IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 3

Tamanho: px
Começar a partir da página:

Download "IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 3"

Transcrição

1 Linhas de Força Mencionamos na aula passada que o físico inglês Michael Faraday (79-867) introduziu o conceito de linha de força para visualizar a interação elétrica entre duas cargas. Para Faraday, as linhas de força não eram apenas um meio de visualização, mas tinham existência real. Para ele, as forças elétricas e magnéticas eram conduzidas por linhas elásticas que saiam dos corpos eletrizados ou magnetizados e se estendiam pelo espaço. Ele chamou essas linhas de linhas de força. Hoje em dia, o conceito de linha de força é usado apenas como ferramenta para visualização de campos elétricos e magnéticos. Uma linha de força é uma linha imaginária tal que a sua tangente em cada ponto forneça a direção e o sentido do campo naquele ponto. Para obter a direção do campo, basta traçar a reta tangente à linha no ponto desejado e, para obter o sentido, segue-se a orientação indicada pela linha de força. Veja a figura abaixo.

2 A figura abaixo mostra as linhas de força para algumas configurações de cargas elétricas. Veja também a figura.9 do livro-texto. É importante notar que essas figuras são apenas cortes bidimensionais (seções retas) por um plano que passa pelas cargas. Na realidade, as linhas de força são tridimensionais.

3 No caso das figuras (a) e (b) acima, a configuração tridimensional das linhas de força tem simetria esférica em torno da carga. No caso das figuras (c) e (d) acima, a configuração tridimensional das linhas de força é simétrica em torno do eixo que passa pelas duas cargas. Regiões do espaço onde o campo é mais intenso têm linhas de força mais próximas entre si (a densidade de linhas de força é maior). Veja, por exemplo, a região entre as duas cargas na figura (c). Regiões do espaço onde a intensidade do campo é menor têm linhas de força mais espaçadas (a densidade das linhas de força é menor). Um exemplo deste último caso é a região entre as duas cargas na figura (d). Regiões do espaço onde o campo é uniforme têm linhas de força retas e paralelas com igual espaçamento entre si. Duas linhas de força não podem se cruzar, pois em tal caso haveria duas possibilidades para a direção do campo elétrico no ponto de cruzamento e isso é impossível (o vetor campo elétrico tem um valor único em cada ponto do espaço).

4 Dipolos Elétricos Uma distribuição de cargas muito simples, mas que tem muita importância no eletromagnetismo porque pode ser usada como modelo para várias situações de interesse é a formada por duas cargas iguais e de sinais opostos (q e q) separadas por uma distância d. Uma distribuição de cargas deste tipo é chamada de dipolo elétrico. Vamos calcular o campo elétrico de um dipolo elétrico em um ponto P localizado sobre o seu plano bissetor (veja a figura a seguir ). Algumas vezes, neste curso, vetores serão indicados em negrito ao invés de por setas acima de seus símbolos. Portanto, E e são notações equivalentes. 4

5 Para simplificar, escolheu-se o sistema de eixos cartesianos de maneira que o eixo z coincide com o eixo do dipolo. O plano bissetor, portanto, é definido por z = 0. O campo elétrico em um ponto P sobre o eixo y a uma distância R do ponto médio entre as cargas e, portanto, à mesma distância r das cargas q e q é dado pela soma vetorial dos campos elétricos individuais gerados pelas cargas q e q, denominados respectivamente de e : = +. Note que as componentes de e ao longo do eixo y se anulam, de maneira que o campo resultante aponta na direção negativa do eixo z. O módulo de é dado pela soma das componentes de e ao longo do eixo z: E = Ez + Ez = E cosθ + E cosθ. Como o ponto P está à mesma distância r das cargas q e q, E e E têm valores iguais a: E q = E = 0 r. Substituindo na expressão para E obtém-se: q E = cosθ. 0 r 5

6 Da figura, temos que: d d cos θ = =, r r que substituída na expressão para E nos dá: E = 0 qd r. () Note que, embora os campos elétricos gerados pelas duas cargas individualmente variem com a distância r de maneira inversa ao seu quadrado, o campo combinado gerado pelas duas cargas varia com r de maneira inversa ao seu cubo. Isto é devido ao cancelamento parcial das cargas elétricas negativa e positiva que havíamos comentado antes (veja aula ). A quantidade qd que aparece na equação () é uma grandeza que depende apenas das variáveis que caracterizam o dipolo elétrico. Um dipolo elétrico fica completamente determinado se dissermos (i) qual é o valor da carga q das duas partículas, (ii) em que posições do espaço estão as duas cargas (o que implica dizer onde está a carga negativa, por exemplo, e qual é a distância d entre as cargas). Define-se o momento de dipolo de um dipolo elétrico como o vetor que tem módulo dado por p = qd e aponta da carga negativa do dipolo para a sua carga positiva (veja a figura abaixo). 6

7 Em termos do vetor momento de dipolo podemos escrever o campo elétrico no ponto P (equação ) como: E = 0 p r. () O sinal negativo indica que o campo elétrico aponta na direção oposta à do momento de dipolo. Uma maneira conveniente de escrever a equação () é em termos da distância R que separa o ponto P do centro do dipolo. Olhando novamente para a figura da página 4, vemos que: d d r = + R r = + R. Substituindo isto na fórmula para E: 4 4 p E = ( ) 4 πε 0 d + R. 4 A vantagem desta maneira de escrever o campo elétrico é que ela nos dá o valor do campo em qualquer ponto que esteja a uma 7

8 distância R do centro do dipolo sobre o seu plano bissetor (pela simetria da situação). Para pontos P suficientemente distantes do centro do dipolo em comparação com a separação d podemos fazer a aproximação R >> d, de maneira que o campo pode ser aproximado por: E = E temos novamente uma lei de decaimento com o inverso do cubo da distância. A representação vetorial desta equação é: 0 E = p R p 0 R.. () Este é o campo elétrico de um dipolo elétrico em qualquer ponto do plano z = 0 a grandes distâncias R do centro do dipolo. Vamos agora calcular o campo em um ponto P ao longo do eixo z (veja a figura abaixo). 8

9 O campo produzido pela carga positiva aponta na direção positiva do eixo z e tem módulo E + = q ( z d / ) 0 O campo produzido pela carga negativa aponta na direção negativa do eixo z e tem módulo E = q ( z + d / ) 0 Portanto, o campo resultante tem direção ao longo do eixo z e a sua componente ao longo desse eixo vale.. E = E E q ( ) ( ) = 0 z d / z + d /. + 9

