MATEMÁTICA II. Aula 01. 1º Bimestre. Revisão _ Produtos Notáveis Professor Luciano Nóbrega

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "MATEMÁTICA II. Aula 01. 1º Bimestre. Revisão _ Produtos Notáveis Professor Luciano Nóbrega"

Transcrição

1 1 MATEMÁTICA II Aula 01 Revisão _ Produtos Notáveis Professor Luciano Nóbrega 1º Bimestre

2 PRODUTOS NOTÁVEIS 2 Do dicionário : Produto É o resultado de uma multiplicação; Notável Adjetivo digno de ser notado, percebido. 01 Cite uma frase que utilize a palavra NOTÁVEL. Observe a figura abaixo: 02 Quanto mede o lado do quadrado de área x 2? x 2 I I I Quanto mede o lado do quadrado de área 16? 04 Qual a área da figura I? 05 Qual a área da figura I I? 06 Utilizando um polinômio na forma reduzida, represente a área total da figura. 07 Utilizando um binômio, represente a medida do lado da figura. 08 Qual, das seguintes expressões, está correta? (x + 4) 2 = x (x + 4) 2 = x x + 4 2

3 PRODUTOS NOTÁVEIS 09 Complete a tabela: a b (a + b) 2 a 2 + b 2 a 2 + 2ab + b Resolva algebricamente: (a + b) Escreva, por extenso, o resultado obtido na questão anterior. Resolva os produtos notáveis abaixo: 12 (5x + y 4 ) 2 13 (x + y) 2. (x + y) 14 (x. y) 2 (x + y) 2 2.(x + y) 15 ( 2x / 3 + 4y) 2 16 (5 + 6) 2 17 (a + b + c) 2

4 PRODUTOS NOTÁVEIS Observe a figura abaixo: x 18 Utilizando um binômio, represente a medida do lado da figura I. 4 I I I x 19 Utilizando um trinômio, represente a área da figura I. 20 Qual a área da figura I I? I I I y 21 Qual a área da figura I I I? y 22 Qual a diferença entre as áreas das figuras I I e I I I, ou seja, A II A III? 23 Então, adicionando y 2 à figura I I I, o que obtemos? 24 Do quadrado de lado x, retirando um retângulo de área xy, adicionando um quadrado de lado y e subtraindo outro retângulo de área xy, o que obtemos? 25 Escreva, por extenso, o resultado obtido na questão 19.

5 x PRODUTOS NOTÁVEIS Observe a figura abaixo: x y 26 Utilizando um binômio, represente a área da figura I (a figura com formato de L ). y I I I y Decompondo o L, obtemos dois retângulos que possuem o lado x y em comum: x y x y Que podem ser reordenados: 5 x 27 Utilizando um produto, represente a área do L depois de reordenado. x y x y x 28 Resolva o produto obtido na questão anterior. 29 Escreva, por extenso, o resultado obtido na questão anterior.

6 PRODUTOS NOTÁVEIS 6 Resolva os produtos abaixo: 30 (x + a).(x + b) Calcule cada expressão: 39 ( 3) ( 2) ( 5) 0 31 (x a).(x b) 32 (x + a).(x b) 33 (x + y) 3 34 (x y) 3 35 (4x + 5y).(4x 5y) 36 (x + y).(x 2 xy + y 2 ) 37 (x y).(x 2 + xy + y 2 ) 38 ( a + b).( a b) 40 ( 5) /5 23 ( 5 / 3 ) 2 41 [(16) 3/4 ] 1/ (a 2 + b 2 ).(x 2 + y 2 ) 43 (ax by) 2 + (ay + bx) 2 44 (a 2 + b 2 ) 2 45 (a + b) 2 + (a b) 2 46 (a + b) 2 (a b) 2 47 [ 1 / 2 (a + b)] 2 [ 1 / 2 (a b)] 2

7 7 MATEMÁTICA II Aula 02 Revisão _ Fatoração Professor Luciano Nóbrega 1º Bimestre

8 FATORAÇÃO 8 Do dicionário : Fatoração Ação de fatorar, ou seja, escrever com fatores. Fatores são como são chamados os termos da multiplicação. Observe a figura: 48 Qual é a área da figura I I I? I a 49 Qual é a área da figura I I e da figura I? I I I I I x b c 50 Qual é a área total da figura? Responda de duas formas diferentes: a) Utilizando um trinômio; b) Na forma fatorada. Existem vários casos de fatoração. Vejamos os principais: FATOR COMUM 51 Fatore os seguintes termos: a) 2x + 8y 6z b) 2x 2 6xy c) 12x 2 y 3 + 6xyz 18y 2 z d) (a + b).x + (a +b).y 52 Sabendo que x + y = 25 e y = 4, determine o valor numérico de xy + y 2 de duas maneiras: a) Inicialmente, determinando o valor de x; b) Inicialmente, fatorando.

9 FATORAÇÃO 9 FATORAÇÃO POR AGRUPAMENTO Observe a figura: 53 Qual a área da figura I? b I V I I I 54 Quais as áreas das figuras I I, I I I e I V? a I x I I y 55 Qual é a área total da figura? Responda de duas formas diferentes: a) Utilizando um polinômio; b) Na forma fatorada. 56 Considere a expressão 6x 2 y 12x + xy 2 2y: a) Qual a fatoração entre os termos 6x 2 y 12x? b) Qual o fatoração entre os termos xy 2 2y? c) Existe um fator comum entre as respostas dos itens a e b. Colocando esse termo em evidência, fatore a expressão dada. 57 Fatore os seguintes termos: a) 3x + 3y + 12x + 12y b) x 2 3x + ax 3a c) 2b 2 + 2c 3 + ab 2 + ac 3 d) 2ax + 4bx 3ay 6by

10 FATORAÇÃO 10 DIFERENÇA ENTRE DOIS QUADRADOS Observe a figura: Concluímos na questão 26 que a área da figura pode x y ser representada por x 2 y Utilizando um produto, qual a área da figura I? y 59 Utilizando um produto, qual a área da figura I I? x I y 60 Considere a soma das respostas obtidas nas x y I I questões 58 e 59. Existe um fator comum entre as respostas. Colocando esse termo em evidência, fatore a expressão. x 61 Fatore os seguintes termos: a) x 2 y 2 b) x 2 25 c) a 2 16 d) 1 16b 2 e) 3 x f) x 4 81 g) x 4 1 h) 4 / 25 a 2 62 Lembre-se que a medida da área de um círculo é dada por πr 2. Qual é a área da coroa circular? Responda de duas formas diferentes: a) Utilizando um polinômio; b) Na forma fatorada.

11 FATORAÇÃO 11 TRINÔMIO QUADRADO PERFEITO 63 Fatore os seguintes termos: a) x 2 + 2xy + y 2 b) x 2 2xy + y 2 c) 4a 2 12ab 2 + 9b 4 d) 1 8b + 16b 2 e) 3x 2 + 6x + 3 f) 16a 4 8a 2 b 4 + b 8 TRINÔMIO DO 2º GRAU 64 Fatore os seguintes termos: a) x 2 + (a + b)x + ab b) x 2 + 5x + 6 c) a a + 42 d) x 2 (a + b)x + ab e) x 2 5x + 6 f ) a 2 16a + 60 g) x 2 + (a b)x ab h) x 2 + x 6 i ) a 2 a 6 SOMA (& DIFERENÇA) DE CUBOS 65 Fatore os seguintes termos: a) x 3 + y 3 b) x 3 y 3 c) a 3 27 d) x 3 e) x 3 1 f) 1 + x 3 66 Simplifique as expressões até que obtenha um número real. a) _2x 5y_ b) _6a 3_ c) _3x x + 60_ 4x 10y 1 2a 5(x + 4) + x 2 +4x d) _ 9x x 36_ e) 3 3 f ) 6x 2 9x (x 2) x + 30x 2

12 FATORAÇÃO 12 Fatore as expressões abaixo e, quando possível, substitua o valor da variável dada: 67 _x 2 9_ ; x = 3 x 3 73 _x 2 x 6 ; x = 2 x ; x = 2 68 _4x 2 1_ ; x = 1 / 2 2x 1 69 _x 5 ; x = 5 x 5 70 _x 4 81 ; x = 3 x _ x + 1 ; x = 1 16x ; x = 1 74 ; t = 0 75 ; h = 0 76 ; x = 2 77 ; t = 3 78 ; x = 0 80 ; x = 2 81 ; x = 9 82 ; x = 4 83 ; x = 9 84 com x = 1

13 13 MATEMÁTICA II Aula 03 Relações Métricas no Triângulo Retângulo Professor Luciano Nóbrega 1º Bimestre

