B( )Data: / 05 / 2017. Professor(a): JUNIOR Etapa : 1ª( ) 2ª ( X ) 3ª ( ) Aluno (a): EXERCÍCIOS DE FIXAÇÃO DE RECUPERAÇÃO DE GEOMETRIA 2ª ETAPA 1. O segmento da perpendicular traçada de um vértice

Leia mais

PLANO DE AULA Autora: Descritor: Série: Número de aulas previstas: Conteúdos: Objetivos:

PLANO DE AULA Autora: Descritor: Série: Número de aulas previstas: Conteúdos: Objetivos: PLANO DE AULA Autora: Professora Rosa Descritor: Identificar propriedades de triângulos pela comparação de medidas de lados e ângulos Série: 8º ano Número de aulas previstas: 15 aulas Conteúdos: Elementos

Leia mais

PONTOS NOTÁVEIS DE UM. Professora Joseane Fernandes TRIÂNGULO

PONTOS NOTÁVEIS DE UM. Professora Joseane Fernandes TRIÂNGULO PONTOS NOTÁVEIS DE UM Professora Joseane Fernandes TRIÂNGULO PONTOS NOTÁVEIS DE UM TRIÂNGULO. Baricentro; Incentro; Circuncentro; Ortocentro. BARICENTRO - MEDIANA Mediana segmento de reta que liga o ponto

Leia mais

Classificac a o segundo os lados. Geometria plana e analı tica. Congrue ncia de tria ngulos. Tria ngulo reta ngulo. Tria ngulos

Classificac a o segundo os lados. Geometria plana e analı tica. Congrue ncia de tria ngulos. Tria ngulo reta ngulo. Tria ngulos Classificac a o segundo os lados MA092 Francisco A. M. Gomes UNICAMP - IMECC Classificac a o Um tria ngulo e Equila tero, se tem tre s lados congruentes. Iso sceles, se tem dois lados congruentes. Escaleno,

Leia mais

Teorema do ângulo externo e sua consequencias

Teorema do ângulo externo e sua consequencias Teorema do ângulo externo e sua consequencias Definição. Os ângulos internos de um triângulo são os ângulos formados pelos lados do triângulo. Um ângulo suplementar a um ângulo interno do triângulo é denominado

Leia mais

Geometria Euclidiana Plana Parte I

Geometria Euclidiana Plana Parte I CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2017.1 Geometria Euclidiana Plana Parte I Eleilton Junior - Engenharia Civil O que veremos na aula de hoje? Ângulos opostos pelo vértice Propriedades dos

Leia mais

Coordenadas Cartesianas

Coordenadas Cartesianas 1 Coordenadas Cartesianas 1.1 O produto cartesiano Para compreender algumas notações utilizadas ao longo deste texto, é necessário entender o conceito de produto cartesiano, um produto entre conjuntos

Leia mais

ATIVIDADES COM GEOTIRAS

ATIVIDADES COM GEOTIRAS ATIVIDADES COM GEOTIRAS 1. Material: Geotiras i. Represente varias retas paralelas. ii. Represente duas retas concorrentes em um ponto. 2. Material: Geotiras Represente as seguintes poligonais: i. Poligonal

Leia mais

Polígonos PROFESSOR RANILDO LOPES 11.1

Polígonos PROFESSOR RANILDO LOPES 11.1 Polígonos PROFESSOR RANILDO LOPES 11.1 Polígonos Polígono é uma figura geométrica plana e fechada formada apenas por segmentos de reta que não se cruzam no mesmo plano. Exemplos 11.1 Elementos de um polígono

Leia mais

Geometria. Ana Luísa Correia e João Araújo

Geometria. Ana Luísa Correia e João Araújo Geometria na Luísa orreia e João raújo Lisboa Novembro de 2010 1 1. Triângulos hama-se triângulo a um polígono determinado por três rectas que se cortam duas a duas en três pontos (que não se encontram

Leia mais

Exemplo Aplicando a proporcionalidade existente no Teorema de Tales, determine o valor dos segmentos AB e BC na ilustração a seguir:

