Deformação de Vigas em flexão

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Deformação de Vigas em flexão"

Transcrição

1 Mecânica dos Materiais Deformação de Vigas em fleão Tradução e adaptação: Victor Franco Ref.: Mechanics of Materials, eer, Johnston & DeWolf McGra-Hill. Mechanics of Materials, R. Hibbeler, Pearsons Education.

2 Deformação de uma viga sujeita a forças transversais relação entre o momento flector e a curvatura, para fleão pura, mantém-se válida para o caso de uma viga em fleão sujeita a forças transversais: ρ M ( ) Para a viga encastrada sujeita a uma força concentrada na etremidade, temos: P ρ curvatura varia linearmente com : Na etremidade, No apoio, ρ ρ, ρ, ρ P 9 -

3 Deformação de uma viga sujeita a forças transversais curvatura é zero nos pontos em que o momento flector é zero, i.e., nas etremidades e no ponto E. ρ M ( ) deformação da viga é côncava para cima onde o momento flector é positivo e côncava para baio onde o momento flector é negativo. curvatura máima ocorre onde o valor do momento flector é máimo. equação da deformação da viga equação da linha da elástica é necessária para determinar a deformação máima (flecha máima) e a rotação. 9 -

4 Equação da inha elástica seguinte relação é válida (demonstrável através da nálise Matemática): ρ + d d d d d d M Equação da curvatura: Equação das rotações: Equação da linha elástica: Substituíndo e integrando: d d θ d M d d ( ) M M ( ) d + C ( ) d + C + C 9-4

5 Equação da linha elástica s constantes são determinadas a partir das condições de fronteira. d M ( ) d + C + C Três casos para vigas estaticamente determinadas: Viga simplesmente apoiada, Viga em balanço, Viga encastrada, θ 9-5

6 Determinação da equação da linha elástica a partir da força distribuída Para uma viga sujeita a uma força distribuída, dm d V d dv d ( ) ( ) d M equação para a deformação será M ( ) d d d M d 4 d d 4 ( ) Integrando 4 vezes, obtém-se, ( ) ( ) + d d d d 6 C + C C + C + 4 s constantes são calculadas a partir das condições de fronteira. 9-6

7 Vigas estaticamente indeterminadas Considere-se a viga encastrada em e com um apoio móvel em. Condições de equilibrio estático: F F M viga é estaticamente indeterminada. Temos também a equação da deformada, d M ( ) d + C + C que introduz duas incógnitas adicionais, mas que fornece três equações adicionais a partir das condições de fronteira: : θ : 9-7

8 Eemplo 9. Resolução: Escrever uma epressão para M() e para a equação diferencial da linha elástica. Para a parcela da viga, calcular (a) equação da linha elástica, (b) Deformada máima. Integrar a equação diferencial duas vezes e aplicar as condições de fronteira para obter a equação da deformada. ocalizar o ponto com tangente nula ou ponto da deformada máima. Calcular a deformada máima. 9-8

9 Eemplo 9. Epressão para M() e equação diferencial da linha elástica. - Reacções: R Pa a R P + - Diagrama de corpo livre para secção D, a M P < ( < ) - Equação diferencial da linha elástica, d d M ( ) d d P a 9-9

10 Eemplo 9. Integrar a equação diferencial duas vezes e aplicar as condições de fronteira para obter a equação da deformada: d d a P + C d d P a em em,, a P 6 : : C + C + C 6 a P + C C 6 Pa Substituíndo, d d 6 P P a a Pa Pa d d Pa 6 Pa 6 9 -

11 Eemplo 9. ocalizar o ponto de deformada máima. Pa 6 d d Pa 6 m m. 577 Deformada máima. Pa ma [ ( ) ].577. ma Pa

12 Eemplo 9. Para a viga representada na figura, determinar a reacção em, obter a equação da linha elástica e determinar a rotação em. (Notar que a viga é estaticamente indeterminada de primeiro grau) 9 -

13 9 - Eemplo 9. nálise de momentos numa secção D: R M M R M D 6 R M d d 6 Equação da linha elástica:

14 9-4 Eemplo 9. R M d d 6 Integrando duas vezes: C C R C R d d θ plicar as condições de fronteira: 6 :, em 4 :, em :, em C C R C R C θ Resolver em ordem à reacção em 4 R R

15 Eemplo 9. Substituir C, C, e R na equação da linha elástica: 6 5 ( 5 4 ) + Diferenciar para calculo das rotações: θ d d ( 4 4) em, θ 9-5

16 Deformadas e rotações de vigas bi-apoiadas: 9-6

17 Deformadas e rotações de vigas bi-apoiadas: cont. 9-7

18 Deformadas e rotações de vigas encastradas: 9-8

19 Deformadas e rotações de vigas encastradas: cont. 9-9

20 Método da Sobreposição Principio da Sobreposição: s deformações de vigas sujeitas a combinações de forças, podem ser obtidas como a combinação linear das deformações causadas pelas forças individuais. 9 -

21 Eemplo 9.7 Para a viga sujeita aos carregamentos representados, determine a rotação e a deformada no ponto. Sobrepondo as deformadas provocadas pelos oading I e oading II como ilustrado, temos:. 9 -

22 Eemplo 9.7 oading I 6 ( θ ) ( ) I I 4 8 oading II 48 ( θ ) ( ) C II C II 4 8 No segmento de viga C, o momento flector é zero e a linha elástica é uma recta: ( θ ) ( θ ) II C II 48 ( ) II

23 Eemplo 9.7 Combinando as duas soluções: θ ( θ ) + ( ) θ I II θ 7 48 ( ) + ( ) I II

24 9-4

25 9-5

26 9-6

27 9-7

28 9-8

29 9-9

30 plicação do método da Sobreposição a vigas estaticamente indeterminadas O método da sobreposição pode ser aplicado para determinar as reacções nos apoios de vigas estaticamente indeterminadas:. Escolher uma das reacções como redundante e eliminar (ou modificar) o apoio correspondente.. Determinar a deformada da viga sem o apoio redundante.. Tratar a força de reacção redundante como uma incógnita que, em conjunto com as outras forças deve originar deformações compatíveis com o apoio original. 9 -