14 RELAÇÕES MÉTRICAS NO TRIÂNGULO RETÂNGULO 14 CLASSIFICAÇÃO DOS TRIÂNGULOS Inicialmente, vamos relembrar como classificam se os triângulos. 85 QUANTO AOS LADOS ISÓSCELES, EQUILÁTERO E ESCALENO Classifique os triângulos a seguir quanto aos seus lados: a) 3 lados iguais b) 2 lados iguais e 1 diferente c) 3 lados diferentes 86 QUANTO AOS ÂNGULOS ACUTÂNGULO, OBTUSÂNGULO E RETÂNGULO Classifique os triângulos a seguir quanto aos seus ângulos: b) 3 ângulos agudos a) 1 ângulo reto c) 1 ângulo obtuso 87 (FUVEST) Na figura ao lado, AB = BD = CD = BC, então: A) y = 2x B) x = y C) 3x = 2y D) y = 3x 88 CONDIÇÃO DE EXISTÊNCIA DE UM TRIÂNGULO Num triângulo o comprimento de qualquer lado é menor que a soma dos outros dois. Verifique se é possível construir triângulos cujos lados tenham as medidas seguintes: a) 4, 6 e 9 cm b) 7, 4 e 2 cm c) 2, 2 e 4 cm

15 RELAÇÕES MÉTRICAS NO TRIÂNGULO RETÂNGULO Classifique cada sentença como verdadeira (V) ou falsa (F). Cada sentença FALSA deve ser justificada com cálculos ou com palavras. ( ) Nos triângulos, o maior ângulo é sempre oposto ao maior lado. Da mesma forma, o menor ângulo situa se oposto ao menor lado. ( ) Nos triângulos isósceles, os ângulos opostos aos lados congruentes, são também congruentes. ( ) Em qualquer triângulo, a soma das medidas dos ângulos internos resulta SEMPRE em 180º. ( ) Em qualquer triângulo, a medida de um ângulo externo é igual à soma das medidas dos ângulos internos não adjacentes. ( ) Em um determinado triângulo ABC, Â = 50º e Ĉ = 60º. Se D e E são pontos sobre os lados AB e BC, respectivamente, tais que DB = BE, C então a medida do ângulo BÊD é de 70º. E 90 (UFPE) Na figura ao lado, AB = BC = CD = DE = EA. A medida do ângulo DÂC mede: A A) 30º B) 36º C) 40º D) 45º E) 48º B D 91 (UFRJ) Considere um triângulo isósceles em que β = 70º, γ > α, r a bissetriz do ângulo γ, então o menor ângulo formado pela altura relativa ao lado BC e r é: A) 10º B) 35º C) 45º D) 55º E) 60º

16 RELAÇÕES MÉTRICAS NO TRIÂNGULO RETÂNGULO 16 Observe os triângulos: 92 CASO AA Se dois triângulos têm dois ângulos internos congruentes, então os triângulos são semelhantes. Sabendo disso, verifique que os três triângulos acima são semelhantes. 93 Considere os triângulos ABH e AHC. Fazendo as razões entre seus lados correspondentes, prove que h 2 = m.n 94 Escreva por extenso que h 2 = m.n H H 95 Considere os triângulos ABC e AHC. Prove que b 2 = m.a 97 Considere os triângulos ABC e AHB. Prove que c 2 = n.a 96 Escreva por extenso que b 2 = m.a 98 Escreva por extenso que c 2 = n.a 99 Multiplique, termo a termo, os resultados das questões 95 e 97 e demonstre que b.c = h.a 100 Escreva por extenso que b.c = h.a 101 (Teorema de Pitágoras) Agora, adicione, termo a termo, os resultados das questões 95 e 97 e demonstre que a 2 = b 2 + c Escreva por extenso que a 2 = b 2 + c 2

17 RELAÇÕES MÉTRICAS NO TRIÂNGULO RETÂNGULO Os catetos de um triângulo retângulo medem 3cm e 4cm. Calcule as medidas da hipotenusa, da altura relativa a ela e das projeções ortogonais dos catetos sobre elas. 104 Determine o valor de x, y e z na figura: y z 105 Os catetos de um triângulo retângulo medem 6m e 8m. calcule a medida da projeção do maior cateto sobre a hipotenusa. 106 Calcule os elementos a,h, m e n no triângulo retângulo abaixo. 107 (FUVEST-SP) Uma escada que mede 4 m tem uma de suas extremidades aparada no topo de um muro, e a outra extremidade dista 2,4 m da base do muro. Qual a altura do muro? 108 Num triângulo retângulo a hipotenusa vale 10 m e a diferença entre os catetos é de 2 m. Então, os catetos valem, em metros: A) 4 e 6 B) 5 e 7 C) 6 e 8 D) 7 e 9 E) 10 e 12

18 RELAÇÕES MÉTRICAS NO TRIÂNGULO RETÂNGULO No mapa, as cidades A, B e C são vértices de um triângulo retângulo, sendo que o ângulo reto é Â. A estrada AC tem 40km e a estrada BC tem 50km. As montanhas impedem a construção de uma estrada que ligue diretamente A com B. Por isso, será construída uma estrada da cidade A para a estrada BC, de modo que ela seja a mais curta possível. A) Qual é comprimento da estrada que será construída? B) O ponto onde esta estrada encontra a estrada BC dista quantos quilômetros da cidade B? 110 (UFRS) O lampião representado na figura suspenso por duas cordas perpendiculares presas ao teto. Sabendo que essas cordas medem 1 / 6 e 2 / 5, a distância do lampião ao teto é: A) 1,4 B) 1,3 C) 2 / 13 D) 1 / 2 E) 6 / (FUVEST-SP) Nesta figura, o quadrado ABCD está inscrito no triângulo AMN, cujos lados AM e AN medem, respectivamente, m e n: Então, o lado do quadrado mede:

19 RELAÇÕES MÉTRICAS NO TRIÂNGULO RETÂNGULO (FUVEST-SP) Em um recente vendaval, um poste de luz de 9 m de altura quebrou-se em um ponto a distância x do solo. A parte do poste acima da fratura inclinou-se e sua extremidade superior encostou no solo a uma distância de 3 m da base do mesmo. A que altura x do solo o poste quebrou? 113 Considere uma folha de papel retangular de lados 3 e 4 cm. Suponha que ela seja dobrada uma vez de modo que os vértices opostos se sobreponham. A medida do comprimento de dessa dobra é: A) 3,5 B) 3,75 C) 4,5 D) 4, Determine a fórmula da diagonal d de um quadrado de lado l. Para isso, siga o procedimento: 1º) Faça um esboço da figura escolhida; 2º) Apresente todos os cálculos necessários; 3º) Justifique com palavras, o resultado final encontrado. 115 Determine a fórmula da altura h de um triângulo equilátero de lado l e, em seguida, justifique com palavras, o resultado final encontrado.

20 RELAÇÕES MÉTRICAS NO TRIÂNGULO RETÂNGULO Calcule o valor de x, sabendo que, na figura a seguir, temos três quadrados. 117 Durante um treinamento, dois maratonistas partem de uma mesma cidade em direção reta, um em sentido leste e o outro em sentido norte. Determine x 6 9 a distância que os separa depois de 2 horas, sabendo que a velocidade dos atletas são de 20 km / h e 15 km / h, respectivamente. 118 (FGV) Considere as retas r, s, t e u, com r // u.o valor em graus de 2x + 3y é: A) 450º B) 500º C) 520º D) 660º E) 580º 30º y x 120º 119 (UFPR) Embora o desenho ao lado pareça representar uma figura em três dimensões, ele foi feito no plano usando se apenas losangos congruentes entre si. Os ângulos internos desses losangos medem:

21 RELAÇÕES MÉTRICAS NO TRIÂNGULO RETÂNGULO (UFRN) A diferença entre os ângulos agudos de um triângulo retângulo é de 50º. Qual a medida do menor ângulo desse triângulo? A) 10º B) 20º C) 25º D) 40º E) 70º 121 (FUVEST) No retângulo a seguir, o valor, em graus, de x + y é: A) 50 B) 90 C) 120 D)130 E) º x y 122 (FUVEST) A sombra de um poste vertical, projetada pelo sol sobre um chão plano, mede 12 m. Nesse mesmo instante, a sombra de um bastão vertical de 1 m de altura mede 0,6 m. A altura do poste, em metros, é: A) 6 B) 7,2 C) 12 D)20 E) (CESGRANRIO) Uma folha quadrada de papel ABCD é dobrada de modo que o vértice C coincida com o ponto M, ponto médio do lado AB. No lado BC, com a dobra, fica destacado o ponto P. Se o lado de ABCD mede 1 m, então o comprimento do segmento BP, em metros, é: A) 0,3 B) 0,325 C) 0,375 D) 0,45 E) 0,5