Exemplo Aplicando a proporcionalidade existente no Teorema de Tales, determine o valor dos segmentos AB e BC na ilustração a seguir: GEOMETRIA PLANA TEOREMA DE TALES O Teorema de Tales pode ser determinado pela seguinte lei de correspondência: Se duas retas transversais são cortadas por um feixe de retas paralelas, então a razão entre

Leia mais

CURSO DE CAPACITAÇÃO O USO DE FERRAMENTAS TECNOLÓGICAS E AS POSSIBILIDADES PEDAGÓGICAS NA FORMAÇÃO DOS DOCENTES NA REDE MUNICIPAL DE GURUPI TO

CURSO DE CAPACITAÇÃO O USO DE FERRAMENTAS TECNOLÓGICAS E AS POSSIBILIDADES PEDAGÓGICAS NA FORMAÇÃO DOS DOCENTES NA REDE MUNICIPAL DE GURUPI TO CURSO DE CAPACITAÇÃO O USO DE FERRAMENTAS TECNOLÓGICAS E AS POSSIBILIDADES PEDAGÓGICAS NA FORMAÇÃO DOS DOCENTES NA REDE MUNICIPAL DE GURUPI TO A UTILIZAÇÃO DO SOFTWARE GEOGEBRA COMO FERRAMENTA DE ENSINO

Leia mais

Relações Trigonométricas nos Triângulos

Relações Trigonométricas nos Triângulos Relações Trigonométricas nos Triângulos Introdução - Triângulos Um triângulo é uma figura geométric a plana, constituída por três lados e três ângulos internos. Esses ângulos, tradicionalmente, são medidos

Leia mais

Polígonos. Disciplina: Matemática Aplicada Prof. Filipe Arantes Fernandes

Polígonos. Disciplina: Matemática Aplicada Prof. Filipe Arantes Fernandes Polígonos Disciplina: Matemática Aplicada Prof. Filipe Arantes Fernandes filipe.arantes@ifsudestemg.edu.br Polígonos Polígonos é uma linha fechada formada apenas por segmentos de reta que não se cruzam

Leia mais

Aula 7 Complementos. Exercício 1: Em um plano, por um ponto, existe e é única a reta perpendicular

Aula 7 Complementos. Exercício 1: Em um plano, por um ponto, existe e é única a reta perpendicular MODULO 1 - AULA 7 Aula 7 Complementos Apresentamos esta aula em forma de Exercícios Resolvidos, mas são resultados importantes que foram omitidos na primeira aula que tratou de Conceitos Básicos. Exercício

Leia mais

GEOMETRIA PLANA. Segmentos congruentes: Dois segmentos ou ângulos são congruentes quando têm as mesmas medidas.

GEOMETRIA PLANA. Segmentos congruentes: Dois segmentos ou ângulos são congruentes quando têm as mesmas medidas. PARTE 01 GEOMETRIA PLANA Introdução A Geometria está apoiada sobre alguns postulados, axiomas, definições e teoremas, sendo que essas definições e postulados são usados para demonstrar a validade de cada

Leia mais

Aula 2 Congruência de Triângulos

Aula 2 Congruência de Triângulos Aula 2 Congruência de Triângulos A idéia de congruência entre segmentos, ângulos e triângulos formouse intuitivamente, levando-se em conta que dois segmentos congruentes, dois ângulos congruentes e dois

Leia mais

SOLUCÃO DAS ATIVIDADES COM GEOPLANO QUADRANGULAR

SOLUCÃO DAS ATIVIDADES COM GEOPLANO QUADRANGULAR SOLUCÃO DAS ATIVIDADES COM GEOPLANO QUADRANGULAR Observações. Os pinos do geoplano quadrangular são chamados de pontos. A distância horizontal ou vertical entre dois pontos consecutivos é estabelecida