10 É conveniente escrever esta expressão em termos da razão entre d (a separação entre as cargas) e z (a distância do ponto): E q q 0 z z = ( ) ( + ) ( ) ( + ). d / z z d / z 0 z d / z d / = O resultado acima é exato. Vamos supor agora que o ponto P está a uma grande distância do centro do dipolo. Neste caso, podemos assumir que a distância d é muito menor que z: d << z, ou d/z <<. Em casos assim, é muito comum usar a expansão em série de (+ x) n em torno da origem (série binomial), n( n ) n( n )( n ) ( + x) n = + nx + x + x!! na aproximação para x <<, +K (4) ( + x) n + nx. (5) Com o auxílio da aproximação dada por (5) podemos escrever o termo ( ± d/z) para d/z << como ( ± d / z) m d = m d z z e obter a seguinte aproximação para o campo elétrico sobre o eixo z a grandes distâncias do centro do dipolo: E = q d d q d qd 0z + = = z z 0z z πε 0z. (6) 0

11 Observe que podemos escrever o campo ao longo do eixo z em termos vetoriais como E = πε p 0 R, (7) onde R é a distância do centro do dipolo ao ponto sobre o eixo z. Certifique-se de que o sinal usado na equação (7) está correto. A equação (7) dá o valor do campo elétrico ao longo do eixo do dipolo a grandes distâncias do seu centro. Note que ele é muito parecido com o campo ao longo do eixo perpendicular ao eixo do dipolo que passa pelo seu centro (equação ). Ele também é proporcional ao momento de dipolo (só que agora é paralelo a e tem o dobro do valor) e decai com a distância R de maneira cúbica.

12 A figura acima mostra as linhas de força de um dipolo elétrico colocado na origem e alinhado com o eixo z (observe as direções do campo elétrico nos quatro pontos indicados). O conceito de dipolo elétrico é muito útil para o entendimento das propriedades de átomos e moléculas. Um exemplo típico é o da molécula de água, H 0. A molécula de água pode ser representada esquematicamente pelo desenho acima. Por causa da ligação entre os dois átomos de hidrogênio com o átomo de oxigênio, ocorre uma distribuição desigual dos seus elétrons fazendo com que o centro do eixo que une os dois átomos de hidrogênio fique com carga líquida positiva e a região central do átomo de oxigênio fique com carga líquida negativa.

13 Para distâncias maiores do que o diâmetro da molécula, o campo elétrico gerado por ela é equivalente ao de um dipolo como o mostrado na figura. O valor do momento de dipolo da água pode ser medido experimentalmente e o seu valor é: p = 6, x 0-0 C.m. Usando este valor e supondo que a carga do dipolo é q = e, podemos estimar a separação efetiva entre as cargas positiva e negativa como: -0 p 6, x 0 o - d = = 5 x 0 m = 0,5 A -9. q x,6 x 0 A água é uma molécula polar, isto é, possui um momento de dipolo permanente. É isto que dá à água a propriedade de ser solvente de substâncias iônicas, como o sal de cozinha, por exemplo. O momento de dipolo permanente da água é consequência de a sua distribuição de cargas não possuir um centro de simetria. Existem muitas moléculas que também não possuem centro de simetria de carga e, portanto, também são polares. Por outro lado, existem moléculas que possuem um centro de simetria. Elas são chamadas de apolares.

14 Moléculas apolares podem se comportar como dipolos elétricos na presença de campos elétricos externos. O campo elétrico desloca as cargas negativas da molécula no sentido oposto a e as cargas positivas no sentido de (veja a figura abaixo). A molécula adquire um momento de dipolo em decorrência dessa separação entre as cargas. Dizemos que a molécula foi polarizada pelo campo elétrico. O fato de que moléculas apolares podem adquirir momento de dipolo na presença de um campo elétrico externo torna importante o estudo de momentos de dipolo imersos em um campo elétrico. Vamos estudar aqui o que acontece quando um dipolo elétrico é colocado em um campo elétrico uniforme. A situação está ilustrada na figura abaixo. Observe que a força resultante é nula, mas as duas forças formam um binário e o dipolo elétrico gira no sentido anti-horário. Há um torque não nulo sobre o dipolo. 4

15 Vamos calcular o torque em relação ao centro do dipolo. Tanto para a força como para a força, o braço da alavanca (distância perpendicular entre a linha de ação da força e o centro do dipolo) vale (d/)senφ (veja a figura abaixo). O módulo do torque feito pela força é = sen = sen. O módulo do torque feito pela força é = sen = sen. O módulo do torque resultante é τ + + τ - : = sen = sen. (8) 5

16 O vetor torque é perpendicular ao plano do desenho e, pela regra da mão direita, aponta para fora (saindo) do plano. Note que o torque sobre o dipolo elétrico pode ser escrito como =. (9) Para mostrar isto, observe a figura abaixo e lembre-se da definição de produto vetorial (os vetores e estão no plano definido pelos vetores unitários e ). O produto vetorial do vetor pelo vetor é um vetor cujo módulo vale pesenα = pesen(π φ) = pesenφ. O produto vetorial de por pode ser calculado pelo determinante = cos sen 0, 0 0 que nos dá o resultado = sen. O módulo deste vetor é o mesmo dado pela equação (8) e a sua direção e sentido são as mesmas daquele resultado (o vetor aponta para fora do plano). 6

17 Portanto, a equação (9) representa o torque sobre o momento de dipolo quando ele está imerso num campo elétrico uniforme. O trabalho feito pelo torque quando o dipolo elétrico gira por um ângulo α é Δ = Δ = sen Δ. O sinal negativo nesta expressão decorre do fato de que o torque sobre o momento de dipolo faz com que ele gire no sentido antihorário, ou seja, ele faz o ângulo α diminuir (veja a figura na página anterior). O trabalho feito pelo torque quando o momento de dipolo faz um giro do ângulo inicial α ao ângulo final α é dado por = sen = cos cos. Lembrando das aulas de Física I, o trabalho é igual ao negativo da variação na energia potencial: W = U = U(α ) U(α ). Comparando esta expressão com a equação acima, podemos definir a energia potencial de um dipolo elétrico num campo elétrico uniforme como ( )= cos. (0) Esta equação pode ser escrita em termos dos vetores e como 7

18 =, () onde o ponto na equação acima indica o produto escalar entre os vetores e. A partir da equação (0) podemos construir o gráfico da energia potencial do dipolo imerso num campo elétrico uniforme em função do ângulo α que dá a orientação do dipolo em relação ao campo. A figura abaixo mostra esse gráfico para 0 α π. Observe que o valor mínimo de U ocorre para α = 0, isto é, quando e são paralelos. A energia potencial vale zero quando α = π/ ( e são ortogonais) e o valor máximo de U ocorre para α = π, ou seja, quando e são antiparalelos. 8

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 6. O trabalho feito pela força para deslocar o corpo de a para b é dado por: = =

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 6. O trabalho feito pela força para deslocar o corpo de a para b é dado por: = = Energia Potencial Elétrica Física I revisitada 1 Seja um corpo de massa m que se move em linha reta sob ação de uma força F que atua ao longo da linha. O trabalho feito pela força para deslocar o corpo

Leia mais

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 4

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 4 Lei de Gauss Considere uma distribuição arbitrária de cargas ou um corpo carregado no espaço. Imagine agora uma superfície fechada qualquer envolvendo essa distribuição ou corpo. A superfície é imaginária,

Leia mais

RESUMO 2 - FÍSICA III

RESUMO 2 - FÍSICA III RESUMO 2 - FÍSICA III CAMPO ELÉTRICO Assim como a Terra tem um campo gravitacional, uma carga Q também tem um campo que pode influenciar as cargas de prova q nele colocadas. E usando esta analogia, podemos

Leia mais

Um capacitor não armazena apenas carga, mas também energia.

