4.2 Modelação da estrutura interna

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "4.2 Modelação da estrutura interna"

Transcrição

1 4.2 Modelação da estrutura interna AST434: C4-25/83 Para calcular a estrutura interna de uma estrela como o Sol é necessário descrever como o gás que o compõe se comporta. Assim, determinar a estrutura interna equivale a descrever como as diferentes grandezas; densidade/massa, pressão e temperatura, bem como os diferentes aspectos relativos à produção e transporte de energia, se interligam. Só assim é possível compreender e descrever como o Sol funciona. Necessitamos então estabelecer quais são as relações físicas básicas necessárias para representar o que se passa no interior de uma estrela. A estas relações, que se aplicam a estrelas em equilíbrio, chamam-se equações de estrutura estelar. De forma a simplificar a descrição matemática consideram-se hipóteses simplificativas. Entre elas, simetria esférica (dependência apenas na distância "r" ao centro) e equilíbrio hidrostático (não há rotação nem variações com o tempo) Grandezas e quantidades relevantes AST434: C4-26/83 São as equações de estrutura, sujeitas a condições fronteira como, a massa total [M], o raio [R], a luminosidade [L] ou a temperatura à superfície [Teff]; que nos permitem modelar, e compreender, o tipo de estrutura interna que a estrela tem. Vejamos então quais são as equações a considerar.

2 1) massa - quantidade de matéria contida numa esfera de raio r AST434: C4-27/83 As quantidades relevantes para descrever a estrutura interna de uma estrela, como o Sol, são: e densidade - quantidade de massa por undidade de volume 2) pressão - força por unidade de área 3) temperatura - mede a energia cinética das particulas do gás 4) luminosidade - energia que atravessa a esfera de raio r por unidade de tempo Equação para a massa AST434: C4-28/83 Se considerarmos um anel esférico, à distância r do centro da estrela, e de espessura r, então a massa contida nele é dada por, Se considerarmos que m(r) é a massa contida na esfera de raio r, então teremos que Tal relação equivale a dizer que a variação de m(r) é dada por; Esta equação descreve a forma como a massa se distribui no interior da estrela.

3 AST434: C4-29/83 Ou seja, a massa contida num volume V (da esfera de raio r), de um gás com densidade ρ(r) é dada por Sendo m(r)=m a condição fronteira que temos de impôr. Pelo facto da densidade ser muito superior nas regiões centrais da estrela, a maioria da massa está no núcleo. O envelope da estrela em geral quase não contribuí para a massa, embora tenha um volume muito superior. A distribuição da massa com o raio é essencial para estabelecer a estrutura da estrela pois esta está na origem do campo gravítico que define a configuração da estrela. Assim, ao determinarmos a distribuição da massa da estrela com o raio estamos a definir como a gravidade se comportará no interior da estrela. Energia gravitacional: AST434: C4-30/83 Por definição a energia gravitacional total de uma esfera de massa total M é dada por Esta quantidade descreve o campo gravítico criado pela distribuição de massa m(r). Se M é a massa total e R o raio da estrela, então podemos definir que De onde resulta que

4 Aceleração da gravidade: AST434: C4-31/83 A aceleração da gravidade é uma quantidade que descreve o peso que está associado ao campo gravitíco criado pela distribuição de massa da estrela. A aceleração em cada ponto da estrela depende de m(r), sendo dada por; pois m(r) é a massa contida na esfera de raio r. A gravidade à superfície da estrela, em particular, corresponde a No Sol este valor corresponde a cm/s 2 (28 vezes superior à gravidade na superfície da Terra) Equilíbrio de forças AST434: C4-32/83 De entre os tipos de forças (gravitacional, electromagnética, nuclear fraca e nuclear forte) que podem contribuir para a estrutura de uma estrela, a força gravitacional é a mais importante. Em geral forças electromagnéticas também estão presentes, mas tendo uma contribuição pequena para o equilíbrio de forças no interior das estrelas. Assim, para compensar o efeito do peso, a estrela precisa de construir uma estrutura que trave a contração devido ao peso. Para tal esta recorre, na maioria dos casos, a um gradiente de pressão de forma a poder encontrar um equilíbrio. Mas ao faze-lo a estrela é obrigada a gastar energia daí que o equilíbrio só pode ser sustentado se a estrela encontrar uma fonte que reponha a energia necessária para sustentar um gradiente de pressão.

5 Equilíbrio entre a pressão e a gravidade: AST434: C4-33/83 Equação de estado - gás ideal: AST434: C4-34/83 A forma usual da estrela controlar a pressão é através do calor. Isto é, a estrela aquece ou arrefece de forma a obter o comportamento necessário da pressão. A equação de estado descreve a relação entre as quantidades termodinâmicas que caracterizam o gás: pressão, temperatura e densidade. Para um gás ideal a equação de estado é; R g = x 10 7 erg K -1 mole -1 µ = peso médio por partícula do gás Uma estimativa do valor da pressão no centro do Sol dá: Já que devido à produção de energia o Sol têm uma temperatura central da ordem de 1.5x10 7 K. Tal corresponde ainda a uma densidade de cerca de 150 g/cm 3.

6 AST434: C4-35/83 No caso de um gás ideal a forma mais fácil numa estrela para se aumentar a pressão P é através do aumento da temperatura T. Para um gás ideal, a energia interna específica (por unidade de massa) é dada por: Sendo uma medida da quantidade de energia usada por unidade de massa para aquecer o gás até à temperatura T. Equilíbrio hidrostático: AST434: C4-36/83 O gradiente de pressão entre o centro e a superfície (onde a pressão é quase nula) pode ser estimado de acordo com; Este valor dá uma estimativa da força disponível devido à variação com o raio da pressão do gás. O gradiente de pressão é a forma de que a estrela dispõe para cancelar o efeito do seu próprio peso. Se não o fizer contrair-se-á! Para anular o peso em cada ponto do seu interior a estrela gere um gradiente de pressão que produza uma força exactamente igual à força de gravidade nesse ponto.