Leia mais

PROGRAMA INSTITUCIONAL DE BOLSA DE INICIÇÃO Á DOCENCIA PROJETO MATEMÁTICA 1 TRIGONOMETRIA

PROGRAMA INSTITUCIONAL DE BOLSA DE INICIÇÃO Á DOCENCIA PROJETO MATEMÁTICA 1 TRIGONOMETRIA PROGRAMA INSTITUCIONAL DE BOLSA DE INICIÇÃO Á DOCENCIA PROJETO MATEMÁTICA 1 TRIGONOMETRIA Curitiba 2014 TÓPICOS DE GEOMETRIA PLANA Ângulos classificação: Ângulo reto: mede 90. Med(AôB) = 90 Ângulo agudo:

Leia mais

ATIVIDADES COM VARETAS

ATIVIDADES COM VARETAS ATIVIDADES COM VARETAS Em todas as atividades é usado o Material: Varetas. Nos casos específicos onde o trabalho é realizado com varetas congruentes será especificado como Material: varetas do mesmo comprimento.

Leia mais

Desenho Geométrico. Desenho Geométrico. Desenho Geométrico. Desenho Geometrico

Desenho Geométrico. Desenho Geométrico. Desenho Geométrico. Desenho Geometrico UNIVERSIDADE ESTADUAL VALE DO ACARAÚ- UVA DEPARTAMENTO DE MATEMÁTICA Desenho Geométrico Desenho Geométrico Desenho Geométrico Desenho Geometrico Daniel Caetano de Figueiredo Daniel Caetano de Figueiredo

Leia mais

Axiomas de Incidência Axiomas de Ordem Axiomas de Congruência Axioma das paralelas Axiomas de Continuidade

Axiomas de Incidência Axiomas de Ordem Axiomas de Congruência Axioma das paralelas Axiomas de Continuidade 1 GEOMETRIA PLANA Atualizado em 04/08/2008 www.mat.ufmg.br/~jorge Bibliografia 1. Pogorélov, A.V. Geometria Elemental Editora Mir. 2. Dolce, Osvaldo e Nicolau, Pompeu Geometria Plana Volume 9 da Coleção

Leia mais

GABARITO DA BATERÍA DE EXERCÍCIOS DE DESENHO GEOMÉTRICO - 7o ANO

GABARITO DA BATERÍA DE EXERCÍCIOS DE DESENHO GEOMÉTRICO - 7o ANO Escola de Educação Infantilr Ensino Fundamental e Médio General Osório. Campo Grande - M S, d e de 2017. Professora: Roberta Olarte Martins ANO. Aluno (a ): n. NOTA GABARITO DA BATERÍA DE EXERCÍCIOS DE

Leia mais

I - INTRODUÇÃO II LUGARES GEOMÉTRICOS, ÂNGULOS E SEGMENTOS 1. POSTULADOS DO DESENHO GEOMÉTRICO

I - INTRODUÇÃO II LUGARES GEOMÉTRICOS, ÂNGULOS E SEGMENTOS 1. POSTULADOS DO DESENHO GEOMÉTRICO MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPARTAMENTO DE EXPRESSÃO GRÁFICA Professores: Deise Maria Bertholdi Costa, Luzia Vidal de Souza, Paulo Henrique Siqueira,

Leia mais

Geometria Plana - Aula 05

Geometria Plana - Aula 05 Geometria Plana - Aula 05 Elaine Pimentel Universidade Federal de Minas Gerais, Departamento de Matemática Geometria Plana Especialização 2008 - p. 1 Esquema da aula Quadrilátero - definição e. Quadriláteros

Leia mais

SAGRADO REDE DE EDUCAÇÃO PROFESSORA :MÁRCIA CONTE 3º ANO ENSINO MÉDIO 2012

SAGRADO REDE DE EDUCAÇÃO PROFESSORA :MÁRCIA CONTE 3º ANO ENSINO MÉDIO 2012 SAGRADO REDE DE EDUCAÇÃO PROFESSORA :MÁRCIA CONTE 3º ANO ENSINO MÉDIO 2012 -POLÍGONOS REGULARES -APÓTEMAS DE BASES REGULARES -PONTOS NOTÁVEIS NO TRIÂNGULO -COMPRIMENTO DA CIRCUNFERÊNCIA -ÁREA DO CÍRCULO

