Trigonometria no Triângulo Retângulo

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Trigonometria no Triângulo Retângulo"

Transcrição

1 Trigonometria no Triângulo Retângulo Prof. Márcio Nascimento Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Matemática Básica II de fevereiro de / 53

2 Sumário 1 Triângulos / 53

3 Sumário 1 Triângulos / 53

4 Definição Um triângulo é a figura formada por três pontos não colineares e as geodésicas que os ligam na superfície em questão. No plano, as geodésicas são as retas. A, B, C são os vértices. a, b, c são os lados. Â, B, Ĉ são os ângulos internos. 4 / 53

5 Soma dos Ângulos Internos A soma dos ângulos internos de um triângulo plano, é sempre igual a um ângulo raso (ou ). 5 / 53

6 Soma dos Ângulos Internos De fato, trace por um dos vértices, uma reta paralela ao lado oposto. 6 / 53

7 Soma dos Ângulos Internos Prolongue os lados que formam o ângulo desse vértice. Isso determina os ângulos 1, 2 e 3. 7 / 53

8 Soma dos Ângulos Internos Note que os ângulos Ĉ e 2 são opostos pelo vértice, portanto, são iguais! Como o segmento AB é paralelo à reta que passa em C, segue que os ângulos  e 3 são iguais. Pelo mesmo motivo, os ângulos B e 1 são iguais. 8 / 53

9 Soma dos Ângulos Internos Juntos, os ângulos 1, 2 e 3 formam um ângulo raso. Portanto, Â + B + Ĉ é um ângulo raso, ou seja, Â + B + Ĉ = / 53

10 Triângulo Retângulo Quando um dos ângulos internos é um ângulo reto, temos um Triângulo Retângulo. O lado oposto ao ângulo reto é chamado HIPOTENUSA 1. Os lados adjacentes ao ângulo reto, são chamados CATETOS 2. 1 Do grego, contrário à. 2 Do grego, que cai perpendicular. 10 / 53

11 Sumário 1 Triângulos / 53

12 Relações Trigonométricas Considere um ângulo agudo α e os segmentos paralelos A 1 B 1, A 2 B 2, A 3 B 3... Os triângulos retângulos A 1 OB 1, A 2 OB 2, A 3 OB 3,... são semelhantes. Isto é, A 1 B 1 = A 2B 2 = A 3B 3 =... OA 1 OA 2 OA 3 12 / 53

13 Relações Trigonométricas Desta forma, dado um triângulo retângulo com ângulos internos fixados existe uma relação entre os seus lados que não depende da medida dos lados. Essa relação será chamada seno do ângulo α. Notação: senα = AB cateto oposto ou senα = OA hipotenusa 13 / 53

14 Aplicação Cálculo do Raio da Terra: no alto de um farol à beira-mar, por exemplo, podemos estimar o raio da Terra... A altura h do farol (torre) é conhecida. O ângulo  formado pela torre e a linha de visão do observador em direção ao horizonte, pode ser medida. Portanto, podemos determinar senâ. Usando a relação seno no triângulo retângulo OAT, temos: senâ = OT OA = R R + h = R = h.senâ 1 senâ14 / 53

15 Sumário 1 Triângulos / 53

16 Relações Trigonométricas Assim como no caso da relação seno, a semelhança entre os triângulos abaixo nos dá outras duas relações que também não dependem da medida dos lados: OB 1 = OB 2 = OB 3 =... OA 1 OA 2 OA 3 A 1 B 1 = A 2B 2 = A 3B 3 =... OB 1 OB 2 OB 3 Essas relações são, respectivamente, cosseno e tangente: cos α = OB cateto adjacente ou cos α = OA hipotenusa tgα = AB OB ou tgα = cateto oposto cateto adjacente 16 / 53

17 RELAÇÃO TANGENTE IMPORTANTE: Num triângulo retângulo, o valor da tangente de um de seus ângulos pode ser obtida a partir do seno e do cosseno deste ângulo. tg B = b ( ) a b = c ( a ) c = sen B cos B Portanto, tg B = sen B cos B 17 / 53

18 Sumário 1 Triângulos / 53

19 Como um triângulo tem três lados, é possível obter seis razões envolvendo seus lados. Já usamos e batizamos três dessas razões (seno, cosseno e tangente). Agora, vejamos as outras três sec  = c b = 1 cos  cossecâ = c a = 1 senâ cotgâ = b a = 1 tgâ 19 / 53

20 Sumário 1 Triângulos / 53

21 Considerando um triângulo retângulo e um de seus ângulos, digamos, Â, temos: ( a ) ( ) 2 b 2 sen 2 Â + cos 2 Â = + = a2 + b 2 c c c 2 Pelo Teorema de Pitágoras, a 2 + b 2 = c 2. Portanto, sen 2 Â + cos 2 Â = 1 RELAÇÃO FUNDAMENTAL 21 / 53

22 Proposição Se  e B são ângulos complementares, então senâ = cos B, sen B = cos  e tgâ = 1/tg B senâ = a c = cos B Proposição sen B = b c = cos  tgâ = a b = 1 b a Se  e B são ângulos complementares, então sec  = cossec B, sec B = cossecâ e cotgâ = 1/cotg B = 1 tg B 22 / 53

23 Proposição Se α é um ângulo no intervalo (0 0, 45 0 ), então sen2α = 2.senα. cos α Se x é um ângulo no intervalo (0 0, 90 0 ), então sen x 2 = 1 cos x 2 23 / 53

24 Demonstração (parte 1): Considere um triângulo isósceles onde os lados congruentes medem / 53

25 Traçando a bissetriz pelo ângulo no vértice O, determinamos o ponto médio do lado BC, o ponto A. 25 / 53

26 Vamos chamar de α a medida dos ângulos BÔA e AÔC, que são congruentes. 26 / 53

27 Agora, tracemos a altura relativa ao lado OC. Isso determina o ponto D e BD é uma altura para o triângulo. 27 / 53

28 Desta forma, podemos calcular a área do triângulo BOC de duas maneiras: OA.BC 2 = BD.OC 2 28 / 53

29 OA.BC 2 = BD.OC 2 (*) OA = cos α = OA = cos α OB BA = senα = BA = senα = BC = OB 2.senα BD = sen2α = BD = sen2α OB Substituindo em (*), temos cos α.2.senα 2 = sen2α.1 2 sen2α = 2. cos α.senα 29 / 53

30 Demonstração (parte 2): Se x é um ângulo no intervalo (0 0, 90 0 ), então sen x 2 = 1 cos x 2 Vamos considerar o ângulo β no vértice C do triângulo BOC. 30 / 53

31 OD + DC = 1 (*) OD = cos 2α = OD = cos 2α OB DC = cos β = DC = BC. cos β BC BC = 2BA, BA = senα = BC = 2.senα OB Substituindo em (*), temos cos 2α + BC. cos β = 1 cos 2α + 2.senα.senα = 1 2.sen 2 α = 1 cos 2α senα = 1 cos 2α 2 ou sen x 2 = 1 cos x 2 31 / 53