7 AST434: C4-37/83 Se considerarmos um anel esférico de gás com espessura r à distância r do centro, este estará sujeito a duas forças: a gravidade e o gradiente de pressão. A força devido à variação da pressão é dada por: Enquanto que a força devido à gravidade que actua na massa m do anel é dada por Logo a soma das forças que actuam sobre o anel esférico é: AST434: C4-38/83 Para um anel esférico, à distância r do centro, de espessura r, então a massa contida nele é dada por Logo, a soma das forças que actuam no anel corresponde a Para o gás no interior da estrela estar em equilíbrio é necessário que a força total que actua sobre o anel esférico seja nula. Tal imposição leva a que o equilíbrio só seja possível se:

8 AST434: C4-39/83 Este equilíbrio entre a gravidade (cuja força é dirigida para o centro) e o gradiente de pressão (cuja força é dirigida para o exterior) é então descrito pela seguinte equação de equilíbrio hidrostático; O Sol, tal como muitas outras estrela que estão na fase da Sequência principal, está em equilíbrio hidrostático. Isto é, a sua configuração actual não varia em escalas de tempo da ordem de mil milhões de anos. Assim permanecerá enquanto tiver energia disponível para manter o gradiente de pressão necessário. Pois de forma a ter uma pressão que descresce do centro para a superfície, o Sol assegura um gradiente de temperatura à custa de um fluxo de energia que é continuamente perdida à superfície. Tempo de queda livre: AST434: C4-40/83 De forma a estimarmos a escala de tempo na qual a estrela evolui, se não tiver um gradiente de pressão para obter o equilíbrio, podemos considerar a queda livre da sua superfície devido ao peso da estrela; Integrando a equação (duas vezes) para uma variação de r=r até r=0, obtém-se o seguinte limite superior para o tempo de queda da superfície até o centro: Tal corresponde a cerca de 2250 s, no caso do Sol. Este valor confirma que o tempo associado ao colapso em queda livre de uma estrela é muito curto, pelo que podemos usar a equação de equilíbrio hidrostático para modelar a estrutura interna do Sol.

9 4.2.4 Teorema do Virial AST434: C4-41/83 Numa estrela que esteja em quase equilíbrio (isto é, que não altere a sua estrutura em escalas de tempo curtas) temos um balanço entre as diversas componentes da energia da estrela. Tal resulta num balanço entre a energia gravitacional total V e a energia interna total U (calor), dada por; Usando a equação para a massa e a equação de equilíbrio hidrostático, aplicadas a um gás ideal, pode-se obter a seguinte condição; Assim o Teorema do Virial diz-nos que a um aumento da energia interna total U (positiva) corresponde um decréscimo da energia gravitacional total V (que se torna mais negativa). Energia total e tempo de Kelvin-Helmotz : AST434: C4-42/83 A energia total E de uma estrela resulta da soma da energia gravitacional e da energia interna: Se considerarmos que a estrela sobrevive devido exclusivamente à sua energia total (isto é, não dispondo de nenhuma fonte de energia adicional) então o período de tempo para o qual a estrela consegue suportar uma luminosidade L é dado por: Esta escala de tempo corresponde a cerca de 10 7 anos, no caso de uma estrela como o Sol.

C5. Formação e evolução estelar

C5. Formação e evolução estelar AST434: C5-1/68 AST434: Planetas e Estrelas C5. Formação e evolução estelar Mário João P. F. G. Monteiro Mestrado em Desenvolvimento Curricular pela Astronomia Mestrado em Física e Química em Contexto

Leia mais

Soluções das Questões de Física do Processo Seletivo de Admissão à Escola Preparatória de Cadetes do Exército EsPCEx

Soluções das Questões de Física do Processo Seletivo de Admissão à Escola Preparatória de Cadetes do Exército EsPCEx Soluções das Questões de Física do Processo Seletivo de dmissão à Escola Preparatória de Cadetes do Exército EsPCEx Questão Concurso 009 Uma partícula O descreve um movimento retilíneo uniforme e está

Leia mais

5 as Olimpíadas Nacionais de Astronomia

5 as Olimpíadas Nacionais de Astronomia 5 as Olimpíadas Nacionais de Astronomia Prova da eliminatória regional 14 de Abril de 2009 15:00 Duração máxima 120 minutos Nota: Ler atentamente todas as questões. Existe uma tabela com dados no final

Leia mais

Faculdade de Administração e Negócios de Sergipe

Faculdade de Administração e Negócios de Sergipe Faculdade de Administração e Negócios de Sergipe Disciplina: Física Geral e Experimental III Curso: Engenharia de Produção Assunto: Gravitação Prof. Dr. Marcos A. P. Chagas 1. Introdução Na gravitação

Leia mais

5 as Olimpíadas Nacionais de Astronomia

5 as Olimpíadas Nacionais de Astronomia 5 as Olimpíadas Nacionais de Astronomia Prova da eliminatória regional 14 de Abril de 2010 15:00 Duração máxima 120 minutos Nota: Ler atentamente todas as questões. Existe uma tabela com dados no final

Leia mais

A EQUAÇÃO DO MOVIMENTO EM OCEANOGRAFIA

A EQUAÇÃO DO MOVIMENTO EM OCEANOGRAFIA A EQUAÇÃO DO MOVIMENTO EM OCEANOGRAFIA Escrever a equação do movimento corresponde a escrever a 2ª Lei de Newton (F = ma) numa forma que possa ser aplicada à oceanografia. Esta Lei diz-nos que como resultado

Leia mais

C mp m o p o Eléctr t ico o Un U i n fo f r o me

C mp m o p o Eléctr t ico o Un U i n fo f r o me Campo Eléctrico Uniforme Tal como o campo gravítico pode ser considerado uniforme numa estreita região perto da superfície da Terra, também o campo eléctrico pode ser uniforme numa determinada região do

Leia mais

COMENTÁRIOS DA PROVA DE FÍSICA DO SSA-UPE 2 ANO

COMENTÁRIOS DA PROVA DE FÍSICA DO SSA-UPE 2 ANO COMENTÁRIOS DA PROVA DE FÍSICA DO SSA-UPE 2 ANO 23. Leia o seguinte texto: Considere que esse grande espelho, acima da camada da atmosfera, estará em órbita geoestacionária. Com base nessas informações,

Leia mais

c = c = c =4,20 kj kg 1 o C 1

c = c = c =4,20 kj kg 1 o C 1 PROPOSTA DE RESOLUÇÃO DO TESTE INTERMÉDIO - 2014 (VERSÃO 1) GRUPO I 1. H vap (H 2O) = 420 4 H vap (H 2O) = 1,69 10 3 H vap (H 2O) = 1,7 10 3 kj kg 1 Tendo em consideração a informação dada no texto o calor

Leia mais

Análise Dimensional Notas de Aula

Análise Dimensional Notas de Aula Primeira Edição Análise Dimensional Notas de Aula Prof. Ubirajara Neves Fórmulas dimensionais 1 As fórmulas dimensionais são formas usadas para expressar as diferentes grandezas físicas em função das grandezas

Leia mais

Hoje estou elétrico!

