Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia"

Transcrição

1 Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia Oscilações 1. Movimento Oscilatório. Cinemática do Movimento Harmônico Simples (MHS) 3. MHS e Movimento Circular Uniforme 4. Força e Energia do MHS 5. Exemplos 6. Exercícios

2 Movimento Oscilatório Vibrações e Ondas Variações temporais Variações espaciais Cordas vocais Diapasão Ondas na água Ondas sonoras Instrumentos de cordas Ondas em cordas

3 Movimento Oscilatório Vibrações e Ondas Variações temporais Variações espaciais Hélice na água Asas de abelha Ondas na água Ondas sonoras Elétrons em uma lâmpada Ondas de luz 3

4 Movimento Harmônico Simples Movimento oscilatório que se repete periodicamente. Resulta em ondas senoidais. Exemplos: Massa em uma mola Pêndulo 4

5 Movimento Harmônico Simples Uma massa vibrante conectada a uma mola é deslocada da posição de equilíbrio, e depois solta. O deslocamento máximo é chamado amplitude da vibração. Um ciclo é uma vibração completa. O período é o tempo necessário para completar um ciclo completo. A frequência é a conta de quantos ciclos o sistema completa em 1 s. 5

6 Movimento Harmônico Simples 6

7 Movimento Harmônico Simples O gráfico de um Movimento Harmônico Simples (MHS) é descrito por uma curva senoidal. 7

8 Movimento Harmônico Simples 8

9 Movimento Harmônico Simples 9

10 Movimento Harmônico Simples Quando o corpo é deslocado de uma distância x a partir de sua posição de equilíbrio, a mola exerce sobre uma força -kx, dada pela lei de Hooke. Fx = kx onde k é a constante de força da mola, uma medida de sua rigidez. O sinal negativo indica que a força é uma força restauradora, isto é, ela tem o sentido oposto ao do deslocamento a partir da posição de equilíbrio. 10

11 Movimento Harmônico Simples Condições para o Movimento Harmônico Simples: No movimento harmônico simples, a aceleração, e portanto, também a força resultante, são ambas proporcionais e opostas ao deslocamento a partir da posição de equilíbrio. 11

12 Movimento Harmônico Simples O tempo que leva para um objeto deslocado executar um ciclo completo de movimento oscilatório de um extremo ao outro e de volta ao anterior é chamado de período T. O inverso do período é a frequência f, que é o número de ciclos por unidade de tempo: f = 1 T 1

13 Movimento Harmônico Simples Unidade de Frequência: A unidade de frequência é o ciclo por segundo (ciclo/s), chamado de hertz (Hz). Exemplo: Se o tempo para um ciclo completo de oscilações é 0,5 s, a frequência é 4,0 Hz. 13

14 Movimento Harmônico Simples Posição no Movimento Harmônico Simples: A figura abaixo mostra como podemos, experimentalmente, obter x versus t para uma massa presa a uma mola. A equação geral para esta curva é x = Acos( ωt + δ ) onde A, ω e δ são constantes O deslocamento máximo x máx do equilíbrio é chamado de amplitude A. 14

15 Movimento Harmônico Simples O argumento da função cosseno, ωt+δ, é a fase do movimento, e a constante δ é a constante de fase, que é igual à fase em t=0. Nota que: cos( ωt + δ ) = sen( ωt + δ + π ), assim, expressar a equação como uma função cosseno ou como uma função seno depende simplesmente da fase da oscilação em t=0. 15

16 Movimento Harmônico Simples Velocidade no Movimento Harmônico Simples Podemos mostrar que: É solução de: kx = ou ma x x = Acos( ωt + δ ) k d x k a = x ou x x = m dt m 16

17 Movimento Harmônico Simples A primeira derivada de x dá a velocidade v x dx v = = A t + x dt ω ω δ sen ( ) Aceleração no Movimento Harmônico Simples Derivando a velocidade em relação ao tempo temos a aceleração: d x a = = Acos t + x dt ( ) ω ω δ 17

18 Movimento Harmônico Simples Asen ωt + δ Substituindo ( ) a x d x = = ω x dt por x fica A frequência angular: ω = k m 18

19 Movimento Harmônico Simples A frequência se relaciona com a frequência angular da forma 1 ω = π = π f T Como ω = k m, a frequência e o período de um corpo preso a uma mola se relaciona com a constante de força k e a massa m da forma f 1 1 = = T π k m 19

20 Movimento Harmônico Simples A frequência aumenta com o aumento de k (rigidez da mola) e diminui com o aumento da massa m. A Equação para frequência fornece uma maneira de se medir a massa inercial de um astronauta em um ambiente sem gravidade. A frequência (e, portanto, também o período) do movimento harmônico simples (MHS) é independente da amplitude. 0

21 Dinâmica do MHS (Resumo) Sabemos que em todo instante F = ma deve ser válido. Mas neste caso F = -kx e ma = d x m dt Portanto: -kx = ma = d x m dt d x dt k = x Equação diferencial para x(t)! m 1

22 Dinâmica do MHS (Resumo) d x dt = k x m definamos ω = k m d x dt = ω x Tentemos a solução x = Acos( ωt) dx v = = ω Asin( ωt) dt d x ( ) a = = ω Acos ωt = ω x dt

23 Dinâmica do MHS (Resumo) Posição: x(t) = A cos(ωt + δ) Velocidade: v(t) = -ωa sin(ωt + δ) Aceleração: a(t) = -ω A cos(ωt + δ) Considerando as derivadas, pois: x MAX = A v MAX = ωa a MAX = ω A v( t) = dx( t) dt a( t) = dv( t) dt 3

24 Dinâmica do MHS (Condições Iniciais) Use as condições iniciais para determinar a fase φ! Suponha que foi dito que x(0) = 0, e que x inicialmente aumenta (i.e. v(0) = positiva): x(t) = A cos(ωt + φ) v(t) = -ωa sen(ωt + φ) x(0) = 0 = A cos(φ) φ = π/ ou -π/ a(t) = -ω A cos(ωt + φ) v(0) > 0 = -ωa sin(φ) φ < 0 Portanto φ = -π/ π θ π cos sin 4

25 Dinâmica do MHS (Condições Iniciais) Encontramos portanto φ = -π/! x(t) = A cos(ωt - π/ ) v(t) = -ωa sin(ωt - π/ ) a(t) = -ω A cos(ωt - π/ ) x(t) = A sin(ωt) v(t) = ωa cos(ωt) a(t) = -ω A sin(ωt) A x(t) -A π π ωt 5

26 Solução do MHS y = Acos( ωt + φ) 6

27 Solução do MHS y = Acos ωt π y = Asen( ωt ) 7

28 Resumo do MHS A solução mais geral é x = A cos(ωt + φ) onde A = amplitude ω = frequência angular ω = φ = fase Para uma massa em uma mola: A frequência não depende da amplitude!! k m Isso na realidade é geral para qualquer MHS! A oscilação ocorre ao redor do ponto de equilíbrio, onde a força resultante é nula! 8

29 Solução do MHS Mostramos que x = Acos( ωt) d x dt Essa não é a única solução, entretanto, uma solução. = ω x (que vem de F = ma) tem solução x = A t sen ( ω ) também é A solução mais geral é uma combinação linear dessas duas possíveis soluções: x = B sen ωt + C cos ωt dx dt d x dt ( ) ( ) = ωb cos ωt ωc sin ωt ( ) ( ) = ω B sin ωt ω C cos ωt = ω x ( ) ( ) 9