32 Sumário 1 Triângulos / 53

33 : 30 0 e 60 0 Considere um triângulo equilátero de lado 1. A bissetriz do ângulo no vértice em A, coincide com altura relativa ao lado BC e o ponto médio deste mesmo lado. Pelo Teorema de Pitágoras: AC 2 = AD 2 + DC 2 Isto é, 1 = AD Portanto, AD = / 53

34 : 30 0 e Sendo AC = 1, AD = 2 e DC = 1 2, temos: sen30 0 = DC AC = 1 2 cos 30 0 = AD 3 AC = 2 tg30 0 = 1/2 3 = 3/ / 53

35 : 30 0 e 60 0 Ademais, sendo 30 0 e 60 0 ângulos complementares, temos: cos 60 0 = sen30 0 = sen60 0 = cos 30 0 = 2 tg60 0 = 1 tg30 0 = 1 = / 53

36 : 45 0 Considere um triângulo retângulo isósceles com catetos medindo 1. Pelo Teorema de Pitágoras: BC 2 = AB 2 + AC 2 Isto é, BC 2 = = 2 Portanto, BC = 2 sen45 0 = AC BC = 1 2 = cos 45 0 = 2 tg45 0 = AC AB = 1 36 / 53

37 A Famosa tabela Triângulos Ângulo Seno Cosseno Tangente / 53

38 : 18 0 Considere um triângulo isósceles cujos lados congruentes medem 1 e que 36 0 é o ângulo formado por tais lados. Obviamente os demais ângulos internos são ambos iguais a Seja x o terceiro lado. 38 / 53

39 Seja CD a bissetriz do ângulo Ĉ. Veja que os triângulos ABC e CDB são semelhantes! 39 / 53

40 Seja CD a bissetriz do ângulo Ĉ. Veja que os triângulos ABC e CDB são semelhantes! 40 / 53

41 Seja CD a bissetriz do ângulo Ĉ. Veja que os triângulos ABC e CDB são semelhantes! 41 / 53

42 Seja CD a bissetriz do ângulo Ĉ. Veja que os triângulos ABC e CDB são semelhantes! 42 / 53

43 Seja CD a bissetriz do ângulo Ĉ. Veja que os triângulos ABC e CDB são semelhantes! Daí, AC CB = CB DB isto é, 1 x = x 1 x ou x 2 + x 1 = Logo, CB = x = 2 43 / 53

44 Voltando ao triângulo inicial, a bissetriz do ângulo  coincide com a altura relativa ao lado BC e também determina o ponto médio deste lado. sen18 0 = x/ = 4 cos sen = 1 = cos 18 0 = 1 sen isto é, cos 18 0 = 4 tg18 0 = sen cos 18 0 = / 53

45 Portanto, Ângulo Seno Cosseno Tangente / 53

46 Sumário 1 Triângulos / 53

47 Exercício: Encontre as relações trigonométricas para os ângulos de 9 0, 15 0, 36 0 e Use o fato de que: sen2α = 2senα. cos α sen α 2 = 1 cos α 2 sen 2 α + cos 2 α = 1 47 / 53

48 Exercício 01: Resolva o triângulo abaixo  = = 34 0 sen56 0 = b 15 = b = sen = 0, = 12, 45 cos 56 0 = a 15 = a = cos = 0, = 8, 4 48 / 53

49 Exercício 02: Um atirador aponta a sua arma para uma pessoa que está amarrada em uma parede a 500 metros de distância. Na hora do disparo, houve um desvio para a direita de apenas 1 0. Supondo que o atirador só poderá realizar um único disparo, quais as chances do prisioneiro? Haverá um desvio de aproximadamente 8, 7m. O prisioneiro não morrerá por isso. 49 / 53

50 Exercício 03: Resolva o seguinte triângulo: senâ = = 0, 53  = sen 1 (0, 53) = arcsen(0, 53) = 32 0 B = = 58 0 cos  = b c = b = (cos 320 ) (37.21) = b = (0.85) (37.21) = / 53

51 Exercício 04: Um piloto dentro de um carro de corrida tem uma visão bastante limitada / 53

52 Exercício 04: Suponha que a linha de visão horizontal do piloto do carro 19 coincide com o ponto mais alto da traseira do carro 2. O ponto mais baixo da traseira do carro 2 pode ser visto pelo piloto do carro 19 sob um ângulo de depressão igual a A distância do ponto mais baixo ao ponto mais alto da traseira do carro 2 é de 85cm. Sabendo que a distância entre a cabeça do piloto e a dianteira (ambos do carro 19) é de 1,5m, calcule a distância que há entre os dois carros (2 e 19). 52 / 53

53 A figura abaixo mostra uma interpretação geométrica para o problema tg18 0 = 0.85 = 0.32 (x + 1.5) = 0.85 x = 0.32x = 0.37 = x = 1.16m 53 / 53

Matemática Básica II - Trigonometria Nota 02 - Trigonometria no Triângulo Retângulo

Matemática Básica II - Trigonometria Nota 02 - Trigonometria no Triângulo Retângulo Matemática Básica II - Trigonometria Nota 0 - Trigonometria no Triângulo Retângulo Márcio Nascimento da Silva Universidade Estadual Vale do Acaraú - UVA Curso de Licenciatura em Matemática marcio@matematicauva.org

Leia mais

MATEMÁTICA BÁSICA II TRIGONOMETRIA Aula 03

MATEMÁTICA BÁSICA II TRIGONOMETRIA Aula 03 UNIVERSIDDE ESTDUL VLE DO CRÚ CENTRO DE CIÊNCIS EXTS E TECNOLOGI CURSO DE LICENCITUR EM MTEMÁTIC MTEMÁTIC ÁSIC II TRIGONOMETRI ula 03 Prof. Márcio Nascimento marcio@matematicauva.org 204. Razões Trigonométricas

Leia mais

Relações Métricas nos Triângulos. Joyce Danielle de Araújo

Relações Métricas nos Triângulos. Joyce Danielle de Araújo Relações Métricas nos Triângulos Joyce Danielle de Araújo Trigonometria A palavra trigonometria é de origem grega, onde: Trigonos = Triângulo Metrein = Mensuração - Relação entre ângulos e distâncias;

Leia mais

TRIGONOMETRIA. AO VIVO MATEMÁTICA Professor Haroldo Filho 02 de fevereiro, AS FUNÇÕES TRIGONOMÉTRICAS DO ÂNGULO AGUDO OA OA OA OA OA OA

TRIGONOMETRIA. AO VIVO MATEMÁTICA Professor Haroldo Filho 02 de fevereiro, AS FUNÇÕES TRIGONOMÉTRICAS DO ÂNGULO AGUDO OA OA OA OA OA OA TRIGONOMETRIA 1. AS FUNÇÕES TRIGONOMÉTRICAS DO ÂNGULO AGUDO Considere um ângulo agudo = AÔB, e tracemos a partir dos pontos A, A 1, A etc. da semirreta AO, perpendiculares à semirreta OB. AB A1B1 AB OAB

Leia mais

NOME: ANO: 3º Nº: PROFESSOR(A):

NOME: ANO: 3º Nº: PROFESSOR(A): NOME: ANO: º Nº: PROFESSOR(A): Ana Luiza Ozores DATA: Algumas definições Triângulos: REVISÃO Lista 06 Triângulos e Quadriláteros Classificação quanto aos lados: Escaleno (todos os lados diferentes), Isósceles

Leia mais

Pontos correspondentes: A e D, B e E, C e F; Segmentos correspondentes: AB e DE, BC e EF, AC e DF.

