1.5 O oscilador harmónico unidimensional

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "1.5 O oscilador harmónico unidimensional"

Transcrição

1 1.5 O oscilador harmónico unidimensional A energia potencial do oscilador harmónico é da forma U = 2 2, (1.29) onde é a constante de elasticidade e a deformação da mola. Substituindo (1.29) em (1.24) obtemos t t 0 = t 1 t 0 = Efectuando a mudança de variáveis temos y = t t 0 = 1 m 0 0 d, m m m, d = y y 0 d. 1 2 dy dy 1 y 2 = m arcsin(y) y y 0, (1.30) visto que dy/ 1 y 2 = arcsin(y). Supondo que arcsin(y 0 ) = 0, e invertendo (1.30) obtemos arcsin(y) = m (t t 0), [ ] = sin m (t t 0). (1.31) A equação (1.31) define a lei de movimento do oscilador harmónico. A frequência das oscilações é dada por ω = m e a amplitude de oscilação A = é proporcional à raiz quadrada da energia do oscilador. Este mesmo facto vamos encontrar frequentemente nos diferentes ramos da Física, por eemplo, no estudo de todos os fenómenos ondulatórios. 10

2 A escolha y 0 = 0 está relacionada com a escolha das condições iniciais: y 0 0 implicaria o aparecimento de uma fase δ 0 = arcsin(y 0 ) na equação (1.31), = [ ] sin m (t t 0) + δ Movimento unidimensional de um sistema conservativo: energia versus posição A energia de uma partícula que se move ao longo de uma linha rectilínea sujeita à força f(), conservativa, é dada por E = m U(). (1.32) Seja U() uma função contínua representada na figura 1.3 em função de. Representamos pela linha paralela ao eio dos a energia mecânica da partícula. V() E Figure 1.3: Energia potencial U() em função de Da equação (1.32) e do gráfico podemos tirar as seguintes conclusões: De (1.32) temos que a energia cinética da partícula é dada por T = 1 2 m2 = E U(). (1.33) A energia cinética nunca poderá ser negativa o que implica que E U(). (1.34) 11

3 No gráfico eistem dois intervalos para os quais a condição (1.34) não é satisfeita [ 1, 2 ] e [ 3, [. Estas zonas são zonas proibidas e a partícula nunca será encontrada nestes intervalos. A distância da recta E à curva U() representa a energia cinética. Nos pontos 1, 2 e 3 ela é nula, no ponto 0 ela é máima. Os pontos 1, 2 e 3 são chamados pontos de retorno. Nestes pontos a velocidade da partícula anula-se, invertendo-se o sentido de acordo com a sua posição. Uma partícula sujeita à energia potencial representada por U() e com energia E pode ter dois tipos de movimentos de acordo com a sua posição: Pode deslocar-se entre ], 1 ]. Este movimento só é limitado num lado. A partícula pode aproimar-se do ponto = 1 vinda do infinito =. No ponto 1 a sua velocidade anula-se e muda de sentido. A partícula então afasta-se indefinidamente. Este movimento é ilimitado. A partícula move-se no intervalo [ 2, 3 ]. Este movimento é limitado em ambos os lados. Consideremos uma partícula que parte da posição = 2 no sentido dos crescentes. A sua velocidade no sentido positivo do eio dos aumenta até ao ponto = 0 seguidamente diminui até = 4, volta a aumentar até = 5 e a partir de 5 diminui até 3 onde se anula e passa a ser negativa (movimento no sentido dos decrescentes) passando a partícula pelos pontos 5, 4, 0 até voltar a atingir 2. É um movimento limitado, periódico com período 3 T(E) = 2 2 d. (1.35) 2 (E U()) m O período T é função de energia da partícula e é igual ao dobro do tempo que a partícula demora a percorrer a distância entre 2 e 3. Na Fig. 1.2 identificamos várias posições para as quais du d = 0, nomeadamente = 0, 0, 4, 5. Nestes pontos a força eercida sobre a partícula é nula, F = (du/d)î = 0. Se a partícula tiver velocidade nula nestas posições ela vai manter-se nessa posição indefinidadmente. Dizemos que estes pontos são pontos de equilíbrio. No entanto, é importante distinguir entre pontos como 0, onde a segunda derivada da função é positiva d 2 U d 2 > 0, equilíbrio estável =0 12

4 e pontos como 4, onde a segunda derivada da função é negativa d 2 U d 2 < 0, equilíbrio instável. =4 Aos primeiros chamamos pontos de equilíbrio estável e aos segundos pontos de equilíbrio instável. No caso de um ponto de equilíbrio estável, quando a partícula é desviada da posição de equilíbrio a força eercida sobre ela vai obrigá-la a voltar à posição de equilíbrio. No caso de um ponto de equilíbrio instável, quando a partícula é desviada da posição de equilíbrio a força eercida sobre ela vai afastála desse ponto. 1.7 Movimento de um electrão sob o efeito de um campo eléctrico e magnético constantes Bibliografia: French-Newtonian Mechanics-pg. 467 Vamos fazer o estudo do movimento de um electrão sob o efeito de um campo eléctrico e um campo magnético constantes. Supomos que temos um par de placas paralelas à distância d uma da outra, montadas dentro de um tubo onde eiste o vácuo e ligadas a uma bateria de modo a eistir um campo eléctrico uniforme de intensidade E = V/d entre as placas, de acordo com a figura 1.4. As y V B d 0 Figure 1.4: Tubo catódico com condensador placas estão colocadas entre os polos de um magnete que cria um campo uniforme perpendicular ao plano do papel. Supomos que os electrões, de carga q = e, começam o seu movimento a partir da placa debaio com uma velocidade muito pequena. Os electrões poderão ser libertados por um processo foto-eléctrico. A força magnética, sendo perpendicular à direcção do movimento do electrão, F B = ev B, 13

5 não realiza trabalho e a energia do electrão é dada por E = m 2 v2 e V d y = m 2 (v2 + vy) 2 e V y. (1.36) d A última parcela representa a energia do electrão no campo eléctrico. A energia mecânica (1.36) é epressa em termos de v, v y e y, e, devido à escolha da origem da energia potencial, é nula visto que para y = 0, v = 0. Podemos transformar este problema num problema unidimensional eliminando v em função de y. O campo eléctrico só pode acelerar o electrão na direcção do eio dos y. O movimento na direcção do eio dos é apenas devido ao campo magnético B. Assim, a componente da lei de Newton segundo o eio dos é dada por ou ainda, visto que B = Bˆ, m d2 dt 2 = e (v B), m d2 dt 2 = ev yb. Integrando a última equação com a condição v = 0 no ponto y = 0, obtemos d dt = eb m y = ω 0y. (1.37) Finalmente, substituindo a última equação na epressão (1.36), determinamos a energia mecânica do electrão apenas em função de y e v y, E = 0 = m 2 (v2 y + ω 2 0y 2 ) e V d y. Tudo se passa como se a partícula eecutasse um movimento unidimensional sujeita a um potencial efectcivo U ef = m 2 ω2 0 y2 e V y. (1.38) d Seja y a = ev/(mdω 2 0) = V m/(edb 2 ). Na figura 1.5 representamos a função U ef em função de y, correspondendo a uma parábola de vértice no ponto (U ef = m 2 ω2 0 y2 a, y = y a ), como é fácil de concluir se reescrevermos (1.38) na forma U ef = m 2 ω2 0 (y y a ) 2 m 2 ω2 0y 2 a,. (1.39) Substituindo E = 0 e U = U ef (y) na equação (1.24) obtemos 14