31 Eemplo 9.8 Para a viga e carregamento representado na figura, determinar a reacção em cada apoio e a rotação na etremidade. ibertar a reacção redundante em, e calcular as deformações. plicar a reacção em, de tal forma que esta força vai obrigar uma deformada zero no ponto. 9 -

32 Eemplo 9.8 Deformada em devido à força distribuida: ( ) Deformada em devida à força redundante: ( ) R R R.646 Para compatibilidade com o apoio, R ( ) ( ) + R R Para equilibrio estático, R.7 RC

33 Eemplo 9.8 Rotação na etremidade : ( θ ) ( θ ) θ R ( θ ) + ( ) θ R θ

Mecânica dos Materiais. Flexão de Vigas. Tradução e adaptação: Victor Franco

Mecânica dos Materiais. Flexão de Vigas. Tradução e adaptação: Victor Franco Mecânica dos Materiais Flexão de Vigas 5 Tradução e adaptação: Victor Franco Ref.: Mechanics of Materials, Beer, Johnston & DeWolf McGraw-Hill. Mechanics of Materials, R. Hibbeler, Pearsons Education.

Leia mais

Mecânica Aplicada. Engenharia Biomédica ESFORÇOS INTERNOS EM PEÇAS LINEARES

Mecânica Aplicada. Engenharia Biomédica ESFORÇOS INTERNOS EM PEÇAS LINEARES Mecânica plicada Engenharia iomédica ESFORÇOS INTERNOS EM PEÇS INERES Versão 0.2 Setembro de 2008 1. Peça linear Uma peça linear é um corpo que se pode considerar gerado por uma figura plana cujo centro

Leia mais

Mecânica dos Materiais

Mecânica dos Materiais Mecânica dos Materiais Esforços axiais Tensões e Deformações Esforços multiaxiais Lei de Hooke generalizada 2 Tradução e adaptação: Victor Franco Correia (versão 1/2013) Ref.: Mechanics of Materials, Beer,

Leia mais

INSTITUTO SUPERIOR TÉCNICO

INSTITUTO SUPERIOR TÉCNICO INSTITUTO SUPERIOR TÉCNICO ANÁISE DE ESTRUTURAS APONTAMENTOS DE INHAS DE INFUÊNCIA Eduardo Pereira 1994 NOTA INTRODUTÓRIA Pretende-se com estes apontamentos fornecer aos alunos da disciplina de Análise

Leia mais

Forças internas. Objetivos da aula: Mostrar como usar o método de seções para determinar as cargas internas em um membro.

Forças internas. Objetivos da aula: Mostrar como usar o método de seções para determinar as cargas internas em um membro. Forças internas Objetivos da aula: Mostrar como usar o método de seções para determinar as cargas internas em um membro. Generalizar esse procedimento formulando equações que podem ser representadas de

Leia mais

Efeito do comportamento reológico do concreto

Efeito do comportamento reológico do concreto Efeito do comportamento reológico do concreto FLECHAS E ELEENTOS DE CONCRETO ARADO 1 - INTRODUÇÃO Todo o cálculo das deformações de barras, devidas à fleão, tem por base a clássica equação diferencial

Leia mais

Disciplinas: Mecânica dos Materiais 2 6º Período E Dinâmica e Projeto de Máquinas 2-10º Período

Disciplinas: Mecânica dos Materiais 2 6º Período E Dinâmica e Projeto de Máquinas 2-10º Período UNIVERSIDADE DO ESTADO DO RIO DE JANEIRO INSTITUTO POLITÉCNICO Graduação em Engenharia Mecânica Disciplinas: Mecânica dos Materiais 2 6º Período E Dinâmica e Projeto de Máquinas 2-10º Período Professor:

Leia mais

Sumário e Objectivos. Lúcia M.J.S. Dinis Resistência dos Materiais 21ªAula

Sumário e Objectivos. Lúcia M.J.S. Dinis Resistência dos Materiais 21ªAula Sumário e Objectivos Sumário: Vigas Hiperestáticas Objectivos da Aula: Apreender a forma como se pode superar a hiperestaticidade por aplicação do Princípio da Sobreposição de Efeitos 1 Satélite 2 Tecto

Leia mais

Análise Elástica de Estruturas Reticuladas

Análise Elástica de Estruturas Reticuladas UNIVERSIDADE DE ISBOA INSTITUTO SUPERIOR TÉCNICO Análise Elástica de Estruturas Reticuladas João António Teixeira de Freitas Carlos Tiago 31 de Agosto de 15 Índice Índice i 1 Introdução 1 1.1 Objectivo.....................................

Leia mais

Caso (2) X 2 isolado no SP

Caso (2) X 2 isolado no SP Luiz Fernando artha étodo das Forças 6 5.5. Exemplos de solução pelo étodo das Forças Exemplo Determine pelo étodo das Forças o diagrama de momentos fletores do quadro hiperestático ao lado. Somente considere

Leia mais

1. Equilíbrio de corpos rígidos

1. Equilíbrio de corpos rígidos 1. Equilíbrio de corpos rígidos No capítulo anterior foi referido que as forças exteriores que actuam num corpo rígido podem ser reduzidas a um sistema equivalente força/binário. Quando a força e o binário

Leia mais

1. Definição dos Elementos Estruturais

1. Definição dos Elementos Estruturais A Engenharia e a Arquitetura não devem ser vistas como duas profissões distintas, separadas, independentes uma da outra. Na verdade elas devem trabalhar como uma coisa única. Um Sistema Estrutural definido

Leia mais

Simetria e anti-simetria na análise das estruturas

Simetria e anti-simetria na análise das estruturas Simetria e anti-simetria na análise das estruturas Estruturas simétricas: estruturas que têm um plano de simetria, plano que funciona como um espelho para a estrutura - uma parte da estrutura que se reflecte