30 Derivação Queremos usar a solução mais geral. Vamos mostrar que: x = Acos ωt + φ e equivalente a x = Bsen ωt + C cos ωt ( ) ( ) ( ) x = Acos ωt + φ ( ) = Acos ωt cosφ Asen ωt senφ ( ) ( ) = C cos ωt + Bsen ωt ( ) ( ) onde C = Acos φ e B = -Asenφ Assim, podemos usar mais geral! Funciona! x = Acos( ωt + φ ) como a solução 30

31 Movimento Harmônico Simples Exercício 1: Você está sentado na prancha de surfe, que sobe e desce ao flutuar sobre algumas ondas. O deslocamento vertical da prancha y é dado por ( 1, 1 ) cos π y = m t +,0 s 6 a) Determine a amplitude, a frequência, a frequência angular, a constante de fase, a frequência e o período do movimento. 31

32 Movimento Harmônico Simples b) Onde está a prancha, em t=1,0 s? c) Determine a velocidade e a aceleração, como funções do tempo t. d) Determine os valores iniciais da posição, da velocidade e da aceleração da prancha. 3

33 Movimento Harmônico Simples Exercício : Um corpo oscila com uma frequência angular w=8,0 rad/s. Em t=0, o corpo está em x=4,0 cm com uma velocidade inicial v x =-5 cm/s. a) Determine a amplitude e a constante de fase do movimento. b) Escreva x como função do tempo. 33

34 Movimento Harmônico Simples e Movimento Circular Existe uma relação entre o movimento harmônico simples e o movimento circular de rapidez constante. Considere uma partícula se movendo com rapidez constante v em um círculo de raio A. 34

35 Movimento Harmônico Simples e Movimento Circular Seu deslocamento angular em relação à orientação +x é dado por. θ = ω t + δ v onde δ representa o deslocamento angular no tempo t = 0 e ω = A representa a rapidez angular da particula. A componente x da posição da partícula é. x = Acosθ ( ω θ ) x = Acos t + Que é a mesma equação para o MHS. 35

36 Movimento Harmônico Simples e Movimento Circular Quando uma partícula se move com rapidez constante em um círculo, sua projeção sobre um diâmetro do círculo descreve um movimento harmônico simples (MHS). A rapidez de uma partícula que se move em um círculo é dada por. v = ωr onde r representa o raio da trajetoria da particula. Para uma partícula em movimento circular. r = A v = ω A 36

37 Movimento Harmônico Simples e Movimento Circular A projeção do vetor velocidade sobre o eixo x é: v = vsenθ x Substituindo v e θ, temos: v x = vsenθ ( ) v = ω Asen ωt + δ x que é a mesma equação para o MHS. A relação entre o movimento circular e o movimento harmônico simples é mostrada de forma muito bonita pela trilha de bolhas produzida por uma hélice de barco. 37

38 Movimento Harmônico Simples e Movimento Circular cosθ = θ = ωt x A x = Acosθ ω: velocidade angular z y v 0 x θ v A θ A - x = ω = π f x Acosωt x x = Acos π ft ou x = Acos π t T v = v sinθ = v sin π ft = v sin F a = = a cos 0 π ft m π t T z y x v x A 38

39 Movimento Harmônico Simples e Movimento Circular Como relacionar o MHS com o MCU? y R θ R ωt = cos = cos( ) y x -1 0 θ π π π 39

40 Força Elástica e Energia Potencial Seja um corpo distante x do equilíbrio, sob a ação da força restauradora F = kx Configuração de referência: x 0 = 0 Ou: U ( x) = 0 ( k) xdx 1 U ( x) = kx x 0 40

41 Energia no MHS Para o movimento harmônico simples 1 = cos + U ka ωt ( δ ) A Energia Cinética do sistema é K = 1 mv x = Acos( ωt + δ ) Energia Potencial no MHS onde m é a massa do corpo e v é sua rapidez. Para o movimento harmônico simples, v = ω A ωt + δ x sen ( ) 41

42 Energia no MHS Substituindo, fica 1 = ω ω + δ K m A sen t Usando k ω = m ( ) 1 = + K ka sen ωt ( δ ) Energia Cinética no MHS 4

43 Energia no MHS A Energia Mecânica Total E é a soma das energias potencial e cinética 1 1 = + = cos ω + δ + sen ω + δ 1 ( ω δ ) ( ω δ ) E U K ka t ka t = ka cos t + + sen t + Como cos ωt + δ + sen ωt + δ = 1 ( ) ( ) ( ) ( ) 43

44 Energia no MHS 1 E = U + K = ka Energia Mecânica total no MHS A Energia Mecânica total no movimento harmônico simples é proporcional ao quadrado da amplitude. 44

45 Energia no MHS Tanto para a mola quanto para o pêndulo, pode-se derivar a equação do MHS usando a conservação de energia. A energia total (K + U) do sistema em MHS será sempre constante. Isso não deveria ser uma surpresa, pois somente há forças conservativas presentes, e portanto a energia total K+U é conservada. 45

46 Conservação da Energia Mecânica no MHS E = mv + kx E = ka 46

47 Conservação da Energia Mecânica no MHS A Figura abaixo mostram os gráficos de U e de K em função do tempo. Estas curvas possuem o mesmo perfil, exceto que uma é zero quando a outra é máxima. Seus valores médios, sobre um ou mais ciclos, são iguais e, porque U + K = E, seus valores médios são dados por 1 U = K = E med med 47

48 Conservação da Energia Mecânica no MHS 48

49 Exercícios Exercício 1. Um corpo de 3,0 kg, preso a uma mola, oscila com uma amplitude de 4,0 cm e um período de,0 s. (a) Qual é a energia total? (b) Qual é a rapidez máxima do corpo? (c) Em qual posição x 1 a rapidez do corpo é a metade de seu valor máximo? 49

50 Exercícios Exercício. Energia e momento linear no MHS Um bloco de massa M preso a uma mola de constante k descreve um movimento harmônico simples horizontal com uma amplitude A 1. No instante em que o bloco passa pela posição de equilíbrio, um pedaço de massa de vidraceiro de massa m cai verticalmente sobre o bloco de uma pequena altura e gruda no bloco. 50

51 Exercícios (a) Calcule a nova amplitude e o período. 51

52 Exercícios (b) Repita a parte (a) supondo que a massa caia sobre o bloco no momento em que ele está na extremidade de sua trajetória. 5

53 Exercícios Solução: (a) O problema envolve o momento em uma dada posição e não em dado instante, logo podemos usar o método da energia. Antes de a massa cair sobre o bloco, a energia mecânica da mola e do bloco oscilantes era constante. Quando a massa gruda no bloco, a colisão é completamente inelástica; existe conservação do componente x do momento linear, porém a energia mecânica diminui. 53

54 Exercícios Solução: Depois que a colisão termina, a energia mecânica passa a ser novamente constante com um novo valor menor do que antes da colisão. Vamos examinar estes três estágios antes, durante e depois da colisão. Antes da colisão a energia mecânica total da mola e do bloco é dada por E = 1 ka

