Unidade 4 Formas geométricas planas

Tamanho: px
Começar a partir da página:

Download "Unidade 4 Formas geométricas planas"

Transcrição

1 Sugestões de atividades Unidade 4 Formas geométricas planas 6 MTMÁTI 1

2 Matemática 1. O relógio, representado abaixo, indica exatamente 8 horas. TracieGrant/Shutterstock c) um ângulo de 120 ; d) um ângulo de 60 ; e) um ângulo de 30 ; f) um ângulo agudo; g) um ângulo de 150 ; h) um ângulo de screva V para as afirmações verdadeiras e F para as falsas. a) etermine, em graus, o menor ângulo formado pelos dois ponteiros. b) etermine, em graus, o maior ângulo formado pelos dois ponteiros. c) Qual é a soma das medidas desses dois ângulos? 2. Observe atentamente as posições dos ponteiros dos relógios representados abaixo. a) ( ) Um ângulo agudo tem medida menor que a medida de um ângulo reto. b) ( ) Um ângulo obtuso tem medida maior que a medida de um ângulo reto. c) ( ) Um giro completo corresponde a um ângulo de 360. d) ( ) Um ângulo de medida 180 corresponde à metade do ângulo de um giro completo. F Waldomiro Neto 4. onsiderando que as retas r e s são paralelas, responda: t r G H I s Indique os relógios em que os ponteiros formam: a) um ângulo reto; b) um ângulo raso; a) Se o menor dos dois ângulos indicados medir 30, qual será a medida do maior ângulo? b) Se o maior dos dois ângulos indicados medir 100, qual será a medida do menor ângulo? 1

3 5. Luana utilizou um transferidor e representou seis ângulos consecutivos, todos com o vértice no ponto O, conforme indicado na figura a seguir. F Qual é a medida de Â, ou seja, a medida do ângulo com vértice no ponto? 8. O professor de Matemática desenhou na lousa oito polígonos regulares, representados abaixo. G Ângulos: Ô, Ô, Ô, ÔF, FÔG e GÔ O a) etermine as medidas, em graus, de cada um desses ângulos. b) Quais desses ângulos são agudos? c) Qual é a soma das medidas desses seis ângulos? 6. Um relógio indica 12 horas em ponto. NRT/Shutterstock F a) screva o nome desses polígonos regulares. b) Qual desses polígonos tem quatro ângulos retos? 9. Na figura a seguir estão representados três quadrados e um triângulo equilátero, todos com a mesma medida do lado. G H Szasz-Fabian Ilka rika/shutterstock onsiderando apenas o deslocamento do ponteiro grande, indique a medida do ângulo que ele descreve em: a) 5 minutos; d) 30 minutos; b) 10 minutos; e) 40 minutos. c) 20 minutos; 7. Utilizando uma régua e um esquadro, conforme indicado na figura a seguir, Júlia desenhou os segmentos e. onsiderando que o ângulo interno de um triângulo equilátero mede 60 e que o ângulo interno de um quadrado é reto, determine a medida do ângulo indicado na figura. 10. Identifique os polígonos desenhados na figura a seguir. Waldomiro Neto 2

4 11. onsidere a seguinte propriedade de um quadrilátero: apresenta os lados opostos paralelos. Responda: Quais dos quadriláteros a seguir possuem essa propriedade? a) c) 15. O polígono desenhado a seguir representa a trajetória que Marcos fez em um parque. Os ângulos indicam mudanças de direção. Quadrado Retângulo b) d) Paralelogramo Losango 12. Os três polígonos desenhados a seguir são regulares. etermine a medida dos ângulos externos indicados, considerando que os ângulos internos medem, respectivamente, 60, 90 e onsiderando os polígonos representados na atividade anterior, escreva V para as afirmações verdadeiras e F para as falsas. a) ( ) Quanto maior a medida do ângulo interno, maior a medida do ângulo externo. b) ( ) Quanto maior o número de lados, menor a medida do ângulo interno. c) ( ) Quanto menor a medida do ângulo interno, maior a quantidade de lados. d) ( ) Quanto maior a medida do ângulo externo, menor a medida do ângulo interno. 14. Sabe-se que um polígono regular tem ao todo 8 vértices. É correto afirmar que esse polígono regular: a) tem 10 lados. b) tem 10 ângulos internos. c) tem também 8 lados. d) tem menos de 8 lados. e) é um decágono. ssinale a alternativa que fornece a medida da soma desses ângulos. a) 180 d) 400 b) 360 c) 720 e) inda em relação à situação descrita anteriormente, qual seria a medida de cada ângulo se o polígono fosse regular? a) Maior que 70. b) Maior que 60. c) Maior que 50. d) Menor que 40. e) Igual a Qual é o polígono regular cuja medida do ângulo externo é igual à medida do ângulo interno? a) Hexágono. d) Heptágono. b) Pentágono. c) ecágono. e) Quadrado. 18. O desenho a seguir representa um polígono não convexo. Sobre esse polígono, é correto afirmar que: 3

5 a) tem 13 lados. b) é um decágono. c) apresenta 14 vértices. d) é um dodecágono. e) tem 20 lados. 19. Na figura abaixo estão representados dois hexágonos regulares e indicados dois ângulos internos, X e Y. d) a soma das medidas desses dois ângulos é 120. e) a soma das medidas desses dois ângulos é maior que (OM) Luana colou com fita adesiva 6 triângulos equiláteros nos lados de um hexágono, conforme a figura, obtendo um polígono de 12 lados. X Y É correto afirmar que: a) esses dois ângulos têm medidas diferentes. b) a soma das medidas desses dois ângulos é 180. c) esses dois ângulos são agudos. Se ela trocar 3 triângulos por 2 quadrados e 1 pentágono regular, todos com lado de mesmo tamanho do lado do hexágono, ela vai obter um polígono com quantos lados? a) 14 b) 16 c) 17 d) 18 e) 25 4

6 Matemática Gabarito 1. a) 120 b) 240 c) a) I b) F c), d), G e) H f), G, H g) h) 3. a) V b) V c) V d) V 4. a) 150 b) a) 20, 50, 20, 20, 40 e 30 b) Todos. c) a) 30 b) 60 c) 120 d) 180 e) a) triângulo equilátero; quadrado; pentágono; hexágono; heptágono; F octógono; G eneágono; H decágono. b) O quadrado quadrilátero pentágono hexágono pentágono hexágono 11. Todos os quadriláteros indicados ; 90 ; a) F b) F c) F d) V 14. lternativa c. 15. lternativa b. 16. lternativa c. 17. lternativa e. 18. lternativa d. 19. lternativa e. 20. lternativa b. 5