Leia mais

COMPARAÇÃO DE CÁLCULOS ANALÍTICOS COM ELEMENTOS FINITOS DE VIGAS COMPOSTAS

COMPARAÇÃO DE CÁLCULOS ANALÍTICOS COM ELEMENTOS FINITOS DE VIGAS COMPOSTAS COMPARAÇÃO DE CÁLCULOS ANALÍTICOS COM ELEMENTOS FINITOS DE VIGAS COMPOSTAS Benedito Rabelo de Moura Junior 1, Denis da Silva Ponzo 2, Júlio César Moraes 3, Leandro Aparecido dos Santos 4, Vagner Luiz Silva

Leia mais

Curso de Engenharia Civil. Universidade Estadual de Maringá Centro de Tecnologia Departamento de Engenharia Civil CAPÍTULO 6: TORÇÃO

Curso de Engenharia Civil. Universidade Estadual de Maringá Centro de Tecnologia Departamento de Engenharia Civil CAPÍTULO 6: TORÇÃO Curso de Engenharia Civil Universidade Estadual de Maringá Centro de ecnologia Departamento de Engenharia Civil CPÍULO 6: ORÇÃO Revisão de Momento orçor Convenção de Sinais: : Revisão de Momento orçor

Leia mais

9. Derivadas de ordem superior

9. Derivadas de ordem superior 9. Derivadas de ordem superior Se uma função f for derivável, então f é chamada a derivada primeira de f (ou de ordem 1). Se a derivada de f eistir, então ela será chamada derivada segunda de f (ou de

Leia mais

CORPOS RÍGIDOS: As forças que actuam num corpo rígido podem ser divididas em dois grupos:

CORPOS RÍGIDOS: As forças que actuam num corpo rígido podem ser divididas em dois grupos: CORPOS RÍGIDOS: As forças que actuam num corpo rígido podem ser divididas em dois grupos: 1. Forças externas (que representam as acções externas sobre o corpo rígido) 2. Forças internas (que representam

Leia mais

Conceito de tensão Tensões normais e tensões de corte

Conceito de tensão Tensões normais e tensões de corte Escola Superior Nautica Infante D. Henrique CET Manutenção Mecânica Naval Fundamentos de Resistência de Materiais Conceito de tensão Tensões normais e tensões de corte Tradução: V. Franco Ref.: Mechanics

Leia mais

Nível B3 SISTEMAS DE EQUAÇÕES

Nível B3 SISTEMAS DE EQUAÇÕES Nível B SISTEMAS DE EQUAÇÕES Equações do º grau com duas incógnitas Equação do º grau com duas incógnitas é uma equação onde figuram eactamente duas letras com epoente, por eemplo: -. Uma solução de uma

Leia mais

SISTEMAS ESTRUTURAIS

SISTEMAS ESTRUTURAIS 1 SISTEMS ESTRUTURIS postila 1: Sistemas Estruturais: plicações Prof. Engº Civil Ederaldo da Silva zevedo Macapá, Setembro de 2013 2 1. VIGS ISOSTÁTIC 1.1. Cálculo das Reações Como já vimos, as reações

Leia mais

CAPÍTULO 3 PROBLEMA 3.1

CAPÍTULO 3 PROBLEMA 3.1 PÍTULO 3 PROLM 3.1 onsidere a placa em forma de L, que faz parte da fundação em ensoleiramento geral de um edifício, e que está sujeita às cargas indicadas. etermine o módulo, a direcção, o sentido e o

Leia mais

Sumário e Objectivos. Mecânica dos Sólidos 18ªAula. Lúcia M.J. S. Dinis 2007/2008

Sumário e Objectivos. Mecânica dos Sólidos 18ªAula. Lúcia M.J. S. Dinis 2007/2008 Sumário e Objectivos Sumário: Método da Viga Conjugada. Objectivos da Aula: Ser capaz de determinar a flecha e a inclinação num ponto fazendo uso do Método da Viga Conjugada 1 Viga Flectida Estrutura de

Leia mais

INTRODUÇÃO AO ESTUDO DE EQUAÇÕES DIFERENCIAIS

INTRODUÇÃO AO ESTUDO DE EQUAÇÕES DIFERENCIAIS INTRODUÇÃO AO ESTUDO DE EQUAÇÕES DIFERENCIAIS Terminologia e Definições Básicas No curso de cálculo você aprendeu que, dada uma função y f ( ), a derivada f '( ) d é também, ela mesma, uma função de e

Leia mais

Í N D I C E Introdução Função Constante... 01 Função Linear... 02

Í N D I C E Introdução Função Constante... 01 Função Linear... 02 UNIVERSIDADE CRUZEIRO DO SUL Conhecendo a teoria III Curso: Pós-graduação / MBA Campus Virtual Cruzeiro do Sul - 009 Professor Responsável: Carlos Henrique de Jesus Costa Professores Conteudistas: Carlos

Leia mais

Exercícios Resolvidos Integral de Linha de um Campo Vectorial

Exercícios Resolvidos Integral de Linha de um Campo Vectorial Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ercícios Resolvidos Integral de inha de um ampo Vectorial ercício onsidere o campo vectorial F,, z =,, z. alcule o integral

Leia mais

Introdução: momento fletor.

Introdução: momento fletor. Flexão em Vigas e Projeto de Vigas APOSTILA Mecânica dos Sólidos II Introdução: As vigas certamente podem ser consideradas entre os mais importantes de todos os elementos estruturais. Citamos como exemplo

Leia mais

CAPÍTULO II INTRODUÇÃO À MECÂNICA DOS SÓLIDOS EQUILÍBRIO EXTERNO I. OBJETIVO PRINCIPAL DA MECÂNICA DOS SÓLIDOS

CAPÍTULO II INTRODUÇÃO À MECÂNICA DOS SÓLIDOS EQUILÍBRIO EXTERNO I. OBJETIVO PRINCIPAL DA MECÂNICA DOS SÓLIDOS 1 CAPÍTULO II INTRODUÇÃO À MECÂNICA DOS SÓLIDOS EQUILÍBRIO EXTERNO I. OBJETIVO PRINCIPAL DA MECÂNICA DOS SÓLIDOS O principal objetivo de um curso de mecânica dos sólidos é o desenvolvimento de relações