Um capacitor não armazena apenas carga, mas também energia. Capacitores e Dielétricos (continuação) Energia armazenada num capacitor Um capacitor não armazena apenas carga, mas também energia. A energia armazenada num capacitor é igual ao trabalho necessário para

Leia mais

Um capacitor é um sistema elétrico formado por dois condutores separados por um material isolante, ou pelo vácuo.

Um capacitor é um sistema elétrico formado por dois condutores separados por um material isolante, ou pelo vácuo. Capacitores e Dielétricos Um capacitor é um sistema elétrico formado por dois condutores separados por um material isolante, ou pelo vácuo. Imaginemos uma configuração como a de um capacitor em que os

Leia mais

1 INTRODU Ç Ã O. 1.1. Introdução ao Magnetismo

1 INTRODU Ç Ã O. 1.1. Introdução ao Magnetismo 17 1 INTRODU Ç Ã O 1.1. Introdução ao Magnetismo Os materiais magnéticos vêm desempenhando um papel importante e contribuído de forma vital na história das civilizações e no seu desenvolvimento tecnológico.

Leia mais

Aula 17 GRANDEZAS ESCALARES E VETORIAIS. META Apresentar as grandezas vetoriais e seu signifi cado

Aula 17 GRANDEZAS ESCALARES E VETORIAIS. META Apresentar as grandezas vetoriais e seu signifi cado GRANDEZAS ESCALARES E VETORIAIS META Apresentar as grandezas vetoriais e seu signifi cado OBJETIVOS Ao fi nal desta aula, o aluno deverá: Diferenciar grandezas escalares e vetoriais; compreender a notação

Leia mais

1 P r o j e t o F u t u r o M i l i t a r w w w. f u t u r o m i l i t a r. c o m. b r

1 P r o j e t o F u t u r o M i l i t a r w w w. f u t u r o m i l i t a r. c o m. b r Exercícios Potencial Elétrico 01. O gráfico que melhor descreve a relação entre potencial elétrico V, originado por uma carga elétrica Q < 0, e a distância d de um ponto qualquer à carga, é: 05. Duas cargas

Leia mais

FONTES DE CAMPO MAGNÉTICO. Caracterizar e mostrar o campo magnético produzido por uma carga a velocidade constante.

FONTES DE CAMPO MAGNÉTICO. Caracterizar e mostrar o campo magnético produzido por uma carga a velocidade constante. FONTES DE CAMPO MAGNÉTICO META Aula 8 Caracterizar e mostrar o campo magnético produzido por uma carga a velocidade constante. Mostrar a lei da circulação de Ampère-Laplace e a lei de Biot-Savart. Estudar

Leia mais

Mecânica Geral Básica

Mecânica Geral Básica Mecânica Geral Básica Conceitos Básicos Prof. Nelson Luiz Reyes Marques Unidades - o sistema métrico O sistema internacional de unidades (SI) o sistema MKS Baseado em potências de 10 de unidades de base

Leia mais

Campos. Exemplos de campos: - Campo de temperaturas (térmico) - Campo de pressões - Campo gravitacional - Campo elétrico

Campos. Exemplos de campos: - Campo de temperaturas (térmico) - Campo de pressões - Campo gravitacional - Campo elétrico Campos Podemos definir campo, de forma genérica, como sendo uma região do espaço caracterizada por um conjunto de valores de uma grandeza física que dependem apenas de coordenadas que utilizem uma determinada

Leia mais

Hoje estou elétrico!

Hoje estou elétrico! A U A UL LA Hoje estou elétrico! Ernesto, observado por Roberto, tinha acabado de construir um vetor com um pedaço de papel, um fio de meia, um canudo e um pedacinho de folha de alumínio. Enquanto testava

Leia mais

1 Módulo ou norma de um vetor

1 Módulo ou norma de um vetor Álgebra Linear I - Aula 3-2005.2 Roteiro 1 Módulo ou norma de um vetor A norma ou módulo do vetor ū = (u 1, u 2, u 3 ) de R 3 é ū = u 2 1 + u2 2 + u2 3. Geometricamente a fórmula significa que o módulo

Leia mais

Unidade: Vetores e Forças. Unidade I:

Unidade: Vetores e Forças. Unidade I: Unidade I: 0 Unidade: Vetores e Forças 2.VETORES 2.1 Introdução Os vetores são definidos como entes matemáticos que dão noção de intensidade, direção e sentido. De forma prática, o conceito de vetor pode

Leia mais

Saber calcular o fluxo elétrico e o campo elétrico através de uma superfície de contorno bem definida.

Saber calcular o fluxo elétrico e o campo elétrico através de uma superfície de contorno bem definida. Aula 5 LEI DE GAUSS META Mostrar a fundamental importância da lei de Gauss para a compreensão do campo elétrico e como essa lei facilita o desenvolvimento matemático de problemas complexos de eletricidade.

Leia mais

Problemas de eletricidade

Problemas de eletricidade Problemas de eletricidade 1 - Um corpo condutor está eletrizado positivamente. Podemos afirmar que: a) o número de elétrons é igual ao número de prótons. b) o número de elétrons é maior que o número de

Leia mais

AULA 3 FORÇA ELÉTRICA. O conceito de força é a capacidade de provocar a mudança de intensidade, direção e sentido da velocidade.

AULA 3 FORÇA ELÉTRICA. O conceito de força é a capacidade de provocar a mudança de intensidade, direção e sentido da velocidade. AULA 3 FORÇA ELÉTRICA O conceito de força é a capacidade de provocar a mudança de intensidade, direção e sentido da velocidade. - Um objeto em repouso (v= 0) entra em movimento, mediante a aplicação de

Leia mais

Eletricidade e Magnetismo - Lista de Exercícios I CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA

Eletricidade e Magnetismo - Lista de Exercícios I CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA Eletricidade e Magnetismo - Lista de Exercícios I CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA Carga Elétrica e Lei de Coulomb 1. Consideremos o ponto P no centro de um quadrado

Leia mais

4.2 Produto Vetorial. Orientação sobre uma reta r

4.2 Produto Vetorial. Orientação sobre uma reta r 94 4. Produto Vetorial Dados dois vetores u e v no espaço, vamos definir um novo vetor, ortogonal a u e v, denotado por u v (ou u v, em outros textos) e denominado produto vetorial de u e v. Mas antes,

Leia mais

Microfone e altifalante. Conversão de um sinal sonoro num sinal elétrico. sinal elétrico num sinal sonoro.