Hoje estou elétrico! A U A UL LA Hoje estou elétrico! Ernesto, observado por Roberto, tinha acabado de construir um vetor com um pedaço de papel, um fio de meia, um canudo e um pedacinho de folha de alumínio. Enquanto testava

Leia mais

Ivan Guilhon Mitoso Rocha. As grandezas fundamentais que serão adotadas por nós daqui em frente:

Ivan Guilhon Mitoso Rocha. As grandezas fundamentais que serão adotadas por nós daqui em frente: Rumo ao ITA Física Análise Dimensional Ivan Guilhon Mitoso Rocha A análise dimensional é um assunto básico que estuda as grandezas físicas em geral, com respeito a suas unidades de medida. Como as grandezas

Leia mais

AS LEIS DO MOVIMENTO. O Conceito de Força

AS LEIS DO MOVIMENTO. O Conceito de Força AS LEIS DO MOVIMENTO Até agora, só falamos de cinemática, isto é, só descrevemos os movimentos. Agora vamos dar uma olhada nas causas destes movimentos => dinâmica O Conceito de Força Agente externo capaz

Leia mais

CURSO AVANÇADO EM ASTRONOMIA E ASTROFÍSICA OBSERVATÓRIO ASTRONÓMICO DE LISBOA VIDA E MORTE DAS ESTRELAS. Rui Jorge Agostinho MÓDULO CAOAL VME

CURSO AVANÇADO EM ASTRONOMIA E ASTROFÍSICA OBSERVATÓRIO ASTRONÓMICO DE LISBOA VIDA E MORTE DAS ESTRELAS. Rui Jorge Agostinho MÓDULO CAOAL VME CURSO AVANÇADO EM ASTRONOMIA E ASTROFÍSICA DO OBSERVATÓRIO ASTRONÓMICO DE LISBOA VIDA E MORTE DAS ESTRELAS MÓDULO CAOAL VME Rui Jorge Agostinho Outubro de 2013 Conteúdo Objectivos e Estrutura do Curso..............................

Leia mais

=30m/s, de modo que a = 30 10 =3m/s2. = g sen(30 o ), e substituindo os valores, tem-se. = v B

=30m/s, de modo que a = 30 10 =3m/s2. = g sen(30 o ), e substituindo os valores, tem-se. = v B FÍSIC 1 Considere a figura a seguir. Despreze qualquer tipo de atrito. a) O móvel de massa M = 100 kg é uniformemente acelerado (com aceleração a) a partir do repouso em t =0 segundos, atingindo B, emt

Leia mais

FÍSICA. Questões de 01 a 04

FÍSICA. Questões de 01 a 04 GRUPO 1 TIPO A FÍS. 1 FÍSICA Questões de 01 a 04 01. Considere uma partícula presa a uma mola ideal de constante elástica k = 420 N / m e mergulhada em um reservatório térmico, isolado termicamente, com

Leia mais

Física 2005/2006. Capitulo 5. Trabalho e Energia

Física 2005/2006. Capitulo 5. Trabalho e Energia ísica 005/006 Capitulo 5 Trabalho e Energia Trabalho e Energia A ideia de energia está intimamente ligada à de trabalho. Intuitivamente, podemos pensar em energia como alguma coisa que se manifesta continuamente

Leia mais

Do ponto de vista da Termodinâmica, gás ideal é aquele para o qual vale, para quaisquer valores de P e T, a equação de estado de Clapeyron:

Do ponto de vista da Termodinâmica, gás ideal é aquele para o qual vale, para quaisquer valores de P e T, a equação de estado de Clapeyron: Equação de Estado de Van der Waals Do ponto de vista da Termodinâmica, gás ideal é aquele para o qual vale, para quaisquer valores de P e T, a equação de estado de Clapeyron: P i V i = nrt em que colocamos

Leia mais

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 6. O trabalho feito pela força para deslocar o corpo de a para b é dado por: = =

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 6. O trabalho feito pela força para deslocar o corpo de a para b é dado por: = = Energia Potencial Elétrica Física I revisitada 1 Seja um corpo de massa m que se move em linha reta sob ação de uma força F que atua ao longo da linha. O trabalho feito pela força para deslocar o corpo

Leia mais

Disciplina : Termodinâmica. Aula 5 ANÁLISE DA MASSA E ENERGIA APLICADAS A VOLUMES DE CONTROLE

Disciplina : Termodinâmica. Aula 5 ANÁLISE DA MASSA E ENERGIA APLICADAS A VOLUMES DE CONTROLE Curso: Engenharia Mecânica Disciplina : Aula 5 ANÁLISE DA MASSA E ENERGIA APLICADAS A VOLUMES DE CONTROLE Prof. Evandro Rodrigo Dário, Dr. Eng. Vazão mássica e vazão volumétrica A quantidade de massa que

Leia mais

CAPITULO 1 INTRODUÇÃO ÀS CIÊNCIAS TÉRMICAS 1.1 CIÊNCIAS TÉRMICAS

CAPITULO 1 INTRODUÇÃO ÀS CIÊNCIAS TÉRMICAS 1.1 CIÊNCIAS TÉRMICAS CAPITULO 1 INTRODUÇÃO ÀS CIÊNCIAS TÉRMICAS 1.1 CIÊNCIAS TÉRMICAS Este curso se restringirá às discussões dos princípios básicos das ciências térmicas, que são normalmente constituídas pela termodinâmica,

Leia mais

DINÂMICA. Força Resultante: É a força que produz o mesmo efeito que todas as outras aplicadas a um corpo.

DINÂMICA. Força Resultante: É a força que produz o mesmo efeito que todas as outras aplicadas a um corpo. DINÂMICA Quando se fala em dinâmica de corpos, a imagem que vem à cabeça é a clássica e mitológica de Isaac Newton, lendo seu livro sob uma macieira. Repentinamente, uma maçã cai sobre a sua cabeça. Segundo

Leia mais

Lei de Gauss Origem: Wikipédia, a enciclopédia livre.