Leia mais

CAPÍTULO 2: TENSÃO E DEFORMAÇÃO: Carregamento Axial

CAPÍTULO 2: TENSÃO E DEFORMAÇÃO: Carregamento Axial Curso de ngenharia Civil Universidade stadual de Maringá Centro de Tecnologia Departamento de ngenharia Civil CÍTUO 2: TNSÃO DFOMÇÃO: Carregamento ial 2.1 Deformação specífica O diagrama carga deformação

Leia mais

Disciplina : Termodinâmica. Aula 5 ANÁLISE DA MASSA E ENERGIA APLICADAS A VOLUMES DE CONTROLE

Disciplina : Termodinâmica. Aula 5 ANÁLISE DA MASSA E ENERGIA APLICADAS A VOLUMES DE CONTROLE Curso: Engenharia Mecânica Disciplina : Aula 5 ANÁLISE DA MASSA E ENERGIA APLICADAS A VOLUMES DE CONTROLE Prof. Evandro Rodrigo Dário, Dr. Eng. Vazão mássica e vazão volumétrica A quantidade de massa que

Leia mais

Estruturas Planas. Prof. António Ressano Garcia Lamas

Estruturas Planas. Prof. António Ressano Garcia Lamas Estruturas Planas Prof. António Ressano Garcia Lamas Estruturas planas são estruturas formadas por barras de eixo plano ligadas entre si de modo a os eixos serem complanares (geometria plana) e actuadas

Leia mais

[a11 a12 a1n 4. SISTEMAS LINEARES 4.1. CONCEITO. Um sistema de equações lineares é um conjunto de equações do tipo

[a11 a12 a1n 4. SISTEMAS LINEARES 4.1. CONCEITO. Um sistema de equações lineares é um conjunto de equações do tipo 4. SISTEMAS LINEARES 4.1. CONCEITO Um sistema de equações lineares é um conjunto de equações do tipo a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 11 x 1 + a 12 x 2 +... + a 1n x n = b 2... a n1 x 1 + a

Leia mais

LAJES MACIÇAS DE CONCRETO ARMADO

LAJES MACIÇAS DE CONCRETO ARMADO CAPÍTULOS 1 A 4 Volume LAJES MACIÇAS DE CONCRETO ARMADO 1 1- Tipos usuais de lajes dos edifícios Laje h Laje maciça apoiada em vigas Vigas h Lajes nervuradas nervuras aparentes material inerte Laje Laje

Leia mais

Problemas de Mecânica e Ondas 11

Problemas de Mecânica e Ondas 11 Problemas de Mecânica e Ondas 11 P. 11.1 ( Exercícios de Física, A. Noronha, P. Brogueira) Dois carros com igual massa movem-se sem atrito sobre uma mesa horizontal (ver figura). Estão ligados por uma

Leia mais

Resistência dos Materiais 2003/2004 Curso de Gestão e Engenharia Industrial

Resistência dos Materiais 2003/2004 Curso de Gestão e Engenharia Industrial Fleão Pura de Vigas - Tensões Aiais 1/ Resistência dos Materiais 003/004 Curso de Gestão e Engenharia Industrial 1ª Aula Duração - Horas Data - 10 de Novembro de 003 Sumário: Fleão Pura de Vigas. Tensões

Leia mais

Soluções Compatíveis e Soluções Equilibradas em Análise Dinâmica

Soluções Compatíveis e Soluções Equilibradas em Análise Dinâmica Soluções Compatíveis e Soluções Equilibradas em Análise Dinâmica Aplicação no Domínio do Tempo a Estruturas Porticadas Pedro Miguel Lopes Loreto dos Santos Dissertação para a obtenção do Grau de Mestre

Leia mais

Programação Não Linear Otimização Univariada E Multivariada Sem Restrições

Programação Não Linear Otimização Univariada E Multivariada Sem Restrições Programação Não Linear Otimização Univariada E Multivariada Sem Restrições A otimização é o processo de encontrar a melhor solução (ou solução ótima) para um prolema. Eiste um conjunto particular de prolemas

Leia mais

Investigação Operacional- 2009/10 - Programas Lineares 3 PROGRAMAS LINEARES

Investigação Operacional- 2009/10 - Programas Lineares 3 PROGRAMAS LINEARES Investigação Operacional- 2009/10 - Programas Lineares 3 PROGRAMAS LINEARES Formulação A programação linear lida com problemas nos quais uma função objectivo linear deve ser optimizada (maximizada ou minimizada)

Leia mais

1.5 O oscilador harmónico unidimensional

1.5 O oscilador harmónico unidimensional 1.5 O oscilador harmónico unidimensional A energia potencial do oscilador harmónico é da forma U = 2 2, (1.29) onde é a constante de elasticidade e a deformação da mola. Substituindo (1.29) em (1.24) obtemos

Leia mais

Conceito de Tensão. Índice

Conceito de Tensão. Índice Conceito de Tensão Índice Breve Revisão dos Métodos da Estática 1 Tensões em Elementos Estruturais 2 nálise e Dimensionamento 3 Esforço xial; Tensão Normal 4 rincípio de Saint-Venant 5 Tensão Tangencial

Leia mais

2. Função polinomial do 2 o grau

2. Função polinomial do 2 o grau 2. Função polinomial do 2 o grau Uma função f: IR IR que associa a cada IR o número y=f()=a 2 +b+c com a,b,c IR e a0 é denominada função polinomial do 2 o grau ou função quadrática. Forma fatorada: a(-r

Leia mais

RESISTÊNCIA DOS MATERIAIS APOSTILA 02

RESISTÊNCIA DOS MATERIAIS APOSTILA 02 Engenharia da Computação 1 4º / 5 Semestre RESISTÊNCI DOS TERIIS OSTI rof Daniel Hasse Tensões e Deformações Esforços Solicitantes Tensões e Deformações na Fleão Deformações nas igas SÃO JOSÉ DOS COS,

Leia mais

2. CONCEITOS BÁSICOS DE ANÁLISE ESTRUTURAL

2. CONCEITOS BÁSICOS DE ANÁLISE ESTRUTURAL 2. CONCEITOS BÁSICOS DE ANÁLISE ESTRUTURAL Este capítulo resume alguns conceitos básicos de análise estrutural para estruturas que são compostas por barras. Esses conceitos foram selecionados de forma

Leia mais

Sumário e Objectivos. Mecânica dos Sólidos 10ª Aula. Lúcia M.J.S. Dinis 2007/2008

Sumário e Objectivos. Mecânica dos Sólidos 10ª Aula. Lúcia M.J.S. Dinis 2007/2008 Sumário e Objectivos Sumário: onceito de viga. Vigas Isostáticas. Equações de Equilíbrio de Forças e Momentos. Reacções de poio. Esforços Transversos e Momentos Flectores. Esforço ial. Diagramas de Esforços.