55 Exercícios Solução: Como o bloco está na posição de equilíbrio, U = 0, logo a energia é puramente cinética. Designando por v 1 equilíbrio, obtemos a velocidade do bloco na posição de 1 1 E = Mv = ka logo v = k M A

56 Exercícios Solução: Durante a colisão existe conservação do componente x do momento linear do sistema massa e bloco. (Por quê?) Imediatamente antes da colisão este momento linear é dado pela soma de Mv 1 (para o bloco) e zero (para a massa). Imediatamente depois da colisão, o bloco e a massa se movem juntos com velocidade v e o momento linear deste conjunto é dado por 56

57 Exercícios Solução: M + m v ( ) Pela lei da conservação do momento linear, obtemos Mv + 0 = M + m v logo ( ) 1 v = M M + m v 1 A colisão dura um intervalo de tempo muito pequeno, de modo que imediatamente depois da colisão o bloco e a massa se encontram ainda na posição equilíbrio. 57

58 Exercícios Solução: A energia ainda é puramente cinética, porém é menor do que a energia cinética antes da colisão: 1 1 M M ( ) E = M + m v = v = Mv M + m M + m M = E M + m 1 58

59 Exercícios Solução: (A energia cinética perdida é usada para elevar a temperatura da massa e do bloco). Como E 1 ka = onde A é a amplitude depois da colisão, temos M 1 M 1 E = E ka = ka M + m M + m 1 1 = M A A1 M + m 59

60 Exercícios Solução: Quanto maior for o valor de m da massa do vidraceiro, menor será a amplitude da oscilação. O cálculo do período da oscilação depois da colisão é dado por: T = π M + k m Quando a massa do vidraceiro cai sobre o bloco que oscila no momento em que ele passa pela posição de equilíbrio, o período se torna mais longo e a amplitude se torno menor. 60

61 Exercícios Solução: (b) Neste caso, quando a massa do vidraceiro cai sobre o bloco, ele está instantaneamente em repouso; todo energia mecânica é armazenada na mola como energia potencial. Novamente durante a colisão existe conservação do componente x do momento linear do sistema massa e bloco, porém agora este componente é igual a zero antes e depois da colisão. 61

62 Exercícios Solução: O bloco possuía energia cinética zero imediatamente antes da colisão; a massa e o bloco devem possuir energia cinética zero imediatamente depois da colisão. Logo, neste caso a soma da massa extra da massa do vidraceiro não possui nenhum efeito sobre a energia mecânica. Ou seja, 6

63 Exercícios Solução: 1 E = E = ka 1 1 e a amplitude continua sendo dada por A 1. Contudo, o período ainda varia quando a massa é grudada no bloco; o seu valor não depende do modo pelo qual a massa é adicionada ao sistema, apenas depende do valor da massa total. 63

64 Exercícios Solução: Logo, T é igual ao obtido na parte (a), T = π M + k m Quando a massa do vidraceiro é adicionada deste modo não ocorre nenhuma variação na amplitude, mas o período se torna mais longo. 64

Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia

Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia Oscilações Movimento Oscilatório Cinemática do Movimento Harmônico Simples (MHS) MHS e Movimento

Leia mais

OSCILAÇÕES: Movimento Harmônico Simples - M. H. S.

OSCILAÇÕES: Movimento Harmônico Simples - M. H. S. Por Prof. Alberto Ricardo Präss Adaptado de Física de Carlos Alberto Gianotti e Maria Emília Baltar OSCILAÇÕES: Movimento Harmônico Simples - M. H. S. Todo movimento que se repete em intervelos de tempo

Leia mais

5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 15

5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 15 Ondas (continuação) Ondas propagando-se em uma dimensão Vamos agora estudar propagação de ondas. Vamos considerar o caso simples de ondas transversais propagando-se ao longo da direção x, como o caso de

Leia mais

5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 1

5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 1 597 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Movimentos Periódicos Para estudar movimentos oscilatórios periódicos é conveniente ter algum modelo físico em mente. Por exemplo, um

Leia mais

Prof. André Motta - mottabip@hotmail.com_ 4.O gráfico apresentado mostra a elongação em função do tempo para um movimento harmônico simples.

Prof. André Motta - mottabip@hotmail.com_ 4.O gráfico apresentado mostra a elongação em função do tempo para um movimento harmônico simples. Eercícios Movimento Harmônico Simples - MHS 1.Um movimento harmônico simples é descrito pela função = 7 cos(4 t + ), em unidades de Sistema Internacional. Nesse movimento, a amplitude e o período, em unidades

Leia mais

Leis de Conservação. Exemplo: Cubo de gelo de lado 2cm, volume V g. =8cm3, densidade ρ g. = 0,917 g/cm3. Massa do. ρ g = m g. m=ρ.

Leis de Conservação. Exemplo: Cubo de gelo de lado 2cm, volume V g. =8cm3, densidade ρ g. = 0,917 g/cm3. Massa do. ρ g = m g. m=ρ. Leis de Conservação Em um sistema isolado, se uma grandeza ou propriedade se mantém constante em um intervalo de tempo no qual ocorre um dado processo físico, diz-se que há conservação d a propriedade

Leia mais

Estudaremos aqui como essa transformação pode ser entendida a partir do teorema do trabalho-energia.

Estudaremos aqui como essa transformação pode ser entendida a partir do teorema do trabalho-energia. ENERGIA POTENCIAL Uma outra forma comum de energia é a energia potencial U. Para falarmos de energia potencial, vamos pensar em dois exemplos: Um praticante de bungee-jump saltando de uma plataforma. O

Leia mais

UNIVERSIDADE CATÓLICA DE GOIÁS. DEPARTAMENTO DE MATEMÁTICA E FÍSICA Disciplina: FÍSICA GERAL E EXPERIMENTAL I (MAF 2201) Prof.

UNIVERSIDADE CATÓLICA DE GOIÁS. DEPARTAMENTO DE MATEMÁTICA E FÍSICA Disciplina: FÍSICA GERAL E EXPERIMENTAL I (MAF 2201) Prof. 01 UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE MATEMÁTICA E FÍSICA Disciplina: FÍSICA GERAL E EXPERIMENTAL I (MAF 2201) Prof. EDSON VAZ NOTA DE AULA III (Capítulo 7 e 8) CAPÍTULO 7 ENERGIA CINÉTICA

Leia mais

EXERCÍCIOS DE RECUPERAÇÃO PARALELA 4º BIMESTRE

EXERCÍCIOS DE RECUPERAÇÃO PARALELA 4º BIMESTRE EXERCÍCIOS DE RECUPERAÇÃO PARALELA 4º BIMESTRE NOME Nº SÉRIE : 1º EM DATA : / / BIMESTRE 3º PROFESSOR: Renato DISCIPLINA: Física 1 VISTO COORDENAÇÃO ORIENTAÇÕES: 1. O trabalho deverá ser feito em papel

Leia mais

Capítulo 4 Trabalho e Energia

Capítulo 4 Trabalho e Energia Capítulo 4 Trabalho e Energia Este tema é, sem dúvidas, um dos mais importantes na Física. Na realidade, nos estudos mais avançados da Física, todo ou quase todos os problemas podem ser resolvidos através