Definição de Polígono

Definição de Polígono Definição de Polígono Figura plana limitada por segmentos de recta, chamados lados dos polígonos onde cada segmento de recta, intersecta exactamente dois outros extremos; se os lados forem todos iguais

Leia mais

CURSO DE GEOMETRIA LISTA

CURSO DE GEOMETRIA LISTA GEOMETRI Ângulos Obs.: Dois ângulos são congruentes quando têm a mesma abertura. Exemplos: Ângulos complementares Soma (medida) 90º Ângulos suplementares Soma (medida) 180º issetriz bissetriz de um ângulo

Leia mais

MATEMÁTICA ANGULOS ENTRE RETAS E TRIÂNGULOS. 3. A medida do complemento: a) do ângulo de 27º 31 é: b) do ângulo de 16º 15 28 é:

MATEMÁTICA ANGULOS ENTRE RETAS E TRIÂNGULOS. 3. A medida do complemento: a) do ângulo de 27º 31 é: b) do ângulo de 16º 15 28 é: MATEMÁTICA Prof. Adilson ANGULOS ENTRE RETAS E TRIÂNGULOS 1. Calcule o valor de x e y observando as figuras abaixo: a) b) 2. Calcule a medida de x nas seguintes figuras: 3. A medida do complemento: a)

Leia mais

Prof. Jorge. Estudo de Polígonos

Prof. Jorge. Estudo de Polígonos Estudo de Polígonos Enchendo a piscina A piscina de um clube de minha cidade, vista de cima, tem formato retangular. O comprimento dela é de 18 m. o fundo é uma rampa reta. Vista lateralmente, ela tem

Leia mais

GEOMETRIA NO PLANO. Linha Conjunto infinito de pontos que pode ser desenhado por um único movimento contínuo (objecto geométrico a uma dimensão).

GEOMETRIA NO PLANO. Linha Conjunto infinito de pontos que pode ser desenhado por um único movimento contínuo (objecto geométrico a uma dimensão). GEOMETRIA NO PLANO 1 Noções Elementares Ponto O objecto geométrico mais elementar (sem dimensão). Linha Conjunto infinito de pontos que pode ser desenhado por um único movimento contínuo (objecto geométrico

Leia mais

Geometria Euclidiana Plana Parte I

Geometria Euclidiana Plana Parte I CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.1 Geometria Euclidiana Plana Parte I Joyce Danielle de Araújo - Engenharia de Produção Lucas Araújo dos Santos - Engenharia de Produção O que veremos

Leia mais

ESCOLA BÁSICA VASCO DA GAMA - SINES

ESCOLA BÁSICA VASCO DA GAMA - SINES ESCOLA BÁSICA VASCO DA GAMA - SINES ANO LECTIVO 2009/2010 FICHA DE TRABALHO MATEMÁTICA - 6º ANO Nome: N.º Turma: Data: 1. Observa o ângulo que se segue. Assinala a resposta correcta em cada caso. 2. Assinala

Leia mais

Ficha Formativa de Matemática 7º Ano Tema 5 Figuras Geométricas

Ficha Formativa de Matemática 7º Ano Tema 5 Figuras Geométricas 1. Observa as linhas seguintes. 1.1. Identifica: a) as linhas poligonais; b) as linhas poligonais simples; c) as linhas poligonais fechadas. 1.2. Das linhas poligonais, identifica as que definem: a) polígonos

Leia mais

LISTÃO DE EXERCÍCIOS DE REVISÃO IFMA PROFESSOR: ARI

LISTÃO DE EXERCÍCIOS DE REVISÃO IFMA PROFESSOR: ARI 01.: A figura mostra um edifício que tem 15 m de altura, com uma escada colocada a 8 m de sua base ligada ao topo do edifício. comprimento dessa escada é de: a) 12 m. b) 30 m. c) 15 m. d) 17 m. e) 20 m.

Leia mais

VÊ, FAZ, APRENDE. Geometria 1º CEB GUIÃO DO PROFESSOR

VÊ, FAZ, APRENDE. Geometria 1º CEB GUIÃO DO PROFESSOR GUIÃO DO PROFESSOR VÊ, FAZ, APRENDE Geometria Exploração de conteúdos Preparação da visita Caderno do professor Caderno do aluno Recursos online 1º CEB Introdução O ensino e a aprendizagem da Geometria

Leia mais

CADERNO DE ATIVIDADES / MATEMÁTICA TECNOLOGIAS

CADERNO DE ATIVIDADES / MATEMÁTICA TECNOLOGIAS VSTIULR VILS 0. alcule x na figura: x + 0º x + 0º RNO TIVIS / MTMÁTI TNOLOGIS 0. Na figura, é o lado de um quadrado inscrito e é o lado do decágono regular. Qual a medida de x? x 0. Na figura a seguir,

Leia mais

Colégio Universitas06 Data: 7 Mai 2013. Professor(a): Adriana Santos. Exercícios extras

Colégio Universitas06 Data: 7 Mai 2013. Professor(a): Adriana Santos. Exercícios extras Colégio Universitas06 Data: 7 Mai 2013 Professor(a): Adriana Santos Aluno(a): Nota: nº: Exercícios extras 1 Escreva se cada objeto desenhado dá ideia de sólido geométrico, região plana ou contorno. Em

Leia mais

Unidade didáctica: circunferência e polígonos. Matemática 9º ano

Unidade didáctica: circunferência e polígonos. Matemática 9º ano Unidade didáctica: circunferência e polígonos Matemática 9º ano POLÍGONOS. Ângulos de um polígono DEFINIÇÃO: Um polígono é uma superfície plana limitada por uma linha poligonal fechada. Em qualquer polígono

Leia mais

Explorando Poliedros

Explorando Poliedros Reforço escolar M ate mática Explorando Poliedros Dinâmica 6 2ª Série 1º Bimestre Matemática Ensino Médio 2ª Geométrico Introdução à geometria espacial Aluno PRIMEIRA ETAPA COMPARTILHAR IDEIAS ATIVIDADE

Leia mais

Aulas Particulares on-line

Aulas Particulares on-line Esse material é parte integrante do ulas Particulares on-line do IESE RSIL S/, MTEMÁTI PRÉ-VESTIULR LIVRO O PROFESSOR 006-009 IESE rasil S.. É proibida a reprodução, mesmo parcial, por qualquer processo,