6 Uef 0 y a 2y a y 2 2 -m ω y 0 a /2 Figure 1.5: Energia potencial U ef (y) t t 0 = y y 0 dy ω 20 y2a ω20 (y y a) 2, = 1 ω 0 z z 0 dz 1 z 2, z = y/y a 1, = 1 ω 0 (arcsin(y/y a 1) arcsin(y 0 /y a 1)) Finalmente, sabendo que para t = 0, y 0 = 0, e que arcsin( 1) = 3π/2, obtemos y(t) = y a (1 + sin(ω 0 t + 3π/2)) = y a (1 cos(ω 0 t)). (1.40) Determinamos (t) integrando (1.37) (t) = y a (ω 0 t sin(ω 0 t)). (1.41) As equações (1.41) e (1.40) determinam a trajectória do electrão, representando um cicloíde na sua forma paramétrica, ver figura 1.6. É de notar que o valor máimo de y é y ma = 2y a, e, que se 2y a d o electrão é absorvido pela placa de cima não se obtendo a trajectória representada em 1.6. O valor de y ma = 2V m/(edb 2 ) poderá ser alterado variando B ou V. y 2y a 0 π 2 π 3π 4 π 5π 6 π / ω 0 Figure 1.6: Movimento do electrão no plano y 15

7 Chapter 2 Campo de forças centrais 2.1 Campo de forças centrais Um campo de forças centrais é caracterizado por linhas de força com a direcção da linha que une o corpo, no qual a força actua, e o corpo que produz o campo de forças. Considerando uma partícula num campo de forças eterno, o campo de forças centrais é um campo de forças no qual a força que actua sobre a partícula tem a direcção da linha que une a partícula a um ponto fio, o centro do campo de forças. A força F que actua na partícula será da forma F = f(, y, z) r r. Este campo de forças é conservativo se o módulo de F apenas depender da distância r ao centro de forças, i.e. F = f(r) r r. (2.1) Teorema: Um campo de forças central é conservativo se uma das duas condições é verificada: 1. a direcção da força é ao longo da linha que une a partícula a um ponto fio e a grandeza só depende da distância do ponto fio à partícula. 2. a força deriva de uma função potencial que apenas depende da distância do ponto fio à partícula. 16

8 Estas duas condições são equivalentes. Consideremos a condição 2 ( U F = U(r) = ê 1 + U ê 2 + U ) ê = = 3 i=1 3 i=1 U i ê i du dr r i ê i, onde considerámos que U é apenas função de r. Substituindo r = 2 1 i = 2 i i = i ; i = 1, 2, 3, 2 r 3 obtemos F = U(r) = 1 r du dr 3 i=1 i ê i = du dr considerando que 1 r du dr não é afectado pelo somatório no índice i e que 3 i ê i = 1 ê ê ê 3 = r. i=1 Finalmente temos F = du(r) r dr r = f(r)r r. F é uma força com a direcção do raio vector r que une a partícula ao centro do campo de forças e cujo módulo apenas depende da distância r ao centro de forças. Provámos que a condição 2 é equivalente à condição 1. O inverso também é verdadeiro. Seja F da forma F = f(r) r r. O trabalho elementar realizado por esta força durante o deslocamento dr é dado por dw = F dr = f(r) r r dr. Substituindo r dr por rdr, r.dr = 1 2 d(r r) = 1 2 dr2 = rdr, r r, obtemos dw = f(r)dr. 17

9 O trabalho elementar dw apenas depende do valor inicial e final da variável r, a distância ao centro de forças, e, portanto, F é uma força conservativa. Então eiste uma função potencial U(r) tal que dw = du = f(r)dr ou F = U, visto que du = U dr. 1 Provámos que as condições 1 e 2 do teorema são equivalentes. Falta agora provar que se F é conservativo o módulo de F apenas depende de r ou que U = U(r). Supomos que nada é conhecido acerca da dependência de F de r. Partimos do facto que F é uma força central F = f r r, (2.2) e F deriva de um potencial F = U. (2.3) Multiplicando escalarmente (2.2) e (2.3) por dr e igualando ambas as epressões obtemos U.dr = f r dr. (2.4) r Vimos anteriormente que e r dr = rdr U dr = du. Substituindo as últimas relações em (2.4) temos du = fdr, ou a função potencial U varia apenas quando a variável r varia. Então U é função de r, U = U(r). Mas U = U(r) implica que como queríamos demonstrar. F = f(r)ˆr, 1 du = U d + U y U U dy + z dz = ( ê1 + U y ê2 + U z ê3).(dê 1 + dyê 2 + dzê 3 ) = U dr. 18

Problemas de Mecânica e Ondas 11

Problemas de Mecânica e Ondas 11 Problemas de Mecânica e Ondas 11 P. 11.1 ( Exercícios de Física, A. Noronha, P. Brogueira) Dois carros com igual massa movem-se sem atrito sobre uma mesa horizontal (ver figura). Estão ligados por uma

Leia mais

Física e Tecnologia dos Plasmas Movimento de par.culas individuais

Física e Tecnologia dos Plasmas Movimento de par.culas individuais Física e Tecnologia dos Plasmas Movimento de par.culas individuais Mestrado em Engenharia Física Tecnológica Instituto Superior Técnico Instituto de Plasmas e Fusão Nuclear Vasco Guerra As perguntas fundamentais

Leia mais

C mp m o p o Eléctr t ico o Un U i n fo f r o me

C mp m o p o Eléctr t ico o Un U i n fo f r o me Campo Eléctrico Uniforme Tal como o campo gravítico pode ser considerado uniforme numa estreita região perto da superfície da Terra, também o campo eléctrico pode ser uniforme numa determinada região do

Leia mais

Lista de Eletrostática da UFPE e UPE

Lista de Eletrostática da UFPE e UPE Lista de Eletrostática da UFPE e UPE 1. (Ufpe 1996) Duas pequenas esferas carregadas repelem-se mutuamente com uma força de 1 N quando separadas por 40 cm. Qual o valor em Newtons da força elétrica repulsiva

Leia mais

Prof. André Motta - mottabip@hotmail.com_ 4.O gráfico apresentado mostra a elongação em função do tempo para um movimento harmônico simples.