Lei de Gauss Origem: Wikipédia, a enciclopédia livre. Lei de Gauss Origem: Wikipédia, a enciclopédia livre. A lei de Gauss é a lei que estabelece a relação entre o fluxo de campo elétrico que passa através de uma superfície fechada com a carga elétrica que

Leia mais

107484 Controle de Processos Aula: Balanço de massa

107484 Controle de Processos Aula: Balanço de massa 107484 Controle de Processos Aula: Balanço de massa Prof. Eduardo Stockler Tognetti Departamento de Engenharia Elétrica Universidade de Brasília UnB 1 o Semestre 2015 E. S. Tognetti (UnB) Controle de processos

Leia mais

Unidade 1 Energia no quotidiano

Unidade 1 Energia no quotidiano Escola Secundária/3 do Morgado de Mateus Vila Real Componente da Física Energia Do Sol para a Terra Física e Química A 10º Ano Turma C Ano Lectivo 2008/09 Unidade 1 Energia no quotidiano 1.1 A energia

Leia mais

Formação estelar e Estágios finais da evolução estelar

Formação estelar e Estágios finais da evolução estelar Elementos de Astronomia Formação estelar e Estágios finais da evolução estelar Rogemar A. Riffel Formação estelar - Estrelas se formam dentro de concentrações relativamente densas de gás e poeira interestelar

Leia mais

ÇÃO À ASTRONOMIA (AGA-210) Notas de aula INTRODUÇÃ. Estrelas: do nascimento à Seqüê. üência Principal. Enos Picazzio IAGUSP, Maio/2006

ÇÃO À ASTRONOMIA (AGA-210) Notas de aula INTRODUÇÃ. Estrelas: do nascimento à Seqüê. üência Principal. Enos Picazzio IAGUSP, Maio/2006 INTRODUÇÃ ÇÃO À ASTRONOMIA (AGA-210) Notas de aula Estrelas: do nascimento à Seqüê üência Principal Enos Picazzio IAGUSP, Maio/2006 De que são formadas as estrelas? Átomo: elemento básico b da matéria

Leia mais

FISICA. Justificativa: Taxa = 1,34 kw/m 2 Energia em uma hora = (1,34 kw/m 2 ).(600x10 4 m 2 ).(1 h) ~ 10 7 kw. v B. v A.

FISICA. Justificativa: Taxa = 1,34 kw/m 2 Energia em uma hora = (1,34 kw/m 2 ).(600x10 4 m 2 ).(1 h) ~ 10 7 kw. v B. v A. FISIC 01. Raios solares incidem verticalmente sobre um canavial com 600 hectares de área plantada. Considerando que a energia solar incide a uma taxa de 1340 W/m 2, podemos estimar a ordem de grandeza

Leia mais

POTENCIAL ELÉTRICO. por unidade de carga

POTENCIAL ELÉTRICO. por unidade de carga POTENCIAL ELÉTRICO A lei de Newton da Gravitação e a lei de Coulomb da eletrostática são matematicamente idênticas, então os aspectos gerais discutidos para a força gravitacional podem ser aplicadas para

Leia mais

Força atrito. Forças. dissipativas

Força atrito. Forças. dissipativas Veículo motorizado 1 Trabalho Ocorrem variações predominantes de Por ex: Forças constantes Sistema Termodinâmico Onde atuam Força atrito É simultaneamente Onde atuam Sistema Mecânico Resistente Ocorrem

Leia mais

Conservação de Massa. A quantidade de fluido entrando no cubo pela face y z intervalo t

Conservação de Massa. A quantidade de fluido entrando no cubo pela face y z intervalo t Conservação de Massa Em um fluido real, massa deve ser conservada não podendo ser destruída nem criada. Se a massa se conserva, o que entrou e não saiu ficou acumulado. Matematicamente nós formulamos este

Leia mais

Astor João Schönell Júnior

Astor João Schönell Júnior Astor João Schönell Júnior As galáxias são classificadas morfologicamente (Hubble Sequence): -Espirais -Elípticas -Irregulares - Galáxias SO As galáxias espirais consistem em um disco com braços espirais

Leia mais

Fenômenos de Transporte

Fenômenos de Transporte Fenômenos de Transporte Prof. Leandro Alexandre da Silva Processos metalúrgicos 2012/2 Fenômenos de Transporte Prof. Leandro Alexandre da Silva Motivação O que é transporte? De maneira geral, transporte

Leia mais

Questão 57. Questão 58. alternativa D. alternativa C. seu mostrador deverá indicar, para esse mesmo objeto, o valor de

Questão 57. Questão 58. alternativa D. alternativa C. seu mostrador deverá indicar, para esse mesmo objeto, o valor de OBSERVAÇÃO (para todas as questões de Física): o valor da aceleração da gravidade na superfície da Terra é representado por g. Quando necessário, adote: para g, o valor 10 m/s ; para a massa específica

Leia mais

CQ049 : FQ IV - Eletroquímica. CQ049 FQ Eletroquímica. prof. Dr. Marcio Vidotti LEAP Laboratório de Eletroquímica e Polímeros mvidotti@ufpr.

CQ049 : FQ IV - Eletroquímica. CQ049 FQ Eletroquímica. prof. Dr. Marcio Vidotti LEAP Laboratório de Eletroquímica e Polímeros mvidotti@ufpr. CQ049 FQ Eletroquímica prof. Dr. Marcio Vidotti LEAP Laboratório de Eletroquímica e Polímeros mvidotti@ufpr.br 1 a estrutura I-S (água) ion central moléculas de água orientadas interações ion - dipolo

Leia mais

γ = 5,0m/s 2 2) Cálculo da distância percorrida para a velocidade escalar reduzir-se de 30m/s para 10m/s. V 2 2

γ = 5,0m/s 2 2) Cálculo da distância percorrida para a velocidade escalar reduzir-se de 30m/s para 10m/s. V 2 2 OBSERVAÇÃO (para todas as questões de Física): o valor da aceleração da gravidade na superfície da Terra é representado por g. Quando necessário, adote: para g, o valor 10 m/s 2 ; para a massa específica

Leia mais

Universidade Federal do Rio Grande do Sul Instituto de Física Departamento de Astronomia. Estrelas. Prof. Tibério B. Vale

Universidade Federal do Rio Grande do Sul Instituto de Física Departamento de Astronomia. Estrelas. Prof. Tibério B. Vale Universidade Federal do Rio Grande do Sul Instituto de Física Departamento de Astronomia Estrelas Prof. Tibério B. Vale Propriedades Estrelas são esferas autogravitantes de gás ionizado, cuja fonte de

Leia mais

LOGO FQA. Da Terra à Lua. Leis de Newton. Prof.ª Marília Peres. Adaptado de Serway & Jewett

LOGO FQA. Da Terra à Lua. Leis de Newton. Prof.ª Marília Peres. Adaptado de Serway & Jewett LOGO Da Terra à Lua Leis de Newton Prof.ª Marília Peres Adaptado de Serway & Jewett Isaac Newton (1642-1727) Físico e Matemático inglês Isaac Newton foi um dos mais brilhantes cientistas da história. Antes

Leia mais

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 3

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 3 Linhas de Força Mencionamos na aula passada que o físico inglês Michael Faraday (79-867) introduziu o conceito de linha de força para visualizar a interação elétrica entre duas cargas. Para Faraday, as