Microfone e altifalante. Conversão de um sinal sonoro num sinal elétrico. sinal elétrico num sinal sonoro. Microfone e altifalante Conversão de um sinal sonoro num sinal elétrico. Conversão de um sinal elétrico num sinal sonoro. O funcionamento dos microfones e dos altifalantes baseia-se na: - acústica; - no

Leia mais

Equipe de Física FÍSICA

Equipe de Física FÍSICA Aluno (a): Série: 3ª Turma: TUTORIAL 8B Ensino Médio Equipe de Física Data: FÍSICA Estática de um ponto Para que um ponto esteja em equilíbrio precisa satisfazer a seguinte condição: A resultante de todas

Leia mais

CINEMÁTICA - É a parte da mecânica que estuda os vários tipos de movimento, sem se preocupar com as causas destes movimentos.

CINEMÁTICA - É a parte da mecânica que estuda os vários tipos de movimento, sem se preocupar com as causas destes movimentos. INTRODUÇÃO À CINEMÁTICA REPOUSO OU MOVIMENTO? DEPENDE DO REFERENCIAL! CINEMÁTICA - É a parte da mecânica que estuda os vários tipos de movimento, sem se preocupar com as causas destes movimentos. REFERENCIAL.

Leia mais

O que é uma interação física? Como concebê-la?

O que é uma interação física? Como concebê-la? Campo elétrico Um pouco de filosofia (com um pouco de história) O que é uma interação física? Como concebê-la? Há basicamente duas maneiras distintas de imaginar como dois corpos A e B separados por uma

Leia mais

Fundamentos do Eletromagnetismo (FEMZ4)

Fundamentos do Eletromagnetismo (FEMZ4) Fundamentos do Eletromagnetismo (FEMZ4) Aulas (período diurno): 3as-feiras: Três aulas de teoria 5as.-feiras: Duas aulas de laboratório Conteúdo: Campos Magnéticos. Forças Magnéticas. Leis de Maxwell:

Leia mais

Eletricidade e Magnetismo - Lista de Exercícios IV CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA

Eletricidade e Magnetismo - Lista de Exercícios IV CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA Eletricidade e Magnetismo - Lista de Exercícios IV CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA Campo Magnético (Fundamentos de Física Vol.3 Halliday, Resnick e Walker, Cap.

Leia mais

c = c = c =4,20 kj kg 1 o C 1

c = c = c =4,20 kj kg 1 o C 1 PROPOSTA DE RESOLUÇÃO DO TESTE INTERMÉDIO - 2014 (VERSÃO 1) GRUPO I 1. H vap (H 2O) = 420 4 H vap (H 2O) = 1,69 10 3 H vap (H 2O) = 1,7 10 3 kj kg 1 Tendo em consideração a informação dada no texto o calor

Leia mais

POTENCIAL ELÉTRICO E FORÇA ELÉTRICA

POTENCIAL ELÉTRICO E FORÇA ELÉTRICA POTENCIAL ELÉTRICO E FORÇA ELÉTRICA 1. No movimento de A para B (figura) ao longo de uma linha de campo elétrico, o campo realiza 3,94 x 10-19 J de trabalho sobre um elétron. Quais são as diferenças de

Leia mais

CQ049 : FQ IV - Eletroquímica. CQ049 FQ Eletroquímica. prof. Dr. Marcio Vidotti LEAP Laboratório de Eletroquímica e Polímeros mvidotti@ufpr.

CQ049 : FQ IV - Eletroquímica. CQ049 FQ Eletroquímica. prof. Dr. Marcio Vidotti LEAP Laboratório de Eletroquímica e Polímeros mvidotti@ufpr. CQ049 FQ Eletroquímica prof. Dr. Marcio Vidotti LEAP Laboratório de Eletroquímica e Polímeros mvidotti@ufpr.br 1 a estrutura I-S (água) ion central moléculas de água orientadas interações ion - dipolo

Leia mais

Prof. Rogério Porto. Assunto: Eletrostática

Prof. Rogério Porto. Assunto: Eletrostática Questões COVEST Física Elétrica Prof. Rogério Porto Assunto: Eletrostática 1. Duas esferas condutoras A e B possuem a mesma carga Q. Uma terceira esfera C, inicialmente descarregada e idêntica às esferas

Leia mais

Lista 2 - Vetores II. Prof. Edu Física 2. O que é necessário para determinar (caracterizar) uma: a) grandeza escalar? b) grandeza vetorial?

Lista 2 - Vetores II. Prof. Edu Física 2. O que é necessário para determinar (caracterizar) uma: a) grandeza escalar? b) grandeza vetorial? Lista 2 - Vetores II O que é necessário para determinar (caracterizar) uma: a) grandeza escalar? grandeza vetorial?. Em que consiste a orientação espacial? 2. lassifique os itens abaixo em grandeza escalar

Leia mais

Cap. 6 - Campo Magnético e Força Magnética

Cap. 6 - Campo Magnético e Força Magnética Universidade Federal do Rio de Janeiro Instituto de Física Física III 2014/2 Cap. 6 - Campo Magnético e Força Magnética Prof. Elvis Soares Nesse capítulo, estudaremos as forças que agem em cargas elétricas

Leia mais

CAPACITORES. Vestibular1 A melhor ajuda ao vestibulando na Internet Acesse Agora! www.vestibular1.com.br

CAPACITORES. Vestibular1 A melhor ajuda ao vestibulando na Internet Acesse Agora! www.vestibular1.com.br CAPACITORES DEFINIÇÕES Quando as placas do capacitor estão carregadas com cargas iguais e de sinais diferentes, estabelece-se entre as placas uma diferença de potencial V que é proporcional à carga. Q

Leia mais

6. Geometria, Primitivas e Transformações 3D

6. Geometria, Primitivas e Transformações 3D 6. Geometria, Primitivas e Transformações 3D Até agora estudamos e implementamos um conjunto de ferramentas básicas que nos permitem modelar, ou representar objetos bi-dimensionais em um sistema também

Leia mais

Por que utilizar vetores?

Por que utilizar vetores? Universidade Estadual de Mato Grosso do Sul Por que utilizar vetores? Existem grandezas físicas f perfeitamente definidas por seu tamanho e sua unidade. Para determinar outras grandezas, entretanto, são

Leia mais

Forças internas. Objetivos da aula: Mostrar como usar o método de seções para determinar as cargas internas em um membro.