22 GABARITO 22 1) Pessoal. Ex: O Professor tem uma dedicação notável. 2) x 3) 4 4) 4x 5) 4x 6) x 2 +8x+16 7) x+4 8) x 2 +8x ) a 2 +2ab+b 2 12) 25x 2 +10xy 4 +y 8 13)x 3 +3x 2 y+3xy 2 +y 3 14) x 2 y 2 x 2 2xy y 2 2x 2y 9) ) O quadrado da soma de dois termos é igual ao quadrado do primeiro termo, mais duas vezes o primeiro termo vezes o segundo termo, mais o quadrado do segundo termo. 15) (4x^2) / xy / 3 +16y 2 16) ) a 2 +b 2 +c 2 +2ab+2ac+2bc 18) x y ) (x y) 2 = x 2 2xy y 2 20) xy 21) xy y 2 22) y 2 23) xy 24) A figura I. 25) O quadrado da diferença de dois termos é igual ao quadrado do primeiro termo, menos duas vezes o primeiro termo vezes o segundo termo, mais o quadrado do segundo termo. 26) x 2 y 2 27) (x + y).(x y) 28) x 2 y 2 29) O produto entre a soma e a 30) x 2 + (a + b)x + ab 31) x 2 (a + b)x + ab diferença de dois termos é igual ao quadrado do primeiro menos o 32) x 2 + (a b)x ab 33) x 3 + 3x 2 y + 3xy 2 + y 3 quadrado do segundo. 34) x 3 3x 2 y + 3xy 2 y 3 35) 16x 2 25y 2 36) x 3 + y 3 37) x 3 y 3 38) a b 39) 16 40) 7 / 25 41) ) = 43) 44) a 4 + 2a 2 b 2 + b 4 45) 2a 2 + 2b 2 46) 4ab 47) ab 48) cx 49) bx ; ax 50) ax + bx + cx 51) a) 2.(x + 4y 3z) ;b) 2x.(x 3y) ;c) 6y.(2x2y2 + 6xz 3yz) 52) a) = b) ) ax 54) ay; by; bx 55) a) ax + ay + bx + by ; b) (x + y).(a + b) 56) a) 6x(xy 2) ; b) y(xy 2) ; c) (xy 2)(6x + y) 57) a) 15.(x + y) ; b) (x 3).(x a) ; c) (2 + a).(b 2 + c 3 ) ; d) (a + 2b).(2x 3y) 58) x(x y) 59) y(x y) 60) (x y)(x + y) 61) a) (x y)(x + y) ; b) (x + 5)(x 5) ; c) (a + 4)(a 4) ; d) (1 + 4b)(1 4b) ; e)( 3 + x)( 3 x);f)(x 2 + 9)(x + 3)(x 3);g)(x 2 + 1)(x 2 1);h)( 2 / 5 + a)( 2 / 5 a) 64) a) (x + a)(x + b) ; b) (x + 3)(x + 2) ; c) (a + 6)(a + 7) ; d) (x a)(x b) 62) a) π.r 2 π.r 2 ; b) π.(r + r).(r r) 63) a) (x + y) 2 ; b) (x y) 2 ; c) (2a - 3b) 2 ; d) (1 4b) 2 ; e) 3.(x + 1) 2 ; f) [(2a + b 2 ) (2a b 2 )] 2 e) (x 3)(x 2) ; f) (a 6)(a 10) ; g) (x+a)(x b) ; h) (x+3)(x 2) ; i) (a 3)(a + 2)

23 GABARITO 65) a) (x + y)(x 2 xy + x 2 ) ; b) (x y)(x 2 + xy + x 2 ) ; c) (x 3)(x 2 + 3x + 9) ; d) (5 6x)( x + 36x 2 ) ; e) (x 1)(x 2 + x + 1) ; f) (1 + y)(1 x + x 2 ) 66) a) 1 / 2 ; b) 3 ; c) 3 ; d) 9 ; e) 1 / 2 3 ; f) 1 / 5 67) 6 68) 2 69) ) ) 1 / 64 72) 2 73) 5 74) 1 / 6 75) 6 76) 5 77) 6 / 5 78) 8 79) 9 / 8 80) 1 / 12 81) 6 82) 1 / 16 83) ) 32 85) a) Equilátero b) Isósceles c) Escaleno 86) a) Retângulo b) Acutângulo c) Obtusângulo 87) D 88) a) Ok b) Não c) Não 89) V, V, V, V, F 90) B 91) D 92) Verifique! 93) Demonstre! 94) O quadrado da altura relativa à hipotenusa é igual ao produto entre as projeções dos catetos 95) Demonstre! 96) O quadrado do cateto é igual ao rpoduto entre sua projeção e a hipotenusa. 97) Demonstre! 98) Igual a 96 99) Demonstre! 100) O produto entre os catetos é igual ao produto entre a hipotenusa e altura. 101) Demonstre! 102) O quadrado da hipotenusa é igual a soma dos quadrados dos catetos. 103) a) 5 b) 2,4 c) 9 / 5 e 16 / 5 104) x = 6 y = 2 13 z = ) 6,4 106) a = 13 h = 60 / 13 m = 25 / 13 n = 144 / ) 3,2 108) A 109) a) 24 b) ) C 111) A 112) 4 113) B 114) d = l 2 ; A diagonal de um quadrado é igual ao produto da medida do lado por 2 115) h = l 3 / 2 ; A altura de um triângulo equilátero é igual ao rpoduto da medida do lado por l 3 dividido por ) 4 117) 50 km 118) A 119) 60º, 60º, 120º e 120º 120) B 121) D 122) D 123) C

24 A questão primordial não é o que sabemos, mas como sabemos. Aristóteles Complete com números: ção buscar no meu colo me beijar. pois ja rezei para encontrar de te levar para Vá correndo acessar... Você só paga R$ 5,00 (Brincadeirinha... É de graça!)

NOME: ANO: 3º Nº: PROFESSOR(A):

NOME: ANO: 3º Nº: PROFESSOR(A): NOME: ANO: º Nº: PROFESSOR(A): Ana Luiza Ozores DATA: Algumas definições Triângulos: REVISÃO Lista 06 Triângulos e Quadriláteros Classificação quanto aos lados: Escaleno (todos os lados diferentes), Isósceles

Leia mais

01- Assunto: Equação do 2º grau. Se do quadrado de um número real positivo x subtrairmos 4 unidades, vamos obter o número 140. Qual é o número x?

01- Assunto: Equação do 2º grau. Se do quadrado de um número real positivo x subtrairmos 4 unidades, vamos obter o número 140. Qual é o número x? EXERCÍCIO COMPLEMENTARES - MATEMÁTICA - 9º ANO - ENSINO FUNDAMENTAL - ª ETAPA ============================================================================================== 01- Assunto: Equação do º grau.

Leia mais

(A) 30 (B) 6 (C) 200 (D) 80 (E) 20 (A) 6 (B) 10 (C) 15 (D) 8 (E) 2 (A) 15 (B) 2 (C) 6 (D) 27 (E) 4 (A) 3 (B) 2 (C) 6 (D) 27 (E) 4

(A) 30 (B) 6 (C) 200 (D) 80 (E) 20 (A) 6 (B) 10 (C) 15 (D) 8 (E) 2 (A) 15 (B) 2 (C) 6 (D) 27 (E) 4 (A) 3 (B) 2 (C) 6 (D) 27 (E) 4 TEOREMA DE TALES 1. Na figura abaixo as retas r, s e t são (A) 0 (B) 6 (C) 00 (E) 0. Três retas paralelas são cortadas por duas Se AB = cm; BC = 6 cm e XY = 10 cm a medida, em cm, de XZ é: (A) 0 (B) 10

Leia mais

Polígonos PROFESSOR RANILDO LOPES 11.1

Polígonos PROFESSOR RANILDO LOPES 11.1 Polígonos PROFESSOR RANILDO LOPES 11.1 Polígonos Polígono é uma figura geométrica plana e fechada formada apenas por segmentos de reta que não se cruzam no mesmo plano. Exemplos 11.1 Elementos de um polígono

Leia mais

Exercícios Extras-Relações Métricas no Triângulo Retângulo-Lei dos Cossenos e Senos- 1 s anos-2015

Exercícios Extras-Relações Métricas no Triângulo Retângulo-Lei dos Cossenos e Senos- 1 s anos-2015 Exercícios Extras-Relações Métricas no Triângulo Retângulo-Lei dos Cossenos e Senos- 1 s anos-015 1. (Ufsj 013) Um triângulo isósceles inscrito em um círculo de raio igual a 8 cm possui um lado que mede

Leia mais

Geometria plana. Índice. Polígonos. Triângulos. Congruência de triângulos. Semelhança de triângulos. Relações métricas no triângulo retângulo

Geometria plana. Índice. Polígonos. Triângulos. Congruência de triângulos. Semelhança de triângulos. Relações métricas no triângulo retângulo Índice Geometria plana Polígonos Triângulos Congruência de triângulos Semelhança de triângulos Relações métricas no triângulo retângulo Quadriláteros Teorema de Tales Esquadros de madeira www.ser.com.br

Leia mais

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE. Professor: João Carmo

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE. Professor: João Carmo INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE Professor: João Carmo DEFINIÇÃO Triângulo ou trilátero é um polígono de três lados. Observações: a) O triângulo não possui diagonais;

Leia mais

Aula 10 Triângulo Retângulo

Aula 10 Triângulo Retângulo Aula 10 Triângulo Retângulo Projeção ortogonal Em um plano, consideremos um ponto e uma reta. Chama-se projeção ortogonal desse ponto sobre essa reta o pé da perpendicular traçada do ponto à reta. Na figura,

Leia mais

Desenho e Projeto de Tubulação Industrial Nível II

Desenho e Projeto de Tubulação Industrial Nível II Desenho e Projeto de Tubulação Industrial Nível II Módulo I Aula 04 TRIÂNGULOS Triângulo é um polígono de três lados. É o polígono que possui o menor número de lados. Talvez seja o polígono mais importante

Leia mais

1. Área do triângulo

1. Área do triângulo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Geometria Plana II Prof.:

Leia mais

2) Na figura abaixo, sabe se que RS // DE e que AE = 42 cm. Nessas condições, determine as medidas x e y indicadas.