Leia mais

FÍSICA PARA PRF PROFESSOR: GUILHERME NEVES

FÍSICA PARA PRF PROFESSOR: GUILHERME NEVES Olá, pessoal! Tudo bem? Vou neste artigo resolver a prova de Fïsica para a Polícia Rodoviária Federal, organizada pelo CESPE-UnB. Antes de resolver cada questão, comentarei sobre alguns trechos das minhas

Leia mais

LISTA 3 - Prof. Jason Gallas, DF UFPB 10 de Junho de 2013, às 14:14. Jason Alfredo Carlson Gallas, professor titular de física teórica,

LISTA 3 - Prof. Jason Gallas, DF UFPB 10 de Junho de 2013, às 14:14. Jason Alfredo Carlson Gallas, professor titular de física teórica, Exercícios Resolvidos de Física Básica Jason Alfredo Carlson Gallas, professor titular de física teórica, Doutor em Física pela Universidade Ludwig Maximilian de Munique, Alemanha Universidade Federal

Leia mais

Exemplos de aplicação das leis de Newton e Conservação do Momento Linear

Exemplos de aplicação das leis de Newton e Conservação do Momento Linear Exemplos de aplicação das leis de Newton e Conservação do Momento Linear Cálculo de resultante I Considere um corpo sobre o qual atual três forças distintas. Calcule a força resultante. F 1 = 10 N 30 F

Leia mais

a) O tempo total que o paraquedista permaneceu no ar, desde o salto até atingir o solo.

a) O tempo total que o paraquedista permaneceu no ar, desde o salto até atingir o solo. (MECÂNICA, ÓPTICA, ONDULATÓRIA E MECÂNICA DOS FLUIDOS) 01) Um paraquedista salta de um avião e cai livremente por uma distância vertical de 80 m, antes de abrir o paraquedas. Quando este se abre, ele passa

Leia mais

Todas as dúvidas deste curso podem ser esclarecidas através do nosso plantão de atendimento ao cursista.

Todas as dúvidas deste curso podem ser esclarecidas através do nosso plantão de atendimento ao cursista. Caro cursista, Todas as dúvidas deste curso podem ser esclarecidas através do nosso plantão de atendimento ao cursista. Plantão de Atendimento Horário: terças e quintas-feiras das 14:00 às 16:00. MSN:

Leia mais

18 a QUESTÃO Valor: 0,25

18 a QUESTÃO Valor: 0,25 6 a A 0 a QUESTÃO FÍSICA 8 a QUESTÃO Valor: 0,25 6 a QUESTÃO Valor: 0,25 Entre as grandezas abaixo, a única conservada nas colisões elásticas, mas não nas inelásticas é o(a): 2Ω 2 V 8Ω 8Ω 2 Ω S R 0 V energia

Leia mais

FEP2195 - Física Geral e Experimental para Engenharia I

FEP2195 - Física Geral e Experimental para Engenharia I FEP195 - Física Geral e Experimental para Engenharia I Prova Substitutiva - Gabarito 1. Um corpo de massa m, enfiado em um aro circular de raio R situado em um plano vertical, está preso por uma mola de

Leia mais

Movimentos Periódicos: representação vetorial

Movimentos Periódicos: representação vetorial Aula 5 00 Movimentos Periódicos: representação vetorial A experiência mostra que uma das maneiras mais úteis de descrever o movimento harmônico simples é representando-o como uma projeção perpendicular

Leia mais

ENERGIA POTENCIAL E CONSERVAÇÃO DE ENERGIA Física Geral I (1108030) - Capítulo 04

ENERGIA POTENCIAL E CONSERVAÇÃO DE ENERGIA Física Geral I (1108030) - Capítulo 04 ENERGIA POTENCIAL E CONSERVAÇÃO DE ENERGIA Física Geral I (1108030) - Capítulo 04 I. Paulino* *UAF/CCT/UFCG - Brasil 2012.2 1 / 15 Sumário Trabalho e EP Energia potencial Forças conservativas Calculando

Leia mais

F 105 Física da Fala e da Audição

F 105 Física da Fala e da Audição F 105 Física da Fala e da Audição Prof. Dr. Marcelo Knobel Instituto de Física Gleb Wataghin (IFGW) Universidade Estadual de Capinas (UNICAMP) knobel@ifi.unicap.br Vibrações e Ondas Variações teporais

Leia mais

( ) ( ) ( ( ) ( )) ( )

( ) ( ) ( ( ) ( )) ( ) Física 0 Duas partículas A e, de massa m, executam movimentos circulares uniormes sobre o plano x (x e representam eixos perpendiculares) com equações horárias dadas por xa ( t ) = a+acos ( ωt ), ( t )

Leia mais

Movimento Harmônico Simples: Exemplos (continuação)

Movimento Harmônico Simples: Exemplos (continuação) Movimento Harmônico Simples: Exemplos (continuação) O Pêndulo Físico O chamado pêndulo físico é qualquer pêndulo real. Ele consiste de um corpo rígido (com qualquer forma) suspenso por um ponto O e que

Leia mais

Ondulatória. F01 MHS Movimento Harmônico Simples

Ondulatória. F01 MHS Movimento Harmônico Simples IME ITA Apostila ITA 1.1 Movimentos Periódicos Ondulatória F01 MHS Movimento Harmônico Simples Um fenômeno é periódico quando se repete, identicamente, em intervalos de tempo iguais. O período T é o menor

Leia mais

O trabalho realizado por uma força gravitacional constante sobre uma partícula é representado em termos da energia potencial U = m.

O trabalho realizado por uma força gravitacional constante sobre uma partícula é representado em termos da energia potencial U = m. Referência: Sears e Zemansky Física I Mecânica Capítulo 7: Energia Potencial e Conservação da Energia Resumo: Profas. Bárbara Winiarski Diesel Novaes. INTRODUÇÃO Neste capítulo estudaremos o conceito de

Leia mais

Aula 29. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil

Aula 29. Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil A integral de Riemann - Mais aplicações Aula 29 Alexandre Nolasco de Carvalho Universidade de São Paulo São Carlos SP, Brazil 20 de Maio de 2014 Primeiro Semestre de 2014 Turma 2014106 - Engenharia Mecânica

Leia mais

Vestibular UFRGS 2015. Resolução da Prova de Física

Vestibular UFRGS 2015. Resolução da Prova de Física Vestibular URGS 2015 Resolução da Prova de ísica 1. Alternativa (C) O módulo da velocidade relativa de móveis em movimentos retilíneos de sentidos opostos pode ser obtido pela expressão matemática: v r

Leia mais

objetivo Exercícios Meta da aula Pré-requisitos Aplicar o formalismo quântico estudado neste módulo à resolução de um conjunto de exercícios.

objetivo Exercícios Meta da aula Pré-requisitos Aplicar o formalismo quântico estudado neste módulo à resolução de um conjunto de exercícios. Exercícios A U L A 10 Meta da aula Aplicar o formalismo quântico estudado neste módulo à resolução de um conjunto de exercícios. objetivo aplicar os conhecimentos adquiridos nas Aulas 4 a 9 por meio da

Leia mais

MOVIMENTO CIRCULAR UNIFORME MOVIMENTO HARMÔNICO SIMPLES E ONDAS

MOVIMENTO CIRCULAR UNIFORME MOVIMENTO HARMÔNICO SIMPLES E ONDAS UNIVERSIDADE FEDERAL DE SANTA MARIA DEPARTAMENTO DE FÍSICA GRUPO DE ENSINO DE FÍSICA MOVIMENTO CIRCULAR UNIFORME MOVIMENTO HARMÔNICO SIMPLES E ONDAS Joecir Palandi Dartanhan Baldez Figueiredo João Carlos