Pontos correspondentes: A e D, B e E, C e F; Segmentos correspondentes: AB e DE, BC e EF, AC e DF. Teorema de Tales O Teorema de Tales possui diversas aplicações no cotidiano, que devem ser demonstradas a fim de verificar sua importância. O Teorema diz que retas paralelas, cortadas por transversais,

Leia mais

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Trigonometria 1. Danielly Guabiraba- Engenharia Civil

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Trigonometria 1. Danielly Guabiraba- Engenharia Civil CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 018.1 Trigonometria 1 Danielly Guabiraba- Engenharia Civil Definição A palavra trigonometria é de origem grega, onde: Trigonos = Triangulo e Metrein = Mensuração

Leia mais

A lei dos co-senos. Utilizando as razões trigonométricas nos triângulos. b = = 48. b = 4 cos B = 4 8 = 1 2 Þ B = 60º

A lei dos co-senos. Utilizando as razões trigonométricas nos triângulos. b = = 48. b = 4 cos B = 4 8 = 1 2 Þ B = 60º A UA UL LA A lei dos co-senos Introdução Utilizando as razões trigonométricas nos triângulos retângulos, podemos resolver vários problemas envolvendo ângulos e lados. Esse tipo de problema é conhecido

Leia mais

Relembrando: Ângulos, Triângulos e Trigonometria...

Relembrando: Ângulos, Triângulos e Trigonometria... Relembrando: Ângulos, Triângulos e Trigonometria... Este texto é apenas um resumo. Procure estudar esses assuntos em um livro apropriado. Ângulo é a região de um plano delimitada pelo encontro de duas

Leia mais

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Trigonometria. Iris Lima - Engenharia da produção

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Trigonometria. Iris Lima - Engenharia da produção CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 018. Trigonometria Iris Lima - Engenharia da produção Definição Relação entre ângulos e distâncias; Origem na resolução de problemas práticos relacionados

Leia mais

PROGRAMA INSTITUCIONAL DE BOLSA DE INICIÇÃO Á DOCENCIA PROJETO MATEMÁTICA 1 TRIGONOMETRIA

PROGRAMA INSTITUCIONAL DE BOLSA DE INICIÇÃO Á DOCENCIA PROJETO MATEMÁTICA 1 TRIGONOMETRIA PROGRAMA INSTITUCIONAL DE BOLSA DE INICIÇÃO Á DOCENCIA PROJETO MATEMÁTICA 1 TRIGONOMETRIA Curitiba 2014 TÓPICOS DE GEOMETRIA PLANA Ângulos classificação: Ângulo reto: mede 90. Med(AôB) = 90 Ângulo agudo:

Leia mais

MATEMÁTICA CADERNO 3 CURSO E. FRENTE 1 Álgebra. n Módulo 11 Módulo de um Número Real. 5) I) x + 1 = 0 x = 1 II) 2x 7 + x + 1 0

MATEMÁTICA CADERNO 3 CURSO E. FRENTE 1 Álgebra. n Módulo 11 Módulo de um Número Real. 5) I) x + 1 = 0 x = 1 II) 2x 7 + x + 1 0 MATEMÁTICA CADERNO CURSO E ) I) + 0 II) 7 + + 0 FRENTE Álgebra n Módulo Módulo de um Número Real ) 6 + < não tem solução, pois a 0, a ) A igualdade +, com + 0, é verificada para: ọ ) + 0 ou ọ ) + + + +

Leia mais

Aula 7 Complementos. Exercício 1: Em um plano, por um ponto, existe e é única a reta perpendicular

Aula 7 Complementos. Exercício 1: Em um plano, por um ponto, existe e é única a reta perpendicular MODULO 1 - AULA 7 Aula 7 Complementos Apresentamos esta aula em forma de Exercícios Resolvidos, mas são resultados importantes que foram omitidos na primeira aula que tratou de Conceitos Básicos. Exercício

Leia mais

Axiomas e Proposições

Axiomas e Proposições Axiomas e Proposições Axiomas: I Incidência I.1 Existem infinitos pontos no plano. I.2 Por dois pontos distintos (ou seja, diferentes) passa uma única reta. I.3 Dada uma reta, existem infinitos pontos

Leia mais

1ª Avaliação. 1) Obtenha a fórmula que define a função linear f, sabendo que (3) 7 f =.

1ª Avaliação. 1) Obtenha a fórmula que define a função linear f, sabendo que (3) 7 f =. 1ª Avaliação 1) Obtenha a fórmula que define a função linear f, sabendo que (3) 7 f. ) Determine o domínio da função abaio. f ( ) 3 3 8 9 + 14 3) Determine o domínio da função abaio. f ( ) 1 ( 3)( ) 4)

Leia mais

Relações Trigonométricas nos Triângulos

Relações Trigonométricas nos Triângulos Relações Trigonométricas nos Triângulos Introdução - Triângulos Um triângulo é uma figura geométric a plana, constituída por três lados e três ângulos internos. Esses ângulos, tradicionalmente, são medidos

Leia mais

PERÍMETRO O perímetro de um triângulo é igual à soma das medidas dos seus lados. Perímetro ABC = AB + AC + BC TRIÂNGULOS

PERÍMETRO O perímetro de um triângulo é igual à soma das medidas dos seus lados. Perímetro ABC = AB + AC + BC TRIÂNGULOS TRIÂNGULOS Conceito: Triângulo é um polígono de três lados. PERÍMETRO O perímetro de um triângulo é igual à soma das medidas dos seus lados. Perímetro ABC = AB + AC + BC CLASSIFICAÇÃO DOS TRIÂNGULOS Quanto

Leia mais

CONTEÚDO: Razões trigonométricas no Triangulo Retângulo e em Triângulo qualquer.

CONTEÚDO: Razões trigonométricas no Triangulo Retângulo e em Triângulo qualquer. LISTA DE EXERCICIOS - ESTUDO PARA A PROVA PR1 3ºTRIMESTRE PROF. MARCELO CONTEÚDO: Razões trigonométricas no Triangulo Retângulo e em Triângulo qualquer. (seno, cosseno e tangente; lei dos senos e lei dos

Leia mais

x = 4 2sen30 0 = 4 2(1/2) = 2 2 e y = 4 2 cos 30 0 = 4 2( 3/2) = 2 6.

x = 4 2sen30 0 = 4 2(1/2) = 2 2 e y = 4 2 cos 30 0 = 4 2( 3/2) = 2 6. CURSO DE PRÉ CÁLCULO ONLINE - PET MATEMÁTICA / UFMG LISTA DE EXERCÍCIOS RESOLVIDOS: Exercício 1 Calcule o valor de x e y indicados na figura abaixo. Solução: No triângulo retângulo ABD, temos que AD mede

Leia mais

TRIGONOMETRIA 1 EXERCÍCIOS RESOLVIDOS

TRIGONOMETRIA 1 EXERCÍCIOS RESOLVIDOS TRIGONOMETRIA 1 EXERCÍCIOS RESOLVIDOS 1) Uma escada está apoiada em um muro de 2 m de altura, formando um ângulo de 45º. Forma-se, portanto, um triângulo retângulo isósceles. Qual é o comprimento da escada?