Prof. André Motta - mottabip@hotmail.com_ 4.O gráfico apresentado mostra a elongação em função do tempo para um movimento harmônico simples. Eercícios Movimento Harmônico Simples - MHS 1.Um movimento harmônico simples é descrito pela função = 7 cos(4 t + ), em unidades de Sistema Internacional. Nesse movimento, a amplitude e o período, em unidades

Leia mais

INSTITUTO POLITÉCNICO DE BRAGANÇA ESCOLA SUPERIOR DE TECNOLOGIA E DE GESTÃO ONDAS 2004 / 05. Exercícios teórico-práticos FILIPE SANTOS MOREIRA

INSTITUTO POLITÉCNICO DE BRAGANÇA ESCOLA SUPERIOR DE TECNOLOGIA E DE GESTÃO ONDAS 2004 / 05. Exercícios teórico-práticos FILIPE SANTOS MOREIRA INSTITUTO POLITÉCNICO DE BRAGANÇA ESCOLA SUPERIOR DE TECNOLOGIA E DE GESTÃO ONDAS 004 / 05 Eercícios teórico-práticos FILIPE SANTOS MOREIRA Ondas (EE) Eercícios TP Índice ÍNDICE I DERIVADAS E INTEGRAIS

Leia mais

Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia

Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia Oscilações 1. Movimento Oscilatório. Cinemática do Movimento Harmônico Simples (MHS) 3. MHS e Movimento

Leia mais

Leis de Conservação. Exemplo: Cubo de gelo de lado 2cm, volume V g. =8cm3, densidade ρ g. = 0,917 g/cm3. Massa do. ρ g = m g. m=ρ.

Leis de Conservação. Exemplo: Cubo de gelo de lado 2cm, volume V g. =8cm3, densidade ρ g. = 0,917 g/cm3. Massa do. ρ g = m g. m=ρ. Leis de Conservação Em um sistema isolado, se uma grandeza ou propriedade se mantém constante em um intervalo de tempo no qual ocorre um dado processo físico, diz-se que há conservação d a propriedade

Leia mais

UNIVERSIDADE CATÓLICA DE GOIÁS. DEPARTAMENTO DE MATEMÁTICA E FÍSICA Disciplina: FÍSICA GERAL E EXPERIMENTAL I (MAF 2201) Prof.

UNIVERSIDADE CATÓLICA DE GOIÁS. DEPARTAMENTO DE MATEMÁTICA E FÍSICA Disciplina: FÍSICA GERAL E EXPERIMENTAL I (MAF 2201) Prof. 01 UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE MATEMÁTICA E FÍSICA Disciplina: FÍSICA GERAL E EXPERIMENTAL I (MAF 2201) Prof. EDSON VAZ NOTA DE AULA III (Capítulo 7 e 8) CAPÍTULO 7 ENERGIA CINÉTICA

Leia mais

4.1 MOVIMENTO UNIDIMENSIONAL COM FORÇAS CONSTANTES

4.1 MOVIMENTO UNIDIMENSIONAL COM FORÇAS CONSTANTES CAPÍTULO 4 67 4. MOVIMENTO UNIDIMENSIONAL COM FORÇAS CONSTANTES Consideremos um bloco em contato com uma superfície horizontal, conforme mostra a figura 4.. Vamos determinar o trabalho efetuado por uma

Leia mais

Microfone e altifalante. Conversão de um sinal sonoro num sinal elétrico. sinal elétrico num sinal sonoro.

Microfone e altifalante. Conversão de um sinal sonoro num sinal elétrico. sinal elétrico num sinal sonoro. Microfone e altifalante Conversão de um sinal sonoro num sinal elétrico. Conversão de um sinal elétrico num sinal sonoro. O funcionamento dos microfones e dos altifalantes baseia-se na: - acústica; - no

Leia mais

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 6. O trabalho feito pela força para deslocar o corpo de a para b é dado por: = =

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 6. O trabalho feito pela força para deslocar o corpo de a para b é dado por: = = Energia Potencial Elétrica Física I revisitada 1 Seja um corpo de massa m que se move em linha reta sob ação de uma força F que atua ao longo da linha. O trabalho feito pela força para deslocar o corpo

Leia mais

Física e Química A. Teste Intermédio de Física e Química A. Teste Intermédio. Versão 1. Duração do Teste: 90 minutos 11.02.2010

Física e Química A. Teste Intermédio de Física e Química A. Teste Intermédio. Versão 1. Duração do Teste: 90 minutos 11.02.2010 Teste Intermédio de Física e Química A Teste Intermédio Física e Química A Versão 1 Duração do Teste: 90 minutos 11.02.2010 11.º Ano de Escolaridade Decreto-Lei n.º 74/2004, de 26 de Março Na folha de

Leia mais

OSCILAÇÕES: Movimento Harmônico Simples - M. H. S.

OSCILAÇÕES: Movimento Harmônico Simples - M. H. S. Por Prof. Alberto Ricardo Präss Adaptado de Física de Carlos Alberto Gianotti e Maria Emília Baltar OSCILAÇÕES: Movimento Harmônico Simples - M. H. S. Todo movimento que se repete em intervelos de tempo

Leia mais

2 Descrição do movimento de um ponto material no espaço e no tempo

2 Descrição do movimento de um ponto material no espaço e no tempo 2 Descrição do movimento de um ponto material no espaço e no tempo 2.1. Num instante t i um corpo parte de um ponto x i num movimento de translação a uma dimensão, com módulo da velocidade v i e aceleração

Leia mais

Capítulo 4 Trabalho e Energia

Capítulo 4 Trabalho e Energia Capítulo 4 Trabalho e Energia Este tema é, sem dúvidas, um dos mais importantes na Física. Na realidade, nos estudos mais avançados da Física, todo ou quase todos os problemas podem ser resolvidos através

Leia mais

2. Duração da Prova: - Escrita: 90 min (+30 minutos de tolerância) - Prática: 90 min (+30 minutos de tolerância)

2. Duração da Prova: - Escrita: 90 min (+30 minutos de tolerância) - Prática: 90 min (+30 minutos de tolerância) ESCOLA SECUNDÁRIA FERNÃO DE MAGALHÃES Física 12º ano CÓDIGO 315 (1ª e 2ª Fases ) INFORMAÇÃO PROVA DE EXAME DE EQUIVALÊNCIA À FREQUÊNCIA Alunos do Decreto-Lei nº 74/2004 Formação Específica Ano Letivo:

Leia mais

Referencial - sistema de referencia em relação ao qual se pode classificar se determinado objecto de encontra em repouso ou em movimento.