Leia mais

Modulo 1. Seja x a medida do ângulo procurado. x complemento: 90º x suplemento: 180º x Interpretando o enunciado temos:

Modulo 1. Seja x a medida do ângulo procurado. x complemento: 90º x suplemento: 180º x Interpretando o enunciado temos: Modulo 1 1) Seja x a medida do ângulo procurado x complemento: 90º x suplemento: 180º x Interpretando o enunciado temos: 180º - x = (90º x) + 16º 180º - x = 270º 3x + 48º 2x = 138º x = 69 3 2) â + b =

Leia mais

01- Determine a soma das medidas dos ângulos internos dos seguintes polígonos:

01- Determine a soma das medidas dos ângulos internos dos seguintes polígonos: PROFESSOR: EQUIPE E MTEMÁTI NO E QUESTÕES - GEOMETRI - 8º NO - ENSINO FUNMENTL ============================================================================ 01- etermine a soma das medidas dos ângulos internos

Leia mais

Semi-Reta: é uma parte da reta limitada por apenas um ponto. É representada como mostra a figura acima.

Semi-Reta: é uma parte da reta limitada por apenas um ponto. É representada como mostra a figura acima. 01. Conceitos Primitivos: Ponto: é representado por uma letra maiúscula do nosso alfabeto. Reta: é representado por uma letra minúscula do nosso alfabeto. Plano: é representado por uma letra grega. 0.

Leia mais

(A) 30 (B) 6 (C) 200 (D) 80 (E) 20 (A) 6 (B) 10 (C) 15 (D) 8 (E) 2 (A) 15 (B) 2 (C) 6 (D) 27 (E) 4 (A) 3 (B) 2 (C) 6 (D) 27 (E) 4

(A) 30 (B) 6 (C) 200 (D) 80 (E) 20 (A) 6 (B) 10 (C) 15 (D) 8 (E) 2 (A) 15 (B) 2 (C) 6 (D) 27 (E) 4 (A) 3 (B) 2 (C) 6 (D) 27 (E) 4 TEOREMA DE TALES. Na figura abaixo as retas r, s e t são (A) 0 (B) 6 (C) 00 (D) 80 (E) 0. Três retas paralelas são cortadas por duas Se AB = cm; BC = 6 cm e XY = 0 cm a medida, em cm, de XZ é: (A) 0 (B)

Leia mais

Matemática GEOMETRIA PLANA. Professor Dudan

Matemática GEOMETRIA PLANA. Professor Dudan Matemática GEOMETRIA PLANA Professor Dudan Ângulos Geometria Plana Ângulo é a região de um plano concebida pelo encontro de duas semirretas que possuem uma origem em comum, chamada vértice do ângulo. A

Leia mais

MATEMÁTICA II. Aula 01. 1º Bimestre. Revisão _ Produtos Notáveis Professor Luciano Nóbrega

MATEMÁTICA II. Aula 01. 1º Bimestre. Revisão _ Produtos Notáveis Professor Luciano Nóbrega 1 MATEMÁTICA II Aula 01 Revisão _ Produtos Notáveis Professor Luciano Nóbrega 1º Bimestre PRODUTOS NOTÁVEIS 2 Do dicionário : Produto É o resultado de uma multiplicação; Notável Adjetivo digno de ser notado,

Leia mais

Polos Olímpicos de Treinamento. Aula 16. Curso de Geometria - Nível 2. Pontos Notáveis 2: Incentro. Prof. Cícero Thiago

Polos Olímpicos de Treinamento. Aula 16. Curso de Geometria - Nível 2. Pontos Notáveis 2: Incentro. Prof. Cícero Thiago Polos Olímpicos de Treinamento urso de Geometria - Nível Prof. ícero Thiago ula 16 Pontos Notáveis : ncentro Teorema 1. Seja XOY umângulodadoep umpontoemseuinterior. Então, adistância de P a XO é igual

Leia mais

Exercícios Propostos. Exercício 1: Cinco retas distintas em um plano cortam-se em n pontos. Determine o maior valor que n pode assumir.