Leia mais

1. Trigonometria no triângulo retângulo

1. Trigonometria no triângulo retângulo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Trigonometria I Prof.: Rogério

Leia mais

Formação Continuada em Matemática

Formação Continuada em Matemática Formação Continuada em Matemática Fundação CECIERJ/Consórcio CEDERJ Matemática 1º ano 2º Bimestre 2013 Tarefa 2 Plano de trabalho: Relações Trigonométricas no Triângulo Retângulo Cursista: Vania Cristina

Leia mais

Exemplo Aplicando a proporcionalidade existente no Teorema de Tales, determine o valor dos segmentos AB e BC na ilustração a seguir:

Exemplo Aplicando a proporcionalidade existente no Teorema de Tales, determine o valor dos segmentos AB e BC na ilustração a seguir: GEOMETRIA PLANA TEOREMA DE TALES O Teorema de Tales pode ser determinado pela seguinte lei de correspondência: Se duas retas transversais são cortadas por um feixe de retas paralelas, então a razão entre

Leia mais

Aula 11 Polígonos Regulares

Aula 11 Polígonos Regulares MODULO 1 - AULA 11 Aula 11 Polígonos Regulares Na Aula 3, em que apresentamos os polígonos convexos, vimos que um polígono regular é um polígono convexo tal que: a) todos os lados são congruentes entre

Leia mais

Aula 1. Exercício 1: Exercício 2:

Aula 1. Exercício 1: Exercício 2: Aula 1 Exercício 1: Com centro em A e raio de medida m achamos dois pontos B e C na reta, esses dois pontos são os centros das circunferências pedidas (2 soluções ). Exercício 2: Com centro em B e raio

Leia mais

Licenciatura em Matemática Fundamentos de Matemática Elementar 2 o /2010 Professora Adriana TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO E

Licenciatura em Matemática Fundamentos de Matemática Elementar 2 o /2010 Professora Adriana TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO E Licenciatura em Matemática Fundamentos de Matemática Elementar 2 o /2010 Professora Adriana TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO E FUNÇÕES TRIGONOMÉTRICAS 1. Calcule sen x, tg x e cotg x sendo dado: a)

Leia mais

Trigonometria. Reforço de Matemática Básica - Professor: Marcio Sabino - 1 Semestre 2015

Trigonometria. Reforço de Matemática Básica - Professor: Marcio Sabino - 1 Semestre 2015 Trigonometria Reforço de Matemática ásica - Professor: Marcio Sabino - 1 Semestre 015 1. Trigonometria O nome Trigonometria vem do grego trigo-non triângulo + metron medida. Esta é um ramo da matemática

Leia mais

Prova final de MATEMÁTICA - 3o ciclo a Chamada

Prova final de MATEMÁTICA - 3o ciclo a Chamada Prova final de MATEMÁTICA - 3o ciclo 013 - a Chamada Proposta de resolução 1. 1.1. Como se escolhe um aluno do primeiro turno, ou seja, um aluno com um número ímpar, existem 1 escolhas possíveis (1, 3,

Leia mais

Lista Recuperação Paralela II Unidade Parte I - Trigonometria

Lista Recuperação Paralela II Unidade Parte I - Trigonometria Aluno(a) Turma N o Série a Ensino Médio Data / / 06 Matéria Matemática Professor Paulo Sampaio Lista Recuperação Paralela II Unidade Parte I - Trigonometria 01. Sendo secx = n 1 e x 3 o quadrante, determine

Leia mais

Exercícios de Aplicação do Teorema de Pitágoras

Exercícios de Aplicação do Teorema de Pitágoras Exercícios de Aplicação do Teorema de Pitágoras Prof. a : Patrícia Caldana 1. Um terreno triangular tem frentes de 12 m e 16 m em duas ruas que formam um ângulo de 90. Quanto mede o terceiro lado desse

Leia mais

TRIGONOMETRIA MÓDULO 13 TRIGONOMETRIA

TRIGONOMETRIA MÓDULO 13 TRIGONOMETRIA TRIGONOMETRIA MÓDULO 13 TRIGONOMETRIA TRIGONOMETRIA TRIÂNGULO RETÂNGULO Triângulo retângulo é todo aquele em que a medida de um de seus ângulos internos é igual 90 (ângulo reto). No triângulo retângulo

Leia mais

a a a a a a c c c Trigonometria I Trigonometria I E dessa semelhança podemos deduzir que:

a a a a a a c c c Trigonometria I Trigonometria I E dessa semelhança podemos deduzir que: UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA. Trigonometria no triângulo

Leia mais

Vamos conhecer mais sobre triângulos!

Vamos conhecer mais sobre triângulos! Vamos conhecer mais sobre triângulos! Aula 18 Ricardo Ferreira Paraizo e-tec Brasil Matemática Instrumental Fonte: http://cache0.stormap.sapo.pt/fotostore0/fotos//f1/87/c6/06166_dfcbk.png Meta Apresentar

Leia mais

MATEMÁTICA - 3o ciclo Trigonometria (9 o ano) Propostas de resolução

MATEMÁTICA - 3o ciclo Trigonometria (9 o ano) Propostas de resolução MATEMÁTICA - 3o ciclo Trigonometria (9 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Como o ponto N é o pé da perpendicular traçada do ponto M para a reta OP, então

Leia mais

AVF - MA Gabarito

AVF - MA Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL AVF - MA13-016.1 - Gabarito Questão 01 [,00 pts ] Em um triângulo ABC de perímetro 9, o lado BC mede 3 e a distância entre os pés das bissetrizes interna

Leia mais

Exercícios sobre trigonometria em triângulos

Exercícios sobre trigonometria em triângulos Instituto Municipal de Ensino Superior de Catanduva SP Curso de Licenciatura em Matemática º ano Prática de Ensino da Matemática III Prof. M.Sc. Fabricio Eduardo Ferreira fabricio@fafica.br Eercícios sobre

Leia mais

MATEMÁTICA. Capítulo 2 LIVRO 1. Triângulos. Páginas: 157 à169

MATEMÁTICA. Capítulo 2 LIVRO 1. Triângulos. Páginas: 157 à169 MATEMÁTICA LIVRO 1 Capítulo 2 Triângulos Páginas: 157 à169 I. Soma dos Ângulos Internos Teorema demonstração: a soma das medidas dos ângulos internos de qualquer triângulo vale 180 x B β y r // AC A γ

Leia mais

CURSO ANUAL DE FÍSICA AULA 1 Prof. Renato Brito

CURSO ANUAL DE FÍSICA AULA 1 Prof. Renato Brito CURSO ANUAL DE FÍSICA AULA 1 Prof. Renato Brito BREVE REVISÃO DE GEOMETRIA PARA AJUDAR NO ESTUDO DOS VETORES É importante que o aluno esteja bem familiarizado com as propriedades usuais da geometria plana,