Leia mais

Matéria: Matemática Assunto: Comprimento ou Perímetro Prof. Dudan

Matéria: Matemática Assunto: Comprimento ou Perímetro Prof. Dudan Matéria: Matemática Assunto: Comprimento ou Perímetro Prof. Dudan Matemática Comprimento ou Perímetro Um exemplo claro do uso do conhecimento matemático nessas simples situações é quando precisamos saber

Leia mais

Matemática Essencial: Alegria Financeira Fundamental Médio Geometria Trigonometria Superior Cálculos

Matemática Essencial: Alegria Financeira Fundamental Médio Geometria Trigonometria Superior Cálculos Matemática Essencial: Alegria Financeira Fundamental Médio Geometria Trigonometria Superior Cálculos Geometria Plana: Áreas de regiões poligonais Triângulo e região triangular O conceito de região poligonal

Leia mais

Os Sólidos de Platão. Colégio Santa Maria Matemática III Geometria Espacial Sólidos Geométricos Prof.º Wladimir

Os Sólidos de Platão. Colégio Santa Maria Matemática III Geometria Espacial Sólidos Geométricos Prof.º Wladimir Sólidos Geométricos As figuras geométricas espaciais também recebem o nome de sólidos geométricos, que são divididos em: poliedros e corpos redondos. Vamos abordar as definições e propriedades dos poliedros.

Leia mais

POLÍGONOS TRIÂNGULOS E QUADRILÁTEROS

POLÍGONOS TRIÂNGULOS E QUADRILÁTEROS 7º ANO POLÍGONOS TRIÂNGULOS E QUADRILÁTEROS Polígonos Nuno Marreiros Antes de começar Não é possível pois uma circunferência não é formada por segmentos de reta. Nem tudo o que parece é Segmento de reta

Leia mais

GEOMETRIA BÁSICA 2011-2 GGM00161-TURMA M2. Dirce Uesu Pesco Geometria Espacial 08/11/2011

GEOMETRIA BÁSICA 2011-2 GGM00161-TURMA M2. Dirce Uesu Pesco Geometria Espacial 08/11/2011 GEOMETRIA BÁSICA 2011-2 GGM00161-TURMA M2 Dirce Uesu Pesco Geometria Espacial 08/11/2011 Definição : Considere dois planos paralelos α e β e um segmento de reta PQ, cuja reta suporte r intercepta o plano

Leia mais

UM MÓDULO DE ATIVIDADES PARA O ENSINO-APRENDIZAGEM DAS FÓRMULAS DE ÁREA DOS PRINCIPAIS POLÍGONOS CONVEXOS

UM MÓDULO DE ATIVIDADES PARA O ENSINO-APRENDIZAGEM DAS FÓRMULAS DE ÁREA DOS PRINCIPAIS POLÍGONOS CONVEXOS UM MÓDULO DE ATIVIDADES PARA O ENSINO-APRENDIZAGEM DAS FÓRMULAS DE ÁREA DOS PRINCIPAIS POLÍGONOS CONVEXOS Cristiane Fernandes de Souza, Ms. UFRN cristianesouza.fernandes@bol.com.br Introdução O estudo

Leia mais

APOSTILA 2015 DESENHO GEOMÉTRICO PROFESSOR: DENYS YOSHIDA DESENHO GEOMÉTRICO 2º ANO - ENSINO MÉDIO - 2015 1

APOSTILA 2015 DESENHO GEOMÉTRICO PROFESSOR: DENYS YOSHIDA DESENHO GEOMÉTRICO 2º ANO - ENSINO MÉDIO - 2015 1 APOSTILA 015 DESENHO GEOMÉTRICO PROFESSOR: DENYS YOSHIDA DESENHO GEOMÉTRICO º ANO - ENSINO MÉDIO - 015 1 Sumário 1.Geometria Espacial...4 1.1 Definições básicas da Geometria Espacial...4 1. Posições de

Leia mais

QUADRILÁTEROS. Um quadrilátero é um polígono de quatro lados. Pode ser dito que é porção do plano limitada por uma poligonal fechada,

QUADRILÁTEROS. Um quadrilátero é um polígono de quatro lados. Pode ser dito que é porção do plano limitada por uma poligonal fechada, QUADRILÁTEROS Um quadrilátero é um polígono de quatro lados. Pode ser dito que é porção do plano limitada por uma poligonal fechada, A B C Lados: AB BC CD AD Vértices: A B C D Diagonais: AC BD D Algumas

Leia mais

Desenho geométrico. Ponto: Elemento geométrico considerado sem dimensão, apenas com posição. Reta:

Desenho geométrico. Ponto: Elemento geométrico considerado sem dimensão, apenas com posição. Reta: Desenho geométrico Ponto: Elemento geométrico considerado sem dimensão, apenas com posição. Reta: Linha que estabelece a menor distância entre 2 pontos. Por 1 ponto podem passar infinitas retas. Por 2

Leia mais

Lista 1: Vetores -Turma L

Lista 1: Vetores -Turma L Lista 1: Vetores -Turma L Professora: Ivanete Zuchi Siple 1. Dados os vetores u e v da gura, mostrar num gráco um representante do vetor: (a) u v (b) v u (c) u + 4 v u v. Represente o vetor x = u + v w

Leia mais

Nome: Professora: Cristina Alves

Nome: Professora: Cristina Alves Escola Básica e Secundária de Vila Cova Ano letivo: 2012/2013 Outubro 2012 Ficha de Avaliação Formativa Matemática 8º Ano Isometrias Com trabalho e perseverança, tudo se alcança Nome: Nº: Turma: Professora:

Leia mais

CALEIDOSCÓPIOS DIÉDRICOS

CALEIDOSCÓPIOS DIÉDRICOS CALEIDOSCÓPIOS DIÉDRICOS SIMETRIAS NO PLANO Introdução O conceito de simetria de figuras planas representadas em obras de arquitetura, de arte, de decoração e em numerosos exemplos naturais, intuitivamente

Leia mais

PROFESSOR: DENYS YOSHIDA

PROFESSOR: DENYS YOSHIDA APOSTILA 015 DESENHO GEOMÉTRICO PROFESSOR: DENYS YOSHIDA DESENHO GEOMÉTRICO 1º ANO - ENSINO MÉDIO - 015 1 Sumário 1. Trigonometria no triangulo retângulo...3 1.1 Triângulo retângulo...4 1. Teorema de Pitágoras...,,,,,,,...4

Leia mais

Matemática 2. 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um. 02. Abaixo temos uma ilustração da Victoria Falls Bridge.