Leia mais

p A = p B = = ρgh = h = Por outro lado, dado que a massa total de fluido despejada foi m, temos M 1 m = ρ(v 1 + V 2 ) = ρ 4 H + πd2 4 h = H = 4

p A = p B = = ρgh = h = Por outro lado, dado que a massa total de fluido despejada foi m, temos M 1 m = ρ(v 1 + V 2 ) = ρ 4 H + πd2 4 h = H = 4 Q1 (,5) Um pistão é constituído por um disco ao qual se ajusta um tubo oco cilíndrico de diâmetro d. O pistão está adaptado a um recipiente cilíndrico de diâmetro D. massa do pistão com o tubo é M e ele

Leia mais

Questões do capítulo oito que nenhum aluno pode ficar sem fazer

Questões do capítulo oito que nenhum aluno pode ficar sem fazer Questões do capítulo oito que nenhum aluno pode ficar sem fazer 1) A bola de 2,0 kg é arremessada de A com velocidade inicial de 10 m/s, subindo pelo plano inclinado. Determine a distância do ponto D até

Leia mais

TIPO-A FÍSICA. r 1200 v média. Dado: Aceleração da gravidade: 10 m/s 2. Resposta: 27

TIPO-A FÍSICA. r 1200 v média. Dado: Aceleração da gravidade: 10 m/s 2. Resposta: 27 1 FÍSICA Dado: Aceleração da gravidade: 10 m/s 01. Considere que cerca de 70% da massa do corpo humano é constituída de água. Seja 10 N, a ordem de grandeza do número de moléculas de água no corpo de um

Leia mais

Soluções das Questões de Física do Processo Seletivo de Admissão à Escola Preparatória de Cadetes do Exército EsPCEx

Soluções das Questões de Física do Processo Seletivo de Admissão à Escola Preparatória de Cadetes do Exército EsPCEx Soluções das Questões de Física do Processo Seletivo de dmissão à Escola Preparatória de Cadetes do Exército EsPCEx Questão Concurso 009 Uma partícula O descreve um movimento retilíneo uniforme e está

Leia mais

Tópico 8. Aula Prática: Sistema Massa-Mola

Tópico 8. Aula Prática: Sistema Massa-Mola Tópico 8. Aula Prática: Sistema Massa-Mola. INTRODUÇÃO No experimento anterior foi verificado, teoricamente e experimentalmente, que o período de oscilação de um pêndulo simples é determinado pelo seu

Leia mais

Universidade Federal do Pampa UNIPAMPA. Oscilações. Prof. Luis Armas

Universidade Federal do Pampa UNIPAMPA. Oscilações. Prof. Luis Armas Universidade Federal do Pampa UNIPAMPA Oscilações Prof. Luis Armas Que é uma oscilação? Qual é a importância de estudar oscilações? SUMARIO Movimentos oscilatórios periódicos Movimento harmônico simples

Leia mais

objetivos A partícula livre Meta da aula Pré-requisitos

objetivos A partícula livre Meta da aula Pré-requisitos A partícula livre A U L A 7 Meta da aula Estudar o movimento de uma partícula quântica livre, ou seja, aquela que não sofre a ação de nenhuma força. objetivos resolver a equação de Schrödinger para a partícula

Leia mais

GABARITO DO SIMULADO DISCURSIVO

GABARITO DO SIMULADO DISCURSIVO GABARITO DO SIMULADO DISCURSIVO 1. (Unifesp 013) O atleta húngaro Krisztian Pars conquistou medalha de ouro na olimpíada de Londres no lançamento de martelo. Após girar sobre si próprio, o atleta lança

Leia mais

4.1 MOVIMENTO UNIDIMENSIONAL COM FORÇAS CONSTANTES

4.1 MOVIMENTO UNIDIMENSIONAL COM FORÇAS CONSTANTES CAPÍTULO 4 67 4. MOVIMENTO UNIDIMENSIONAL COM FORÇAS CONSTANTES Consideremos um bloco em contato com uma superfície horizontal, conforme mostra a figura 4.. Vamos determinar o trabalho efetuado por uma

Leia mais

MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE GOIÁS Campus Itumbiara

MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE GOIÁS Campus Itumbiara MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE GOIÁS Campus Itumbiara Docente: Prof. Frederico Mercadante Aluno(a): Técnicos

Leia mais

Exemplos de aceleração Constante 1 D

Exemplos de aceleração Constante 1 D Exemplos de aceleração Constante 1 D 1) Dada a equação de movimento de uma partícula em movimento retilíneo, s=-t 3 +3t 2 +2 obtenha: a) A velocidade média entre 1 e 4 segundos; e) A velocidade máxima;

Leia mais

Olimpíada Brasileira de Física 2001 2ª Fase

Olimpíada Brasileira de Física 2001 2ª Fase Olimpíada Brasileira de Física 2001 2ª Fase Gabarito dos Exames para o 1º e 2º Anos 1ª QUESTÃO Movimento Retilíneo Uniforme Em um MRU a posição s(t) do móvel é dada por s(t) = s 0 + vt, onde s 0 é a posição

Leia mais

Os princípios fundamentais da Dinâmica

Os princípios fundamentais da Dinâmica orça, Trabalho,Quantidade de Movimento e Impulso - Série Concursos Públicos M e n u orça, Exercícios Trabalho,Quantidade propostos Testes de Movimento propostos e Impulso Os princípios fundamentais da

Leia mais

Resolução Comentada CEFET/MG - 2 semestre 2014

Resolução Comentada CEFET/MG - 2 semestre 2014 Resolução Comentada CEFET/MG - 2 semestre 2014 01 - A figura mostra um sistema massa-mola que pode oscilar livremente, sem atrito, sobre a superfície horizontal e com resistência do ar desprezível. Nesse

Leia mais

APLICAÇÕES DAS EQUAÇÕES DE EULER-LAGRANGE

APLICAÇÕES DAS EQUAÇÕES DE EULER-LAGRANGE APLICAÇÕES DAS EQUAÇÕES DE EULER-LAGRANGE Eliomar Corrêa Caetano Universidade Católica de Brasília Orientador: Cláudio Manoel Gomes de Sousa RESUMO Neste trabalho estudamos três aplicações das equações

Leia mais

Física Experimental - Mecânica - EQ005H.

Física Experimental - Mecânica - EQ005H. Índice Remissivo... 4 Abertura... 6 Guarantee / Garantia... 7 Certificado de Garantia Internacional... 7 As instruções identificadas no canto superior direito da página pelos números que se iniciam pelos

Leia mais

1 m 2. Substituindo os valores numéricos dados para a análise do movimento do centro de massa, vem: Resposta: D. V = 2 10 3,2 V = 8 m/s

1 m 2. Substituindo os valores numéricos dados para a análise do movimento do centro de massa, vem: Resposta: D. V = 2 10 3,2 V = 8 m/s 01 De acordo com o enunciado, não há dissipação ou acréscimo de energia. Considerando que a energia citada seja a mecânica e que, no ponto de altura máxima, a velocidade seja nula, tem-se: ε ε = ' + 0

Leia mais

Física Experimental - Mecânica - Conjunto Arete - EQ005.