Leia mais

CUFSA - FAFIL Graduação em Matemática TRIGONOMETRIA (Resumo Teórico)

CUFSA - FAFIL Graduação em Matemática TRIGONOMETRIA (Resumo Teórico) 1 INTRODUÇÃO CUFSA - FAFIL Graduação em Matemática TRIGONOMETRIA (Resumo Teórico) ARCOS: Dados dois pontos A e B de uma circunferência, definimos Arco AB a qualquer uma das partes desta circunferência

Leia mais

Teorema de Pitágoras

Teorema de Pitágoras Teorema de Pitágoras Luan Arjuna 1 Introdução Uma das maiores preocupações dos matemáticos da antiguidade era a determinação de comprimentos: desde a altura de um edifício até a distância entre duas cidades,

Leia mais

Formação Continuada em MATEMÁTICA Fundação CECIERJ / Consórcio CEDERJ

Formação Continuada em MATEMÁTICA Fundação CECIERJ / Consórcio CEDERJ Formação Continuada em MATEMÁTICA Fundação CECIERJ / Consórcio CEDERJ Matemática 1º Ano - 2º Bimestre / 2013 PLANO DE TRABALHO 2 Tarefa 2 Cursista: Mariane Ribeiro do Nascimento Tutor: Bruno Morais 1 SUMÁRIO

Leia mais

Polígonos PROFESSOR RANILDO LOPES 11.1

Polígonos PROFESSOR RANILDO LOPES 11.1 Polígonos PROFESSOR RANILDO LOPES 11.1 Polígonos Polígono é uma figura geométrica plana e fechada formada apenas por segmentos de reta que não se cruzam no mesmo plano. Exemplos 11.1 Elementos de um polígono

Leia mais

MATEMÁTICA - 3o ciclo Trigonometria (9 o ano) Propostas de resolução

MATEMÁTICA - 3o ciclo Trigonometria (9 o ano) Propostas de resolução MATEMÁTICA - 3o ciclo Trigonometria (9 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Como M é o ponto médio da corda [], temos que AM = MB, e assim Logo, substituindo

Leia mais

Acadêmico(a) Turma: Capítulo 5: Trigonometria. Definição: Todo triângulo que tenha um ângulo de 90º (ângulo reto)

Acadêmico(a) Turma: Capítulo 5: Trigonometria. Definição: Todo triângulo que tenha um ângulo de 90º (ângulo reto) 1 Acadêmico(a) Turma: 5.1. Triangulo Retângulo Capítulo 5: Trigonometria Definição: Todo triângulo que tenha um ângulo de 90º (ângulo reto) Figura 1: Ângulos e catetos de um triangulo retângulo. Os catetos

Leia mais

A lei dos senos. Na Aula 42 vimos que a Lei dos co-senos é. a 2 = b 2 + c 2-2bc cos Â

A lei dos senos. Na Aula 42 vimos que a Lei dos co-senos é. a 2 = b 2 + c 2-2bc cos  A UA UL LA A lei dos senos Introdução Na Aula 4 vimos que a Lei dos co-senos é uma importante ferramenta matemática para o cálculo de medidas de lados e ângulos de triângulos quaisquer, isto é, de triângulos

Leia mais

2x x 2 x(2 2) 5( 3 1)(2 2)cm. 2x x 4x x 2 S 12,5 12,5 25 2x 3x 2 0 2x 3x 27. x' 0,75 (não convém) x. a hipotenusa. AD x AC. x 5( 3 1)cm.

2x x 2 x(2 2) 5( 3 1)(2 2)cm. 2x x 4x x 2 S 12,5 12,5 25 2x 3x 2 0 2x 3x 27. x' 0,75 (não convém) x. a hipotenusa. AD x AC. x 5( 3 1)cm. Tarefas 05, 0, 07 e 08 Professor César LISTA TAREFA DIRECIONADA OLIMPO GOIÂNIA / MATEMÁTICA - FRENTE B Gabarito: 0. D Calculando: x x x 4x x S,5,5 5 x x 0 x x7 4 ( 7) 5 5 5 x' 0,75 (não convém) x 4 x''

Leia mais

Gabarito: cateto oposto. sen(30 ) = = x = 85 cm. hipotenusa 2 1,7. x sen7 = x = 14 sen7 x = 14 0,12 x = 1,68 m 14. Resposta da questão 1: [A]

Gabarito: cateto oposto. sen(30 ) = = x = 85 cm. hipotenusa 2 1,7. x sen7 = x = 14 sen7 x = 14 0,12 x = 1,68 m 14. Resposta da questão 1: [A] Gabarito: Resposta da questão 1: Considere a situação Utilizando da relação de seno temos: cateto oposto 1 x sen(30 ) = = x = 85 cm. hipotenusa 1,7 Resposta da questão : Utilizando a relação de tangente

Leia mais

Axiomas de Incidência Axiomas de Ordem Axiomas de Congruência Axioma das paralelas Axiomas de Continuidade

Axiomas de Incidência Axiomas de Ordem Axiomas de Congruência Axioma das paralelas Axiomas de Continuidade 1 GEOMETRIA PLANA Atualizado em 04/08/2008 www.mat.ufmg.br/~jorge Bibliografia 1. Pogorélov, A.V. Geometria Elemental Editora Mir. 2. Dolce, Osvaldo e Nicolau, Pompeu Geometria Plana Volume 9 da Coleção

Leia mais

Trigonometria no triângulo retângulo

Trigonometria no triângulo retângulo COLÉGIO PEDRO II CAMPUS REALENGO II LISTA DE APROFUNDAMENTO - ENEM MATEMÁTICA PROFESSOR: ANTÔNIO ANDRADE COORDENADOR: DIEGO VIUG Trigonometria no triângulo retângulo Questão 01 A figura a seguir é um prisma

Leia mais

Modulo 1. Seja x a medida do ângulo procurado. x complemento: 90º x suplemento: 180º x Interpretando o enunciado temos:

Modulo 1. Seja x a medida do ângulo procurado. x complemento: 90º x suplemento: 180º x Interpretando o enunciado temos: Modulo 1 1) Seja x a medida do ângulo procurado x complemento: 90º x suplemento: 180º x Interpretando o enunciado temos: 180º - x = (90º x) + 16º 180º - x = 270º 3x + 48º 2x = 138º x = 69 3 2) â + b =

Leia mais

MATEMÁTICA FRENTE IV. Capítulo 2 LIVRO 1. Triângulos

MATEMÁTICA FRENTE IV. Capítulo 2 LIVRO 1. Triângulos MATEMÁTICA FRENTE IV LIVRO 1 Capítulo 2 Triângulos I. Soma dos Ângulos Internos Teorema demonstração: a soma das medidas dos ângulos internos de qualquer triângulo vale 180 x B β y r // AC A α γ C Deseja-se

Leia mais

GABARITO. tg B = tg B = TC BC, com B = 60 e tg 60 = 3 BC BC. 3 = TC BC = TC 3. T Substituindo (2) em (1): TC. 3 = 3TC 160.