Matemática 2. 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um. 02. Abaixo temos uma ilustração da Victoria Falls Bridge. Matemática 2 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um paralelepípedo retângulo acoplado a um prisma triangular. 1,6m 1m 1,4m Calcule o volume da estrutura, em dm 3, e indique

Leia mais

Programa Olímpico de Treinamento. Aula 1. Curso de Geometria - Nível 2. Prof. Rodrigo Pinheiro

Programa Olímpico de Treinamento. Aula 1. Curso de Geometria - Nível 2. Prof. Rodrigo Pinheiro Programa Olímpico de Treinamento urso de Geometria - Nível 2 Prof. Rodrigo Pinheiro ula 1 Introdução Nesta aula, aprenderemos conceitos iniciais de geometria e alguns teoremas básicos que utilizaremos

Leia mais

Escola E.B. 2,3 General Serpa Pinto Cinfães Matemática 5 Ano Letivo 2012/2013 FICHA FORMATIVA: SÓLIDOS GEOMÉTRICOS E FIGURAS NO PLANO

Escola E.B. 2,3 General Serpa Pinto Cinfães Matemática 5 Ano Letivo 2012/2013 FICHA FORMATIVA: SÓLIDOS GEOMÉTRICOS E FIGURAS NO PLANO 151865 - AGRUPAMENTO DE ESCOLAS DE CINFÃES Escola E.B. 2,3 General Serpa Pinto Cinfães Matemática 5 FICHA FORMATIVA: SÓLIDOS GEOMÉTRICOS E FIGURAS NO PLANO 1. A figura ao lado representa o polígono da

Leia mais

Como fazer para deixar firme uma estante de hastes com prateleiras que está balançando para os lados?

Como fazer para deixar firme uma estante de hastes com prateleiras que está balançando para os lados? cesse: http://fuvestibular.com.br/ o triângulo é uma das figuras mais importantes da Geometria, e também uma das mais interessantes. Na nossa vida diária, existem bons exemplos de aplicação de triângulos

Leia mais

ÁREAS. 01 (UFMG) Um terreno tem a forma da figura abaixo. Se AB AD, BC CD, AB = 10 m, BC = 70 m, CD = 40 m e AD = 80 m, então a área do terreno é

ÁREAS. 01 (UFMG) Um terreno tem a forma da figura abaixo. Se AB AD, BC CD, AB = 10 m, BC = 70 m, CD = 40 m e AD = 80 m, então a área do terreno é ÁRES 01 (UFMG) Um terreno tem a forma da figura abaixo. Se,, = 10 m, = 70 m, = 40 m e = 80 m, então a área do terreno é a) 1 500 m b) 1 600 m c) 1 700 m d) 1 800 m 0 (FMMG) - Observe a figura. Nessa figura,

Leia mais

Soluções de Questões de Matemática do Centro Federal de Educação Tecnológica Celso Suckow da Fonseca CEFET/RJ

Soluções de Questões de Matemática do Centro Federal de Educação Tecnológica Celso Suckow da Fonseca CEFET/RJ Soluções de Questões de Matemática do Centro Federal de Educação Tecnológica Celso Suckow da Fonseca CEFET/RJ 1. Questão Sistemas de Numeração No sistema de numeração de base, o numeral mais simples de

Leia mais

Geometria plana. Resumo teórico e exercícios.

Geometria plana. Resumo teórico e exercícios. Geometria plana. Resumo teórico e eercícios. 3º olegial / urso tensivo. utor - Lucas ctavio de Souza (Jeca) Relação das aulas. Página ula 01 - onceitos iniciais... 0 ula 0 - Pontos notáveis de um triângulo...

Leia mais

1 COMO ESTUDAR GEOMETRIA

1 COMO ESTUDAR GEOMETRIA Matemática 2 Pedro Paulo GEOMETRIA ESPACIAL I 1 COMO ESTUDAR GEOMETRIA Só relembrando a primeira aula de Geometria Plana, aqui vão algumas dicas bem úteis para abordagem geral de uma questão de geometria:

Leia mais

Geometria Área de Quadriláteros

Geometria Área de Quadriláteros ENEM Geometria Área de Quadriláteros Wallace Alves da Silva DICAS MATEMÁTICAS [Escolha a data] Áreas de quadriláteros Olá Galera, 1 QUADRILÁTEROS Quadrilátero é um polígono com quatro lados. A soma dos

Leia mais

02 Determine o módulo, a direção e o sentido dos seguintes vetores: a) A = 5 Λ i + 3 Λ j, b) B = 10 Λ i -7 Λ j, c) C = 2 Λ i - 3 Λ j + 4 Λ k.

02 Determine o módulo, a direção e o sentido dos seguintes vetores: a) A = 5 Λ i + 3 Λ j, b) B = 10 Λ i -7 Λ j, c) C = 2 Λ i - 3 Λ j + 4 Λ k. Exercícios de apoio à disciplina Geometria Analítica e Cálculo Vetorial 1 01 Três vetores A, B e C possuem as seguintes componentes nas direções x e y: A x = 6, A y = -3; B x = -3, B y =4; C x =2, C y

Leia mais

Unidade 9 - Prisma. Introdução Definição de um prisma. Denominação de um prisma. Prisma regular Área de um prisma. Volume de um prisma

Unidade 9 - Prisma. Introdução Definição de um prisma. Denominação de um prisma. Prisma regular Área de um prisma. Volume de um prisma Unidade 9 - Prisma Introdução Definição de um prisma Denominação de um prisma Prisma regular Área de um prisma Volume de um prisma Introdução Após a abordagem genérica de poliedros, destacaremos alguns

Leia mais

AULA 2 - ÁREAS. h sen a h a sen b h a b sen A. L L sen60 A

AULA 2 - ÁREAS. h sen a h a sen b h a b sen A. L L sen60 A AULA - ÁREAS Área de um Triângulo - A área de um triângulo pode ser calculada a partir de dois lados consecutivos e o ângulo entre eles. h sen a h a sen b h a b sen A - A área de um triângulo eqüilátero

Leia mais

Guia do professor. Ministério da Ciência e Tecnologia. Ministério da Educação. Secretaria de Educação a Distância. geometria e medidas

Guia do professor. Ministério da Ciência e Tecnologia. Ministério da Educação. Secretaria de Educação a Distância. geometria e medidas geometria e medidas Guia do professor Objetivos da unidade 1. Estudar linhas de simetria com espelhos; 2. Relacionar o ângulo formado por dois espelhos e o número de imagens formadas; 3. Estudar polígonos

Leia mais

REVISÃO Lista 07 Áreas, Polígonos e Circunferência. h, onde b representa a base e h representa a altura.