Leia mais

Análise De Uma Viga Solicitada Estaticamente. Método dos Elementos Finitos Introdução ao ANSYS

Análise De Uma Viga Solicitada Estaticamente. Método dos Elementos Finitos Introdução ao ANSYS Análise De Uma Viga Solicitada Estaticamente Método dos Elementos Finitos Introdução ao ANSYS Luís Mesquita 02 de Maio de 2002 O objectivo deste documento, é o de analisar uma viga solicitada, com o carregamento

Leia mais

A EQUAÇÃO DO MOVIMENTO EM OCEANOGRAFIA

A EQUAÇÃO DO MOVIMENTO EM OCEANOGRAFIA A EQUAÇÃO DO MOVIMENTO EM OCEANOGRAFIA Escrever a equação do movimento corresponde a escrever a 2ª Lei de Newton (F = ma) numa forma que possa ser aplicada à oceanografia. Esta Lei diz-nos que como resultado

Leia mais

Um capacitor não armazena apenas carga, mas também energia.

Um capacitor não armazena apenas carga, mas também energia. Capacitores e Dielétricos (continuação) Energia armazenada num capacitor Um capacitor não armazena apenas carga, mas também energia. A energia armazenada num capacitor é igual ao trabalho necessário para

Leia mais

Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia

Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia Oscilações 1. Movimento Oscilatório. Cinemática do Movimento Harmônico Simples (MHS) 3. MHS e Movimento

Leia mais

Sumário e Objectivos. Resistência dos Materiais 8ª e 9ª Aula. Lúcia M.J.S. Dinis 2005/2006

Sumário e Objectivos. Resistência dos Materiais 8ª e 9ª Aula. Lúcia M.J.S. Dinis 2005/2006 Sumário e Objectivos Sumário: onceito de viga. Vigas Isostáticas. Equações de Equilíbrio de Forças e Momentos. Reacções de poio. Esforços Transversos e Momentos Flectores. Esforço ial. Diagramas de Esforços.

Leia mais

Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.

Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel. Matemática Essencial Equações do Primeiro grau Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.br/matessencial/ Resumo: Notas de

Leia mais

DIMENSIONAMENTO DE LAJES ARMADAS EM DUAS DIRECÇÕES

DIMENSIONAMENTO DE LAJES ARMADAS EM DUAS DIRECÇÕES DIMENSIONAMENTO DE LAJES ARMADAS EM DUAS DIRECÇÕES EXEMPLO DE APLICAÇÃO Carlos Moutinho FEUP, Maio de 2002 1. Dados Gerais - Laje destinada a zona comercial (Q = 4 kn/m 2 ) - Peso de revestimentos e paredes

Leia mais

1. Noção de tensão e de deformação

1. Noção de tensão e de deformação Capítulo 2 CONCEITOS BÁSICOS DE MECÂNIC 1. Noção de tensão e de deformação Tensão: = F - Tensão (N/m 2 ou Pa) F força (N) Área (m 2 ) Estado interno gerado num corpo para equilibrar a força F aplicada

Leia mais

a 1 x 1 +... + a n x n = b,

a 1 x 1 +... + a n x n = b, Sistemas Lineares Equações Lineares Vários problemas nas áreas científica, tecnológica e econômica são modelados por sistemas de equações lineares e requerem a solução destes no menor tempo possível Definição

Leia mais

RESISTÊNCIA DOS MATERIAIS IX

RESISTÊNCIA DOS MATERIAIS IX UNIVERSIDDE FEDERL FLUMINENSE CENTRO TECNOLÓGICO ESCOL DE ENGENHRI Departamento de Engenharia Civil RESISTÊNCI DOS MTERIIS IX Flávia Moll de Souza Judice Mara Soares Pereira Lima Perlingeiro 005 SUMÁRIO

Leia mais

2.0 DEFORMAÇÃO POR TORÇÃO DE UM EIXO CIRCULAR

2.0 DEFORMAÇÃO POR TORÇÃO DE UM EIXO CIRCULAR TORÇÃO 1.0 OBJETIVO No estudo da torção serão discutidos os efeitos da aplicação de esforços torcionais em um elemento linear longo, tal como um eixo ou um tubo. Será considerado que o elemento tenha seção

Leia mais

Método de Eliminação de Gauss. Eduardo Camponogara

Método de Eliminação de Gauss. Eduardo Camponogara Sistemas de Equações Lineares Método de Eliminação de Gauss Eduardo Camponogara Departamento de Automação e Sistemas Universidade Federal de Santa Catarina DAS-5103: Cálculo Numérico para Controle e Automação

Leia mais

Capítulo 2 - Problemas de Valores Fronteira para Equações Diferenciais Ordinárias

Capítulo 2 - Problemas de Valores Fronteira para Equações Diferenciais Ordinárias Capítulo 2 - Problemas de Valores Fronteira para Equações Diferenciais Ordinárias Departamento de Matemática balsa@ipb.pt Mestrados em Engenharia da Construção Métodos de Aproximação em Engenharia 1 o

Leia mais

6 Vigas: Solicitações de Flexão

6 Vigas: Solicitações de Flexão 6 Vigas: Solicitações de Fleão Introdução Dando seqüência ao cálculo de elementos estruturais de concreto armado, partiremos agora para o cálculo e dimensionamento das vigas à fleão. Ações As ações geram

Leia mais

A distribuição de um momento aplicado em um nó de um pórtico por parcelas de momentos fletores equilibrantes nas barras adjacentes (Seção 8.2).