Forças internas. Objetivos da aula: Mostrar como usar o método de seções para determinar as cargas internas em um membro. Forças internas Objetivos da aula: Mostrar como usar o método de seções para determinar as cargas internas em um membro. Generalizar esse procedimento formulando equações que podem ser representadas de

Leia mais

Aula 2_1. Lei de Gauss I. Física Geral e Experimental III Prof. Cláudio Graça Capítulo 3

Aula 2_1. Lei de Gauss I. Física Geral e Experimental III Prof. Cláudio Graça Capítulo 3 Aula 2_1 Lei de Gauss I Física Geral e xperimental III Prof. Cláudio Graça Capítulo 3 Conceito de Fluxo do campo elétrico Fluxo do campo elétrico num campo uniforme Suponhamos uma superfície plana de área

Leia mais

Primeira lista de física para o segundo ano 1)

Primeira lista de física para o segundo ano 1) Primeira lista de física para o segundo ano 1) Dois espelhos planos verticais formam um ângulo de 120º, conforme a figura. Um observador está no ponto A. Quantas imagens de si mesmo ele verá? a) 4 b) 2

Leia mais

Lei de Gauss da Eletricidade. Prof. Rudi Gaelzer IFM/UFPel (Física Básica III )

Lei de Gauss da Eletricidade. Prof. Rudi Gaelzer IFM/UFPel (Física Básica III ) Lei de Gauss da Eletricidade Objetivos iremos aprender: O que significa fluxo elétrico e como é possível calcular o mesmo. Como é possível determinar a carga elétrica delimitada por uma superfície fechada

Leia mais

Potencial Elétrico. e dividindo-se pela carga de prova q 0 temos o campo elétrico E:

Potencial Elétrico. e dividindo-se pela carga de prova q 0 temos o campo elétrico E: Potencial Elétrico Quando estudamos campo elétrico nas aulas passadas, vimos que ele pode ser definido em termos da força elétrica F que uma carga q exerce sobre uma carga de prova q 0. Essa força é, pela

Leia mais

COLÉGIO SANTA MARIA 2009 RUMO AOS 70 ANOS AVALIAÇÃO 2ª ETAPA 1º BLOCO ENSINO MÉDIO

COLÉGIO SANTA MARIA 2009 RUMO AOS 70 ANOS AVALIAÇÃO 2ª ETAPA 1º BLOCO ENSINO MÉDIO OLÉGIO SANTA MAIA 009 UMO AOS 0 ANOS AALIAÇÃO ª TAPA 1º BLOO NSINO MÉDIO NOTA: POFSSO:TADU DISIPLINA: FÍSIA II DATA: / / 3º MÉDIO: ALUNO(A): N Atenção! É importante a escrita legível. Não serão aceitas

Leia mais

ELETROSTÁTICA 3ª SÉRIE

ELETROSTÁTICA 3ª SÉRIE ELETROSTÁTICA 3ª SÉRIE 1. (Pucrj 013) Duas cargas pontuais q1 3,0 μc e q 6,0 μc são colocadas a uma distância de 1,0 m entre si. Calcule a distância, em metros, entre a carga q 1 e a posição, situada entre

Leia mais

CAMPO MAGNÉTICO. Definição de B

CAMPO MAGNÉTICO. Definição de B Em 1822, durante uma aula experimental, o professor de física dinamarquês Hans Christian Oersted descobriu que uma corrente elétrica passando por um fio deslocava a agulha de uma bússola que estava por

Leia mais

Capítulo 22: Campos Elétricos

Capítulo 22: Campos Elétricos 1 Campos létricos Capítulo : Campos létricos Campo létrico: é um campo vetorial, constituído por uma distribuição de vetores, um para cada ponto de uma região em torno de um objeto eletricamente carregado.

Leia mais

Ponto, reta e plano no espaço tridimensional, cont.

Ponto, reta e plano no espaço tridimensional, cont. Ponto, reta e plano no espaço tridimensional, cont. Matemática para arquitetura Ton Marar 1. Posições relativas Posição relativa entre pontos Dois pontos estão sempre alinhados. Três pontos P 1 = (x 1,

Leia mais

Capítulo 3. Cálculo Vetorial. 3.1 Segmentos Orientados

Capítulo 3. Cálculo Vetorial. 3.1 Segmentos Orientados Capítulo 3 Cálculo Vetorial O objetivo deste capítulo é o estudo de vetores de um ponto de vista geométrico e analítico. De acordo com a necessidade, a abordagem do assunto será formal ou informal. O estudo

Leia mais

capacitores antes de estudar o capítulo PARTE I

capacitores antes de estudar o capítulo PARTE I PARTE I Unidade B capítulo 12 capacitores seções: 121 Capacitor 122 Associação de capacitores 123 Energia potencial elétrica armazenada por um capacitor 124 Carga e descarga de um capacitor 125 Dielétricos

Leia mais

18 a QUESTÃO Valor: 0,25

18 a QUESTÃO Valor: 0,25 6 a A 0 a QUESTÃO FÍSICA 8 a QUESTÃO Valor: 0,25 6 a QUESTÃO Valor: 0,25 Entre as grandezas abaixo, a única conservada nas colisões elásticas, mas não nas inelásticas é o(a): 2Ω 2 V 8Ω 8Ω 2 Ω S R 0 V energia

Leia mais

ɸ E = ΣE.A (5) 14/04/2015. Bacharelado em Engenharia Civil. Física III

ɸ E = ΣE.A (5) 14/04/2015. Bacharelado em Engenharia Civil. Física III Bacharelado em Engenharia Civil Física III Prof a.: M.Sc. Mariana de Faria Gardingo Diniz FLUXO DE CAMPO ELÉTRICO Imagine que as linhas de campo da figura abaixo representem um campo elétrico de cargas

Leia mais

Aluno(a): Nº. Professor: Fabrízio Gentil Série: 3 o ano Disciplina: Física - Magnetismo

Aluno(a): Nº. Professor: Fabrízio Gentil Série: 3 o ano Disciplina: Física - Magnetismo Lista de Exercícios Pré Universitário Uni-Anhanguera Aluno(a): Nº. Professor: Fabrízio Gentil Série: 3 o ano Disciplina: Física - Magnetismo 01 - (PUC SP) Na figura abaixo temos a representação de dois

Leia mais

Movimentos Periódicos: representação vetorial

Movimentos Periódicos: representação vetorial Aula 5 00 Movimentos Periódicos: representação vetorial A experiência mostra que uma das maneiras mais úteis de descrever o movimento harmônico simples é representando-o como uma projeção perpendicular

Leia mais

Física II Curso Licenciatura em Química Selma Rozane 2015.2

Física II Curso Licenciatura em Química Selma Rozane 2015.2 Física II Curso Licenciatura em Química Selma Rozane 2015.2 INTRODUÇÃO A palavra magnetismo tem sua origem na Grécia Antiga, porque foi em Magnésia, região da Ásia Menor (Turquia), que se observou um minério

Leia mais

São grandezas que para que a gente possa descrever 100%, basta dizer um número e a sua unidade.