Referencial - sistema de referencia em relação ao qual se pode classificar se determinado objecto de encontra em repouso ou em movimento. http://web.educom.pt/%7epr1258/9ano/a6_movimento9ano.htm O ESTUDO DO MOVIMENTO Referenciais - Movimento e Repouso Referencial - sistema de referencia em relação ao qual se pode classificar se determinado

Leia mais

CONSERVAÇÃO DA ENERGIA

CONSERVAÇÃO DA ENERGIA CONSERVAÇÃO DA ENERGIA Introdução Quando um mergulhador pula de um trampolim para uma piscina, ele atinge a água com uma velocidade relativamente elevada, possuindo grande energia cinética. De onde vem

Leia mais

9. Derivadas de ordem superior

9. Derivadas de ordem superior 9. Derivadas de ordem superior Se uma função f for derivável, então f é chamada a derivada primeira de f (ou de ordem 1). Se a derivada de f eistir, então ela será chamada derivada segunda de f (ou de

Leia mais

ENERGIA POTENCIAL E CONSERVAÇÃO DE ENERGIA Física Geral I (1108030) - Capítulo 04

ENERGIA POTENCIAL E CONSERVAÇÃO DE ENERGIA Física Geral I (1108030) - Capítulo 04 ENERGIA POTENCIAL E CONSERVAÇÃO DE ENERGIA Física Geral I (1108030) - Capítulo 04 I. Paulino* *UAF/CCT/UFCG - Brasil 2012.2 1 / 15 Sumário Trabalho e EP Energia potencial Forças conservativas Calculando

Leia mais

Exercícios Resolvidos Integral de Linha de um Campo Vectorial

Exercícios Resolvidos Integral de Linha de um Campo Vectorial Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise ercícios Resolvidos Integral de inha de um ampo Vectorial ercício onsidere o campo vectorial F,, z =,, z. alcule o integral

Leia mais

Movimento Harmônico Simples: Exemplos (continuação)

Movimento Harmônico Simples: Exemplos (continuação) Movimento Harmônico Simples: Exemplos (continuação) O Pêndulo Físico O chamado pêndulo físico é qualquer pêndulo real. Ele consiste de um corpo rígido (com qualquer forma) suspenso por um ponto O e que

Leia mais

Vestibular UFRGS 2015. Resolução da Prova de Física

Vestibular UFRGS 2015. Resolução da Prova de Física Vestibular URGS 2015 Resolução da Prova de ísica 1. Alternativa (C) O módulo da velocidade relativa de móveis em movimentos retilíneos de sentidos opostos pode ser obtido pela expressão matemática: v r

Leia mais

Introdução ao Estudo da Corrente Eléctrica

Introdução ao Estudo da Corrente Eléctrica Introdução ao Estudo da Corrente Eléctrica Num metal os electrões de condução estão dissociados dos seus átomos de origem passando a ser partilhados por todos os iões positivos do sólido, e constituem

Leia mais

Sistemas eléctricos e magnéticos

Sistemas eléctricos e magnéticos Sistemas eléctricos e magnéticos A corrente eléctrica como forma de transferência de energia Prof. Luís Perna 2010/11 Geradores de corrente eléctrica Um gerador eléctrico é um dispositivo que converte

Leia mais

Engenharia Informática. Física II. 1º Ano 2º Semestre. Instituto politécnico de Bragança Escola Superior de Tecnologia e de Gestão

Engenharia Informática. Física II. 1º Ano 2º Semestre. Instituto politécnico de Bragança Escola Superior de Tecnologia e de Gestão 1º no º Semestre 1. Cálculo vectorial 1.1. Introdução análise vectorial é um assunto do âmbito da matemática e não propriamente da Engenharia. No entanto, é quase impossível estudar Electrostática e Magnetismo

Leia mais

AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2015/2016 PLANIFICAÇÃO ANUAL

AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2015/2016 PLANIFICAÇÃO ANUAL AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2015/2016 PLANIFICAÇÃO ANUAL Documento(s) Orientador(es): Programa de Física 12.º ano homologado em 21/10/2004 ENSINO SECUNDÁRIO FÍSICA 12.º ANO TEMAS/DOMÍNIOS

Leia mais

Análise Dimensional Notas de Aula

Análise Dimensional Notas de Aula Primeira Edição Análise Dimensional Notas de Aula Prof. Ubirajara Neves Fórmulas dimensionais 1 As fórmulas dimensionais são formas usadas para expressar as diferentes grandezas físicas em função das grandezas

Leia mais

www.e-lee.net Temática Circuitos Eléctricos Capítulo Teoria dos Circuitos COMPONENTES INTRODUÇÃO

www.e-lee.net Temática Circuitos Eléctricos Capítulo Teoria dos Circuitos COMPONENTES INTRODUÇÃO Temática Circuitos Eléctricos Capítulo Teoria dos Circuitos COMPONENTES INTRODUÇÃO Nesta secção, estuda-se o comportamento ideal de alguns dos dipolos que mais frequentemente se podem encontrar nos circuitos

Leia mais

LOGO FQA. Da Terra à Lua. Leis de Newton. Prof.ª Marília Peres. Adaptado de Serway & Jewett

LOGO FQA. Da Terra à Lua. Leis de Newton. Prof.ª Marília Peres. Adaptado de Serway & Jewett LOGO Da Terra à Lua Leis de Newton Prof.ª Marília Peres Adaptado de Serway & Jewett Isaac Newton (1642-1727) Físico e Matemático inglês Isaac Newton foi um dos mais brilhantes cientistas da história. Antes

Leia mais

1 P r o j e t o F u t u r o M i l i t a r w w w. f u t u r o m i l i t a r. c o m. b r

1 P r o j e t o F u t u r o M i l i t a r w w w. f u t u r o m i l i t a r. c o m. b r Exercícios Potencial Elétrico 01. O gráfico que melhor descreve a relação entre potencial elétrico V, originado por uma carga elétrica Q < 0, e a distância d de um ponto qualquer à carga, é: 05. Duas cargas

Leia mais

Análise Matemática III - Turma Especial

Análise Matemática III - Turma Especial Análise Matemática III - Turma Especial Ficha Extra 6 - Equações de Maxwell Não precisam de entregar esta ficha omo com todas as equações básicas da Física, não é possível deduzir as equações de Maxwell;

Leia mais

a) O tempo total que o paraquedista permaneceu no ar, desde o salto até atingir o solo.

a) O tempo total que o paraquedista permaneceu no ar, desde o salto até atingir o solo. (MECÂNICA, ÓPTICA, ONDULATÓRIA E MECÂNICA DOS FLUIDOS) 01) Um paraquedista salta de um avião e cai livremente por uma distância vertical de 80 m, antes de abrir o paraquedas. Quando este se abre, ele passa

Leia mais

FORÇA MAGNÉTICA. Força magnética sobre cargas em um campo magnético uniforme

FORÇA MAGNÉTICA. Força magnética sobre cargas em um campo magnético uniforme FORÇA MAGNÉTICA Força magnética sobre cargas em um campo magnético uniforme Em eletrostática vimos que quando uma carga penetra em uma região onde existe um campo elétrico, fica sujeita a ação de uma força

Leia mais

CDI-II. Trabalho. Teorema Fundamental do Cálculo

CDI-II. Trabalho. Teorema Fundamental do Cálculo Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Prof. Gabriel Pires CDI-II Trabalho. Teorema Fundamental do Cálculo 1 Trabalho. Potencial Escalar Uma das noções mais importantes

Leia mais

Energia & Trabalho. Aula 3

Energia & Trabalho. Aula 3 Todo o material disponibilizado é preparado para as disciplinas que ministramos e colocado para ser acessado livremente pelos alunos ou interessados. Solicitamos que não seja colocado em sites nãolivres.