2) Na figura abaixo, sabe se que RS // DE e que AE = 42 cm. Nessas condições, determine as medidas x e y indicadas. Lista de exercícios Prof Wladimir 1 ano A, B, C, D 1) A figura abaixo nos mostra duas avenidas que partem de um mesmo ponto A e cortam duas ruas paralelas. Na primeira avenida, os quarteirões determinados

Leia mais

MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON

MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON PROFJWPS@GMAIL.COM DEFINIÇÕES GEOMETRIA PLANA Ponto: Um elemento do espaço que define uma posição. Reta: Conjunto infinito de pontos. Dois pontos são

Leia mais

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 4 Professor Marco Costa

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 4 Professor Marco Costa 1 Projeto Jovem Nota 10 1. (Ufscar 2001) Considere o triângulo de vértices A, B, C, representado a seguir. a) Dê a expressão da altura h em função de c (comprimento do lado AB) e do ângulo A (formado pelos

Leia mais

A lei dos co-senos. Utilizando as razões trigonométricas nos triângulos. b = = 48. b = 4 cos B = 4 8 = 1 2 Þ B = 60º

A lei dos co-senos. Utilizando as razões trigonométricas nos triângulos. b = = 48. b = 4 cos B = 4 8 = 1 2 Þ B = 60º A UA UL LA A lei dos co-senos Introdução Utilizando as razões trigonométricas nos triângulos retângulos, podemos resolver vários problemas envolvendo ângulos e lados. Esse tipo de problema é conhecido

Leia mais

GEOMETRIA: REVISÃO PARA O TSE Marque, com um X, as propriedades que possuem cada um dos quadriláteros indicados:

GEOMETRIA: REVISÃO PARA O TSE Marque, com um X, as propriedades que possuem cada um dos quadriláteros indicados: Atividade: Quadriláteros (ECA: Atividade REMARCADA para 15/06/2015) Série: 1ª Série do Ensino Médio Etapa: 2ª Etapa 2015 Professor: Cadu Pimentel GEOMETRIA: REVISÃO PARA O TSE 05 01. Marque, com um X,

Leia mais

PROGRAMA INSTITUCIONAL DE BOLSA DE INICIÇÃO Á DOCENCIA PROJETO MATEMÁTICA 1 TRIGONOMETRIA

PROGRAMA INSTITUCIONAL DE BOLSA DE INICIÇÃO Á DOCENCIA PROJETO MATEMÁTICA 1 TRIGONOMETRIA PROGRAMA INSTITUCIONAL DE BOLSA DE INICIÇÃO Á DOCENCIA PROJETO MATEMÁTICA 1 TRIGONOMETRIA Curitiba 2014 TÓPICOS DE GEOMETRIA PLANA Ângulos classificação: Ângulo reto: mede 90. Med(AôB) = 90 Ângulo agudo:

Leia mais

CM127 - Lista 3. Axioma da Paralelas e Quadriláteros Notáveis. 1. Faça todos os exercícios dados em aula.

CM127 - Lista 3. Axioma da Paralelas e Quadriláteros Notáveis. 1. Faça todos os exercícios dados em aula. CM127 - Lista 3 Axioma da Paralelas e Quadriláteros Notáveis 1. Faça todos os exercícios dados em aula. 2. Determine as medidas x e y dos ângulos dos triângulos nos itens abaixo 3. Dizemos que um triângulo

Leia mais

Lista de exercícios sobre triângulos. (Comitê olímpico)

Lista de exercícios sobre triângulos. (Comitê olímpico) Lista de exercícios sobre triângulos. (Comitê olímpico) 1. (Ufpe) Na figura ilustrada abaixo, os segmentos AB, BC, CD, DE e EA são congruentes. Determine, em graus, a medida do ângulo CAD. 2. (Ufrj) O

Leia mais

Tecnologia em Construções de Edifícios

Tecnologia em Construções de Edifícios 1 Tecnologia em Construções de Edifícios Aula 9 Geometria Analítica Professor Luciano Nóbrega 2º Bimestre 2 GEOMETRIA ANALÍTICA INTRODUÇÃO A geometria avançou muito pouco desde o final da era grega até

Leia mais

Nº de Questões. FATORAÇÃO Fatorar um polinômio significa escrever esse polinômio como uma multiplicação de dois ou mais fatores.

Nº de Questões. FATORAÇÃO Fatorar um polinômio significa escrever esse polinômio como uma multiplicação de dois ou mais fatores. COLÉGIO SETE DE SETEMBRO Rua Ver. José Moreira, 80 Fone 301-301 Paulo Afonso BA Aluno Ano 8º Turma Curso Ensino Fundamental II Nº de Questões Tipo de Prova Bimestre Data Nota 09 --- I 01/09/01 Disciplina

Leia mais

Prof. Luiz Carlos Moreira Santos. Questão 01)

Prof. Luiz Carlos Moreira Santos. Questão 01) Questão 01) A figura abaixo representa o perfil de uma escada cujos degraus têm todos a mesma extensão (vide figura), além de mesma altura. Se AB = m e BCA mede 0º, então a medida da extensão de cada degrau

Leia mais

LISTA DE EXERCÍCIOS P4 3º BIM 2015 POTÊNCIAS PARTE 1. 1) Calcule: a) b) c) d) 2) (PUC-SP) Calcule: a) 2 4. b) 4 2 d) 3) (FUVEST SP) Qual a metade de

LISTA DE EXERCÍCIOS P4 3º BIM 2015 POTÊNCIAS PARTE 1. 1) Calcule: a) b) c) d) 2) (PUC-SP) Calcule: a) 2 4. b) 4 2 d) 3) (FUVEST SP) Qual a metade de LISTA DE EXERCÍCIOS P4 º BIM 0 PARTE POTÊNCIAS ) Calcule: a) 0, b) 0, c) 0, d),4 e), f) 8 8, ) (PUC-SP) Calcule: a) 4 c) 4 e) 4 b) 4 d) 4 f) 4 ) (FUVEST SP) Qual a metade de 4) Calcule: a) 0 b)? ) Calcule

Leia mais

EXERCÍCIOS DE REVISÃO MATEMÁTICA II CONTEÚDO: Relações Métricas nos Triãngulos 3 a SÉRIE ENSINO MÉDIO

EXERCÍCIOS DE REVISÃO MATEMÁTICA II CONTEÚDO: Relações Métricas nos Triãngulos 3 a SÉRIE ENSINO MÉDIO EXERCÍCIOS DE REVISÃO MATEMÁTICA II CONTEÚDO: Relações Métricas nos Triãngulos 3 a SÉRIE ENSINO MÉDIO ======================================================================= 1) (FUVEST-SP) - Dados: MÔB

Leia mais

1.4 Determine o ponto médio e os pontos de triseção do segmento de extremidades A(7) e B(19).

1.4 Determine o ponto médio e os pontos de triseção do segmento de extremidades A(7) e B(19). Capítulo 1 Coordenadas cartesianas 1.1 Problemas Propostos 1.1 Dados A( 5) e B(11), determine: (a) AB (b) BA (c) AB (d) BA 1. Determine os pontos que distam 9 unidades do ponto A(). 1.3 Dados A( 1) e AB

Leia mais

esquerda e repetia esse processo até chegar ao ponto A novamente. a) Faça um esboço dessa figura com os três primeiros segmentos.

esquerda e repetia esse processo até chegar ao ponto A novamente. a) Faça um esboço dessa figura com os três primeiros segmentos. ATIVIDADES PARA RECUPERAÇÃO PARALELA - MATEMÁTICA PROFESSOR: CLAUZIR PAIVA NASCIMENTO TURMA: 8º ANO REVISÃO 1) A medida de um ângulo interno de um polígono é o dobro da medida do seu ângulo externo. Qual

Leia mais

UNIVERSIDADE FEDERAL DE OURO PRETO - DEMAT 3 a Lista de Exercícios

UNIVERSIDADE FEDERAL DE OURO PRETO - DEMAT 3 a Lista de Exercícios UNIVERSIDADE FEDERAL DE OURO PRETO - DEMAT 3 a Lista de Exercícios 1. Um triângulo isósceles tem base medindo 8cm e lados iguais com medidas de 5cm. Qual é a área do triângulo? 2. Em um triângulo retângulo,

Leia mais

PROFESSOR FLABER 2ª SÉRIE Circunferência

PROFESSOR FLABER 2ª SÉRIE Circunferência PROFESSOR FLABER ª SÉRIE Circunferência 01. (Fuvest SP) A reta s passa pelo ponto (0,3) e é perpendicular à reta AB onde A=(0,0) e B é o centro da circunferência x + y - x - 4y = 0. Então a equação de

Leia mais

Capítulo 1: Fração e Potenciação

Capítulo 1: Fração e Potenciação 1 Capítulo 1: Fração e Potenciação 1.1. Fração Fração é uma forma de expressar uma quantidade sobre o todo. De início, dividimos o todo em n partes iguais e, em seguida, reunimos um número m dessas partes.