Exercícios Propostos. Exercício 1: Cinco retas distintas em um plano cortam-se em n pontos. Determine o maior valor que n pode assumir. Exercícios Propostos Exercício 1: Cinco retas distintas em um plano cortam-se em n pontos. Determine o maior valor que n pode assumir. Exercício 2: As bissetrizes de dois ângulos adjacentes AÔB e BÔC são,

Leia mais

NOÇÕES DE GEOMETRIA PLANA

NOÇÕES DE GEOMETRIA PLANA NOÇÕES DE GEOMETRIA PLANA Polígonos são figuras planas fechadas com lados retos. Todo polígono possui os seguintes elementos: ângulos, vértices, diagonais e lados. Altura de um triângulo é o segmento de

Leia mais

Exercícios sobre Triângulo (Lei Angular, Congruência e Classificação)

Exercícios sobre Triângulo (Lei Angular, Congruência e Classificação) Exercícios sobre Triângulo (Lei Angular, Congruência e Classificação) 1. (Utfpr) Um triângulo isósceles tem dois lados congruentes (de medidas iguais) e o outro lado é chamado de base. Se em um triângulo

Leia mais

CADERNO DE EXERCÍCIOS 10

CADERNO DE EXERCÍCIOS 10 Capítulo 1 e 2 - Introdução à Geometria e Ângulos Nível 1 01 (CTU/90) Dois ângulos adjacentes tem os lados não comuns alinhados. Um deles vale 38º 21 13. Quanto mede o outro? 02 Dois ângulos opostos pelo

Leia mais

Axiomas e Proposições

Axiomas e Proposições Axiomas e Proposições Axiomas: I Incidência I.1 Existem infinitos pontos no plano. I.2 Por dois pontos distintos (ou seja, diferentes) passa uma única reta. I.3 Dada uma reta, existem infinitos pontos

Leia mais

POLÍGONOS TRIÂNGULOS E QUADRILÁTEROS

POLÍGONOS TRIÂNGULOS E QUADRILÁTEROS 7º ANO POLÍGONOS TRIÂNGULOS E QUADRILÁTEROS Ângulos e triângulos Nuno Marreiros Antes de começar O Alfabeto Grego O alfabeto utilizado para escrever a Língua grega teve o seu desenvolvimento por volta

Leia mais

Lista de Estudo para a Prova de 1º Ano. Prof. Lafayette

Lista de Estudo para a Prova de 1º Ano. Prof. Lafayette Lista de Estudo para a Prova de 1º Ano Prof. Lafayette 1. Um triângulo ABC é retângulo em A e os ângulos em B e C são, respectivamente, de 30 e 60. A hipotenusa mede 4. a) Faça um desenho representativo.

Leia mais

Receita para ter sucesso em Matemática

Receita para ter sucesso em Matemática Receita para ter sucesso em Matemática Muita atenção nas aulas + Estudo q. b. + Interesse + Organização + Salpicar com muita brincadeira nos tempos livres + Misturar com a disponibilidade, a exigência

Leia mais

Mat. Mat. 2. Luanna Ramos. Monitor: Roberta Teixeira

Mat. Mat. 2. Luanna Ramos. Monitor: Roberta Teixeira Mat. Professor: Alex Amaral Luanna Ramos Monitor: Roberta Teixeira Triângulos: Cevianas e pontos notáveis 07/09 mar RESUMO Ceviana é qualquer segmento que parte de um vértice de um triângulo e corta o

Leia mais

Lista 5. Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 4.1, pág. 147 em diante.

Lista 5. Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 4.1, pág. 147 em diante. MA13 Exercícios das Unidades 8, 9 e 10 2014 Lista 5 Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 4.1, pág. 147 em diante. 1) As retas r, s e t são paralelas com s entre r e t. As transversais

Leia mais

Objetivos da aula. 1. Saber usar o ângulo externo de um polígono. 2. Saber que ângulos alternos internos têm a mesma medida.