GABARITO. tg B = tg B = TC BC, com B = 60 e tg 60 = 3 BC BC. 3 = TC BC = TC 3. T Substituindo (2) em (1): TC. 3 = 3TC 160. Matemática Intensivo V. Eercícios 0) No triângulo abaio: teto adjacente ao ângulo. omo 5 e,8 km, vamos relacionar essas informações através da razão tangente: tg cat. oposto cat. adjacente y om: 5, cateto

Leia mais

(A) 30 (B) 6 (C) 200 (D) 80 (E) 20 (A) 6 (B) 10 (C) 15 (D) 8 (E) 2 (A) 15 (B) 2 (C) 6 (D) 27 (E) 4 (A) 3 (B) 2 (C) 6 (D) 27 (E) 4

(A) 30 (B) 6 (C) 200 (D) 80 (E) 20 (A) 6 (B) 10 (C) 15 (D) 8 (E) 2 (A) 15 (B) 2 (C) 6 (D) 27 (E) 4 (A) 3 (B) 2 (C) 6 (D) 27 (E) 4 TEOREMA DE TALES 1. Na figura abaixo as retas r, s e t são (A) 0 (B) 6 (C) 00 (E) 0. Três retas paralelas são cortadas por duas Se AB = cm; BC = 6 cm e XY = 10 cm a medida, em cm, de XZ é: (A) 0 (B) 10

Leia mais

COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III 1ª SÉRIE MATEMÁTICA II PROF. MARCOS EXERCÍCIOS DE REVISÃO PFV - GABARITO

COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III 1ª SÉRIE MATEMÁTICA II PROF. MARCOS EXERCÍCIOS DE REVISÃO PFV - GABARITO COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III ª SÉRIE MATEMÁTICA II PROF. MARCOS EXERCÍCIOS DE REVISÃO PFV - GABARITO www.professorwaltertadeu.mat.br ) Uma escada de m de comprimento está apoiada no chão

Leia mais

Proposta de correcção

Proposta de correcção Ficha de Trabalho Matemática A - ºano Temas: Trigonometria (Triângulo rectângulo e círculo trigonométrico) Proposta de correcção. Relembrar que um radiano é, em qualquer circunferência, a amplitude do

Leia mais

Circunferência e círculo. Posições relativas de ponto e circunferência. Posições relativas de reta e circunferência

Circunferência e círculo. Posições relativas de ponto e circunferência. Posições relativas de reta e circunferência Circunferência e círculo Circunferência de centro O e raio r é o lugar geométrico dos pontos do plano que estão a uma distância r do ponto O. Observação O conjunto constituído dos pontos de uma circunferência

Leia mais

MATEMÁTICA 3 GEOMETRIA PLANA

MATEMÁTICA 3 GEOMETRIA PLANA MATEMÁTICA 3 GEOMETRIA PLANA Professor Renato Madeira MÓDULO 13 Circunferência e Círculo Circunferência é o lugar geométrico dos pontos do plano cujas distâncias a um ponto fixo (centro) são iguais a uma

Leia mais

1. Com o auxílio de régua graduada e transferidor, calcular sen 42, cos 42 e tg 42. Resolução Traçamos uma perpendicular a um dos lados desse ângulo:

1. Com o auxílio de régua graduada e transferidor, calcular sen 42, cos 42 e tg 42. Resolução Traçamos uma perpendicular a um dos lados desse ângulo: Atividades Complementares 1. Com o auxílio de régua graduada e transferidor, calcular sen 4, cos 4 e tg 4. Traçamos uma perpendicular a um dos lados desse ângulo: Medimos, com auxílio da régua, os lados

Leia mais

Introdução ao Cálculo Vetorial

Introdução ao Cálculo Vetorial Introdução ao Cálculo Vetorial Segmento Orientado É o segmento de reta com um sentido de orientação. Por exemplo AB onde: A : origem e B : extremidade. Pode-se ter ainda o segmento BA onde: B : origem

Leia mais

O conhecimento é a nossa propaganda.

O conhecimento é a nossa propaganda. Lista de Exercícios 1 Trigonometria Gabaritos Comentados dos Questionários 01) (UFSCAR 2002) O valor de x, 0 x π/2, tal que 4.(1 sen 2 x).(sec 2 x 1) = 3 é: a) π/2. b) π/3. c) π/4. d) π/6. e) 0. 4.(1 sen

Leia mais

Formação Continuada Nova EJA. Plano de Ação 2

Formação Continuada Nova EJA. Plano de Ação 2 Nome: Jones Paulo Duarte Regional: Centro Sul Tutora: Josiane da Silva Martins Formação Continuada Nova EJA Plano de Ação 2 INTRODUÇÃO Esse PA tem como objetivo enfatizar o assunto do capítulo 19 do 2º

Leia mais

Exercícios Extras-Relações Métricas no Triângulo Retângulo-Lei dos Cossenos e Senos- 1 s anos-2015

Exercícios Extras-Relações Métricas no Triângulo Retângulo-Lei dos Cossenos e Senos- 1 s anos-2015 Exercícios Extras-Relações Métricas no Triângulo Retângulo-Lei dos Cossenos e Senos- 1 s anos-015 1. (Ufsj 013) Um triângulo isósceles inscrito em um círculo de raio igual a 8 cm possui um lado que mede

Leia mais

Matemática B Intensivo V. 1

Matemática B Intensivo V. 1 Matemática Intensivo V. Eercícios 0) No triângulo abaio: teto adjacente ao ângulo. omo 5 e,8 km, vamos relacionar essas informações através da razão tangente: tg cat. oposto cat. adjacente y om: 5, cateto

Leia mais

Ano: 9º ano Ensino Fundamental II Data: / /2017 Disciplina: Matemática Professor: Sergio Monachesi ROTEIRO DE ESTUDO REGULAÇÃO CONTEÚDO DO 4º BIMESTRE

Ano: 9º ano Ensino Fundamental II Data: / /2017 Disciplina: Matemática Professor: Sergio Monachesi ROTEIRO DE ESTUDO REGULAÇÃO CONTEÚDO DO 4º BIMESTRE Nome: Nº: Ano: 9º ano Ensino Fundamental II Data: / /2017 Disciplina: Matemática Professor: Sergio Monachesi a) Conteúdos : ROTEIRO DE ESTUDO REGULAÇÃO CONTEÚDO DO 4º BIMESTRE Polígonos: - nomenclatura.

Leia mais

Matemática GEOMETRIA PLANA. Professor Dudan

Matemática GEOMETRIA PLANA. Professor Dudan Matemática GEOMETRIA PLANA Professor Dudan Ângulos Geometria Plana Ângulo é a região de um plano concebida pelo encontro de duas semirretas que possuem uma origem em comum, chamada vértice do ângulo. A

Leia mais

CM127 - Lista Mostre que os pontos médios de um triângulo isósceles formam um triângulo também isósceles.