Leia mais

ACTIVIDADE LABORATORIAL 1.3. SALTO PARA A PISCINA

ACTIVIDADE LABORATORIAL 1.3. SALTO PARA A PISCINA ACTIVIDADE LABORATORIAL 1.3. SALTO PARA A PISCINA Questão: Como projectar um escorrega para um parque aquático, de um, de modo que os utentes possam cair em segurança numa determinada zona da piscina?

Leia mais

Resolução dos Exercícios sobre Derivadas

Resolução dos Exercícios sobre Derivadas Resolução dos Eercícios sobre Derivadas Eercício Utilizando a idéia do eemplo anterior, encontre a reta tangente à curva nos pontos onde e Vamos determinar a reta tangente à curva nos pontos de abscissas

Leia mais

Seleccione a alternativa que supere as omissões nas afirmações que seguem: 1/8

Seleccione a alternativa que supere as omissões nas afirmações que seguem: 1/8 i) Uma carga eléctrica submetida a um campo magnético sofre sempre a acção de uma força magnética. ii) Uma carga eléctrica submetida a um campo eléctrico sofre sempre a acção de uma força eléctrica. iii)

Leia mais

Física e Química A. Teste Intermédio de Física e Química A. Teste B. Teste Intermédio. Versão 1

Física e Química A. Teste Intermédio de Física e Química A. Teste B. Teste Intermédio. Versão 1 Teste Intermédio de Física e Química A Teste B Teste Intermédio Física e Química A Versão 1 Duração do Teste: 90 minutos 17.03.2009 11.º ou 12.º Anos de Escolaridade Decreto-Lei n.º 74/2004, de 26 de Março

Leia mais

gradiente, divergência e rotacional (revisitados)

gradiente, divergência e rotacional (revisitados) gradiente, divergência e rotacional (revisitados) Prof Carlos R Paiva Prof Carlos R Paiva NOTA PRÉVIA Os apontamentos que se seguem não são um teto matemático: não se procura, aqui, o rigor de uma formulação

Leia mais

Prof. Rogério Porto. Assunto: Eletrostática

Prof. Rogério Porto. Assunto: Eletrostática Questões COVEST Física Elétrica Prof. Rogério Porto Assunto: Eletrostática 1. Duas esferas condutoras A e B possuem a mesma carga Q. Uma terceira esfera C, inicialmente descarregada e idêntica às esferas

Leia mais

Vestibular1 A melhor ajuda ao vestibulando na Internet Acesse Agora! www.vestibular1.com.br. Cinemática escalar

Vestibular1 A melhor ajuda ao vestibulando na Internet Acesse Agora! www.vestibular1.com.br. Cinemática escalar Cinemática escalar A cinemática escalar considera apenas o aspecto escalar das grandezas físicas envolvidas. Ex. A grandeza física velocidade não pode ser definida apenas por seu valor numérico e por sua

Leia mais

FICHA DE TRABALHO DERIVADAS I PARTE. 1. Uma função f tem derivadas finitas à direita e à esquerda de x = 0. Então:

FICHA DE TRABALHO DERIVADAS I PARTE. 1. Uma função f tem derivadas finitas à direita e à esquerda de x = 0. Então: FICHA DE TRABALHO DERIVADAS I PARTE. Uma função f tem derivadas finitas à direita e à esquerda de = 0. Então: (A) f tem necessariamente derivada finita em = 0; (B) f não tem com certeza derivada finita

Leia mais

FISICA. Justificativa: Taxa = 1,34 kw/m 2 Energia em uma hora = (1,34 kw/m 2 ).(600x10 4 m 2 ).(1 h) ~ 10 7 kw. v B. v A.

FISICA. Justificativa: Taxa = 1,34 kw/m 2 Energia em uma hora = (1,34 kw/m 2 ).(600x10 4 m 2 ).(1 h) ~ 10 7 kw. v B. v A. FISIC 01. Raios solares incidem verticalmente sobre um canavial com 600 hectares de área plantada. Considerando que a energia solar incide a uma taxa de 1340 W/m 2, podemos estimar a ordem de grandeza

Leia mais

Guia de Trabalhos Laboratoriais UNIVERSIDADE DA BEIRA INTERIOR

Guia de Trabalhos Laboratoriais UNIVERSIDADE DA BEIRA INTERIOR Guia de Trabalhos Laboratoriais UNIVERSIDADE DA BEIRA INTERIOR Conteúdo 1 Estudo do Movimento Uniformemente Acelerado: Velocidade Média - Velocidade Instantânea 1 1.1 Introdução..........................................

Leia mais

Todas as dúvidas deste curso podem ser esclarecidas através do nosso plantão de atendimento ao cursista.

Todas as dúvidas deste curso podem ser esclarecidas através do nosso plantão de atendimento ao cursista. Caro cursista, Todas as dúvidas deste curso podem ser esclarecidas através do nosso plantão de atendimento ao cursista. Plantão de Atendimento Horário: terças e quintas-feiras das 14:00 às 16:00. MSN:

Leia mais

Física. Resolução. Q uestão 01 - A

Física. Resolução. Q uestão 01 - A Q uestão 01 - A Uma forma de observarmos a velocidade de um móvel em um gráfico d t é analisarmos a inclinação da curva como no exemplo abaixo: A inclinação do gráfico do móvel A é maior do que a inclinação

Leia mais

EXERCÍCIOS DE RECUPERAÇÃO PARALELA 4º BIMESTRE

EXERCÍCIOS DE RECUPERAÇÃO PARALELA 4º BIMESTRE EXERCÍCIOS DE RECUPERAÇÃO PARALELA 4º BIMESTRE NOME Nº SÉRIE : 1º EM DATA : / / BIMESTRE 3º PROFESSOR: Renato DISCIPLINA: Física 1 VISTO COORDENAÇÃO ORIENTAÇÕES: 1. O trabalho deverá ser feito em papel