REVISÃO Lista 07 Áreas, Polígonos e Circunferência. h, onde b representa a base e h representa a altura. NOME: ANO: º Nº: POFESSO(A): Ana Luiza Ozores DATA: Algumas definições Áreas: Quadrado: EVISÃO Lista 07 Áreas, Polígonos e Circunferência A, onde representa o lado etângulo: A b h, onde b representa a

Leia mais

Polígonos e Quadriláteros. Caderno de Atividades

Polígonos e Quadriláteros. Caderno de Atividades Polígonos e Quadriláteros Caderno de Atividades Organização: Roselene Alves Amâncio Orientação: Dra. Eliane Scheid Gazire 2013 Sumário 1. Introdução...3 2. O desenvolvimento do pensamento geométrico...3

Leia mais

Caderno de Apoio 3.º Ciclo

Caderno de Apoio 3.º Ciclo METAS CURRICULARES DO ENSINO BÁSICO MATEMÁTICA Caderno de Apoio 3.º Ciclo António Bivar, Carlos Grosso, Filipe Oliveira, Maria Clementina Timóteo INTRODUÇÃO Este Caderno de Apoio, organizado por ciclos

Leia mais

CONTEÚDOS DA DISCIPLINA DE MATEMÁTICA

CONTEÚDOS DA DISCIPLINA DE MATEMÁTICA CONTEÚDOS DA DISCIPLINA DE MATEMÁTICA 6ºANO CONTEÚDOS-1º TRIMESTRE Números naturais; Diferença entre número e algarismos; Posição relativa do algarismo dentro do número; Leitura do número; Sucessor e antecessor;

Leia mais

Num cilindro as bases são círculos. O perímetro do círculo é igual ao comprimento da circunferência que limita o círculo.

Num cilindro as bases são círculos. O perímetro do círculo é igual ao comprimento da circunferência que limita o círculo. 1. Círculos e cilindros 1.1. Planificação da superfície de um cilindro Num cilindro as bases são círculos. O perímetro do círculo é igual ao comprimento da circunferência que limita o círculo. A planificação

Leia mais

Matriz de Referência de Matemática da 8ª série do Ensino Fundamental. Comentários sobre os Temas e seus Descritores Exemplos de Itens

Matriz de Referência de Matemática da 8ª série do Ensino Fundamental. Comentários sobre os Temas e seus Descritores Exemplos de Itens Matriz de Referência de Matemática da 8ª série do Ensino Fundamental TEMA I ESPAÇO E FORMA Comentários sobre os Temas e seus Descritores Exemplos de Itens Os conceitos geométricos constituem parte importante

Leia mais

19 de Outubro de 2012

19 de Outubro de 2012 Escola Básica Integrada com JI de Santa Catarina Ficha de Avaliação de Matemática 19 de Outubro de 2012 A PREENCHER PELO ALUNO 8ºano Nome: nº Turma A PREENCHER PELO PROFESSOR Classificação: Nível: ( )

Leia mais

Prova de Aferição de Matemática

Prova de Aferição de Matemática PROVA DE AFERIÇÃO DO ENSINO BÁSICO 2008 A PREENCHER PELO ALUNO Rubrica do Professor Aplicador Nome A PREENCHER PELO AGRUPAMENTO Número convencional do Aluno Número convencional do Aluno A PREENCHER PELA

Leia mais

Matemática. Resolução das atividades complementares. M1 Geometria Métrica Plana

Matemática. Resolução das atividades complementares. M1 Geometria Métrica Plana Resolução das atividades complementares Matemática M Geometria Métrica Plana p. 0 Na figura a seguir tem-se r // s // t e y. diferença y é igual a: a) c) 6 e) b) d) 0 8 ( I) y 6 y (II) plicando a propriedade

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 6 o ANO (ENSINO FUNDAMENTAL) DATA: 12/07/2012

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 6 o ANO (ENSINO FUNDAMENTAL) DATA: 12/07/2012 RSLUÇÃ DA AVALIAÇÃ D MAMÁICA 6 o AN (NSIN FUNDAMNAL) DAA: 12/07/2012 PRFSSRA: INA QUSÃ 01 (1,0/ ) Ajude Wenlock, um dos mascotes das limpíadas 2012, a desenhar a figura geométrica correspondente em cada

Leia mais

MATEMÁTICA - 3o ciclo Isometrias (8 o ano) Propostas de resolução

MATEMÁTICA - 3o ciclo Isometrias (8 o ano) Propostas de resolução MTMÁT - 3o ciclo sometrias (8 o ano) Propostas de resolução xercícios de provas nacionais e testes intermédios 1. omo a reflexão do ponto e eixo é o ponto a imagem do ponto pela translação associada ao

Leia mais

CIRCUNFERÊNCIA E POLÍGONOS. ROTAÇÕES

CIRCUNFERÊNCIA E POLÍGONOS. ROTAÇÕES B3 CIRCUNFERÊNCIA E POLÍGONOS. ROTAÇÕES Circunferência Circunferência é um conjunto de pontos do plano situados à mesma distância de um ponto fixo (centro). Corda é um segmento de recta cujos extremos

Leia mais

Construções Elementares com Régua e Compasso

Construções Elementares com Régua e Compasso TERCEIRLISTDEEXERCÍCIOS Fundamentos da Matemática II MTEMÁTIC DCET UESC Humberto José ortolossi Construções Elementares com Régua e Compasso (Entregar todos os exercícios até o dia 20/04/2004) 1 Construindo

Leia mais

CADERNO DE OFICINA COM ATIVIDADES DE GEOMETRIA

CADERNO DE OFICINA COM ATIVIDADES DE GEOMETRIA APÊNDICE A - CADERNO DE OFICINA COM ATIVIDADES DE GEOMETRIA PONTIFÍCIA UNIVERSIDADE CATÓLICA DE MINAS GERAIS MESTRADO EM ENSINO DE CIÊNCIAS E MATEMÁTICA CADERNO DE OFICINA COM ATIVIDADES DE GEOMETRIA AUTORES:

Leia mais

LISTA de RECUPERAÇÃO MATEMÁTICA

LISTA de RECUPERAÇÃO MATEMÁTICA LISTA de RECUPERAÇÃO Professor: ARGENTINO Recuperação: O ANO DATA: 0 / 06 / 015 MATEMÁTICA 1. A figura representa duas raias de uma pista de atletismo plana. Fábio (F) e André (A) vão apostar uma corrida

Leia mais

POLÍGONOS TRIÂNGULOS E QUADRILÁTEROS

POLÍGONOS TRIÂNGULOS E QUADRILÁTEROS 7º ANO POLÍGONOS TRIÂNGULOS E QUADRILÁTEROS Áreas de alguns quadriláteros Nuno Marreiros Recorda Área do retângulo Para todo e qualquer retângulo de base (b) e altura (h), pode-se escrever: Área do Retângulo

Leia mais

Geometria Plana Noções Primitivas

Geometria Plana Noções Primitivas Geometria Plana Noções Primitivas Questão 1 (CESGRANRIO-85) Numa carpintaria, empilham-se 50 tábuas, umas de 2 cm e outras de 5 cm de espessura. A altura da pilha é de 154 cm. A diferença entre o número

Leia mais

ROTEIRO DE ESTUDO - 2013 VP4 MATEMÁTICA 3 a ETAPA 6 o ao 9º Ano INTEGRAL ENSINO FUNDAMENTAL 1º E 2º ANOS INTEGRAIS ENSINO MÉDIO

ROTEIRO DE ESTUDO - 2013 VP4 MATEMÁTICA 3 a ETAPA 6 o ao 9º Ano INTEGRAL ENSINO FUNDAMENTAL 1º E 2º ANOS INTEGRAIS ENSINO MÉDIO 6 o ANO MATEMÁTICA I Adição e subtração de frações: Frações com denominadores iguais. Frações com denominadores diferentes. Multiplicação de um número natural por uma fração. Divisão entre um número natural

Leia mais

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%) Probabilidade 10 (0,95%)

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%) Probabilidade 10 (0,95%) Distribuição das.08 Questões do I T A 9 (8,97%) 0 (9,9%) 69 (6,58%) Equações Irracionais 09 (0,86%) Equações Exponenciais (, 0 (9,6%) Geo. Analítica Conjuntos (,96%) Geo. Espacial Funções Binômio de Newton

Leia mais

INSTITUTO FEDERAL DE SERGIPE COORDENADORIA DO CURSO DE CONSTRUÇÃO CIVIL COORDENADORIA DE DESENHO CONTEÚDO PROGRAMÁTICO

INSTITUTO FEDERAL DE SERGIPE COORDENADORIA DO CURSO DE CONSTRUÇÃO CIVIL COORDENADORIA DE DESENHO CONTEÚDO PROGRAMÁTICO INSTITUTO FEDERAL DE SERGIPE COORDENADORIA DO CURSO DE CONSTRUÇÃO CIVIL COORDENADORIA DE DESENHO CONTEÚDO PROGRAMÁTICO Disciplina: Desenho Geométrico, Técnico e Noções de Desenho Arquitetônico I Cursos:

Leia mais

Matemática. Resolução das atividades complementares. M2 Trigonometria nos Triângulos

Matemática. Resolução das atividades complementares. M2 Trigonometria nos Triângulos Resolução das atividades complementares Matemática M Trigonometria nos Triângulos p. 1 Em cada caso, calcule o seno, o cosseno e a tangente do ângulo agudo assinalado. a) b) sen γ = cos γ = tg γ 1 sen

Leia mais

Módulo 1 Abrindo o Wingeom

Módulo 1 Abrindo o Wingeom Módulo 1 Abrindo o Wingeom Para abrir o Wingeom, dê dois clique no ícone. Abrirá a janela: No menu, na barra de ferramentas, clique no item. Isto criará a janela gráfica sem nome1.wg2: Barra de Ferramentas

Leia mais

Atividade extra. Exercício 1. Matemática e suas Tecnologias Matemática

Atividade extra. Exercício 1. Matemática e suas Tecnologias Matemática Atividade extra Exercício 1 O Tangram é um quebra cabeças com 7 peças de diferentes tamanhos, e com elas podemos montar mais de 1400 figuras, como exemplos, temos as figuras abaixo. Fonte: fundacaobunge.org.br

Leia mais

AV1 - MA 13-2011 UMA SOLUÇÃO. b x

AV1 - MA 13-2011 UMA SOLUÇÃO. b x Questão 1. figura abaixo mostra uma sequência de circunferências de centros 1,,..., n com raios r 1, r,..., r n, respectivamente, todas tangentes às retas s e t, e cada circunferência, a partir da segunda,

Leia mais

Abelhas Matemáticas. Série Matemática na Escola

Abelhas Matemáticas. Série Matemática na Escola Abelhas Matemáticas Série Matemática na Escola Objetivos 1. Mostrar que os alvéolos hexagonais das abelhas têm a forma ótima em relação à capacidade para armazenar mel; 2. Interpretar uma situação contextualizada

Leia mais

5. DESENHO GEOMÉTRICO

5. DESENHO GEOMÉTRICO 5. DESENHO GEOMÉTRICO 5.1. Retas Paralelas e Perpendiculares No traçado de retas paralelas ou perpendiculares é indispensável o manejo adequado dos esquadros. Na construção das retas perpendiculares e

Leia mais

Áreas e Aplicações em Geometria

Áreas e Aplicações em Geometria 1. Introdução Áreas e Aplicações em Geometria Davi Lopes Olimpíada Brasileira de Matemática 18ª Semana Olímpica São José do Rio Preto, SP Nesse breve material, veremos uma rápida revisão sobre áreas das

Leia mais

Segmento de reta GEOMETRIA PLANA

Segmento de reta GEOMETRIA PLANA GEOMETRIA PLANA Noções primitivas Os elementos primitivos da geometria são o ponto, a reta e o plano, cujas definições são impossíveis de serem enunciadas, pois só se tem uma noção intuitiva do que sejam.