A distribuição de um momento aplicado em um nó de um pórtico por parcelas de momentos fletores equilibrantes nas barras adjacentes (Seção 8.2). 8. PROCESSO DE CROSS O Processo de Cross, ou Método da Distribuição de Momentos (White et al. 976), é um método relativamente simples para o cálculo de momentos fletores em vigas contínuas, pórticos planos,

Leia mais

CONSERVAÇÃO DA ENERGIA MECÂNICA

CONSERVAÇÃO DA ENERGIA MECÂNICA Departamento de Física da Faculdade de Ciências da Universidade de Lisboa T3 Física Experimental I - 2007/08 CONSERVAÇÃO DA ENERGIA MECÂNICA 1. Objectivo Verificar a conservação da energia mecânica de

Leia mais

CAPÍTULO 4: DEFLEXÃO DE VIGAS

CAPÍTULO 4: DEFLEXÃO DE VIGAS urso de Engenharia iil Uniersidade Estadual de Maringá entro de Tecnologia Departamento de Engenharia iil PÍTUO : DEFEXÃO DE VIGS. Euação Diferencial da inha Elástica inha Elástica é a cura ue representa

Leia mais

A maioria dos corpos podem ser considerados rígidos, isto é, não se deformam quando sujeitos à acção de forças.

A maioria dos corpos podem ser considerados rígidos, isto é, não se deformam quando sujeitos à acção de forças. CAPÍTULO 3 CORPOS RÍGIDOS E SISTEMAS EQUIVALENTES DE FORÇAS Nem sempre é possível considerar todos os corpos como partículas. Em muitos casos, as dimensões dos corpos influenciam os resultados e deverão

Leia mais

PROBLEMAS DE OTIMIZAÇÃO

PROBLEMAS DE OTIMIZAÇÃO (Tóp. Teto Complementar) PROBLEMAS DE OTIMIZAÇÃO 1 PROBLEMAS DE OTIMIZAÇÃO Este teto estuda um grupo de problemas, conhecido como problemas de otimização, em tais problemas, quando possuem soluções, é

Leia mais

Soluções das Questões de Física do Processo Seletivo de Admissão à Escola Preparatória de Cadetes do Exército EsPCEx

Soluções das Questões de Física do Processo Seletivo de Admissão à Escola Preparatória de Cadetes do Exército EsPCEx Soluções das Questões de Física do Processo Seletivo de dmissão à Escola Preparatória de Cadetes do Exército EsPCEx Questão Concurso 009 Uma partícula O descreve um movimento retilíneo uniforme e está

Leia mais

1. Método Simplex. Faculdade de Engenharia Eng. Celso Daniel Engenharia de Produção. Pesquisa Operacional II Profa. Dra. Lílian Kátia de Oliveira

1. Método Simplex. Faculdade de Engenharia Eng. Celso Daniel Engenharia de Produção. Pesquisa Operacional II Profa. Dra. Lílian Kátia de Oliveira Faculdade de Engenharia Eng. Celso Daniel Engenharia de Produção. Método Simple.. Solução eata para os modelos de Programação Linear O modelo de Programação Linear (PL) reduz um sistema real a um conjunto

Leia mais

MATERIAL MATEMÁTICA I

MATERIAL MATEMÁTICA I MATERIAL DE MATEMÁTICA I CAPÍTULO I REVISÃO Curso: Administração 1 1. Revisão 1.1 Potência de Epoente Inteiro Seja a um número real e m e n números inteiros positivos. Podemos observar as seguintes propriedades

Leia mais

Resistência dos Materiais 2003/2004 Curso de Gestão e Engenharia Industrial

Resistência dos Materiais 2003/2004 Curso de Gestão e Engenharia Industrial 1/8 Resistência dos ateriais 003/004 urso de Gestão e Engenharia Industrial 10ª ula e 11ª ula Duração - Horas Data - 3 de Novembro de 003 Sumário: onceito de viga. Vigas Isostáticas. Equações de Equilíbrio

Leia mais

CORPOS RÍGIDOS: As forças que actuam num corpo rígido podem ser divididas em dois grupos:

CORPOS RÍGIDOS: As forças que actuam num corpo rígido podem ser divididas em dois grupos: CORPOS RÍGIDOS: As forças que actuam num corpo rígido podem ser divididas em dois grupos: 1. Forças externas (que representam as acções externas sobre o corpo rígido) 2. Forças internas (que representam

Leia mais

EQUAÇÃO DO 1º GRAU. 2 melancias + 2Kg = 14Kg 2 x + 2 = 14

EQUAÇÃO DO 1º GRAU. 2 melancias + 2Kg = 14Kg 2 x + 2 = 14 EQUAÇÃO DO 1º GRAU EQUAÇÃO: Para resolver um problema matemático, quase sempre devemos transformar uma sentença apresentada com palavras em uma sentença que esteja escrita em linguagem matemática. Esta

Leia mais

CONSTRUÇÃO DE GRÁFICOS DE FUNÇÕES UTILIZANDO CÁLCULO DIFERENCIAL

CONSTRUÇÃO DE GRÁFICOS DE FUNÇÕES UTILIZANDO CÁLCULO DIFERENCIAL CONSTRUÇÃO DE GRÁFICOS DE FUNÇÕES UTILIZANDO CÁLCULO DIFERENCIAL FERREIRA, Eliézer Pires Universidade Estadual de Goiás - UnU Iporá eliezer_3d@hotmail.com SOUZA, Uender Barbosa de Universidade Estadual

Leia mais

computador-cálculo numérico perfeita. As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem:

computador-cálculo numérico perfeita. As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem: 1 UNIVERSIDADE FEDERAL DE VIÇOSA Departamento de Matemática - CCE Cálculo Numérico - MAT 271 Prof.: Valéria Mattos da Rosa As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia

Leia mais

Lei de Gauss da Eletricidade. Prof. Rudi Gaelzer IFM/UFPel (Física Básica III )

Lei de Gauss da Eletricidade. Prof. Rudi Gaelzer IFM/UFPel (Física Básica III ) Lei de Gauss da Eletricidade Objetivos iremos aprender: O que significa fluxo elétrico e como é possível calcular o mesmo. Como é possível determinar a carga elétrica delimitada por uma superfície fechada

Leia mais

5 Transformadas de Laplace

5 Transformadas de Laplace 5 Transformadas de Laplace 5.1 Introdução às Transformadas de Laplace 4 5.2 Transformadas de Laplace definição 5 5.2 Transformadas de Laplace de sinais conhecidos 6 Sinal exponencial 6 Exemplo 5.1 7 Sinal

Leia mais

Soluções das Questões de Matemática do Processo Seletivo de Admissão ao Colégio Naval PSACN

Soluções das Questões de Matemática do Processo Seletivo de Admissão ao Colégio Naval PSACN Soluções das Questões de Matemática do Processo Seletivo de Admissão ao Colégio Naval PSACN Questão Concurso 00 Seja ABC um triângulo com lados AB 5, AC e BC 8. Seja P um ponto sobre o lado AC, tal que

Leia mais

ESTÁTICA DE FLUIDOS. Introdução e Revisão de conceitos básicos

ESTÁTICA DE FLUIDOS. Introdução e Revisão de conceitos básicos ESTÁTCA DE FLUDOS ntrodução e Revisão de conceitos básicos Em qualquer ponto da superfície de um corpo submerso, a força exercida pelo fluido estático é perpendicular à superfície do objecto. A pressão

Leia mais

CÁLCULO DE ZEROS DE FUNÇÕES REAIS

CÁLCULO DE ZEROS DE FUNÇÕES REAIS 15 CÁLCULO DE ZEROS DE FUNÇÕES REAIS Um dos problemas que ocorrem mais frequentemente em trabalhos científicos é calcular as raízes de equações da forma: f() = 0. A função f() pode ser um polinômio em

Leia mais

Equação do 1º Grau. Maurício Bezerra Bandeira Junior

Equação do 1º Grau. Maurício Bezerra Bandeira Junior Maurício Bezerra Bandeira Junior Introdução às equações de primeiro grau Para resolver um problema matemático, quase sempre devemos transformar uma sentença apresentada com palavras em uma sentença que

Leia mais

Estrutura de Repetição Simples

Estrutura de Repetição Simples Instituto de Ciências Eatas e Biológicas ICEB Lista de Eercícios Básicos sobre Laço Estrutura de Repetição Simples Eercício 01 Escreva um programa que imprima todos os números inteiros de 0 a 50. A seguir,

Leia mais

Conjuntos numéricos. Notasdeaula. Fonte: Leithold 1 e Cálculo A - Flemming. Dr. Régis Quadros

Conjuntos numéricos. Notasdeaula. Fonte: Leithold 1 e Cálculo A - Flemming. Dr. Régis Quadros Conjuntos numéricos Notasdeaula Fonte: Leithold 1 e Cálculo A - Flemming Dr. Régis Quadros Conjuntos numéricos Os primeiros conjuntos numéricos conhecidos pela humanidade são os chamados inteiros positivos

Leia mais

Pesquisa Operacional Programação em Redes

Pesquisa Operacional Programação em Redes Pesquisa Operacional Programação em Redes Profa. Alessandra Martins Coelho outubro/2013 Modelagem em redes: Facilitar a visualização e a compreensão das características do sistema Problema de programação

Leia mais

As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem:

As fases na resolução de um problema real podem, de modo geral, ser colocadas na seguinte ordem: 1 As notas de aula que se seguem são uma compilação dos textos relacionados na bibliografia e não têm a intenção de substituir o livro-texto, nem qualquer outra bibliografia. Introdução O Cálculo Numérico

Leia mais

MATEMÁTICA BÁSICA E CALCULADORA

MATEMÁTICA BÁSICA E CALCULADORA DISCIPLINA MATEMÁTICA FINANCEIRA PROFESSOR SILTON JOSÉ DZIADZIO APOSTILA 01 MATEMÁTICA BÁSICA E CALCULADORA A matemática Financeira tem como objetivo principal estudar o valor do dinheiro em função do

Leia mais

Pesquisa Operacional. Função Linear - Introdução. Função do 1 Grau. Função Linear - Exemplos Representação no Plano Cartesiano. Prof.

Pesquisa Operacional. Função Linear - Introdução. Função do 1 Grau. Função Linear - Exemplos Representação no Plano Cartesiano. Prof. Pesquisa Operacional Prof. José Luiz Prof. José Luiz Função Linear - Introdução O conceito de função é encontrado em diversos setores da economia, por exemplo, nos valores pagos em um determinado período

Leia mais

4.2 Modelação da estrutura interna

4.2 Modelação da estrutura interna 4.2 Modelação da estrutura interna AST434: C4-25/83 Para calcular a estrutura interna de uma estrela como o Sol é necessário descrever como o gás que o compõe se comporta. Assim, determinar a estrutura

Leia mais

INTRODUÇÃO À ANÁLISE DE ESTRUTURAS

INTRODUÇÃO À ANÁLISE DE ESTRUTURAS INTRODUÇÃO À ANÁLISE DE ESTRUTURAS Lui Fernando Martha Processo do Projeto Estrutural Concepção (arquitetônica) da obra atendimento às necessidades funcionais e econômicas Anteprojeto estrutural plantas

Leia mais

Equações do primeiro grau

Equações do primeiro grau Módulo 1 Unidade 3 Equações do primeiro grau Para início de conversa... Você tem um telefone celular ou conhece alguém que tenha? Você sabia que o telefone celular é um dos meios de comunicação que mais

Leia mais

5 Circuitos Equivalentes

5 Circuitos Equivalentes 5 Circuitos Equivalentes 5.1 Circuitos Equivalentes Nos capítulos anteriores já se apresentaram diversos exemplos de circuitos equivalentes, por exemplo, resistências em série e em paralelo ou a chamada