São grandezas que para que a gente possa descrever 100%, basta dizer um número e a sua unidade. Apostila de Vetores 1 INTRODUÇÃO Fala, galera! Essa é a primeira apostila do conteúdo de Física I. Os assuntos cobrados nas P1s são: Vetores, Cinemática Uni e Bidimensional, Leis de Newton, Conservação

Leia mais

Capítulo 1 - Estática

Capítulo 1 - Estática Capítulo 1 - Estática 1.1. Generalidades sobre forças 1.1.1. A Grandeza Vetorial A finalidade da Estática, parte da Mecânica Geral, é o estudo das condições nas quais um sólido ou um sistema de sólidos,

Leia mais

Pesquisa Operacional. Função Linear - Introdução. Função do 1 Grau. Função Linear - Exemplos Representação no Plano Cartesiano. Prof.

Pesquisa Operacional. Função Linear - Introdução. Função do 1 Grau. Função Linear - Exemplos Representação no Plano Cartesiano. Prof. Pesquisa Operacional Prof. José Luiz Prof. José Luiz Função Linear - Introdução O conceito de função é encontrado em diversos setores da economia, por exemplo, nos valores pagos em um determinado período

Leia mais

Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia

Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia Universidade Federal de São Paulo Instituto de Ciência e Tecnologia Bacharelado em Ciência e Tecnologia Oscilações 1. Movimento Oscilatório. Cinemática do Movimento Harmônico Simples (MHS) 3. MHS e Movimento

Leia mais

Capacitância. 4.1 Capacitores e Capacitância. 4.1.1 Capacitor de Placas Paralelas

Capacitância. 4.1 Capacitores e Capacitância. 4.1.1 Capacitor de Placas Paralelas Capítulo 4 Capacitância 4.1 Capacitores e Capacitância O capacitor é um aparelho eletrônico usado para armazenar energia elétrica. Consiste de dois condutores com um isolante entre eles. Os condutores

Leia mais

GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar

GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar GAAL - 201/1 - Simulado - 1 Vetores e Produto Escalar SOLUÇÕES Exercício 1: Determinar os três vértices de um triângulo sabendo que os pontos médios de seus lados são M = (5, 0, 2), N = (, 1, ) e P = (4,

Leia mais

Soluções das Questões de Física do Processo Seletivo de Admissão à Escola Preparatória de Cadetes do Exército EsPCEx

Soluções das Questões de Física do Processo Seletivo de Admissão à Escola Preparatória de Cadetes do Exército EsPCEx Soluções das Questões de Física do Processo Seletivo de dmissão à Escola Preparatória de Cadetes do Exército EsPCEx Questão Concurso 009 Uma partícula O descreve um movimento retilíneo uniforme e está

Leia mais

Exercícios de Física Eletromagnetismo

Exercícios de Física Eletromagnetismo Exercícios de Física Eletromagnetismo 1-Considerando as propriedades dos ímãs, assinale a alternativa correta. a) Quando temos dois ímãs, podemos afirmar que seus pólos magnéticos de mesmo nome (norte

Leia mais

Exercícios de Física Eletromagnetismo

Exercícios de Física Eletromagnetismo Exercícios de Física Eletromagnetismo 1-Considerando as propriedades dos ímãs, assinale a alternativa correta. a) Quando temos dois ímãs, podemos afirmar que seus pólos magnéticos de mesmo nome (norte

Leia mais

Exercícios Eletromagnetismo

Exercícios Eletromagnetismo Exercícios Eletromagnetismo 1-Considerando as propriedades dos ímãs, assinale a alternativa correta. a) Quando temos dois ímãs, podemos afirmar que seus pólos magnéticos de mesmo nome (norte e norte, ou

Leia mais

Curso de Computação Gráfica (CG) 2014/2- Unidade 1- Modelagem de objetos. Exercício 1 (individual) - Entrega: quarta 13/08

Curso de Computação Gráfica (CG) 2014/2- Unidade 1- Modelagem de objetos. Exercício 1 (individual) - Entrega: quarta 13/08 Curso de Computação Gráfica (CG) 2014/2- Unidade 1- Modelagem de objetos Exercício 1 (individual) - Entrega: quarta 13/08 Escolha um objeto entre os que possivelmente compõem uma clínica médica de exames

Leia mais

Instrumentos de Medidas Elétricas I Voltímetros, Amperímetros e Ohmímetros

Instrumentos de Medidas Elétricas I Voltímetros, Amperímetros e Ohmímetros nstrumentos de Medidas Elétricas Nesta prática vamos estudar o princípios de funcionamentos de instrumentos de medidas elétrica, em particular, voltímetros, amperímetros e ohmímetros. Sempre que surgir

Leia mais

AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2015/2016 PLANIFICAÇÃO ANUAL

AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2015/2016 PLANIFICAÇÃO ANUAL AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2015/2016 PLANIFICAÇÃO ANUAL Documento(s) Orientador(es): Programa de Física 12.º ano homologado em 21/10/2004 ENSINO SECUNDÁRIO FÍSICA 12.º ANO TEMAS/DOMÍNIOS

Leia mais

APOSTILA TECNOLOGIA MECANICA

APOSTILA TECNOLOGIA MECANICA FACULDADE DE TECNOLOGIA DE POMPEIA CURSO TECNOLOGIA EM MECANIZAÇÃO EM AGRICULTURA DE PRECISÃO APOSTILA TECNOLOGIA MECANICA Autor: Carlos Safreire Daniel Ramos Leandro Ferneta Lorival Panuto Patrícia de

Leia mais

POTENCIAL ELÉTRICO. por unidade de carga

POTENCIAL ELÉTRICO. por unidade de carga POTENCIAL ELÉTRICO A lei de Newton da Gravitação e a lei de Coulomb da eletrostática são matematicamente idênticas, então os aspectos gerais discutidos para a força gravitacional podem ser aplicadas para

Leia mais

FORÇA MAGNÉTICA. Força magnética sobre cargas em um campo magnético uniforme

FORÇA MAGNÉTICA. Força magnética sobre cargas em um campo magnético uniforme FORÇA MAGNÉTICA Força magnética sobre cargas em um campo magnético uniforme Em eletrostática vimos que quando uma carga penetra em uma região onde existe um campo elétrico, fica sujeita a ação de uma força

Leia mais

Campos Vetoriais e Integrais de Linha

Campos Vetoriais e Integrais de Linha Cálculo III Departamento de Matemática - ICEx - UFMG Marcelo Terra Cunha Campos Vetoriais e Integrais de Linha Um segundo objeto de interesse do Cálculo Vetorial são os campos de vetores, que surgem principalmente

Leia mais

C mp m o p o Eléctr t ico o Un U i n fo f r o me

C mp m o p o Eléctr t ico o Un U i n fo f r o me Campo Eléctrico Uniforme Tal como o campo gravítico pode ser considerado uniforme numa estreita região perto da superfície da Terra, também o campo eléctrico pode ser uniforme numa determinada região do

Leia mais

7 AULA. Curvas Polares LIVRO. META Estudar as curvas planas em coordenadas polares (Curvas Polares).

7 AULA. Curvas Polares LIVRO. META Estudar as curvas planas em coordenadas polares (Curvas Polares). 1 LIVRO Curvas Polares 7 AULA META Estudar as curvas planas em coordenadas polares (Curvas Polares). OBJETIVOS Estudar movimentos de partículas no plano. Cálculos com curvas planas em coordenadas polares.