Leia mais

RETAS PARALELAS INTERCEPTADAS POR UMA TRANSVERSAL

RETAS PARALELAS INTERCEPTADAS POR UMA TRANSVERSAL GEOMETRIA PLANA MEDIDAS DE ÂNGULOS: Raso, se é igual a 180º; Nulo, se, é igual a 0º; Reto:é igual a 90 ; Agudo: é maior que 0 e menor que 90 ; Obtuso: é maior que 90 e menor que 180. IMPORTANTE: se a soma

Leia mais

COLÉGIO CARDEALARCOVERDE REDE REDE DIOCESANA DE EDUCAÇÃO

COLÉGIO CARDEALARCOVERDE REDE REDE DIOCESANA DE EDUCAÇÃO Série: 9ºANO Turma: Disciplina: GEOMETRIA Professor: Mozart William EXERCÍCIO DE FIXAÇÃO II SEMESTRE 1) Num triângulo retângulo, a razão entre as projeções dos catetos sobre a hipotenusa é 16 9. Sabendo

Leia mais

Aula 11 Polígonos Regulares

Aula 11 Polígonos Regulares MODULO 1 - AULA 11 Aula 11 Polígonos Regulares Na Aula 3, em que apresentamos os polígonos convexos, vimos que um polígono regular é um polígono convexo tal que: a) todos os lados são congruentes entre

Leia mais

Aula 05 - Erivaldo MATEMÁTICA BÁSICA

Aula 05 - Erivaldo MATEMÁTICA BÁSICA Aula 05 - Erivaldo MATEMÁTICA BÁSICA Principais produtos notáveis I- (a + b).(a b) = a 2 a.b + b.a b 2 I- (a + b).(a b) = a 2 b 2 O Produto de uma soma por uma diferença resulta no quadrado do primeiro

Leia mais

ROTEIRO DE RECUPERAÇÃO DE MATEMÁTICA (1º SEMESTRE) 9º ANO. Introdução Potenciação. Radiciação

ROTEIRO DE RECUPERAÇÃO DE MATEMÁTICA (1º SEMESTRE) 9º ANO. Introdução Potenciação. Radiciação ROTEIRO DE RECUPERAÇÃO DE MATEMÁTICA (1º SEMESTRE) 9º ANO Nome: Nº - Série/Ano Data: / / 2017. Professor(a): Cauê / Yuri / Marcello / Diego / Rafael Os conteúdos essenciais do semestre. ÁLGEBRA: Capítulo

Leia mais

Coordenadas Cartesianas

Coordenadas Cartesianas 1 Coordenadas Cartesianas 1.1 O produto cartesiano Para compreender algumas notações utilizadas ao longo deste texto, é necessário entender o conceito de produto cartesiano, um produto entre conjuntos

Leia mais

Lista de Exercícios Nº 02 Tecnologia em Mecatrônica Prof.: Carlos Bezerra

Lista de Exercícios Nº 02 Tecnologia em Mecatrônica Prof.: Carlos Bezerra TEXTO PARA A PRÓXIMA QUESTÃO (Ufba 96) Na(s) questão(ões) a seguir escreva nos parenteses a soma dos itens corretos. 1. Sendo m = x + 1, n = x - x, p = x - 1, pode-se afirmar: (01) m = n. p (02) m + n

Leia mais

MATEMÁTICA II LISTA DE GEOMETRIA PLANA - III

MATEMÁTICA II LISTA DE GEOMETRIA PLANA - III MATEMÁTICA II LISTA DE GEOMETRIA PLANA - III 0 Dois círculos de centros A e B são tangentes exteriormente e tangenciam interiormente um círculo de centro C. Se AB = cm, AC = 7 cm e BC = 3 cm, então o raio

Leia mais

3. Dois topógrafos, ao medirem a largura de um rio, obtiveram as medidas mostradas no desenho abaixo. Determine a largura do rio.

3. Dois topógrafos, ao medirem a largura de um rio, obtiveram as medidas mostradas no desenho abaixo. Determine a largura do rio. Lista de Exercícios - 02 Pré Universitário Uni-Anhanguera Aluno (a): Nº. Professor: Flávio Série: Disciplina: Matemática Data da entrega: 25/03/2014 Observação: A lista deverá apresentar capa e enunciados.

Leia mais

Semelhança de triângulos. 3 Exercícios para aula. 2 Casos de semelhança. 2.3 Lado proporcional, Lado proporcionl, Lado proporcional (L p, L p, L p )

Semelhança de triângulos. 3 Exercícios para aula. 2 Casos de semelhança. 2.3 Lado proporcional, Lado proporcionl, Lado proporcional (L p, L p, L p ) Semelhança de triângulos 1 Definição 2.3 Lado proporcional, Lado proporcionl, Lado proporcional (L p, L p, L p ) Dois triângulos são semelhantes se os ângulos internos forem ordenadamente congruentes e

Leia mais

ENQ Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. Questão 01 [ 1,25 ]

ENQ Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. Questão 01 [ 1,25 ] MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 017 Gabarito Questão 01 [ 1,5 ] Encontre as medidas dos lados e ângulos de dois triângulos ABC diferentes tais que AC = 1, BC = e A BC = 0 Considere

Leia mais

CM127 - Lista Mostre que os pontos médios de um triângulo isósceles formam um triângulo também isósceles.

CM127 - Lista Mostre que os pontos médios de um triângulo isósceles formam um triângulo também isósceles. CM127 - Lista 2 Congruência de Triângulos e Desigualdade Triangular 1. Faça todos os exercícios dados em aula. 2. Em um triângulo ABC a altura do vértice A é perpendicular ao lado BC e divide BC em dois

Leia mais

Relações Trigonométricas nos Triângulos

Relações Trigonométricas nos Triângulos Relações Trigonométricas nos Triângulos Introdução - Triângulos Um triângulo é uma figura geométric a plana, constituída por três lados e três ângulos internos. Esses ângulos, tradicionalmente, são medidos

Leia mais

1 SEMELHANÇA EM TRIÂNGULOS RETÂNGULOS DICA DO MINGUADO. Matemática 2 Pedro Paulo. Semelhança entre e :

1 SEMELHANÇA EM TRIÂNGULOS RETÂNGULOS DICA DO MINGUADO. Matemática 2 Pedro Paulo. Semelhança entre e : Matemática 2 Pedro Paulo GEOMETRIA PLANA XIII 1 SEMELHANÇA EM TRIÂNGULOS RETÂNGULOS Seja um triângulo retângulo, com ângulos agudos e. Traçando a altura relativa à hipotenusa, formamos os triângulos retângulos

Leia mais

Aula 21 - Baiano GEOMETRIA PLANA

Aula 21 - Baiano GEOMETRIA PLANA Aula 21 - Baiano GEOMETRIA PLANA Definição: Polígono de quatro lados formado por quatro vértices não colineares dois a dois. A D S i = 180º (n 2)= 180º (4 2)= 360º S e = 360º B C d = n. (n - 3) 2 = 4.