Leia mais

Aluno(a): Nº. Professor: Fabrízio Gentil Série: 3 o ano Disciplina: Física Eletrostática. Pré Universitário Uni-Anhanguera 01 - (MACK SP)

Aluno(a): Nº. Professor: Fabrízio Gentil Série: 3 o ano Disciplina: Física Eletrostática. Pré Universitário Uni-Anhanguera 01 - (MACK SP) Lista de Exercícios Pré Universitário Uni-Anhanguera Aluno(a): Nº. Professor: Fabrízio Gentil Série: 3 o ano Disciplina: Física Eletrostática 01 - (MACK SP) Fixam-se as cargas puntiformes q 1 e q 2, de

Leia mais

1) Calcular, em m/s, a velocidade de um móvel que percorre 14,4Km em 3min. a) ( ) 70m/s b) ( ) 80 m/s c) ( ) 90m/s d) ( ) 60m/s

1) Calcular, em m/s, a velocidade de um móvel que percorre 14,4Km em 3min. a) ( ) 70m/s b) ( ) 80 m/s c) ( ) 90m/s d) ( ) 60m/s SIMULADO DE FÍSICA ENSINO MÉDIO 1) Calcular, em m/s, a velocidade de um móvel que percorre 14,4Km em 3min. a) ( ) 70m/s b) ( ) 80 m/s c) ( ) 90m/s d) ( ) 60m/s 2) Um avião voa com velocidade constante

Leia mais

Termodinâmica Química: Lista 1: Gases. Resolução comentada de exercícios selecionados

Termodinâmica Química: Lista 1: Gases. Resolução comentada de exercícios selecionados Termodinâmica Química: Lista 1: Gases. Resolução comentada de exercícios selecionados Prof. Fabrício R. Sensato Semestre 4º Engenharia: Materiais Período: Matutino/diurno Regimes: Normal/DP Agosto, 2005

Leia mais

Tópico 11. Aula Teórica/Prática: O Método dos Mínimos Quadrados e Linearização de Funções

Tópico 11. Aula Teórica/Prática: O Método dos Mínimos Quadrados e Linearização de Funções Tópico 11. Aula Teórica/Prática: O Método dos Mínimos Quadrados e Linearização de Funções 1. INTRODUÇÃO Ao se obter uma sucessão de pontos experimentais que representados em um gráfico apresentam comportamento

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web 1. (Upe 2013) Considere a Terra como uma esfera condutora, carregada uniformemente, cuja carga total é 6,0 μ C, e a distância entre o centro da Terra e um ponto P na superfície da Lua é de aproximadamente

Leia mais

Professores: Gilberto / Gustavo / Luciano / Maragato CURSO DOMÍNIO. Comentário: Energia de Capacitor. Comentário: Questão sobre atrito

Professores: Gilberto / Gustavo / Luciano / Maragato CURSO DOMÍNIO. Comentário: Energia de Capacitor. Comentário: Questão sobre atrito Professores: Gilberto / Gustavo / Luciano / Maragato CURSO DOMÍNIO A prova de física exigiu um bom conhecimento dos alunos. Há questões relacionadas principalmente com a investigação e compreensão dos

Leia mais

Vestibular Comentado - UVA/2013.1 Conhecimentos Específicos

Vestibular Comentado - UVA/2013.1 Conhecimentos Específicos Vestibular Comentado - UVA/3. Física Comentários: Professores: João Batista e Joelson Studart. Um paraquedista salta de uma altura de. m. Após 45 m de queda, a força de resistência do ar se iguala à força

Leia mais

Capítulo 2. A 1ª Lei da Termodinâmica

Capítulo 2. A 1ª Lei da Termodinâmica Capítulo 2. A 1ª Lei da Termodinâmica Parte 1: trabalho, calor e energia; energia interna; trabalho de expansão; calor; entalpia Baseado no livro: Atkins Physical Chemistry Eighth Edition Peter Atkins

Leia mais

Estrelas de Quarks e de Nêutrons. Características e Assinaturas

Estrelas de Quarks e de Nêutrons. Características e Assinaturas Estrelas de Quarks e de Nêutrons Características e Assinaturas LEONARDO TAYNÔ TOSET TO SOETHE GRUPO DE ALTA S E MÉDIAS ENERGIAS UFPEL - 26/06/2015 Sumário Introdução Metodologia Alguns Resultados para

Leia mais

Evolução Estelar II. Um resumo do processo de estrutura e evolução estelar

Evolução Estelar II. Um resumo do processo de estrutura e evolução estelar Evolução Estelar II Um resumo do processo de estrutura e evolução estelar 1 Por quê as estrelas evoluem (mudam de um estado para outro)? Geração de energia Fusão requer combustível, que é esgotado durante

Leia mais

Leis de Conservação. Exemplo: Cubo de gelo de lado 2cm, volume V g. =8cm3, densidade ρ g. = 0,917 g/cm3. Massa do. ρ g = m g. m=ρ.

Leis de Conservação. Exemplo: Cubo de gelo de lado 2cm, volume V g. =8cm3, densidade ρ g. = 0,917 g/cm3. Massa do. ρ g = m g. m=ρ. Leis de Conservação Em um sistema isolado, se uma grandeza ou propriedade se mantém constante em um intervalo de tempo no qual ocorre um dado processo físico, diz-se que há conservação d a propriedade

Leia mais

www.e-lee.net Temática Circuitos Eléctricos Capítulo Teoria dos Circuitos COMPONENTES INTRODUÇÃO

www.e-lee.net Temática Circuitos Eléctricos Capítulo Teoria dos Circuitos COMPONENTES INTRODUÇÃO Temática Circuitos Eléctricos Capítulo Teoria dos Circuitos COMPONENTES INTRODUÇÃO Nesta secção, estuda-se o comportamento ideal de alguns dos dipolos que mais frequentemente se podem encontrar nos circuitos

Leia mais

a) O tempo total que o paraquedista permaneceu no ar, desde o salto até atingir o solo.

a) O tempo total que o paraquedista permaneceu no ar, desde o salto até atingir o solo. (MECÂNICA, ÓPTICA, ONDULATÓRIA E MECÂNICA DOS FLUIDOS) 01) Um paraquedista salta de um avião e cai livremente por uma distância vertical de 80 m, antes de abrir o paraquedas. Quando este se abre, ele passa

Leia mais

Leis de Newton. Dinâmica das partículas Física Aplicada http://www.walmorgodoi.com

Leis de Newton. Dinâmica das partículas Física Aplicada http://www.walmorgodoi.com Leis de Newton Dinâmica das partículas Física Aplicada http://www.walmorgodoi.com Antes de Galileu Durante séculos, o estudo do movimento e suas causas tornou-se o tema central da filosofia natural. Antes