Leia mais

Considerando a polaridade do ímã, as linhas de indução magnética criadas por ele e o sentido da corrente elétrica induzida no tubo condutor de cobre

Considerando a polaridade do ímã, as linhas de indução magnética criadas por ele e o sentido da corrente elétrica induzida no tubo condutor de cobre 1. Em uma aula de laboratório, os estudantes foram divididos em dois grupos. O grupo A fez experimentos com o objetivo de desenhar linhas de campo elétrico e magnético. Os desenhos feitos estão apresentados

Leia mais

Física. Resolução. Q uestão 01 - A

Física. Resolução. Q uestão 01 - A Q uestão 01 - A Uma forma de observarmos a velocidade de um móvel em um gráfico d t é analisarmos a inclinação da curva como no exemplo abaixo: A inclinação do gráfico do móvel A é maior do que a inclinação

Leia mais

4 Orbitais do Átomo de Hidrogênio

4 Orbitais do Átomo de Hidrogênio 4 Orbitais do Átomo de Hidrogênio A aplicação mais intuitiva e que foi a motivação inicial para desenvolver essa técnica é a representação dos orbitais do átomo de hidrogênio que, desde então, tem servido

Leia mais

Noções de Cálculo Vetorial Prof. Alberto Ricardo Präss

Noções de Cálculo Vetorial Prof. Alberto Ricardo Präss Noções de Cálculo Vetorial Prof. lberto Ricardo Präss Linguagem e conceitos Linguagem é um ingrediente essencial do pensamento abstrato. É difícil pensar clara e facilmente sobre conceitos sofisticados

Leia mais

LIGAÇÕES QUÍMICAS TEORIA CORPUSCULAR

LIGAÇÕES QUÍMICAS TEORIA CORPUSCULAR LIGAÇÕES QUÍMICAS 5 TEORIA CORPUSCULAR 1 INTRODUÇÃO O fato de os gases nobres existirem na natureza como átomos isolados, levou os cientistas KOSSEL e LEWIS a elaborar um modelo para as ligações químicas.

Leia mais

Tópico 02: Movimento Circular Uniforme; Aceleração Centrípeta

Tópico 02: Movimento Circular Uniforme; Aceleração Centrípeta Aula 03: Movimento em um Plano Tópico 02: Movimento Circular Uniforme; Aceleração Centrípeta Caro aluno, olá! Neste tópico, você vai aprender sobre um tipo particular de movimento plano, o movimento circular

Leia mais

Introdução à Eletricidade e Lei de Coulomb

Introdução à Eletricidade e Lei de Coulomb Introdução à Eletricidade e Lei de Coulomb Introdução à Eletricidade Eletricidade é uma palavra derivada do grego élektron, que significa âmbar. Resina vegetal fossilizada Ao ser atritado com um pedaço

Leia mais

Energia & Trabalho. Aula 3

Energia & Trabalho. Aula 3 Todo o material disponibilizado é preparado para as disciplinas que ministramos e colocado para ser acessado livremente pelos alunos ou interessados. Solicitamos que não seja colocado em sites nãolivres.

Leia mais

Capítulo 11 MOTORES ELÉTRICOS DE CORRENTE CONTÍNUA E UNIVERSAL. Introdução

Capítulo 11 MOTORES ELÉTRICOS DE CORRENTE CONTÍNUA E UNIVERSAL. Introdução Capítulo 11 MOTORES ELÉTRICOS DE CORRENTE CONTÍNUA E UNIVERSAL Esta aula apresenta o princípio de funcionamento dos motores elétricos de corrente contínua, o papel do comutador, as características e relações

Leia mais

Empurra e puxa. Domingo, Gaspar reúne a família para uma. A força é um vetor

Empurra e puxa. Domingo, Gaspar reúne a família para uma. A força é um vetor A U A UL LA Empurra e puxa Domingo, Gaspar reúne a família para uma voltinha de carro. Ele senta ao volante e dá a partida. Nada. Tenta outra vez e nada consegue. Diz então para todos: O carro não quer

Leia mais

Capítulo 4 Trabalho e Energia

Capítulo 4 Trabalho e Energia Capítulo 4 Trabalho e Energia Este tema é, sem dúvidas, um dos mais importantes na Física. Na realidade, nos estudos mais avançados da Física, todo ou quase todos os problemas podem ser resolvidos através

Leia mais

RECUPERAÇÃO TURMAS: 2º ANO FÍSICA

RECUPERAÇÃO TURMAS: 2º ANO FÍSICA RECUPERAÇÃO TURMAS: 2º ANO Professor: XERXES DATA: 22 / 11 / 2015 RECUPERAÇÃO FINAL FORÇA ELÉTRICA (LEI DE COULOMB) FÍSICA Para todas as questões, considere a constante eletrostática no vácuo igual a 9.10

Leia mais

FÍSICA. Questões de 01 a 04

FÍSICA. Questões de 01 a 04 GRUPO 1 TIPO A FÍS. 1 FÍSICA Questões de 01 a 04 01. Considere uma partícula presa a uma mola ideal de constante elástica k = 420 N / m e mergulhada em um reservatório térmico, isolado termicamente, com

Leia mais

Física Geral III F -328. Aula 8 Campo Magnético. 1 0 semestre, 2014

Física Geral III F -328. Aula 8 Campo Magnético. 1 0 semestre, 2014 Física Geral III F -328 Aula 8 Campo Magnético 1 0 semestre, 2014 Diferenças campos magnéticos e elétricos E Campo elétrico Devido a cargas elétricas * Carga isolada Linhas de campo da carga + para a carga

Leia mais

2. Um pedaço de ferro é posto nas proximidades de um ímã, conforme a figura abaixo.

2. Um pedaço de ferro é posto nas proximidades de um ímã, conforme a figura abaixo. Magnetismo 1. Um feixe constituído de três espécies de partículas, A eletrizada positivamente, B eletrizada negativamente e C neutra, é lançado de um ponto O de um campo magnético uniforme de indução B