Leia mais

1. Calcular x e y sabendo-se que (1, 2, x,...) e (12, y, 4,...) são grandezas inversamente proporcionais.

1. Calcular x e y sabendo-se que (1, 2, x,...) e (12, y, 4,...) são grandezas inversamente proporcionais. Nome: nº Professor(a): Série: 1ª EM. Turma: Data: / /2013 Sem limite para crescer Bateria de Exercícios de Matemática II 1º Trimestre 1. Calcular x e y sabendo-se que (1, 2, x,...) e (12, y, 4,...) são

Leia mais

Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b. a) a = 3, b, b R. b) a = 3 e b = 1. c) a = 3 e b 1. d) a 3

Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b. a) a = 3, b, b R. b) a = 3 e b = 1. c) a = 3 e b 1. d) a 3 01 Na forma reduzida, temos: (r) y = 3x + 1 (s) y = ax + b a) a = 3, b, b R b) a = 3 e b = 1 c) a = 3 e b 1 d) a 3 1 0 y = 3x + 1 m = 3 A equação que apresenta uma reta com o mesmo coeficiente angular

Leia mais

NOTAÇÕES. : inversa da matriz M : produto das matrizes M e N : segmento de reta de extremidades nos pontos A e B

NOTAÇÕES. : inversa da matriz M : produto das matrizes M e N : segmento de reta de extremidades nos pontos A e B NOTAÇÕES R C : conjunto dos números reais : conjunto dos números complexos i : unidade imaginária i = 1 det M : determinante da matriz M M 1 MN AB : inversa da matriz M : produto das matrizes M e N : segmento

Leia mais

3.6 TRIÂNGULOS. Definição: Dados três pontos A, B e C, no plano e não-colineares, a figura formada pelos segmentos AB, BC e AC chamamos de triângulo.

3.6 TRIÂNGULOS. Definição: Dados três pontos A, B e C, no plano e não-colineares, a figura formada pelos segmentos AB, BC e AC chamamos de triângulo. 21 3.6 TRIÂNGULOS Definição: Dados três pontos A, B e C, no plano e não-colineares, a figura formada pelos segmentos AB, BC e AC chamamos de triângulo. Propriedades P1. Num triângulo qualquer, a soma das

Leia mais

Geometria Plana Noções Primitivas

Geometria Plana Noções Primitivas Geometria Plana Noções Primitivas Questão 1 (CESGRANRIO-85) Numa carpintaria, empilham-se 50 tábuas, umas de 2 cm e outras de 5 cm de espessura. A altura da pilha é de 154 cm. A diferença entre o número

Leia mais

Geometria Analítica - AFA

Geometria Analítica - AFA Geometria Analítica - AFA x = v + (AFA) Considerando no plano cartesiano ortogonal as retas r, s e t, tais que (r) :, (s) : mx + y + m = 0 e (t) : x = 0, y = v analise as proposições abaixo, classificando-

Leia mais

ATIVIDADES COM GEOPLANO QUADRANGULAR

ATIVIDADES COM GEOPLANO QUADRANGULAR ATIVIDADES COM GEOPLANO QUADRANGULAR Observações. Os pinos do geoplano quadrangular são chamados de pontos. A distância horizontal ou vertical entre dois pontos consecutivos é estabelecida como a unidade

Leia mais

Turma preparatória para Olimpíadas.

Turma preparatória para Olimpíadas. p: João Alvaro w: www.matemaniacos.com.br e: joao.baptista@iff.edu.br Turma preparatória para Olimpíadas. TRIÂNGULOS - V01 DEFINIÇÃO Sejam três pontos não colineares A, B e C, o triângulo ABC é uma figura

Leia mais

LISTA 2 GEOMETRIA PLANA PROF. NATHALIE 1º Ensino Médio

LISTA 2 GEOMETRIA PLANA PROF. NATHALIE 1º Ensino Médio LISTA 2 GEOMETRIA PLANA PROF. NATHALIE 1º Ensino Médio 11. Em cada uma das figuras, o centro da circunferência é O. Calcule o valor de x. (a) 35 b) 70 ) a) b) 01. Qual é o polígono cuja soma dos ângulos

Leia mais

Aluno: N. Data: / /2011 Série: 9º EF. Disciplina: Matemática Exercícios Trigonometria no triângulo retângulo.

Aluno: N. Data: / /2011 Série: 9º EF. Disciplina: Matemática Exercícios Trigonometria no triângulo retângulo. Aluno: N Data: / /2011 Série: 9º EF COLÉGIO MIRANDA SISTEMA ANGLO DE ENSINO Prof.: Disciplina: Matemática Exercícios Trigonometria no triângulo retângulo. 1ª bateria: 2ª bateria: 3ª bateria: 1. Um terreno

Leia mais

LISTA DE EXERCÍCIOS 9º ano 2º bim. Prof. Figo, Cebola, Sandra e Natália

LISTA DE EXERCÍCIOS 9º ano 2º bim. Prof. Figo, Cebola, Sandra e Natália 1. A idade de Paulo, em anos, é um número inteiro par que satisfaz a desigualdade x - x + 5 < 0. O número que representa a idade de Paulo pertence ao conjunto a) {1, 1, 14}. b) {15, 16, 17}. c) {18, 19,

Leia mais

QUESTÕES TRIÂNGULO RETÂNGULO

QUESTÕES TRIÂNGULO RETÂNGULO QUESTÕES TRIÂNGULO RETÂNGULO 1. (Ita 015) Seja ABCD um trapézio isósceles com base maior AB medindo 15, o lado AD medindo 9 e o ângulo ADB ˆ reto. A distância entre o lado AB e o ponto E em que as diagonais

Leia mais

OS PRISMAS. 1) Conceito :

OS PRISMAS. 1) Conceito : 1 SÍNTESE DE CONTEÚDO MATEMÁTICA SEGUNDA SÉRIE - ENSINO MÉDIO ASSUNTO : OS PRISMAS NOME :...NÚMERO :... TURMA :... ============================================================ OS PRISMAS 1) Conceito :

Leia mais

Matemática - 3ª série Roteiro 04 Caderno do Aluno. Estudo da Reta

Matemática - 3ª série Roteiro 04 Caderno do Aluno. Estudo da Reta Matemática - 3ª série Roteiro 04 Caderno do Aluno Estudo da Reta I - Inclinação de uma reta () direção É a medida do ângulo que a reta forma com o semieixo das abscissas (positivo) no sentido anti-horário.

Leia mais

1. Posição de retas 11 Construindo retas paralelas com régua e compasso 13

1. Posição de retas 11 Construindo retas paralelas com régua e compasso 13 Sumário CAPÍTULO 1 Construindo retas e ângulos 1. Posição de retas 11 Construindo retas paralelas com régua e compasso 13 2. Partes da reta 14 Construindo segmentos congruentes com régua e compasso 15

Leia mais

3. São dadas as coordenadas de u e v em relação a uma base ortonormal fixada. Calcule a medida angular entre u e v.

3. São dadas as coordenadas de u e v em relação a uma base ortonormal fixada. Calcule a medida angular entre u e v. 1 a Produto escalar, produto vetorial 2 a Lista de Exercícios MAT 105 1. Sendo ABCD um tetraedro regular de aresta unitária, calcule AB, DA. 2. Determine x de modo que u e v sejam ortogonais. (a) u = (x

Leia mais

TRIÂNGULO RETÂNGULO. Triângulo retângulo é todo triângulo que tem um ângulo reto. O triângulo ABC é retângulo em A e seus elementos são:

TRIÂNGULO RETÂNGULO. Triângulo retângulo é todo triângulo que tem um ângulo reto. O triângulo ABC é retângulo em A e seus elementos são: TRIÂNGULO RETÂNGULO Triângulo retângulo é todo triângulo que tem um ângulo reto. O triângulo ABC é retângulo em A e seus elementos são: a: hipotenusa b e c: catetos h: altura relativa a hipotenusa m e

Leia mais

O quadrado e outros quadriláteros

O quadrado e outros quadriláteros Acesse: http://fuvestibular.com.br/ A UUL AL A O quadrado e outros quadriláteros Para pensar No mosaico acima, podemos identificar duas figuras bastante conhecidas: o quadrado, de dois tamanhos diferentes,

Leia mais

Questão 1. Questão 2. Lista de Exercícios - 9º ano - Matemática - 3º trimestre Aluno: Série: Turma: Data:

Questão 1. Questão 2. Lista de Exercícios - 9º ano - Matemática - 3º trimestre Aluno: Série: Turma: Data: Lista de Exercícios - 9º ano - Matemática - 3º trimestre Aluno: Série: Turma: Data: Questão 1 Demonstre que, em um triângulo equilátero de lado l, a área é dada por. Questão 2 Faça o que se pede nos itens

Leia mais

Estudo da Trigonometria (I)

Estudo da Trigonometria (I) Instituto Municipal de Ensino Superior de Catanduva SP Curso de Licenciatura em Matemática 3º ano Prática de Ensino da Matemática III Prof. M.Sc. Fabricio Eduardo Ferreira fabricio@fafica.br Estudo da

Leia mais

Módulo Quadriláteros. Relação de Euler para Quadrilátero. 9 ano E.F. Professores Cleber Assis e Tiago Miranda

Módulo Quadriláteros. Relação de Euler para Quadrilátero. 9 ano E.F. Professores Cleber Assis e Tiago Miranda Módulo Quadriláteros Relação de Euler para Quadrilátero 9 ano E.F. Professores Cleber Assis e Tiago Miranda Quadriláteros Relação de Euler para Quadriláteros Exercícios de Fixação Exercício 6. No triângulo