Leia mais

Teorias da luz. Experiências

Teorias da luz. Experiências Teorias da luz. Experiências Jaime E. Villate Departamento de Física Faculdade de Engenharia Universidade do Porto Exposição na Biblioteca da FEUP 21 de Abril a 13 de Junho de 2005 1 A luz é um fenómeno

Leia mais

Olimpíadas de Física 2011. Prova Teórica

Olimpíadas de Física 2011. Prova Teórica Sociedade Portuguesa de Física Olimpíadas de Física 2011 Selecção para as provas internacionais Prova Teórica 21/Maio/2011 Olimpíadas Internacionais de Física 2011 Selecção para as provas internacionais

Leia mais

FÍSICA NUCLEAR E PARTÍCULAS

FÍSICA NUCLEAR E PARTÍCULAS FÍSICA NUCLEAR E PARTÍCULAS Apêndice - O Tubo de Geiger - Müller 1 - Descrição sumária O tubo de Geiger é constituido essencialmente por dois eléctrodos, o cátodo e o ânodo, encerrados num recipiente de

Leia mais

FÍSICA 3ª Série LISTA DE EXERCÍCIOS/ELETROSTÁTICA Data: 20/03/07

FÍSICA 3ª Série LISTA DE EXERCÍCIOS/ELETROSTÁTICA Data: 20/03/07 1. O campo elétrico de uma carga puntiforme em repouso tem, nos pontos A e B, as direções e sentidos indicados pelas flechas na figura a seguir. O módulo do campo elétrico no ponto B vale 24V/m. O módulo

Leia mais

Escola Secundária de Oliveira do Bairro

Escola Secundária de Oliveira do Bairro Ano Lectivo 2010/2011 Professora Fátima Pires Como projectar um escorrega para um parque aquático, de modo que os utentes possam cair em segurança numa determinada zona da piscina, através de uma rampa

Leia mais

Sumário. Prefácio... xi. Prólogo A Física tira você do sério?... 1. Lei da Ação e Reação... 13

Sumário. Prefácio... xi. Prólogo A Física tira você do sério?... 1. Lei da Ação e Reação... 13 Sumário Prefácio................................................................. xi Prólogo A Física tira você do sério?........................................... 1 1 Lei da Ação e Reação..................................................

Leia mais

Soluções das Questões de Física do Processo Seletivo de Admissão à Escola Preparatória de Cadetes do Exército EsPCEx

Soluções das Questões de Física do Processo Seletivo de Admissão à Escola Preparatória de Cadetes do Exército EsPCEx Soluções das Questões de Física do Processo Seletivo de dmissão à Escola Preparatória de Cadetes do Exército EsPCEx Questão Concurso 009 Uma partícula O descreve um movimento retilíneo uniforme e está

Leia mais

Cap. 6 - Campo Magnético e Força Magnética

Cap. 6 - Campo Magnético e Força Magnética Universidade Federal do Rio de Janeiro Instituto de Física Física III 2014/2 Cap. 6 - Campo Magnético e Força Magnética Prof. Elvis Soares Nesse capítulo, estudaremos as forças que agem em cargas elétricas

Leia mais

Professores: Gilberto / Gustavo / Luciano / Maragato CURSO DOMÍNIO. Comentário: Energia de Capacitor. Comentário: Questão sobre atrito

Professores: Gilberto / Gustavo / Luciano / Maragato CURSO DOMÍNIO. Comentário: Energia de Capacitor. Comentário: Questão sobre atrito Professores: Gilberto / Gustavo / Luciano / Maragato CURSO DOMÍNIO A prova de física exigiu um bom conhecimento dos alunos. Há questões relacionadas principalmente com a investigação e compreensão dos

Leia mais

1 Considere o gráfico da figura a seguir, que representa a funçãov(t), relativa a um dado movimento rectilineo. v(ms 1 )

1 Considere o gráfico da figura a seguir, que representa a funçãov(t), relativa a um dado movimento rectilineo. v(ms 1 ) Parte B Física 1- Movimento a uma dimensão 1 Considere o gráfico da figura a seguir, que representa a funçãov(t), relativa a um dado movimento rectilineo. v(ms 1 ) 1.1 Qualovalordavelocidadeinicialdomóvel?

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO DO 1º GRAU

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO DO 1º GRAU FUNÇÃO IDENTIDADE... FUNÇÃO LINEAR... FUNÇÃO AFIM... GRÁFICO DA FUNÇÃO DO º GRAU... IMAGEM... COEFICIENTES DA FUNÇÃO AFIM... ZERO DA FUNÇÃO AFIM... 8 FUNÇÕES CRESCENTES OU DECRESCENTES... 9 SINAL DE UMA

Leia mais

Seja D R. Uma função vetorial r(t) com domínio D é uma correspondência que associa a cada número t em D exatamente um vetor r(t) em R 3

Seja D R. Uma função vetorial r(t) com domínio D é uma correspondência que associa a cada número t em D exatamente um vetor r(t) em R 3 1 Universidade Salvador UNIFACS Cursos de Engenharia Cálculo IV Profa: Ilka Rebouças Freire Cálculo Vetorial Texto 01: Funções Vetoriais Até agora nos cursos de Cálculo só tratamos de funções cujas imagens

Leia mais

APLICAÇÕES DA DERIVADA

APLICAÇÕES DA DERIVADA Notas de Aula: Aplicações das Derivadas APLICAÇÕES DA DERIVADA Vimos, na seção anterior, que a derivada de uma função pode ser interpretada como o coeficiente angular da reta tangente ao seu gráfico. Nesta,

Leia mais

Mecânica 2007/2008. 6ª Série

Mecânica 2007/2008. 6ª Série Mecânica 2007/2008 6ª Série Questões: 1. Suponha a=b e M>m no sistema de partículas representado na figura 6.1. Em torno de que eixo (x, y ou z) é que o momento de inércia tem o menor valor? e o maior

Leia mais

Notas sobre a Fórmula de Taylor e o estudo de extremos

Notas sobre a Fórmula de Taylor e o estudo de extremos Notas sobre a Fórmula de Taylor e o estudo de etremos O Teorema de Taylor estabelece que sob certas condições) uma função pode ser aproimada na proimidade de algum ponto dado) por um polinómio, de modo

Leia mais

Tópico 02: Movimento Circular Uniforme; Aceleração Centrípeta

Tópico 02: Movimento Circular Uniforme; Aceleração Centrípeta Aula 03: Movimento em um Plano Tópico 02: Movimento Circular Uniforme; Aceleração Centrípeta Caro aluno, olá! Neste tópico, você vai aprender sobre um tipo particular de movimento plano, o movimento circular