Objetivos da aula. 1. Saber usar o ângulo externo de um polígono. 2. Saber que ângulos alternos internos têm a mesma medida. Objetivos da aula 1 Saber usar o ângulo externo de um polígono 2 Saber que ângulos alternos internos têm a mesma medida 3 Saber calcular a soma dos ângulos internos de um polígono 4 Saber a relação entre

Leia mais

CM127 - Lista Mostre que os pontos médios de um triângulo isósceles formam um triângulo também isósceles.

CM127 - Lista Mostre que os pontos médios de um triângulo isósceles formam um triângulo também isósceles. CM127 - Lista 2 Congruência de Triângulos e Desigualdade Triangular 1. Faça todos os exercícios dados em aula. 2. Em um triângulo ABC a altura do vértice A é perpendicular ao lado BC e divide BC em dois

Leia mais

TERCEIRA SÉRIE ENSINO MÉDIO INTEGRADO

TERCEIRA SÉRIE ENSINO MÉDIO INTEGRADO 1 TEREIR SÉRIE ENSINO MÉDIO INTEGRDO TRIÂNGULOS E POLÍGONOS ONVEXOS Prof. Rogério Rodrigues NOME :... NÚMERO :... TURM :... 2 III - TRIÂNGULOS E POLÍGONOS ONVEXOS III. 1 ) DEFINIÇÃO E ELEMENTOS : Todo

Leia mais

a) 15º b) 16º c) 15º15 d) 16º15 e) 17º30 b) 53º e 2º c) 40º e 45º d) 42º e 45º b) suplementares c) replementares d) congruentes b) 60º c) 65º d) 70º

a) 15º b) 16º c) 15º15 d) 16º15 e) 17º30 b) 53º e 2º c) 40º e 45º d) 42º e 45º b) suplementares c) replementares d) congruentes b) 60º c) 65º d) 70º Capítulo 1 e 2 Introdução à Geometria e Ângulos Exercícios Nível 1 01 (CTU/90) Dois ângulos adjacentes têm os lados não comuns a- linhados. Um deles vale 38º 21 13. Quanto mede o outro? 02 Dois ângulos

Leia mais

SOLUCÃO DAS ATIVIDADES COM GEOTIRAS

SOLUCÃO DAS ATIVIDADES COM GEOTIRAS SOLUCÃO DAS ATIVIDADES COM GEOTIRAS 1. Representação de retas nas seguintes posições: i. Retas paralelas ii. Retas concorrentes 2. Representação de poligonais: i. Aberta simples ii. Aberta não simples

Leia mais

4. Saber a relação entre o número de lados e diagonais em polígonos convexos.

4. Saber a relação entre o número de lados e diagonais em polígonos convexos. Objetivos da aula 1 Saber usar o ângulo externo de um polígono 2 Saber que ângulos alternos internos têm a mesma medida 3 Saber calcular a soma dos ângulos internos de um polígono 4 Saber a relação entre

Leia mais

ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO. 1- Ângulos Definição: Chama-se ângulo à porção de plano limitada por duas semirretas com a mesma origem.

ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO. 1- Ângulos Definição: Chama-se ângulo à porção de plano limitada por duas semirretas com a mesma origem. ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO 1ª Ficha Informativa MATEMÁTICA - A 10º Ano 2012/2013 1- Ângulos Definição: Chama-se ângulo à porção de plano limitada por duas semirretas com a mesma origem. Definição:

Leia mais

30 s Volume 16 Matemática

30 s Volume 16 Matemática 0 s Volume 16 Matemática www.cursomentor.com 2 de dezembro de 2014 Q1. Um triângulo ABC é retângulo em A e possui a altura AH relativa a hipotenusa valendo 2, 4. Se BH vale 1, 8, calcule AC. Q2. Dois triângulos

Leia mais

Teorema de Pitágoras

Teorema de Pitágoras Teorema de Pitágoras Luan Arjuna 1 Introdução Uma das maiores preocupações dos matemáticos da antiguidade era a determinação de comprimentos: desde a altura de um edifício até a distância entre duas cidades,