CM127 - Lista Mostre que os pontos médios de um triângulo isósceles formam um triângulo também isósceles. CM127 - Lista 2 Congruência de Triângulos e Desigualdade Triangular 1. Faça todos os exercícios dados em aula. 2. Em um triângulo ABC a altura do vértice A é perpendicular ao lado BC e divide BC em dois

Leia mais

Triângulos classificação

Triângulos classificação Triângulos classificação Quanto aos ângulos Acutângulo: possui três ângulos agudos. Quanto aos lados Equilátero: três lados de mesma medida. Obs.: os três ângulos internos têm medidas de 60º. Retângulo:

Leia mais

PROFORM Programa de Formação Diferenciada Curso Introdutório de Matemática para Engenharia CIME

PROFORM Programa de Formação Diferenciada Curso Introdutório de Matemática para Engenharia CIME PROFORM Programa de Formação Diferenciada Curso Introdutório de Matemática para Engenharia CIME 2012.2 Parte II Kerolaynh Santos e Tássio Magassy Engenharia Civil Identidades Trigonométricas Definição:

Leia mais

Estudo da Trigonometria (I)

Estudo da Trigonometria (I) Instituto Municipal de Ensino Superior de Catanduva SP Curso de Licenciatura em Matemática 3º ano Prática de Ensino da Matemática III Prof. M.Sc. Fabricio Eduardo Ferreira fabricio@fafica.br Estudo da

Leia mais

2, 5 2,0 1,5 3,75 2,5 6,25 5,0 AF 2,5 0,8 2,5 SENO, COSSENO, TANGENTE CONTEÚDO. Razões trigonométricas AMPLIANDO SEUS CONHECIMENTOS

2, 5 2,0 1,5 3,75 2,5 6,25 5,0 AF 2,5 0,8 2,5 SENO, COSSENO, TANGENTE CONTEÚDO. Razões trigonométricas AMPLIANDO SEUS CONHECIMENTOS SENO, COSSENO, TANGENTE CONTEÚDO Razões trigonométricas AMPLIANDO SEUS CONHECIMENTOS Observe os triângulos ABC e AEF. 6, 3,7,,0 1,,0 Esses triângulos têm em comum o ângulo Â. Os ângulos que: C ˆ e F ˆ

Leia mais

10. OUTRAS FUNÇÕES TRIGONOMÉTRICAS

10. OUTRAS FUNÇÕES TRIGONOMÉTRICAS 0. OUTRAS FUNÇÕES TRIGONOMÉTRICAS Consideremos um triângulo retângulo ABC e seja t um dos seus ângulos agudos. Figura Relembremos que, sendo 0 < t < π/, temos tg t = b c (= cateto oposto cateto adjacente)

Leia mais

Hewlett-Packard TRIÂNGULOS. AULAS 01 a 04. Prof. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos

Hewlett-Packard TRIÂNGULOS. AULAS 01 a 04. Prof. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Hewlett-Packard TRIÂNGULOS AULAS 01 a 04 Prof. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Sumário TRIÂNGULOS... 1 DEFINIÇÃO E ELEMENTOS... 1 SOMA DAS MEDIDAS DOS ÂNGULOS INTERNOS DE UM TRIÂNGULO...

Leia mais

Desenho e Projeto de Tubulação Industrial Nível II

Desenho e Projeto de Tubulação Industrial Nível II Desenho e Projeto de Tubulação Industrial Nível II Módulo I Aula 04 TRIÂNGULOS Triângulo é um polígono de três lados. É o polígono que possui o menor número de lados. Talvez seja o polígono mais importante

Leia mais

Semelhança de triângulos

Semelhança de triângulos Semelhança de triângulos As três proposições a seguir estabelecem as condições suficientes usuais para que dois triângulos sejam semelhantes. Por tal razão, as mesmas são conhecidas como os casos de

Leia mais

tg30 = = 2 + x 3 3x = x 3 3 Tem-se que AB C = 90, AD B = 90 e DA B = 60 implicam em DB C = 60. Assim, do triângulo retângulo BCD, vem

tg30 = = 2 + x 3 3x = x 3 3 Tem-se que AB C = 90, AD B = 90 e DA B = 60 implicam em DB C = 60. Assim, do triângulo retângulo BCD, vem Resposta da questão : [C] 5 senα α 0 0 7,05 senβ 0,705 α 45 0 Portanto, AO B 0 + 45 75. Resposta da questão : [B] x x Tem-se que sen0 x 5 m. 0 0 Portanto, a resposta é 0 00% 00%. 5 Resposta da questão

Leia mais

Lista de Estudo para a Prova de 1º Ano. Prof. Lafayette

Lista de Estudo para a Prova de 1º Ano. Prof. Lafayette Lista de Estudo para a Prova de 1º Ano Prof. Lafayette 1. Um triângulo ABC é retângulo em A e os ângulos em B e C são, respectivamente, de 30 e 60. A hipotenusa mede 4. a) Faça um desenho representativo.

Leia mais

Gabarito Extensivo MATEMÁTICA volume 1 Frente B

Gabarito Extensivo MATEMÁTICA volume 1 Frente B Gabarito Etensivo MATEMÁTICA volume Frente B sen cos tan 0 5 60 0) E 5 5 6 9 +y=+8= sen0 y y 8 cateto oposto ipotenusa 0) m Seja O a origem no solo alinado verticalmente com o bastão. A medida OB será

Leia mais

Roteiro Recuperação Geometria 3º trimestre- 1º ano

Roteiro Recuperação Geometria 3º trimestre- 1º ano Roteiro Recuperação Geometria 3º trimestre- 1º ano 1. Determine a área do trapézio isósceles de perímetro 26cm, que possui a medida de suas bases iguais a 4cm e 12cm. 2. O triângulo ABC está inscrito num

Leia mais

FUNÇÕES TRIGONOMÉTRICAS. Teorema de Pitágoras Razões trigonométricas Circunferência trigonométrica

FUNÇÕES TRIGONOMÉTRICAS. Teorema de Pitágoras Razões trigonométricas Circunferência trigonométrica FUNÇÕES TRIGONOMÉTRICAS Teorema de Pitágoras Razões trigonométricas Circunferência trigonométrica Teorema de Pitágoras Em qualquer triângulo retângulo, o quadrado da medida da hipotenusa é igual à soma

Leia mais

TRIÂNGULO RETÂNGULO. Triângulo retângulo é todo triângulo que tem um ângulo reto. O triângulo ABC é retângulo em A e seus elementos são:

TRIÂNGULO RETÂNGULO. Triângulo retângulo é todo triângulo que tem um ângulo reto. O triângulo ABC é retângulo em A e seus elementos são: TRIÂNGULO RETÂNGULO Triângulo retângulo é todo triângulo que tem um ângulo reto. O triângulo ABC é retângulo em A e seus elementos são: a: hipotenusa b e c: catetos h: altura relativa a hipotenusa m e

Leia mais

Teorema do ângulo externo e sua consequencias

Teorema do ângulo externo e sua consequencias Teorema do ângulo externo e sua consequencias Definição. Os ângulos internos de um triângulo são os ângulos formados pelos lados do triângulo. Um ângulo suplementar a um ângulo interno do triângulo é denominado

Leia mais

Lista de exercícios sobre triângulos. (Comitê olímpico)

Lista de exercícios sobre triângulos. (Comitê olímpico) Lista de exercícios sobre triângulos. (Comitê olímpico) 1. (Ufpe) Na figura ilustrada abaixo, os segmentos AB, BC, CD, DE e EA são congruentes. Determine, em graus, a medida do ângulo CAD. 2. (Ufrj) O

Leia mais

Taxas Trigonométricas

Taxas Trigonométricas Taas Trigonométricas Obs.: Com é mais difícil (confere a resolução). 1) A intensidade da componente F é p% da intensidade da força F. Então, p vale (a) sen(α) (b) 1sen(α) (c) cos(α) (d) 1cos(α) (e) cos(α)/1

Leia mais

COMO A BANCA CESPE COBRA ISSO?