Leia mais

c = c = c =4,20 kj kg 1 o C 1

c = c = c =4,20 kj kg 1 o C 1 PROPOSTA DE RESOLUÇÃO DO TESTE INTERMÉDIO - 2014 (VERSÃO 1) GRUPO I 1. H vap (H 2O) = 420 4 H vap (H 2O) = 1,69 10 3 H vap (H 2O) = 1,7 10 3 kj kg 1 Tendo em consideração a informação dada no texto o calor

Leia mais

Departamento de Física Universidade do Algarve PÊNDULO SIMPLES

Departamento de Física Universidade do Algarve PÊNDULO SIMPLES Departamento de Física Universidade do lgarve PÊNDULO SIMPLES 1. Resumo Um pêndulo é largado de uma determinada altura, medindo-se a sua velocidade linear quando passa pela posição mais baixa. Este procedimento

Leia mais

Faculdades Anhanguera

Faculdades Anhanguera 2º Aula de Física 2.1 Posição A posição de uma partícula sobre um eixo x localiza a partícula em relação á origem, ou ponto zero do eixo. A posição é positiva ou negativa, dependendo do lado da origem

Leia mais

Cinemática Unidimensional

Cinemática Unidimensional Cinemática Unidimensional 1 INTRODUÇÃO Na Cinemática Unidimensional vamos estudar o movimento de corpos e partículas, analisando termos como deslocamento, velocidade, aceleração e tempo.os assuntos que

Leia mais

Campo Magnético de Espiras e a Lei de Faraday

Campo Magnético de Espiras e a Lei de Faraday Campo Magnético de Espiras e a Lei de Faraday Semestre I - 005/006 1.Objectivos 1) Estudo do campo magnético de espiras percorridas por corrente eléctrica. ) Estudo da lei de indução de Faraday.. Introdução

Leia mais

grandeza do número de elétrons de condução que atravessam uma seção transversal do fio em segundos na forma, qual o valor de?

grandeza do número de elétrons de condução que atravessam uma seção transversal do fio em segundos na forma, qual o valor de? Física 01. Um fio metálico e cilíndrico é percorrido por uma corrente elétrica constante de. Considere o módulo da carga do elétron igual a. Expressando a ordem de grandeza do número de elétrons de condução

Leia mais

Ondas Eletromagnéticas. E=0, 1 B=0, 2 E= B t, 3 E

Ondas Eletromagnéticas. E=0, 1 B=0, 2 E= B t, 3 E Ondas Eletromagnéticas. (a) Ondas Planas: - Tendo introduzido dinâmica no sistema, podemos nos perguntar se isto converte o campo eletromagnético de Maxwell em uma entidade com existência própria. Em outras

Leia mais

Os elementos de circuito que estudámos até agora foram elementos lineares. Ou seja, se duplicamos a ddp aos terminais de um

Os elementos de circuito que estudámos até agora foram elementos lineares. Ou seja, se duplicamos a ddp aos terminais de um O Díodo Os elementos de circuito que estudámos até agora foram elementos lineares. Ou seja, se duplicamos a ddp aos terminais de um componente, a intensidade da corrente eléctrica que o percorre também

Leia mais

RECUPERAÇÃO TURMAS: 2º ANO FÍSICA

RECUPERAÇÃO TURMAS: 2º ANO FÍSICA RECUPERAÇÃO TURMAS: 2º ANO Professor: XERXES DATA: 22 / 11 / 2015 RECUPERAÇÃO FINAL FORÇA ELÉTRICA (LEI DE COULOMB) FÍSICA Para todas as questões, considere a constante eletrostática no vácuo igual a 9.10

Leia mais

Provas Comentadas OBF/2011

Provas Comentadas OBF/2011 PROFESSORES: Daniel Paixão, Deric Simão, Edney Melo, Ivan Peixoto, Leonardo Bruno, Rodrigo Lins e Rômulo Mendes COORDENADOR DE ÁREA: Prof. Edney Melo 1. Um foguete de 1000 kg é lançado da superfície da

Leia mais

CINEMÁTICA - É a parte da mecânica que estuda os vários tipos de movimento, sem se preocupar com as causas destes movimentos.

CINEMÁTICA - É a parte da mecânica que estuda os vários tipos de movimento, sem se preocupar com as causas destes movimentos. INTRODUÇÃO À CINEMÁTICA REPOUSO OU MOVIMENTO? DEPENDE DO REFERENCIAL! CINEMÁTICA - É a parte da mecânica que estuda os vários tipos de movimento, sem se preocupar com as causas destes movimentos. REFERENCIAL.

Leia mais

Conjuntos numéricos. Notasdeaula. Fonte: Leithold 1 e Cálculo A - Flemming. Dr. Régis Quadros

Conjuntos numéricos. Notasdeaula. Fonte: Leithold 1 e Cálculo A - Flemming. Dr. Régis Quadros Conjuntos numéricos Notasdeaula Fonte: Leithold 1 e Cálculo A - Flemming Dr. Régis Quadros Conjuntos numéricos Os primeiros conjuntos numéricos conhecidos pela humanidade são os chamados inteiros positivos

Leia mais

Aula de Véspera - Inv-2009 Professor Leonardo

Aula de Véspera - Inv-2009 Professor Leonardo 01. Dois astronautas, A e B, encontram-se livres na parte externa de uma estação espacial, sendo desprezíveis as forças de atração gravitacional sobre eles. Os astronautas com seus trajes espaciais têm

Leia mais

Mecânica e Ondas. Introdução ao Osciloscópio e ao Gerador de sinais

Mecânica e Ondas. Introdução ao Osciloscópio e ao Gerador de sinais Mecânica e Ondas Introdução ao Osciloscópio e ao Gerador de sinais 1. Osciloscópio O osciloscópio é um aparelho destinado à visualização e caracterização de sinais eléctricos, em particular tensões eléctricas

Leia mais

Universidade Federal do Ceará 2ª ETAPA PROVA ESPECÍFICA DE FÍSICA PROVA ESPECÍFICA DE FÍSICA. Data: 14.12.2009 Duração: 04 horas CORRETOR 1

Universidade Federal do Ceará 2ª ETAPA PROVA ESPECÍFICA DE FÍSICA PROVA ESPECÍFICA DE FÍSICA. Data: 14.12.2009 Duração: 04 horas CORRETOR 1 1ª AVALIAÇÃO AVALIAÇÃO FINAL CORRETOR 1 01 02 03 04 05 06 07 08 Reservado à CCV Universidade Federal do Ceará Coordenadoria de Concursos - CCV Comissão do Vestibular Reservado à CCV 2ª ETAPA PROVA ESPECÍFICA

Leia mais

Unidade I: Introdução à CINEMÁTICA

Unidade I: Introdução à CINEMÁTICA Colégio Santa Catarina Unidade I: Introdução à Cinemática 1 O que é a Física? palavra física tem origem grega e significa natureza. ssim física é a ciência que estuda a natureza, daí o nome de ciência

Leia mais

Resposta Transitória de Circuitos com Elementos Armazenadores de Energia

Resposta Transitória de Circuitos com Elementos Armazenadores de Energia ENG 1403 Circuitos Elétricos e Eletrônicos Resposta Transitória de Circuitos com Elementos Armazenadores de Energia Guilherme P. Temporão 1. Introdução Nas últimas duas aulas, vimos como circuitos com

Leia mais

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 3

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 3 Linhas de Força Mencionamos na aula passada que o físico inglês Michael Faraday (79-867) introduziu o conceito de linha de força para visualizar a interação elétrica entre duas cargas. Para Faraday, as

Leia mais

DINÂMICA. Força Resultante: É a força que produz o mesmo efeito que todas as outras aplicadas a um corpo.