Leia mais

PREPARATÓRIO PROFMAT/ AULA 8 Geometria

PREPARATÓRIO PROFMAT/ AULA 8 Geometria PREPARATÓRIO PROFMAT/ AULA 8 Geometria QUESTÕES DISCURSIVAS Questão 1. (PROFMAT-2012) As figuras a seguir mostram duas circunferências distintas, com centros C 1 e C 2 que se intersectam nos pontos A e

Leia mais

Instituto Federal de Educação, Ciência e Tecnologia Rio Grande do Sul Campus Rio Grande CAPÍTULO 4 GEOMETRIA ANALÍTICA

Instituto Federal de Educação, Ciência e Tecnologia Rio Grande do Sul Campus Rio Grande CAPÍTULO 4 GEOMETRIA ANALÍTICA Instituto Federal de Educação, Ciência e Tecnologia Rio Grande do Sul Campus Rio Grande CAPÍTULO 4 GEOMETRIA ANALÍTICA 4. Geometria Analítica 4.1. Introdução Geometria Analítica é a parte da Matemática,

Leia mais

01- Assunto: Função Polinomial do 1º grau. Determine o domínio da função f(x) =

01- Assunto: Função Polinomial do 1º grau. Determine o domínio da função f(x) = EXERCÍCIOS COMPLEMENTARES - MATEMÁTICA - ª SÉRIE - ENSINO MÉDIO - ª ETAPA ============================================================================================== 0- Assunto: Função Polinomial do

Leia mais

DESENHO. 1º Bimestre. AULA 1 Instrumentos de Desenho e Conceitos Básicos de Construções Geométricas Professor Luciano Nóbrega

DESENHO. 1º Bimestre. AULA 1 Instrumentos de Desenho e Conceitos Básicos de Construções Geométricas Professor Luciano Nóbrega DESENHO Felizes aqueles que se divertem com problemas Matemáticos que educam a alma e elevam o espírito. (Fraçois Fenelon Educador Francês) AULA 1 Instrumentos de Desenho e Conceitos Básicos de Construções

Leia mais

Trigonometria no Triângulo Retângulo

Trigonometria no Triângulo Retângulo Trigonometria no Triângulo Retângulo Prof. Márcio Nascimento marcio@matematicauva.org Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina:

Leia mais

CONTEÚDO E HABILIDADES MATEMÁTICA REVISÃO 1 REVISÃO 2 REVISÃO 3. Conteúdo:

CONTEÚDO E HABILIDADES MATEMÁTICA REVISÃO 1 REVISÃO 2 REVISÃO 3. Conteúdo: 2 Conteúdo: Aula Revisão 1: Geometria Polígonos: Classificação, nome, cálculo das diagonais e a soma dos ângulos internos. Congruência e Semelhança de triângulos 3 Conteúdo: Aula Revisão 2: Álgebra Polinômios:

Leia mais

Plano de Recuperação Semestral 1º Semestre 2016

Plano de Recuperação Semestral 1º Semestre 2016 Disciplina: MATEMÁTICA Série/Ano: 9º ANO Objetivo: Proporcionar ao aluno a oportunidade de resgatar os conteúdos trabalhados durante o 1º semestre nos quais apresentou defasagens e que servirão como pré-requisitos

Leia mais

ASSUNTO: ÂNGULOS e TRIÂNGULOS. 2) A soma de dois ângulos é 140º e um deles vale 1/3 do suplemento do outro. Determine esses ângulos.

ASSUNTO: ÂNGULOS e TRIÂNGULOS. 2) A soma de dois ângulos é 140º e um deles vale 1/3 do suplemento do outro. Determine esses ângulos. ASSUNTO: ÂNGULOS e TRIÂNGULOS 1) Determine: a) O complemento de 47º Resp: 43º b) O suplemento de 12º Resp: 168º c) O replemento de 3º Resp: 357º 2) A soma de dois ângulos é 140º e um deles vale 1/3 do

Leia mais

Fonte: Livro: CRESCER EM SABEDORIA - Matemática 8º ano - Sistema Mackenzie de Ensino

Fonte: Livro: CRESCER EM SABEDORIA - Matemática 8º ano - Sistema Mackenzie de Ensino Atividade extra aula 26 e 29 (módulo 01) 8º ano Prof.ª Adriana/Madalena (matemática 02) Objetivo: promover uma maior compreensão de algumas propriedades de quadriláteros e interpretação de enunciados mais

Leia mais

MATEMÁTICA II LISTA DE GEOMETRIA PLANA - V

MATEMÁTICA II LISTA DE GEOMETRIA PLANA - V MATEMÁTICA II LISTA DE GEOMETRIA PLANA - V 1) (PUC/MG) Na figura, ABCD é paralelogramo, BE AD e BF CD. Se BE = 1, BF = 6 e BC = 8, então AB mede a) 1 b) 13 c) 14 d) 15 e) 16 ) (CESGRANRIO) O losango ADEF

Leia mais

Módulo de Semelhança de Triângulos e Teorema de Tales. Semelhanças entre Figuras e Poĺıgonos. 8 o ano/9 a série E.F.

Módulo de Semelhança de Triângulos e Teorema de Tales. Semelhanças entre Figuras e Poĺıgonos. 8 o ano/9 a série E.F. Módulo de Semelhança de Triângulos e Teorema de Tales Semelhanças entre Figuras e Poĺıgonos. 8 o ano/9 a série E.F. Semelhança de Triângulos e Teorema de Tales Semelhanças entre Figuras e Polígonos. 1

Leia mais

Revisional 3 Bim - MARCELO

Revisional 3 Bim - MARCELO 6º Ano Revisional 3 Bim - MARCELO 1) Represente no papel quatro pontos distintos e, por eles, determine dois segmentos de reta distintos. 2) Observe os segmentos de reta na figura. Escreva quantos são

Leia mais

Trabalho de Estudos Independentes de Matemática

Trabalho de Estudos Independentes de Matemática Trabalho de Estudos Independentes de Matemática ALUNO (A): Nº: SÉRIE: 8º TURMA: Professora: Marilia Henriques NÍVEL: Ensino fundamental DATA: / / VALOR 30 pontos NOTA: 1) Marque cada afirmação como verdadeira

Leia mais

ATIVIDADES COM GEOPLANO ISOMÉTRICO

ATIVIDADES COM GEOPLANO ISOMÉTRICO ATIVIDADES COM GEOPLANO ISOMÉTRICO Observações. Os pinos ou pregos do geoplano isométrico são chamados de pontos. A menor distância entre dois pontos consecutivos é estabelecida como a unidade de comprimento

Leia mais

Matemática. Atividades. complementares. FUNDAMENTAL 8-º ano. Este material é um complemento da obra Matemática 8. uso escolar. Venda proibida.

Matemática. Atividades. complementares. FUNDAMENTAL 8-º ano. Este material é um complemento da obra Matemática 8. uso escolar. Venda proibida. 8 ENSINO FUNDAMENTAL 8-º ano Matemática Atividades complementares Este material é um complemento da obra Matemática 8 Para Viver Juntos. Reprodução permitida somente para uso escolar. Venda proibida. Samuel

Leia mais

Professor Alexandre Assis. Lista de exercícios de Geometria. 3. O retângulo ABCD está inscrito no retângulo WXYZ, como mostra a figura.

Professor Alexandre Assis. Lista de exercícios de Geometria. 3. O retângulo ABCD está inscrito no retângulo WXYZ, como mostra a figura. 3. O retângulo ABCD está inscrito no retângulo WXYZ, 1. PA é bissetriz do triângulo ABC. Determine x, y, z, t. como mostra a figura. Sabendo que åæ=2 e åî=1, determine o ângulo š para que a área de WXYZ

Leia mais

1º Banco de Questões do 4º Bimestre de Matemática (REVISÃO)

1º Banco de Questões do 4º Bimestre de Matemática (REVISÃO) Aluno(a): Professora: Deise Ilha Turno: Matutino. Componente Curricular: Matemática Data: / / 2016.. 1º Banco de Questões do 4º Bimestre de Matemática (REVISÃO) QUESTÃO 01 Tipo A (Julgar Certo ou Errado)

Leia mais

(A) 30 (B) 6 (C) 200 (D) 80 (E) 20 (A) 6 (B) 10 (C) 15 (D) 8 (E) 2 (A) 15 (B) 2 (C) 6 (D) 27 (E) 4 (A) 3 (B) 2 (C) 6 (D) 27 (E) 4