Física Experimental - Mecânica - Conjunto Arete - EQ005. Índice Remissivo... 4 Abertura... 6 Guarantee / Garantia... 7 Certificado de Garantia Internacional... 7 As instruções identificadas no canto superior direito da página pelos números que se iniciam pelos

Leia mais

Estrategia de resolução de problemas

Estrategia de resolução de problemas Estrategia de resolução de problemas Sistemas Isolados (p. 222) Muitos problemas na física podem ser resolvidos usando-se o princípio de conservação de energia para um sistema isolado. Deve ser utilizado

Leia mais

Lista 1 Cinemática em 1D, 2D e 3D

Lista 1 Cinemática em 1D, 2D e 3D UNIVERSIDADE ESTADUAL DO SUDOESTE DA BAHIA DEPARTAMENTO DE ESTUDOS BÁSICOS E INSTRUMENTAIS CAMPUS DE ITAPETINGA PROFESSOR: ROBERTO CLAUDINO FERREIRA DISCIPLINA: FÍSICA I Aluno (a): Data: / / NOTA: Lista

Leia mais

Resumo de Física 2C13 Professor Thiago Alvarenga Ramos

Resumo de Física 2C13 Professor Thiago Alvarenga Ramos Resumo de Física 2C13 Professor Thiago Alvarenga Ramos ENERGIA Grandeza escalar que existe na natureza em diversas formas: mecânica, térmica, elétrica, nuclear, etc. Não pode ser criada nem destruída;

Leia mais

Problemas de Mecânica e Ondas 11

Problemas de Mecânica e Ondas 11 Problemas de Mecânica e Ondas 11 P. 11.1 ( Exercícios de Física, A. Noronha, P. Brogueira) Dois carros com igual massa movem-se sem atrito sobre uma mesa horizontal (ver figura). Estão ligados por uma

Leia mais

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 6. O trabalho feito pela força para deslocar o corpo de a para b é dado por: = =

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 6. O trabalho feito pela força para deslocar o corpo de a para b é dado por: = = Energia Potencial Elétrica Física I revisitada 1 Seja um corpo de massa m que se move em linha reta sob ação de uma força F que atua ao longo da linha. O trabalho feito pela força para deslocar o corpo

Leia mais

LISTA 3 - Prof. Jason Gallas, DF UFPB 10 de Junho de 2013, às 13:46. Jason Alfredo Carlson Gallas, professor titular de física teórica,

LISTA 3 - Prof. Jason Gallas, DF UFPB 10 de Junho de 2013, às 13:46. Jason Alfredo Carlson Gallas, professor titular de física teórica, Exercícios Resolvidos de Física Básica Jason Alfredo Carlson Gallas, professor titular de física teórica, Doutor em Física pela Universidade Ludwig Maximilian de Munique, Alemanha Universidade Federal

Leia mais

Lista de Exercícios de Física

Lista de Exercícios de Física Lista de Exercícios de Física Assunto: Dinâmica do Movimento Circular, Trabalho e Potência Prof. Allan 1- Um estudante, indo para a faculdade, em seu carro, desloca-se num plano horizontal, no qual descreve

Leia mais

Física Geral e Experimental III

Física Geral e Experimental III Física Geral e Experimental III Oscilações Nosso mundo está repleto de oscilações, nas quais os objetos se movem repetidamente de um lado para outro. Eis alguns exemplos: - quando um taco rebate uma bola

Leia mais

horizontal, se choca frontalmente contra a extremidade de uma mola ideal, cuja extremidade oposta está presa a uma parede vertical rígida.

horizontal, se choca frontalmente contra a extremidade de uma mola ideal, cuja extremidade oposta está presa a uma parede vertical rígida. Exercícios: Energia 01. (UEPI) Assinale a alternativa que preenche corretamente as lacunas das frases abaixo. O trabalho realizado por uma força conservativa, ao deslocar um corpo entre dois pontos é da

Leia mais

PROGRAD / COSEAC ENGENHARIAS (CIVIL, DE PRODUÇÃO, MECÂNICA, PETRÓLEO E TELECOMUNICAÇÕES) NITERÓI - GABARITO

PROGRAD / COSEAC ENGENHARIAS (CIVIL, DE PRODUÇÃO, MECÂNICA, PETRÓLEO E TELECOMUNICAÇÕES) NITERÓI - GABARITO Prova de Conhecimentos Específicos 1 a QUESTÃO: (1,0 ponto) Considere uma transformação linear T(x,y) em que, 5 autovetores de T com relação aos auto valores -1 e 1, respectivamente. e,7 são os Determine

Leia mais

Tópico 8. Aula Prática: Movimento retilíneo uniforme e uniformemente variado (Trilho de ar)

Tópico 8. Aula Prática: Movimento retilíneo uniforme e uniformemente variado (Trilho de ar) Tópico 8. Aula Prática: Movimento retilíneo uniforme e uniformemente variado (Trilho de ar) 1. OBJETIVOS DA EXPERIÊNCIA 1) Esta aula experimental tem como objetivo o estudo do movimento retilíneo uniforme

Leia mais

Circuitos CA I. 1 Resumo da aula anterior. Aula 6. 5 de abril de 2011

Circuitos CA I. 1 Resumo da aula anterior. Aula 6. 5 de abril de 2011 Circuitos CA I Aula 6 5 de abril de 20 Resumo da aula anterior Estudamos a teoria formulada por Lammor que permite explicar a existência de diamagnetismo em algumas substancia. Basicamente a teoria supõe

Leia mais

Ondas II F-228 UNICAMP

Ondas II F-228 UNICAMP Ondas II F-228 UNICAMP http://thenonist.com/index.php/thenonist/permalink/stick_charts/ Superposição de ondas Resumo de ondas mecânicas Superposição de ondas Exemplos Representação matemática Interferência

Leia mais

Organizada por: Pedro Alves. A tabela a seguir contém algumas integrais que podem ser úteis durante a prova.

Organizada por: Pedro Alves. A tabela a seguir contém algumas integrais que podem ser úteis durante a prova. SIMULADO 01-1ª Prova de Seleção para as OIF s 2016 1. A prova é composta por CINCO questões. Cada questão tem o valor indicado nos eu início. A prova tem valor total de 100 pontos. 2. Não é permitido o

Leia mais

FÍSICA. Questões de 01 a 04

FÍSICA. Questões de 01 a 04 GRUPO 1 TIPO A FÍS. 1 FÍSICA Questões de 01 a 04 01. Considere uma partícula presa a uma mola ideal de constante elástica k = 420 N / m e mergulhada em um reservatório térmico, isolado termicamente, com

Leia mais

Professores: Gilberto / Gustavo / Luciano / Maragato CURSO DOMÍNIO. Comentário: Energia de Capacitor. Comentário: Questão sobre atrito

Professores: Gilberto / Gustavo / Luciano / Maragato CURSO DOMÍNIO. Comentário: Energia de Capacitor. Comentário: Questão sobre atrito Professores: Gilberto / Gustavo / Luciano / Maragato CURSO DOMÍNIO A prova de física exigiu um bom conhecimento dos alunos. Há questões relacionadas principalmente com a investigação e compreensão dos