Leia mais

I - INTRODUÇÃO 1. POSTULADOS DO DESENHO GEOMÉTRICO

I - INTRODUÇÃO 1. POSTULADOS DO DESENHO GEOMÉTRICO MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPARTAMENTO DE EXPRESSÃO GRÁFICA Professora Deise Maria Bertholdi Costa Disciplina CD046 Expressão Gráfica I Curso Engenharia

Leia mais

Trigonometria no Triângulo Retângulo

Trigonometria no Triângulo Retângulo Trigonometria no Triângulo Retângulo Prof. Márcio Nascimento marcio@matematicauva.org Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina:

Leia mais

» Teorema (CROSSBAR) Seja ABC um triângulo e seja X um ponto em seu interior. Então todo raio AX corta o lado BC.

» Teorema (CROSSBAR) Seja ABC um triângulo e seja X um ponto em seu interior. Então todo raio AX corta o lado BC. » Teorema (CROSSBAR) Seja ABC um triângulo e seja X um ponto em seu interior. Então todo raio AX corta o lado BC. Iniciamos, nesta seção, o estudo sistemático da geometria dos quadriláteros. Dentre os

Leia mais

SOLUCÃO DAS ATIVIDADES COM VARETAS

SOLUCÃO DAS ATIVIDADES COM VARETAS SOLUCÃO DAS ATIVIDADES COM VARETAS Em todas as atividades é usado o Material: Varetas. Nos casos específicos onde o trabalho é realizado com varetas congruentes será especificado como Material: varetas

Leia mais

Aula 3 Polígonos Convexos

Aula 3 Polígonos Convexos MODULO 1 - AULA 3 Aula 3 Polígonos Convexos Conjunto convexo Definição: Um conjunto de pontos chama-se convexo se, quaisquer que sejam dois pontos distintos desse conjunto, o segmento que tem esses pontos

Leia mais

Geometria Plana 1 (UEM-2013) Em um dia, em uma determinada região plana, o Sol nasce às 7 horas e se põe às 19 horas. Um observador, nessa região, deseja comparar a altura de determinados objetos com o

Leia mais

Grupo 1 - PIC OBMEP 2011 Módulo 2 - Geometria. Resumo do Encontro 6, 22 de setembro de Questões de geometria das provas da OBMEP

Grupo 1 - PIC OBMEP 2011 Módulo 2 - Geometria. Resumo do Encontro 6, 22 de setembro de Questões de geometria das provas da OBMEP Grupo 1 - PIC OBMEP 2011 Módulo 2 - Geometria Resumo do Encontro 6, 22 de setembro de 2012 Questões de geometria das provas da OBMEP http://www.obmep.org.br/provas.htm 1. Área: conceito e áreas do quadrado

Leia mais

8 TRIÂNGULOS 8.1 PONTOS NOTÁVEIS DE UM TRIÂNGULO

8 TRIÂNGULOS 8.1 PONTOS NOTÁVEIS DE UM TRIÂNGULO 32 8 TRIÂNGULOS 8.1 PONTOS NOTÁVEIS DE UM TRIÂNGULO Definição: O encontro das mediatrizes dos lados de um triângulo é único e chama-se circuncentro. Propriedades: 1) O circuncentro é o centro da circunferência

Leia mais

Lista 3. Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 2.5, pág. 81 em diante.

Lista 3. Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 2.5, pág. 81 em diante. MA13 Exercícios das Unidades 4 e 5 2014 Lista 3 Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 2.5, pág. 81 em diante. 1) Seja ABCD um quadrilátero qualquer. Prove que os pontos médios

Leia mais

1.4 Determine o ponto médio e os pontos de triseção do segmento de extremidades A(7) e B(19).

1.4 Determine o ponto médio e os pontos de triseção do segmento de extremidades A(7) e B(19). Capítulo 1 Coordenadas cartesianas 1.1 Problemas Propostos 1.1 Dados A( 5) e B(11), determine: (a) AB (b) BA (c) AB (d) BA 1. Determine os pontos que distam 9 unidades do ponto A(). 1.3 Dados A( 1) e AB

Leia mais