Leia mais

CÁLCULO: VOLUME III MAURICIO A. VILCHES - MARIA LUIZA CORRÊA. Departamento de Análise - IME UERJ

CÁLCULO: VOLUME III MAURICIO A. VILCHES - MARIA LUIZA CORRÊA. Departamento de Análise - IME UERJ CÁLCULO: VOLUME III MAURICIO A. VILCHES - MARIA LUIZA CORRÊA Departamento de Análise - IME UERJ 2 Copyright by Mauricio A. Vilches Todos os direitos reservados Proibida a reprodução parcial ou total 3

Leia mais

Laboratório de Conversão Eletromecânica de Energia B

Laboratório de Conversão Eletromecânica de Energia B Laboratório de Conversão Eletromecânica de Energia B Prof a. Katia C. de Almeida 1 Obtenção Experimental dos Parâmetros do Circuito Equivalente do Motor de Indução Monofásico 1.1 Introdução 1.1.1 Motores

Leia mais

NOTA DE AULA PROF. JOSÉ GOMES RIBEIRO FILHO CAMPO ELÉTRICO

NOTA DE AULA PROF. JOSÉ GOMES RIBEIRO FILHO CAMPO ELÉTRICO NOTA DE AULA PROF. JOSÉ GOMES RIBEIRO FILHO CAMPO ELÉTRICO 1.CAMPO ELÉTRICO Suponhamos que se fixe, num determinado ponto, uma partícula com carga positiva, q 1, e a seguir coloquemos em suas proximidades

Leia mais

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 8

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 8 Exemplos de Cálculo do Potencial Elétrico Vimos na aula passada que há duas maneiras de se calcular o potencial elétrico. Quando se conhece a distribuição de cargas (discreta ou contínua), usa-se as equações

Leia mais

Faculdade de Administração e Negócios de Sergipe

Faculdade de Administração e Negócios de Sergipe Faculdade de Administração e Negócios de Sergipe Disciplina: Física Geral e Experimental III Curso: Engenharia de Produção Assunto: Gravitação Prof. Dr. Marcos A. P. Chagas 1. Introdução Na gravitação

Leia mais

7] As polias indicadas na figura se movimentam em rotação uniforme, ligados por um eixo fixo.

7] As polias indicadas na figura se movimentam em rotação uniforme, ligados por um eixo fixo. Colégio Militar de Juiz de Fora Lista de Exercícios C PREP Mil Prof.: Dr. Carlos Alessandro A. Silva Cinemática: Vetores, Cinemática Vetorial, Movimento Circular e Lançamento de Projéteis. Nível I 1] Dois

Leia mais

4.2 A lei da conservação do momento angular

4.2 A lei da conservação do momento angular 4.2-1 4.2 A lei da conservação do momento angular 4.2.1 O momento angular e o torque Até agora, não fizemos uso da segunda parte das experiências de Mach, ver capítulo 2, Eq. (2.3). Heis aqui outra vez

Leia mais

Espelho, espelho meu...

Espelho, espelho meu... A UU L AL A Espelho, espelho meu... No meio do trânsito ouve-se a sirene da ambulância. Ernesto vira-se e pergunta ao pai: - Por que as letras escritas no capô da ambulância estão todas invertidas? Figura

Leia mais

Lista de Eletrostática da UFPE e UPE

Lista de Eletrostática da UFPE e UPE Lista de Eletrostática da UFPE e UPE 1. (Ufpe 1996) Duas pequenas esferas carregadas repelem-se mutuamente com uma força de 1 N quando separadas por 40 cm. Qual o valor em Newtons da força elétrica repulsiva

Leia mais

LISTÃO DE MAGNETISMO PARA REVISÃO

LISTÃO DE MAGNETISMO PARA REVISÃO LISTÃO DE MAGNETISMO PARA REVISÃO 1. Favip-PE Considerando as propriedades dos ímãs, assinale a alternativa correta. a) Quando temos dois ímãs, podemos afirmarque seus pólos magnéticos de mesmo nome (norte

Leia mais

FÍSICA 3 Campo Magnético. Prof. Alexandre A. P. Pohl, DAELN, Câmpus Curitiba

FÍSICA 3 Campo Magnético. Prof. Alexandre A. P. Pohl, DAELN, Câmpus Curitiba FÍSICA 3 Campo Magnético Prof. Alexandre A. P. Pohl, DAELN, Câmpus Curitiba EMENTA Carga Elétrica Campo Elétrico Lei de Gauss Potencial Elétrico Capacitância Corrente e resistência Circuitos Elétricos

Leia mais

Aula 27: Modelos Matemáticos de Sensores e Atuadores para Controle de Atitude: Modelos para Sensores Solares: Sensores Digitais.

Aula 27: Modelos Matemáticos de Sensores e Atuadores para Controle de Atitude: Modelos para Sensores Solares: Sensores Digitais. Aula 27: Modelos Matemáticos de Sensores e Atuadores para Controle de Atitude: Modelos para Sensores Solares: Sensores Digitais. Sensores Digitais Como indicado na Aula 05, sensores digitais de um e de

Leia mais

ELETROSTÁTICA. Ramo da Física que estuda as cargas elétricas em repouso. www.ideiasnacaixa.com

ELETROSTÁTICA. Ramo da Física que estuda as cargas elétricas em repouso. www.ideiasnacaixa.com ELETROSTÁTICA Ramo da Física que estuda as cargas elétricas em repouso. www.ideiasnacaixa.com Quantidade de carga elétrica Q = n. e Q = quantidade de carga elétrica n = nº de elétrons ou de prótons e =

Leia mais

Ivan Guilhon Mitoso Rocha. As grandezas fundamentais que serão adotadas por nós daqui em frente:

Ivan Guilhon Mitoso Rocha. As grandezas fundamentais que serão adotadas por nós daqui em frente: Rumo ao ITA Física Análise Dimensional Ivan Guilhon Mitoso Rocha A análise dimensional é um assunto básico que estuda as grandezas físicas em geral, com respeito a suas unidades de medida. Como as grandezas

Leia mais

Leis de Conservação. Exemplo: Cubo de gelo de lado 2cm, volume V g. =8cm3, densidade ρ g. = 0,917 g/cm3. Massa do. ρ g = m g. m=ρ.

Leis de Conservação. Exemplo: Cubo de gelo de lado 2cm, volume V g. =8cm3, densidade ρ g. = 0,917 g/cm3. Massa do. ρ g = m g. m=ρ. Leis de Conservação Em um sistema isolado, se uma grandeza ou propriedade se mantém constante em um intervalo de tempo no qual ocorre um dado processo físico, diz-se que há conservação d a propriedade

Leia mais