Leia mais

Cinemática Unidimensional

Cinemática Unidimensional Cinemática Unidimensional 1 INTRODUÇÃO Na Cinemática Unidimensional vamos estudar o movimento de corpos e partículas, analisando termos como deslocamento, velocidade, aceleração e tempo.os assuntos que

Leia mais

AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2015/2016 PLANIFICAÇÃO ANUAL

AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2015/2016 PLANIFICAÇÃO ANUAL AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2015/2016 PLANIFICAÇÃO ANUAL Documento(s) Orientador(es): Programa de Física 12.º ano homologado em 21/10/2004 ENSINO SECUNDÁRIO FÍSICA 12.º ANO TEMAS/DOMÍNIOS

Leia mais

Figura 2.1: Carro-mola

Figura 2.1: Carro-mola Capítulo 2 EDO de Segunda Ordem com Coeficientes Constantes 2.1 Introdução - O Problema Carro-Mola Considere um carro de massa m preso a uma parede por uma mola e imerso em um fluido. Colocase o carro

Leia mais

Mecânica e FÍSICA Ondas

Mecânica e FÍSICA Ondas Mecânica e FÍSICA Ondas Energia e Trabalho; Princípios de conservação; Uma bala de massa m = 0.500 kg, viajando com velocidade 100 m/s atinge e fica incrustada num bloco de um pêndulo de massa M = 9.50

Leia mais

Os conceitos mais básicos dessa matéria são: Deslocamento: Consiste na distância entre dados dois pontos percorrida por um corpo.

Os conceitos mais básicos dessa matéria são: Deslocamento: Consiste na distância entre dados dois pontos percorrida por um corpo. Os conceitos mais básicos dessa matéria são: Cinemática Básica: Deslocamento: Consiste na distância entre dados dois pontos percorrida por um corpo. Velocidade: Consiste na taxa de variação dessa distância

Leia mais

Análise Dimensional Notas de Aula

Análise Dimensional Notas de Aula Primeira Edição Análise Dimensional Notas de Aula Prof. Ubirajara Neves Fórmulas dimensionais 1 As fórmulas dimensionais são formas usadas para expressar as diferentes grandezas físicas em função das grandezas

Leia mais

Energia potencial e Conservação da Energia

Energia potencial e Conservação da Energia Energia potencial e Conservação da Energia Disciplina: Física Geral e Experimental Professor: Carlos Alberto Objetivos de aprendizagem Ao estudar este capítulo você aprenderá: Como usar o conceito de energia

Leia mais

Provas Comentadas OBF/2011

Provas Comentadas OBF/2011 PROFESSORES: Daniel Paixão, Deric Simão, Edney Melo, Ivan Peixoto, Leonardo Bruno, Rodrigo Lins e Rômulo Mendes COORDENADOR DE ÁREA: Prof. Edney Melo 1. Um foguete de 1000 kg é lançado da superfície da

Leia mais

Física Experimental I. Impulso e quantidade de. movimento

Física Experimental I. Impulso e quantidade de. movimento Física xperimental I Impulso e quantidade de movimento SSUNTOS BORDDOS Impulso Quantidade de Movimento Teorema do Impulso Sistema Isolado de Forças Princípio da Conservação da Quantidade de Movimento Colisões

Leia mais

Leis de Newton INTRODUÇÃO 1 TIPOS DE FORÇA

Leis de Newton INTRODUÇÃO 1 TIPOS DE FORÇA Leis de Newton INTRODUÇÃO Isaac Newton foi um revolucionário na ciência. Teve grandes contribuições na Física, Astronomia, Matemática, Cálculo etc. Mas com certeza, uma das suas maiores contribuições são

Leia mais

b) Calcule as temperaturas em Kelvin equivalentes às temperaturas de 5,0 ºC e 17,0 ºC.

b) Calcule as temperaturas em Kelvin equivalentes às temperaturas de 5,0 ºC e 17,0 ºC. Questão 1 A pressão P no interior de um fluido em equilíbrio varia com a profundidade h como P = P 0 + ρgh. A equação dos gases ideais relaciona a pressão, o volume e a temperatura do gás como PV = nrt,

Leia mais

Lista 12: Oscilações NOME:

Lista 12: Oscilações NOME: Lista 12: Oscilações NOME: Turma: Prof. : Matrícula: Importante: i. Nas cinco páginas seguintes contém problemas para se resolver e entregar. ii. Ler os enunciados com atenção. iii. Responder a questão

Leia mais

c = c = c =4,20 kj kg 1 o C 1

c = c = c =4,20 kj kg 1 o C 1 PROPOSTA DE RESOLUÇÃO DO TESTE INTERMÉDIO - 2014 (VERSÃO 1) GRUPO I 1. H vap (H 2O) = 420 4 H vap (H 2O) = 1,69 10 3 H vap (H 2O) = 1,7 10 3 kj kg 1 Tendo em consideração a informação dada no texto o calor

Leia mais

Lista de Exercícios - Integrais

Lista de Exercícios - Integrais Lista de Exercícios - Integrais 4) Calcule as integrais indefinidas: 5) Calcule as integrais indefinidas: 1 6) Suponha f(x) uma função conhecida e que queiramos encontrar uma função F(x), tal que y = F(x)

Leia mais

1 Analise a figura a seguir, que representa o esquema de um circuito com a forma da letra U, disposto perpendicularmente à superfície da Terra.

1 Analise a figura a seguir, que representa o esquema de um circuito com a forma da letra U, disposto perpendicularmente à superfície da Terra. FÍSIC 1 nalise a figura a seguir, que representa o esquema de um circuito com a forma da letra U, disposto perpendicularmente à superfície da Terra. Esse circuito é composto por condutores ideais (sem

Leia mais

7] As polias indicadas na figura se movimentam em rotação uniforme, ligados por um eixo fixo.

7] As polias indicadas na figura se movimentam em rotação uniforme, ligados por um eixo fixo. Colégio Militar de Juiz de Fora Lista de Exercícios C PREP Mil Prof.: Dr. Carlos Alessandro A. Silva Cinemática: Vetores, Cinemática Vetorial, Movimento Circular e Lançamento de Projéteis. Nível I 1] Dois

Leia mais

Sinais Senoidais. A unidade de freqüência no SI é o Hertz (Hz) e o tempo é dado em segundos (s).