Leia mais

Profa. Maria Fernanda - Química nandacampos.mendonc@gmail.com

Profa. Maria Fernanda - Química nandacampos.mendonc@gmail.com Profa. Maria Fernanda - Química nandacampos.mendonc@gmail.com Por que precisamos calibrar os pneus dos carro? Vídeo: https://www.youtube.com/watch?v=9aapomthyje Pressão abaixo da recomendada reduz a durabilidade

Leia mais

grandeza do número de elétrons de condução que atravessam uma seção transversal do fio em segundos na forma, qual o valor de?

grandeza do número de elétrons de condução que atravessam uma seção transversal do fio em segundos na forma, qual o valor de? Física 01. Um fio metálico e cilíndrico é percorrido por uma corrente elétrica constante de. Considere o módulo da carga do elétron igual a. Expressando a ordem de grandeza do número de elétrons de condução

Leia mais

Início 15.09.11 03.01.12 10.04.12 Final 16.12.11 23.03.12 08.06.12 Interrupções - 20 22 Fev 2012 -

Início 15.09.11 03.01.12 10.04.12 Final 16.12.11 23.03.12 08.06.12 Interrupções - 20 22 Fev 2012 - TOTAL Outras Atividades Tema B: Terra em Transformação Tema A: Terra no Espaço Departamento de Matemática e Ciências Experimentais PLANIFICAÇÃO 7º Ano de Ciências Físico-Químicas Ano Letivo 2011 / 2012

Leia mais

Aula 8 Gases Ideais e Teoria Cinética

Aula 8 Gases Ideais e Teoria Cinética Aula 8 Gases Ideais e Teoria Cinética Física II 2012 UNICAMP Quadro de Joseph Wrigth of Derby (1768) representando experimento de Robert Boyle Equação de estado dos gases ideais Qualquer objeto macroscópico

Leia mais

Lista 1_Gravitação - F 228 2S2012

Lista 1_Gravitação - F 228 2S2012 Lista 1_Gravitação - F 228 2S2012 1) a) Na figura a abaixo quatro esferas formam os vértices de um quadrado cujo lado tem 2,0 cm de comprimento. Qual é a intensidade, a direção e o sentido da força gravitacional

Leia mais

O trabalho realizado por uma força gravitacional constante sobre uma partícula é representado em termos da energia potencial U = m.

O trabalho realizado por uma força gravitacional constante sobre uma partícula é representado em termos da energia potencial U = m. Referência: Sears e Zemansky Física I Mecânica Capítulo 7: Energia Potencial e Conservação da Energia Resumo: Profas. Bárbara Winiarski Diesel Novaes. INTRODUÇÃO Neste capítulo estudaremos o conceito de

Leia mais

Se um sistema troca energia com a vizinhança por trabalho e por calor, então a variação da sua energia interna é dada por:

Se um sistema troca energia com a vizinhança por trabalho e por calor, então a variação da sua energia interna é dada por: Primeira Lei da Termodinâmica A energia interna U de um sistema é a soma das energias cinéticas e das energias potenciais de todas as partículas que formam esse sistema e, como tal, é uma propriedade do

Leia mais

TIPO-A FÍSICA. r 1200 v média. Dado: Aceleração da gravidade: 10 m/s 2. Resposta: 27

TIPO-A FÍSICA. r 1200 v média. Dado: Aceleração da gravidade: 10 m/s 2. Resposta: 27 1 FÍSICA Dado: Aceleração da gravidade: 10 m/s 01. Considere que cerca de 70% da massa do corpo humano é constituída de água. Seja 10 N, a ordem de grandeza do número de moléculas de água no corpo de um

Leia mais

Departamento de Física Universidade do Algarve PÊNDULO SIMPLES

Departamento de Física Universidade do Algarve PÊNDULO SIMPLES Departamento de Física Universidade do lgarve PÊNDULO SIMPLES 1. Resumo Um pêndulo é largado de uma determinada altura, medindo-se a sua velocidade linear quando passa pela posição mais baixa. Este procedimento

Leia mais

Energia & Trabalho. Aula 3

Energia & Trabalho. Aula 3 Todo o material disponibilizado é preparado para as disciplinas que ministramos e colocado para ser acessado livremente pelos alunos ou interessados. Solicitamos que não seja colocado em sites nãolivres.

Leia mais

Módulo VII Mistura de Gases Ideais. Relações p-v-t. Entalpia, Energia Interna, Entropia e Calores Específicos. Sistemas com Misturas.

Módulo VII Mistura de Gases Ideais. Relações p-v-t. Entalpia, Energia Interna, Entropia e Calores Específicos. Sistemas com Misturas. Módulo VII Mistura de Gases Ideais. Relações p-v-t. Entalpia, Energia Interna, Entropia e Calores Específicos. Sistemas com Misturas. Composição de uma Mistura de Gases A especificação do estado de uma

Leia mais

Física Parte 2. Fórmulas para obtenção das grandezas: 1.Superfície 2.Volume 3.Densidades 4.Vazão 5.Pressão 6.Teorema de Pascal 7.

Física Parte 2. Fórmulas para obtenção das grandezas: 1.Superfície 2.Volume 3.Densidades 4.Vazão 5.Pressão 6.Teorema de Pascal 7. Física Parte 2 Fórmulas para obtenção das grandezas: 1.Superfície 2.Volume 3.Densidades 4.Vazão 5.Pressão 6.Teorema de Pascal 7.Empuxo Introdução A memorização de unidades para as diversas grandezas existentes

Leia mais

Mecânica Aplicada. Engenharia Biomédica ESFORÇOS INTERNOS EM PEÇAS LINEARES

Mecânica Aplicada. Engenharia Biomédica ESFORÇOS INTERNOS EM PEÇAS LINEARES Mecânica plicada Engenharia iomédica ESFORÇOS INTERNOS EM PEÇS INERES Versão 0.2 Setembro de 2008 1. Peça linear Uma peça linear é um corpo que se pode considerar gerado por uma figura plana cujo centro

Leia mais

Física. Resolução. Q uestão 01 - A

Física. Resolução. Q uestão 01 - A Q uestão 01 - A Uma forma de observarmos a velocidade de um móvel em um gráfico d t é analisarmos a inclinação da curva como no exemplo abaixo: A inclinação do gráfico do móvel A é maior do que a inclinação

Leia mais

ENERGIA POTENCIAL E CONSERVAÇÃO DE ENERGIA Física Geral I (1108030) - Capítulo 04