DINÂMICA. Força Resultante: É a força que produz o mesmo efeito que todas as outras aplicadas a um corpo. DINÂMICA Quando se fala em dinâmica de corpos, a imagem que vem à cabeça é a clássica e mitológica de Isaac Newton, lendo seu livro sob uma macieira. Repentinamente, uma maçã cai sobre a sua cabeça. Segundo

Leia mais

MECÂNICA DOS FLUIDOS 2 ME262

MECÂNICA DOS FLUIDOS 2 ME262 UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE TECNOLOGIA E GEOCIÊNCIAS (CTG) DEPARTAMENTO DE ENGENHARIA MECÂNICA (DEMEC) MECÂNICA DOS FLUIDOS ME6 Prof. ALEX MAURÍCIO ARAÚJO (Capítulo 5) Recife - PE Capítulo

Leia mais

Física e Química A. Actividade Prático-Laboratorial 1.3 Salto para a piscina

Física e Química A. Actividade Prático-Laboratorial 1.3 Salto para a piscina Física e Química A Actividade Prático-Laboratorial 1.3 Salto para a piscina Ano lectivo de 2009/2010 Índice Sumário 3 I Relatório 1.1. Objectivos.. 4 1.2. Planeamento 5 1.3. Execução. 6 1.4. Resultados

Leia mais

CAPACIDADE ELÉTRICA. Unidade de capacitância

CAPACIDADE ELÉTRICA. Unidade de capacitância CAPACIDADE ELÉTRICA Como vimos, a energia elétrica pode ser armazenada e isso se faz através do armazenamento de cargas elétricas. Essas cargas podem ser armazenadas em objetos condutores. A capacidade

Leia mais

PARTE 2 FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL

PARTE 2 FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL PARTE FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL.1 Funções Vetoriais de Uma Variável Real Vamos agora tratar de um caso particular de funções vetoriais F : Dom(f R n R m, que são as funções vetoriais de uma

Leia mais

Fenômenos de Transporte

Fenômenos de Transporte Fenômenos de Transporte Prof. Leandro Alexandre da Silva Processos metalúrgicos 2012/2 Fenômenos de Transporte Prof. Leandro Alexandre da Silva Motivação O que é transporte? De maneira geral, transporte

Leia mais

Física 2005/2006. Capitulo 5. Trabalho e Energia

Física 2005/2006. Capitulo 5. Trabalho e Energia ísica 005/006 Capitulo 5 Trabalho e Energia Trabalho e Energia A ideia de energia está intimamente ligada à de trabalho. Intuitivamente, podemos pensar em energia como alguma coisa que se manifesta continuamente

Leia mais

Fenómenos Ondulatórios. Reflexão, refracção, difracção

Fenómenos Ondulatórios. Reflexão, refracção, difracção Fenómenos Ondulatórios Reflexão, refracção, difracção Natureza dualística da radiação electromagnética A radiação electromagnética é um fenómeno ondulatório envolvendo a propagação de um campo magnético

Leia mais

Potencial Elétrico. e dividindo-se pela carga de prova q 0 temos o campo elétrico E:

Potencial Elétrico. e dividindo-se pela carga de prova q 0 temos o campo elétrico E: Potencial Elétrico Quando estudamos campo elétrico nas aulas passadas, vimos que ele pode ser definido em termos da força elétrica F que uma carga q exerce sobre uma carga de prova q 0. Essa força é, pela

Leia mais

Física Geral I - F 128 Aula 7 Energia Cinética e Trabalho. 2 o semestre, 2011

Física Geral I - F 128 Aula 7 Energia Cinética e Trabalho. 2 o semestre, 2011 Física Geral I - F 18 Aula 7 Energia Cinética e Trabalho o semestre, 011 Energia As leis de Newton permitem analisar vários movimentos. Essa análise pode ser bastante complea, necessitando de detalhes

Leia mais

Estrategia de resolução de problemas

Estrategia de resolução de problemas Estrategia de resolução de problemas Sistemas Isolados (p. 222) Muitos problemas na física podem ser resolvidos usando-se o princípio de conservação de energia para um sistema isolado. Deve ser utilizado

Leia mais

TC 1 UECE 2012 FASE 2. PROF.: Célio Normando

TC 1 UECE 2012 FASE 2. PROF.: Célio Normando TC 1 UECE 01 FASE PROF.: Célio Normando Conteúdo: Aritmética Ordem de Grandeza 1. Racionalizar o uso da água significa usá-la sem desperdício e considerá-la uma prioridade social e ambiental, para que

Leia mais

Força atrito. Forças. dissipativas

Força atrito. Forças. dissipativas Veículo motorizado 1 Trabalho Ocorrem variações predominantes de Por ex: Forças constantes Sistema Termodinâmico Onde atuam Força atrito É simultaneamente Onde atuam Sistema Mecânico Resistente Ocorrem

Leia mais

Universidade Federal do Rio de Janeiro. Princípios de Instrumentação Biomédica. Módulo 4

Universidade Federal do Rio de Janeiro. Princípios de Instrumentação Biomédica. Módulo 4 Universidade Federal do Rio de Janeiro Princípios de Instrumentação Biomédica Módulo 4 Faraday Lenz Henry Weber Maxwell Oersted Conteúdo 4 - Capacitores e Indutores...1 4.1 - Capacitores...1 4.2 - Capacitor

Leia mais

PROBLEMAS DE OTIMIZAÇÃO

PROBLEMAS DE OTIMIZAÇÃO (Tóp. Teto Complementar) PROBLEMAS DE OTIMIZAÇÃO 1 PROBLEMAS DE OTIMIZAÇÃO Este teto estuda um grupo de problemas, conhecido como problemas de otimização, em tais problemas, quando possuem soluções, é

Leia mais

Discussão sobre as leis de Newton no contexto da análise de estruturas

Discussão sobre as leis de Newton no contexto da análise de estruturas Princípios físicos básicos para as condições de equilíbrio As condições de equilíbrio garantem o equilíbrio estático de qualquer porção isolada da estrutura ou da estrutura como um todo. Elas estão baseadas

Leia mais