Sinais Senoidais. A unidade de freqüência no SI é o Hertz (Hz) e o tempo é dado em segundos (s). Campus Serra COORDENADORIA DE AUTOMAÇÂO INDUSTRIAL Disciplina: ELETRÔNICA BÁSICA Professor: Vinícius Secchin de Melo Sinais Senoidais Os sinais senoidais são utilizados para se representar tensões ou correntes

Leia mais

Ivan Guilhon Mitoso Rocha. As grandezas fundamentais que serão adotadas por nós daqui em frente:

Ivan Guilhon Mitoso Rocha. As grandezas fundamentais que serão adotadas por nós daqui em frente: Rumo ao ITA Física Análise Dimensional Ivan Guilhon Mitoso Rocha A análise dimensional é um assunto básico que estuda as grandezas físicas em geral, com respeito a suas unidades de medida. Como as grandezas

Leia mais

Lista 4. 2 de junho de 2014

Lista 4. 2 de junho de 2014 Lista 4 2 de junho de 24 Seção 5.. (a) Estime a área do gráfico de f(x) = cos x de x = até x = π/2 usando quatro retângulos aproximantes e extremidades direitas. Esboce os gráficos e os retângulos. Sua

Leia mais

Centro de Massa. Curso: Engenharia Disciplina: complementos de Física Professor: Douglas Assunto: Centro de Massa E Momento de Inércia

Centro de Massa. Curso: Engenharia Disciplina: complementos de Física Professor: Douglas Assunto: Centro de Massa E Momento de Inércia Curso: Engenharia Disciplina: complementos de Física Professor: Douglas Assunto: Centro de Massa E Momento de Inércia Centro de Massa O centro de massa de um sistema de partículas é o ponto que se move

Leia mais

CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES

CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES 1 a QUESTÃO Valor: 1,00 A L 0 H mola apoio sem atrito B A figura acima mostra um sistema composto por uma parede vertical

Leia mais

2 - PRIMEIRA LEI DE NEWTON: PRINCÍPIO DA INÉRCIA

2 - PRIMEIRA LEI DE NEWTON: PRINCÍPIO DA INÉRCIA DEPARTAMENTO DE ENGENHARIA F Í S I C A II - DINÂMICA ALUNO: RA: 1 - OS PRINCÍPIOS FUNDAMENTAIS DINÂMICA A Dinâmica é a parte da Mecânica que estuda os movimentos e as causas que os produzem ou os modificam.

Leia mais

Tópico 02: Movimento Circular Uniforme; Aceleração Centrípeta

Tópico 02: Movimento Circular Uniforme; Aceleração Centrípeta Aula 03: Movimento em um Plano Tópico 02: Movimento Circular Uniforme; Aceleração Centrípeta Caro aluno, olá! Neste tópico, você vai aprender sobre um tipo particular de movimento plano, o movimento circular

Leia mais

Universidade Federal do Paraná

Universidade Federal do Paraná Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Matematica Prof. Juan Carlos Vila Bravo Curitiba, 1 de Dezembro de 005 1. A posição de uma particula é dada por: r(t) = (sen t)i+(cost)j

Leia mais

Física Geral I F -128

Física Geral I F -128 Física Geral I F -18 Aula 5 Força e movimento I: Leis de Newton 0 semestre, 01 Leis de Newton (Isaac Newton, 164-177) Até agora apenas descrevemos os movimentos cinemática. É impossível, no entanto, prever

Leia mais

CINEMÁTICA - É a parte da mecânica que estuda os vários tipos de movimento, sem se preocupar com as causas destes movimentos.

CINEMÁTICA - É a parte da mecânica que estuda os vários tipos de movimento, sem se preocupar com as causas destes movimentos. INTRODUÇÃO À CINEMÁTICA REPOUSO OU MOVIMENTO? DEPENDE DO REFERENCIAL! CINEMÁTICA - É a parte da mecânica que estuda os vários tipos de movimento, sem se preocupar com as causas destes movimentos. REFERENCIAL.

Leia mais

Bacharelado Engenharia Civil

Bacharelado Engenharia Civil Bacharelado Engenharia Civil Disciplina: Física Geral e Experimental I Força e Movimento- Leis de Newton Prof.a: Msd. Érica Muniz Forças são as causas das modificações no movimento. Seu conhecimento permite

Leia mais

PARTE 2 FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL

PARTE 2 FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL PARTE FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL.1 Funções Vetoriais de Uma Variável Real Vamos agora tratar de um caso particular de funções vetoriais F : Dom(f R n R m, que são as funções vetoriais de uma

Leia mais

Capítulo 7 Conservação de Energia

Capítulo 7 Conservação de Energia Função de mais de uma variável: Capítulo 7 Conservação de Energia Que para acréscimos pequenos escrevemos Onde usamos o símbolo da derivada parcial: significa derivar U parcialmente em relação a x, mantendo

Leia mais

Capítulo 3 A Mecânica Clássica

Capítulo 3 A Mecânica Clássica Capítulo 3 A Mecânica Clássica AMecânica Clássica é formalmente descrita pelo físico, matemático e filósofo Isaac Newton no século XVII. Segundo ele, todos os eventos no universo são resultados de forças.

Leia mais

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 3

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 3 Linhas de Força Mencionamos na aula passada que o físico inglês Michael Faraday (79-867) introduziu o conceito de linha de força para visualizar a interação elétrica entre duas cargas. Para Faraday, as

Leia mais

LISTA DE EXERCÍCIOS M.H.S. 3 ano FÍSICA Prof. Hernando

LISTA DE EXERCÍCIOS M.H.S. 3 ano FÍSICA Prof. Hernando LISTA DE EXERCÍCIOS M.H.S. 3 ano FÍSICA Prof. Hernando 1. (Ufg) O gráfico abaixo mostra a posição em função do tempo de uma partícula em movimento harmônico simples (MHS) no intervalo de tempo entre 0

Leia mais

ALUNO(A): Nº TURMA: TURNO: DATA: / / SEDE:

ALUNO(A): Nº TURMA: TURNO: DATA: / / SEDE: Professor: Edney Melo ALUNO(A): Nº TURMA: TURNO: DATA: / / SEDE: 01. As pirâmides do Egito estão entre as construções mais conhecidas em todo o mundo, entre outras coisas pela incrível capacidade de engenharia

Leia mais

Lista de exercícios nº 2

Lista de exercícios nº 2 F107 Física (Biologia) Turma B Prof. Odilon D. D. Couto Jr. Lista de exercícios nº 2 MOVIMENTO EM UMA DIMENSÃO Exercício 1: A velocidade escalar média é definida como a razão entre a distância total percorrida

Leia mais

CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES

CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES 2011 1 a QUESTÃO Valor: 1,00 Um varal de roupas foi construído utilizando uma haste rígida DB de massa desprezível, com

Leia mais

Energia potencial e Conservação da Energia

Energia potencial e Conservação da Energia Energia potencial e Conservação da Energia Disciplina: Física Geral I Professor: Carlos Alberto Objetivos de aprendizagem Ao estudar este capítulo você aprenderá: Como usar o conceito de energia potencial

Leia mais

UNIVERSIDADE CATÓLICA DE GOIÁS Departamento de Matemática e Física Coordenador da Área de Física LISTA 03. Capítulo 07

UNIVERSIDADE CATÓLICA DE GOIÁS Departamento de Matemática e Física Coordenador da Área de Física LISTA 03. Capítulo 07 01 UNIVERSIDADE CATÓLICA DE GOIÁS Departamento de Matemática e Física Coordenador da Área de Física Disciplina: Física Geral e Experimental I (MAF 2201) LISTA 03 Capítulo 07 1. (Pergunta 01) Classifique

Leia mais

FISICA. Justificativa: Taxa = 1,34 kw/m 2 Energia em uma hora = (1,34 kw/m 2 ).(600x10 4 m 2 ).(1 h) ~ 10 7 kw. v B. v A.

FISICA. Justificativa: Taxa = 1,34 kw/m 2 Energia em uma hora = (1,34 kw/m 2 ).(600x10 4 m 2 ).(1 h) ~ 10 7 kw. v B. v A. FISIC 01. Raios solares incidem verticalmente sobre um canavial com 600 hectares de área plantada. Considerando que a energia solar incide a uma taxa de 1340 W/m 2, podemos estimar a ordem de grandeza

Leia mais