Leia mais

Modelagem no Domínio do Tempo. Carlos Alexandre Mello. Carlos Alexandre Mello cabm@cin.ufpe.br 1

Modelagem no Domínio do Tempo. Carlos Alexandre Mello. Carlos Alexandre Mello cabm@cin.ufpe.br 1 Carlos Alexandre Mello 1 Modelagem no Domínio da Frequência A equação diferencial de um sistema é convertida em função de transferência, gerando um modelo matemático de um sistema que algebricamente relaciona

Leia mais

E A D - S I S T E M A S L I N E A R E S INTRODUÇÃO

E A D - S I S T E M A S L I N E A R E S INTRODUÇÃO E A D - S I S T E M A S L I N E A R E S INTRODUÇÃO Dizemos que uma equação é linear, ou de primeiro grau, em certa incógnita, se o maior expoente desta variável for igual a um. Ela será quadrática, ou

Leia mais

13 ÁLGEBRA Uma balança para introduzir os conceitos de Equação do 1ºgrau

13 ÁLGEBRA Uma balança para introduzir os conceitos de Equação do 1ºgrau MATEMATICA 13 ÁLGEBRA Uma balança para introduzir os conceitos de Equação do 1ºgrau ORIENTAÇÃO PARA O PROFESSOR OBJETIVO O objetivo desta atividade é trabalhar com as propriedades de igualdade, raízes

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE MATEMÁTICA MATEMÁTICA PARA ADMINISTRAÇÃO E CIÊNCIAS CONTÁBEIS 2008/1

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE MATEMÁTICA MATEMÁTICA PARA ADMINISTRAÇÃO E CIÊNCIAS CONTÁBEIS 2008/1 PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE MATEMÁTICA MATEMÁTICA PARA ADMINISTRAÇÃO E CIÊNCIAS CONTÁBEIS 008/ . CONCEITO DE FUNÇÃO As funções são as melhores ferramentas para descrever

Leia mais

Facear Concreto Estrutural I

Facear Concreto Estrutural I 1. ASSUNTOS DA AULA Durabilidade das estruturas, estádios e domínios. 2. CONCEITOS As estruturas de concreto devem ser projetadas e construídas de modo que, quando utilizadas conforme as condições ambientais

Leia mais

Problemas de O-mização. Material online: h-p://www.im.ufal.br/professor/thales/calc1-2010_2.html

Problemas de O-mização. Material online: h-p://www.im.ufal.br/professor/thales/calc1-2010_2.html Problemas de O-mização Material online: h-p://www.im.ufal.br/professor/thales/calc1-2010_2.html Roteiro para resolver problemas de o-mização 1. Compreenda o problema a) O que é desconhecido? b) Quais as

Leia mais

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 8

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 8 Exemplos de Cálculo do Potencial Elétrico Vimos na aula passada que há duas maneiras de se calcular o potencial elétrico. Quando se conhece a distribuição de cargas (discreta ou contínua), usa-se as equações

Leia mais

Teoria Clássica das Placas

Teoria Clássica das Placas Universidade Federal do Ceará Centro de Tecnologia Departamento de Engenharia Estrutural e Construção Civil Fleão de Placas ANÁLISE DE ESTRUTURAS I PROF. EVANDRO PARENTE JUNIOR (UFC) PROF. ANTÔNIO MACÁRIO

Leia mais

2 - Modelos em Controlo por Computador

2 - Modelos em Controlo por Computador Modelação, Identificação e Controlo Digital 2-Modelos em Controlo por Computador 1 2 - Modelos em Controlo por Computador Objectivo: Introduzir a classe de modelos digitais que são empregues nesta disciplina

Leia mais

Resistência. dos Materiais II

Resistência. dos Materiais II Resistência Prof. MSc Eng Halley Dias dos Materiais II Material elaborado pelo Prof. MSc Eng Halley Dias Instituto Federal de Educação Ciência e Tecnologia de Santa Catarina Aplicado ao Curso Técnico de

Leia mais

Ondas Eletromagnéticas. E=0, 1 B=0, 2 E= B t, 3 E

Ondas Eletromagnéticas. E=0, 1 B=0, 2 E= B t, 3 E Ondas Eletromagnéticas. (a) Ondas Planas: - Tendo introduzido dinâmica no sistema, podemos nos perguntar se isto converte o campo eletromagnético de Maxwell em uma entidade com existência própria. Em outras

Leia mais

ficha 3 espaços lineares

ficha 3 espaços lineares Exercícios de Álgebra Linear ficha 3 espaços lineares Exercícios coligidos por Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto Superior Técnico 2 o semestre 2011/12 3 Notação Sendo

Leia mais

DEPARTAMENTO DE ENGENHARIA CIVIL FACULDADE DE CIÊNCIAS E TECNOLOGIA UNIVERSIDADE DE COIMBRA LINHAS DE INFLUÊNCIA EM ESTRUTURAS HIPERSTÁTICAS

DEPARTAMENTO DE ENGENHARIA CIVIL FACULDADE DE CIÊNCIAS E TECNOLOGIA UNIVERSIDADE DE COIMBRA LINHAS DE INFLUÊNCIA EM ESTRUTURAS HIPERSTÁTICAS DEPRTMENTO DE ENGENHRI IVIL FULDDE DE IÊNIS E TENOLOGI UNIVERSIDDE DE OIMR LINHS DE INFLUÊNI EM ESTRUTURS HIPERSTÁTIS L.M..SIMÕES 1. INTRODUÇÃO s linhas de influência dos efeitos (esforços ou deslocamentos)

Leia mais

Caracterização temporal de circuitos: análise de transientes e regime permanente. Condições iniciais e finais e resolução de exercícios.

Caracterização temporal de circuitos: análise de transientes e regime permanente. Condições iniciais e finais e resolução de exercícios. Conteúdo programático: Elementos armazenadores de energia: capacitores e indutores. Revisão de características técnicas e relações V x I. Caracterização de regime permanente. Caracterização temporal de

Leia mais