Leia mais

Aula 5 Quadriláteros Notáveis

Aula 5 Quadriláteros Notáveis Aula 5 Quadriláteros Notáveis Paralelogramo Definição: É o quadrilátero convexo que possui os lados opostos paralelos. A figura mostra um paralelogramo ABCD. Teorema 1: Se ABCD é um paralelogramo, então:

Leia mais

Curso Wellington Matemática Trigonometria Lei dos Senos e Cossenos Prof Hilton Franco

Curso Wellington Matemática Trigonometria Lei dos Senos e Cossenos Prof Hilton Franco 1. A figura a seguir apresenta o delta do rio Jacuí, situado na região metropolitana de Porto Alegre. Nele se encontra o parque estadual Delta do Jacuí, importante parque de preservação ambiental. Sua

Leia mais

A) 1 B) 26 C) 3 D) 4 E) 5 A) 9 B) 9 C) 4 D) 3 E) 8

A) 1 B) 26 C) 3 D) 4 E) 5 A) 9 B) 9 C) 4 D) 3 E) 8 MATEMÁTCA 0. A Empresa Pernambuco S/A revende uma determinada peça automotiva. A gerência comercial da empresa aplica a seguinte regra para venda do produto: a diferença entre o preço de venda e o preço

Leia mais

Avaliação 1 - MA13-2015.2 - Gabarito. Sendo dados os segmentos de medidas a e b, descreva como construir com régua e compasso a medida ab.

Avaliação 1 - MA13-2015.2 - Gabarito. Sendo dados os segmentos de medidas a e b, descreva como construir com régua e compasso a medida ab. MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL Avaliação 1 - MA13-2015.2 - Gabarito Questão 01 [ 2,00 pts ] Sendo dados os segmentos de medidas a e b, descreva como construir com régua e compasso

Leia mais

Machu Picchu (Peru) (Revista da Folha) 2-Indique a alternativa que não apresenta erro de concordância nominal:

Machu Picchu (Peru) (Revista da Folha) 2-Indique a alternativa que não apresenta erro de concordância nominal: FICHA DA SEMANA 5º ANO A / B Instruções: 1- Cada atividade terá uma data de realização e deverá ser entregue a professora no dia seguinte; 2- As atividades deverão ser copiadas e respondidas no caderno,

Leia mais

Currículo da Disciplina de Matemática - 7º ano. Funções, Sequências e Sucessões (FSS) Organização e Tratamento de Dados (OTD)

Currículo da Disciplina de Matemática - 7º ano. Funções, Sequências e Sucessões (FSS) Organização e Tratamento de Dados (OTD) Domínios de conteúdos: Números e Operações (NO) Geometria e Medida (GM) Funções, Sequências e Sucessões (FSS) Álgebra (ALG) Organização e Tratamento de Dados (OTD) Domínio NO7 9 GM7 33 Números racionais

Leia mais

Olimpíada Brasileira de Física 2003-3 a Fase. Prova Experimental para alunos de 1 o ano. Experimento Vetores

Olimpíada Brasileira de Física 2003-3 a Fase. Prova Experimental para alunos de 1 o ano. Experimento Vetores realização apoio Olimpíada Brasileira de Física 2003-3 a Fase Prova Experimental para alunos de 1 o ano Experimento Vetores Leia atentamente as instruções abaixo antes de iniciar a prova 1 Esta prova destina-se

Leia mais

Colégio Visconde de Porto Seguro

Colégio Visconde de Porto Seguro Colégio Visconde de Porto Seguro Unidade I 2009 Ensino Fundamental e Ensino Médio Nome do (a) Aluno (a): nº Atividade de: Desenho Geométrico Nível: E.Médio Classe: 2-3 Professor (a): 3º Trimestre Data:

Leia mais

Polos Olímpicos de Treinamento. Aula 6. Curso de Geometria - Nível 3. Prof. Cícero Thiago. Teorema 1. (Fórmula tradicional.) BC AD.

Polos Olímpicos de Treinamento. Aula 6. Curso de Geometria - Nível 3. Prof. Cícero Thiago. Teorema 1. (Fórmula tradicional.) BC AD. Polos Olímpicos de Treinamento urso de Geometria - Nível 3 Prof. ícero Thiago ula 6 Relações entre áreas Teorema 1. (Fórmula tradicional.) área do triângulo pode ser calculada por [ ] =. Teorema. (Área

Leia mais

Geometria Plana 03 Prof. Valdir

Geometria Plana 03 Prof. Valdir Geometria lana 03 rof. Valdir TS TÁVEIS E U TRIÂGUL 1. RIETR É o ponto de equilíbrio ou centro de gravidade do triângulo. baricentro coincide com o ponto de intersecção das medianas do triângulo (na figura

Leia mais

Canguru Matemático sem Fronteiras 2014

Canguru Matemático sem Fronteiras 2014 http://www.mat.uc.pt/canguru/ Destinatários: alunos do 9. o ano de escolaridade Nome: Turma: Duração: 1h 30min Não podes usar calculadora. Em cada questão deves assinalar a resposta correta. As questões

Leia mais

SITE_INEP_PROVA BRASIL - SAEB_MT_5ºANO (OK)

SITE_INEP_PROVA BRASIL - SAEB_MT_5ºANO (OK) 000 IT_023672 As balanças podem ser utilizadas para medir a massa dos alimentos nos supermercados. A reta numérica na figura seguinte representa os valores, em quilograma, de uma balança. 0 1 2 3 A partir

Leia mais

MATEMÁTICA PARA CONCURSOS II

MATEMÁTICA PARA CONCURSOS II 1 MATEMÁTICA PARA CONCURSOS II Fonte: http://www.migmeg.com.br/ MÓDULO II Estudaremos neste módulo geometria espacial e volume dos principais sólidos geométricos. Mas antes de começar a aula, segue uma

Leia mais

Polígonos: as faces dos poliedros

Polígonos: as faces dos poliedros Módulo 1 Unidade 5 Polígonos: as faces dos poliedros Para início de conversa... Observe as imagens a seguir e tente perceber o que elas têm em comum:objetivos de aprendizagem Figura 1: O que uma colcha

Leia mais

Vestibular1 A melhor ajuda ao vestibulando na Internet Acesse Agora! www.vestibular1.com.br Breve Introdução Histórica aos Sólidos Platônicos

Vestibular1 A melhor ajuda ao vestibulando na Internet Acesse Agora! www.vestibular1.com.br Breve Introdução Histórica aos Sólidos Platônicos Breve Introdução Histórica aos Sólidos Platônicos Cerca de 600 A.C. nas colônias gregas da Jônia, na costa oeste da Turquia, surgem dois dos principais matemáticos gregos: Tales de Mileto e Pitágoras de

Leia mais

Conceitos e fórmulas

Conceitos e fórmulas 1 Conceitos e fórmulas 1).- Triângulo: definição e elementos principais Definição - Denominamos triângulo (ou trilátero) a toda figura do plano euclidiano formada por três segmentos AB, BC e CA, tais que