(A) 30 (B) 6 (C) 200 (D) 80 (E) 20 (A) 6 (B) 10 (C) 15 (D) 8 (E) 2 (A) 15 (B) 2 (C) 6 (D) 27 (E) 4 (A) 3 (B) 2 (C) 6 (D) 27 (E) 4 TEOREMA DE TALES. Na figura abaixo as retas r, s e t são (A) 0 (B) 6 (C) 00 (D) 80 (E) 0. Três retas paralelas são cortadas por duas Se AB = cm; BC = 6 cm e XY = 0 cm a medida, em cm, de XZ é: (A) 0 (B)

Leia mais

ÍNDICE: Relações Métricas num Triângulo Retângulo página: 2. Triângulo Retângulo página: 4. Áreas de Polígonos página: 5

ÍNDICE: Relações Métricas num Triângulo Retângulo página: 2. Triângulo Retângulo página: 4. Áreas de Polígonos página: 5 ÍNDICE: Relações Métricas num Triângulo Retângulo página: Triângulo Retângulo página: 4 Áreas de Polígonos página: 5 Área do Círculo e suas partes página: 11 Razão entre áreas de figuras planas semelhantes

Leia mais

AB AC BC. k PQ PR QR GEOMETRIA PLANA CONCEITOS BÁSICOS SEMELHANÇA DE TRIÂNGULOS. Triângulos isósceles

AB AC BC. k PQ PR QR GEOMETRIA PLANA CONCEITOS BÁSICOS SEMELHANÇA DE TRIÂNGULOS. Triângulos isósceles GEOMETRIA PLANA Triângulos isósceles CONCEITOS BÁSICOS Retas paralelas cortadas por uma transversal São aqueles que possuem dois lados iguais. Ligando o vértice A ao ponto médio da base BC, geramos dois

Leia mais

RETA E CIRCUNFERÊNCIA

RETA E CIRCUNFERÊNCIA RETA E CIRCUNFERÊNCIA - 016 1. (Unifesp 016) Na figura, as retas r, s e t estão em um mesmo plano cartesiano. Sabe-se que r e t passam pela origem desse sistema, e que PQRS é um trapézio. a) Determine

Leia mais

Lista de exercícios matemática. Semelhança

Lista de exercícios matemática. Semelhança Semelhança 1. Classifique as sentenças em verdadeiras ou falsas: a) ( ) Dois quadrados são sempre semelhantes. b) ( ) Dois polígonos são semelhantes quando seus lados correspondentes são proporcionais

Leia mais

Grupo 1 - PIC OBMEP 2011 Módulo 2 - Geometria. Resumo do Encontro 6, 22 de setembro de Questões de geometria das provas da OBMEP

Grupo 1 - PIC OBMEP 2011 Módulo 2 - Geometria. Resumo do Encontro 6, 22 de setembro de Questões de geometria das provas da OBMEP Grupo 1 - PIC OBMEP 2011 Módulo 2 - Geometria Resumo do Encontro 6, 22 de setembro de 2012 Questões de geometria das provas da OBMEP http://www.obmep.org.br/provas.htm 1. Área: conceito e áreas do quadrado

Leia mais

MATEMÁTICA CADERNO 3 CURSO E. FRENTE 1 Álgebra. n Módulo 11 Módulo de um Número Real. 5) I) x + 1 = 0 x = 1 II) 2x 7 + x + 1 0

MATEMÁTICA CADERNO 3 CURSO E. FRENTE 1 Álgebra. n Módulo 11 Módulo de um Número Real. 5) I) x + 1 = 0 x = 1 II) 2x 7 + x + 1 0 MATEMÁTICA CADERNO CURSO E ) I) + 0 II) 7 + + 0 FRENTE Álgebra n Módulo Módulo de um Número Real ) 6 + < não tem solução, pois a 0, a ) A igualdade +, com + 0, é verificada para: ọ ) + 0 ou ọ ) + + + +

Leia mais

Duração: 90 minutos (3 valores) Sabe-se que a b. Atendendo à gura, calcule a medida do ângulo D indicado.

Duração: 90 minutos (3 valores) Sabe-se que a b. Atendendo à gura, calcule a medida do ângulo D indicado. aculdade de Ciências Departamento de Matemática e Informática Licenciatura em Informática, Diurno 1 0 Teste de undamentos de Geometria. Correcção. ariante Duração: 90 minutos 18.0.01 1. ( valores) Sabe-se

Leia mais

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 6 Professor Marco Costa

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 6 Professor Marco Costa 1 Projeto Jovem Nota 10 1. (Fgv 97) No plano cartesiano, os vértices de um triângulo são A (5,2), B (1,3) e C (8,-4). a) Obtenha a medida da altura do triângulo, que passa por A. b) Calcule a área do triângulo

Leia mais

SOLUCÃO DAS ATIVIDADES COM GEOPLANO QUADRANGULAR

SOLUCÃO DAS ATIVIDADES COM GEOPLANO QUADRANGULAR SOLUCÃO DAS ATIVIDADES COM GEOPLANO QUADRANGULAR Observações. Os pinos do geoplano quadrangular são chamados de pontos. A distância horizontal ou vertical entre dois pontos consecutivos é estabelecida

Leia mais

2. (Fgv 2005) a) Obtenha a área de um triângulo eqüilátero em função da medida h da altura.

2. (Fgv 2005) a) Obtenha a área de um triângulo eqüilátero em função da medida h da altura. 1 Projeto Jovem Nota 10 1. (Uerj 2004) No triângulo ABC abaixo, os lados BC, AC e AB medem, respectivamente, a, b e c. As medianas AE e BD relativas aos lados BC e AC interceptam-se ortogonalmente no ponto

Leia mais

A lei dos senos. Na Aula 42 vimos que a Lei dos co-senos é. a 2 = b 2 + c 2-2bc cos Â

A lei dos senos. Na Aula 42 vimos que a Lei dos co-senos é. a 2 = b 2 + c 2-2bc cos  A UA UL LA A lei dos senos Introdução Na Aula 4 vimos que a Lei dos co-senos é uma importante ferramenta matemática para o cálculo de medidas de lados e ângulos de triângulos quaisquer, isto é, de triângulos

Leia mais

MATEMÁTICA. Aula 01. Revisão _ Produtos Notáveis Professor Luciano Nóbrega

MATEMÁTICA. Aula 01. Revisão _ Produtos Notáveis Professor Luciano Nóbrega MATEMÁTICA Felizes aqueles que se divertem com problemas matemáticos que educam a alma e elevam o espírito. (Fraçois Fenelon Educador Francês ) 1 Aula 01 Revisão _ Produtos Notáveis Professor Luciano Nóbrega

Leia mais

Aula 3 Polígonos Convexos

Aula 3 Polígonos Convexos MODULO 1 - AULA 3 Aula 3 Polígonos Convexos Conjunto convexo Definição: Um conjunto de pontos chama-se convexo se, quaisquer que sejam dois pontos distintos desse conjunto, o segmento que tem esses pontos

Leia mais

Aula 11 Conseqüências da semelhança de

Aula 11 Conseqüências da semelhança de onseqüências da semelhança de triângulos MÓULO 1 - UL 11 ula 11 onseqüências da semelhança de triângulos Objetivos presentar o Teorema de Pitágoras presentar o teorema da bissetriz interna. O Teorema de

Leia mais

Exercícios de Revisão

Exercícios de Revisão Professor: Cassio Kiechaloski Mello Disciplina: Matemática Exercícios de Revisão Geometria Analítica Geometria Plana Geometria Espacial Números Complexos Polinômios Na prova de recuperação final, não será

Leia mais

Classificac a o segundo os lados. Geometria plana e analı tica. Congrue ncia de tria ngulos. Tria ngulo reta ngulo. Tria ngulos

Classificac a o segundo os lados. Geometria plana e analı tica. Congrue ncia de tria ngulos. Tria ngulo reta ngulo. Tria ngulos Classificac a o segundo os lados MA092 Francisco A. M. Gomes UNICAMP - IMECC Classificac a o Um tria ngulo e Equila tero, se tem tre s lados congruentes. Iso sceles, se tem dois lados congruentes. Escaleno,

Leia mais

FUVEST Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE

FUVEST Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE www.elitecampinas.com.br Fone: (9) -7 O ELITE RESOLVE IME 00 PORTUGUÊS/INGLÊS Você na elite das universidades! FUVEST 00 SEGUNDA FASE MATEMÁTICA www.elitecampinas.com.br Fone: (9) 5-0 O ELITE RESOLVE FUVEST

Leia mais

a média de gols da primeira rodada, M G a média de gols das duas primeiras rodadas e x o número de gols da segunda rodada, tem-se 15 + x 15 M G

a média de gols da primeira rodada, M G a média de gols das duas primeiras rodadas e x o número de gols da segunda rodada, tem-se 15 + x 15 M G MATEMÁTICA O número de gols marcados nos 6 jogos da primeira rodada de um campeonato de futebol foi 5,,,, 0 e. Na segunda rodada, serão realizados mais 5 jogos. Qual deve ser o número total de gols marcados

Leia mais