COMO A BANCA CESPE COBRA ISSO? COMO A BANCA CESPE COBRA ISSO? GEOMETRIA 122228. O preço do litro de determinado produto de limpeza é igual a R$ 0,32. Se um recipiente tem a forma de um paralelepípedo retângulo reto, medindo internamente

Leia mais

MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON

MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON PROFJWPS@GMAIL.COM DEFINIÇÕES GEOMETRIA PLANA Ponto: Um elemento do espaço que define uma posição. Reta: Conjunto infinito de pontos. Dois pontos são

Leia mais

O que é triângulo (*)

O que é triângulo (*) Escola SESI Jundiaí Anápolis Disciplina: Matemática Turma: 1º Ano Professor (a) : César Lopes de Assis O que é triângulo (*) Considere três pontos A, B e C não colineares. Chama-se triângulo à figura geométrica

Leia mais

Objetivos. em termos de produtos internos de vetores.

Objetivos. em termos de produtos internos de vetores. Aula 5 Produto interno - Aplicações MÓDULO 1 - AULA 5 Objetivos Calcular áreas de paralelogramos e triângulos. Calcular a distância de um ponto a uma reta e entre duas retas. Determinar as bissetrizes

Leia mais

ENQ Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. Questão 01 [ 1,25 ]

ENQ Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. Questão 01 [ 1,25 ] MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 017 Gabarito Questão 01 [ 1,5 ] Encontre as medidas dos lados e ângulos de dois triângulos ABC diferentes tais que AC = 1, BC = e A BC = 0 Considere

Leia mais

Aula 3 Polígonos Convexos

Aula 3 Polígonos Convexos MODULO 1 - AULA 3 Aula 3 Polígonos Convexos Conjunto convexo Definição: Um conjunto de pontos chama-se convexo se, quaisquer que sejam dois pontos distintos desse conjunto, o segmento que tem esses pontos

Leia mais

a1q1: Seja ABCDEF GH um cubo de aresta unitária de E 3 e considere o espaço V 3 orientado pela base { CD, CB, CH}. Então podemos afirmar que: a)

a1q1: Seja ABCDEF GH um cubo de aresta unitária de E 3 e considere o espaço V 3 orientado pela base { CD, CB, CH}. Então podemos afirmar que: a) 1 a1q1: Seja ABCDEF GH um cubo de aresta unitária de E 3 e considere o espaço V 3 orientado pela base { CD, CB, CH}. Então podemos afirmar que: a) EB ED = GA b) EB ED = AG c) EB ED = EH d) EB ED = EA e)

Leia mais

Teorema de Tales. MA13 - Unidade 8. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria.

Teorema de Tales. MA13 - Unidade 8. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Teorema de Tales MA13 - Unidade 8 Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT Proporcionalidade 1. Dizemos que o segmento x é a quarta proporcional

Leia mais

MAT111 - Cálculo I - IF TRIGONOMETRIA. As Funçoes trigonométricas no triângulo retângulo

MAT111 - Cálculo I - IF TRIGONOMETRIA. As Funçoes trigonométricas no triângulo retângulo MAT111 - Cálculo I - IF - 010 TRIGONOMETRIA As Funçoes trigonométricas no triângulo retângulo Analisando a figura a seguir, temos que os triângulos retângulos OA 1 B 1 e OA B, são semelhantes, pois possuem

Leia mais

Prova final de MATEMÁTICA - 3o ciclo a Fase

Prova final de MATEMÁTICA - 3o ciclo a Fase Prova final de MATEMÁTICA - 3o ciclo 017-1 a Fase Proposta de resolução Caderno 1 1. Como 9 =,5 e 5,, temos que 5 < 9 indicados na definição do conjunto, vem que: e assim, representando na reta real os

Leia mais

Aula 5 - Soluções dos Exercícios Propostos

Aula 5 - Soluções dos Exercícios Propostos Aula 5 - Soluções dos Exercícios Propostos Trigonometria I Solução. : (a A cada um minuto completado, o ponteiro dos segundos percorre uma volta completa de π radianos. Isso se o ponteiro dos segundos

Leia mais

Prova Vestibular ITA 2000

Prova Vestibular ITA 2000 Prova Vestibular ITA Versão. ITA - (ITA ) Sejam f, g : R R definidas por f ( ) = e g cos 5 ( ) =. Podemos afirmar que: f é injetora e par e g é ímpar. g é sobrejetora e f é bijetora e g é par e f é ímpar

Leia mais

Prova final de MATEMÁTICA - 3o ciclo Época especial

Prova final de MATEMÁTICA - 3o ciclo Época especial Prova final de MATEMÁTICA - o ciclo 016 - Época especial Proposta de resolução Caderno 1 1. Como os triângulos [OAB] e [OCD] são semelhantes (porque têm um ângulo comum e os lados opostos a este ângulo

Leia mais

Prova final de MATEMÁTICA - 3o ciclo Época especial

Prova final de MATEMÁTICA - 3o ciclo Época especial Prova final de MATEMÁTICA - o ciclo 016 - Época especial Proposta de resolução Caderno 1 1. Como os triângulos [OAB] e [OCD] são semelhantes (porque têm um ângulo comum e os lados opostos a este ângulo

Leia mais

Turma preparatória para Olimpíadas.

Turma preparatória para Olimpíadas. p: João Alvaro w: www.matemaniacos.com.br e: joao.baptista@iff.edu.br Turma preparatória para Olimpíadas. TRIÂNGULOS - V01 DEFINIÇÃO Sejam três pontos não colineares A, B e C, o triângulo ABC é uma figura

Leia mais

Formação Continuada em Matemática. CEDERJ. Matemática 1ºano/E.Médio 2º bimestre/2013. Trigonometria no Triângulo Retângulo.

Formação Continuada em Matemática. CEDERJ. Matemática 1ºano/E.Médio 2º bimestre/2013. Trigonometria no Triângulo Retângulo. Formação Continuada em Matemática. CEDERJ. Matemática 1ºano/E.Médio 2º bimestre/2013. Trigonometria no Triângulo Retângulo. Tarefa 4 Aluna: Monique Andrade da Conceição Grupo: 5 Tutor: LEZIETI CUBEIRO

Leia mais

Trigonometria no Triângulo Retângulo Exercícios

Trigonometria no Triângulo Retângulo Exercícios Trigonometria no Triângulo Retângulo Exercícios Prof. Márcio Nascimento marcio@matematicauva.org Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática

Leia mais