Leia mais

Progressões 3. Semelhança de Triângulos 10. Trigonometria no Triângulo Retângulo 16. Figuras Planas 26. Introdução à Estatística 39

Progressões 3. Semelhança de Triângulos 10. Trigonometria no Triângulo Retângulo 16. Figuras Planas 26. Introdução à Estatística 39 º Unidade Capítulo VI Progressões 3 Capítulo VII Semelhança de Triângulos 0 Capítulo VIII Trigonometria no Triângulo Retângulo 6 Capítulo IX Figuras Planas 6 Capítulo X Introdução à Estatística 39 Questões

Leia mais

Construções Fundamentais. r P r

Construções Fundamentais. r P r 1 Construções Fundamentais 1. De um ponto traçar a reta paralela à reta dada. + r 2. De um ponto traçar a perpendicular à reta r, sabendo que o ponto é exterior a essa reta; e de um ponto P traçar a perpendicular

Leia mais

Aulas Particulares on-line

Aulas Particulares on-line sse material é parte integrante do ulas Particulares on-line do IS RSIL S/, MTMÁTI PRÉ-VSTIULR LIVRO O PROFSSOR 006-009 IS rasil S.. É proibida a reprodução, mesmo parcial, por qualquer processo, sem autorização

Leia mais

ÁREA DAS FIGURAS GEOMÉTRICAS PLANAS

ÁREA DAS FIGURAS GEOMÉTRICAS PLANAS 1 ÁREA DAS FIGURAS GEOMÉTRICAS PLANAS 1.Área da região retangular temos: É o paralelogramo que possui os quatro ângulos internos retos, num retângulo, A = B. P = B + d = B + Exemplo: Num retângulo, uma

Leia mais

GEOMETRIA GRÁFICA TIPO A GEOMETRIA GRÁFICA TIPO B

GEOMETRIA GRÁFICA TIPO A GEOMETRIA GRÁFICA TIPO B 1 GEOMETRIA GRÁFICA TIPO A GEOMETRIA GRÁFICA 1. Considere um quadrilátero RSTU, satisfazendo RS = ST = TU = UR, como o exemplo ilustrado abaixo. Considerando esses dados, podemos afirmar que: 0-0) SU é

Leia mais

GEOPLANO CIRCULAR: PROPICIANDO A CONSTRUÇÃO DO CONHECIMENTO

GEOPLANO CIRCULAR: PROPICIANDO A CONSTRUÇÃO DO CONHECIMENTO GEOPLANO CIRCULAR: PROPICIANDO A CONSTRUÇÃO DO CONHECIMENTO Maria da Gloria Vasconcellos Cid Faculdades Integradas Geraldo Di Biase Volta Redonda RJ glorinhacid@hotmail.com INTRODUÇÃO A Matemática tem

Leia mais

Atividade 01 Ponto, reta e segmento 01

Atividade 01 Ponto, reta e segmento 01 Atividade 01 Ponto, reta e segmento 01 1. Crie dois pontos livres. Movimente-os. 2. Construa uma reta passando por estes dois pontos. 3. Construa mais dois pontos livres em qualquer lugar da tela, e o

Leia mais

Escola Secundária de Lousada. Matemática do 8º ano FT nº15 Data: / / 2013 Assunto: Preparação para o 1º teste de avaliação Lição nº e

Escola Secundária de Lousada. Matemática do 8º ano FT nº15 Data: / / 2013 Assunto: Preparação para o 1º teste de avaliação Lição nº e Escola Secundária de Lousada Matemática do 8º ano FT nº15 Data: / / 013 Assunto: Preparação para o 1º teste de avaliação Lição nº e Apresentação dos Conteúdos e Objetivos para o 3º Teste de Avaliação de

Leia mais

APOSTILA DE GEOMETRIA PLANA E ESPACIAL

APOSTILA DE GEOMETRIA PLANA E ESPACIAL APOSTILA DE GEOMETRIA PLANA E ESPACIAL Professora: Elisandra Bar de Figueiredo Elaboração da apostila: Elisandra Bar de Figueiredo Home-page: http://www.joinville.udesc.br/portal/professores/elisandra/

Leia mais

Informática no Ensino de Matemática Prof. José Carlos de Souza Junior

Informática no Ensino de Matemática Prof. José Carlos de Souza Junior Informática no Ensino de Matemática Prof. José Carlos de Souza Junior http://www.unifal-mg.edu.br/matematica/?q=disc jc Aula 05 - Desvendando o GeoGebra PARTE 04 - COMO APAGAR OBJETOS. Ao iniciar o GeoGebra,

Leia mais

ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO

ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO 2011-2012 Sólidos Geométricos NOME: Nº TURMA: Polígonos Um polígono é uma figura geométrica plana limitada por uma linha fechada.

Leia mais

Planificação de Matemática -6ºAno

Planificação de Matemática -6ºAno DGEstE - Direção-Geral de Estabelecimentos Escolares Direção de Serviços Região Alentejo Agrupamento de Escolas de Moura código n.º 135471 Escola Básica nº 1 de Moura (EB23) código n.º 342294 Planificação

Leia mais

SECRETARIA MUNICIPAL DA EDUCAÇÃO PROPOSTA DE PLANEJAMENTO DO REFERENCIAL CURRICULAR POR ETAPA - 8º ANO - ETAPA 1

SECRETARIA MUNICIPAL DA EDUCAÇÃO PROPOSTA DE PLANEJAMENTO DO REFERENCIAL CURRICULAR POR ETAPA - 8º ANO - ETAPA 1 ESCOLA MUNICIPAL PROFESSOR(A): Números inteiros: operações e problemas. Operações com números racionais na forma Operar com números racionais (fracionários fracionária e decimal; e/ou decimais) em situações

Leia mais

115% x + 120% + (100 + p)% = 93 2 2. 120% y + 120% + (100 + p)% = 106 2 2 x + y + z = 100

115% x + 120% + (100 + p)% = 93 2 2. 120% y + 120% + (100 + p)% = 106 2 2 x + y + z = 100 MATEMÁTICA Carlos, Luís e Sílvio tinham, juntos, 00 mil reais para investir por um ano. Carlos escolheu uma aplicação que rendia 5% ao ano. Luís, uma que rendia 0% ao ano. Sílvio aplicou metade de seu

Leia mais

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE MATEMÁTICA

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE MATEMÁTICA UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENSINO DE MATEMÁTICA Ensino De Geometria Nas Séries Iniciais Em Minas Do Leão: Algumas Reflexões PRODUTO DA

Leia mais