ENERGIA POTENCIAL E CONSERVAÇÃO DE ENERGIA Física Geral I (1108030) - Capítulo 04 ENERGIA POTENCIAL E CONSERVAÇÃO DE ENERGIA Física Geral I (1108030) - Capítulo 04 I. Paulino* *UAF/CCT/UFCG - Brasil 2012.2 1 / 15 Sumário Trabalho e EP Energia potencial Forças conservativas Calculando

Leia mais

Sistemas eléctricos e magnéticos

Sistemas eléctricos e magnéticos Sistemas eléctricos e magnéticos A corrente eléctrica como forma de transferência de energia Prof. Luís Perna 2010/11 Geradores de corrente eléctrica Um gerador eléctrico é um dispositivo que converte

Leia mais

CDI-II. Trabalho. Teorema Fundamental do Cálculo

CDI-II. Trabalho. Teorema Fundamental do Cálculo Instituto Superior Técnico Departamento de Matemática Secção de Álgebra e Análise Prof. Gabriel Pires CDI-II Trabalho. Teorema Fundamental do Cálculo 1 Trabalho. Potencial Escalar Uma das noções mais importantes

Leia mais

Leonnardo Cruvinel Furquim TERMOQUÍMICA

Leonnardo Cruvinel Furquim TERMOQUÍMICA Leonnardo Cruvinel Furquim TERMOQUÍMICA Termoquímica Energia e Trabalho Energia é a habilidade ou capacidade de produzir trabalho. Mecânica; Elétrica; Calor; Nuclear; Química. Trabalho Trabalho mecânico

Leia mais

Problemas de Mecânica e Ondas 11

Problemas de Mecânica e Ondas 11 Problemas de Mecânica e Ondas 11 P. 11.1 ( Exercícios de Física, A. Noronha, P. Brogueira) Dois carros com igual massa movem-se sem atrito sobre uma mesa horizontal (ver figura). Estão ligados por uma

Leia mais

Todas as dúvidas deste curso podem ser esclarecidas através do nosso plantão de atendimento ao cursista.

Todas as dúvidas deste curso podem ser esclarecidas através do nosso plantão de atendimento ao cursista. Caro cursista, Todas as dúvidas deste curso podem ser esclarecidas através do nosso plantão de atendimento ao cursista. Plantão de Atendimento Horário: terças e quintas-feiras das 14:00 às 16:00. MSN:

Leia mais

2. Duração da Prova: - Escrita: 90 min (+30 minutos de tolerância) - Prática: 90 min (+30 minutos de tolerância)

2. Duração da Prova: - Escrita: 90 min (+30 minutos de tolerância) - Prática: 90 min (+30 minutos de tolerância) ESCOLA SECUNDÁRIA FERNÃO DE MAGALHÃES Física 12º ano CÓDIGO 315 (1ª e 2ª Fases ) INFORMAÇÃO PROVA DE EXAME DE EQUIVALÊNCIA À FREQUÊNCIA Alunos do Decreto-Lei nº 74/2004 Formação Específica Ano Letivo:

Leia mais

Trabalho realizado por forças constantes que atuam num sistema em qualquer direção

Trabalho realizado por forças constantes que atuam num sistema em qualquer direção 1 Trabalho realizado por forças constantes que atuam num sistema em qualquer direção A noção de trabalho Trabalho potente, resistente e nulo Trabalho realizado por mais do que uma força constante Representação

Leia mais

Vamos relatar alguns fatos do dia -a- dia para entendermos a primeira lei de Newton.

Vamos relatar alguns fatos do dia -a- dia para entendermos a primeira lei de Newton. CAPÍTULO 8 As Leis de Newton Introdução Ao estudarmos queda livre no capítulo cinco do livro 1, fizemos isto sem nos preocuparmos com o agente Físico responsável que provocava a aceleração dos corpos em

Leia mais

Capítulo 7 Conservação de Energia

Capítulo 7 Conservação de Energia Função de mais de uma variável: Capítulo 7 Conservação de Energia Que para acréscimos pequenos escrevemos Onde usamos o símbolo da derivada parcial: significa derivar U parcialmente em relação a x, mantendo

Leia mais

Os elementos de circuito que estudámos até agora foram elementos lineares. Ou seja, se duplicamos a ddp aos terminais de um

Os elementos de circuito que estudámos até agora foram elementos lineares. Ou seja, se duplicamos a ddp aos terminais de um O Díodo Os elementos de circuito que estudámos até agora foram elementos lineares. Ou seja, se duplicamos a ddp aos terminais de um componente, a intensidade da corrente eléctrica que o percorre também

Leia mais

1. Nesta figura, está representada, de forma esquemática, a órbita de um cometa em torno do Sol:

1. Nesta figura, está representada, de forma esquemática, a órbita de um cometa em torno do Sol: 1. Nesta figura, está representada, de forma esquemática, a órbita de um cometa em torno do Sol: Nesse esquema, estão assinalados quatro pontos P, Q, R ou S da órbita do cometa. a) Indique em qual dos

Leia mais

MÓDULO 03 - PROPRIEDADES DO FLUIDOS. Bibliografia

MÓDULO 03 - PROPRIEDADES DO FLUIDOS. Bibliografia MÓDULO 03 - PROPRIEDADES DO FLUIDOS Bibliografia 1) Estática dos Fluidos Professor Dr. Paulo Sergio Catálise Editora, São Paulo, 2011 CDD-620.106 2) Introdução à Mecânica dos Fluidos Robert W. Fox & Alan

Leia mais

UNIVERSIDADE ESTADUAL DE FEIRA DE SANTANA ALUNA LENAMIRIA CRUZ

UNIVERSIDADE ESTADUAL DE FEIRA DE SANTANA ALUNA LENAMIRIA CRUZ UNIVERSIDADE ESTADUAL DE FEIRA DE SANTANA DEPARTAMENTO DE FÍSICA DISCIPLINA - FÍSICA EXPERIMENTAL ІІ CURSO ENGENHARIA DE ALIMENTOS DOCENTE CALHAU ALUNA LENAMIRIA CRUZ PRINCÍPIO DE PASCAL FEIRA DE SANTANA-BA,

Leia mais

Tópico 8. Aula Prática: Movimento retilíneo uniforme e uniformemente variado (Trilho de ar)

Tópico 8. Aula Prática: Movimento retilíneo uniforme e uniformemente variado (Trilho de ar) Tópico 8. Aula Prática: Movimento retilíneo uniforme e uniformemente variado (Trilho de ar) 1. OBJETIVOS DA EXPERIÊNCIA 1) Esta aula experimental tem como objetivo o estudo do movimento retilíneo uniforme

Leia mais

1.5 O oscilador harmónico unidimensional

1.5 O oscilador harmónico unidimensional 1.5 O oscilador harmónico unidimensional A energia potencial do oscilador harmónico é da forma U = 2 2, (1.29) onde é a constante de elasticidade e a deformação da mola. Substituindo (1.29) em (1.24) obtemos

Leia mais

1 Analise a figura a seguir, que representa o esquema de um circuito com a forma da letra U, disposto perpendicularmente à superfície da Terra.

1 Analise a figura a seguir, que representa o esquema de um circuito com a forma da letra U, disposto perpendicularmente à superfície da Terra. FÍSIC 1 nalise a figura a seguir, que representa o esquema de um circuito com a forma da letra U, disposto perpendicularmente à superfície da Terra. Esse circuito é composto por condutores ideais (sem

Leia mais

Equações do primeiro grau

Equações do primeiro grau Módulo 1 Unidade 3 Equações do primeiro grau Para início de conversa... Você tem um telefone celular ou conhece alguém que tenha? Você sabia que o telefone celular é um dos meios de comunicação que mais

Leia mais

UNIDADE IV: Ser humano e saúde Cultura indígena. Aula: 14.1 Conteúdo: Introdução a estática e suas definições.

UNIDADE IV: Ser humano e saúde Cultura indígena. Aula: 14.1 Conteúdo: Introdução a estática e suas definições. UNIDADE IV: Ser humano e saúde Cultura indígena. Aula: 14.1 Conteúdo: Introdução a estática e suas definições. Habilidade: Compreender os conceitos físicos relacionados a estática de um ponto material

Leia mais

AGRUPAMENTO de ESCOLAS Nº1 de SANTIAGO do CACÉM Ano Letivo 2013/2014 PLANIFICAÇÃO ANUAL

AGRUPAMENTO de ESCOLAS Nº1 de SANTIAGO do CACÉM Ano Letivo 2013/2014 PLANIFICAÇÃO ANUAL AGRUPAMENTO de ESCOLAS Nº1 de SANTIAGO do CACÉM Ano Letivo 2013/2014 PLANIFICAÇÃO ANUAL Documento(s) Orientador(es): Programa Física e Química A 10º Ano ENSINO SECUNDÁRIO FÍSICA E QUÍMICA A 10º ANO TEMAS/DOMÍNIOS

Leia mais

!"#$%&'()*+,-'#&*'!-./0+-+*'11! 234252346'728'9/:/*.0/;!

!#$%&'()*+,-'#&*'!-./0+-+*'11! 234252346'728'9/:/*.0/;! "#$%&'()*+,-'#&*'-./0+-+*'11 234252346'728'9/:/*.0/; A'CD9'AEBF1A19'11 Programa "#$%&'(%&)*+%*,-%./01%23,43*56 7%&*8)*,-%.90134 $).(3:8)+%(%&1*0)* ;&3-143.1+3+%?@,3:8)+%A),&

Leia mais

Resumo de Física 2C13 Professor Thiago Alvarenga Ramos

Resumo de Física 2C13 Professor Thiago Alvarenga Ramos Resumo de Física 2C13 Professor Thiago Alvarenga Ramos ENERGIA Grandeza escalar que existe na natureza em diversas formas: mecânica, térmica, elétrica, nuclear, etc. Não pode ser criada nem destruída;

Leia mais

LEI DA CONSERVAÇÃO DE ENERGIA MECÂNICA. LEI DA VARIAÇÃO DA ENERGIA MECÂNICA.

LEI DA CONSERVAÇÃO DE ENERGIA MECÂNICA. LEI DA VARIAÇÃO DA ENERGIA MECÂNICA. LEI DA CONSERVAÇÃO DE ENERGIA MECÂNICA. LEI DA VARIAÇÃO DA ENERGIA MECÂNICA. OTRABALHO REALIZADO PELO PESO DE UM CORPO E A VARIAÇÃO DA ENERGIA POTENCIAL GRAVÍTICA O que têm em comum estas duas situações?

Leia mais

Processos em Engenharia: Modelagem Matemática de Sistemas Fluídicos

Processos em Engenharia: Modelagem Matemática de Sistemas Fluídicos Processos em Engenharia: Modelagem Matemática de Sistemas Fluídicos Prof. Daniel Coutinho coutinho@das.ufsc.br Departamento de Automação e Sistemas DAS Universidade Federal de Santa Catarina UFSC DAS 5101

Leia mais

Lição 3. Instrução Programada

Lição 3. Instrução Programada Lição 3 É IMPORTANTE A ATENTA LEITURA DAS INSTRUÇÕES FORNECIDAS NAS LIÇÕES 1 e 2. NOSSO CURSO NÃO SE TRATA DE UM CURSO POR COR RESPONDENCIA; NÃO NOS DEVERÃO SER MAN- DADAS FOLHAS COM AS QUESTÕES PARA SEREM

Leia mais

Discussão sobre as leis de Newton no contexto da análise de estruturas

Discussão sobre as leis de Newton no contexto da análise de estruturas Princípios físicos básicos para as condições de equilíbrio As condições de equilíbrio garantem o equilíbrio estático de qualquer porção isolada da estrutura ou da estrutura como um todo. Elas estão baseadas

Leia mais

Vestibular UFRGS 2015. Resolução da Prova de Física

Vestibular UFRGS 2015. Resolução da Prova de Física Vestibular URGS 2015 Resolução da Prova de ísica 1. Alternativa (C) O módulo da velocidade relativa de móveis em movimentos retilíneos de sentidos opostos pode ser obtido pela expressão matemática: v r

Leia mais

Aceleração Constante

Aceleração Constante Objetivos: Aceleração Constante Encontrar as equações do movimento a aceleração constante e traçar uma metodologia para resolução destes problemas; Detalhar o movimento de Queda Livre para um corpo próximo

Leia mais

AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2015/2016 PLANIFICAÇÃO ANUAL

AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2015/2016 PLANIFICAÇÃO ANUAL AGRUPAMENTO de ESCOLAS de SANTIAGO do CACÉM Ano Letivo 2015/2016 PLANIFICAÇÃO ANUAL Documento(s) Orientador(es): Programa de Física 12.º ano homologado em 21/10/2004 ENSINO SECUNDÁRIO FÍSICA 12.º ANO TEMAS/DOMÍNIOS

Leia mais

Escola E. B. 2º e 3º ciclos do Paul. Trabalho elaborado por: Diana Vicente nº 9-7ºB No âmbito da disciplina de Ciências Naturais

Escola E. B. 2º e 3º ciclos do Paul. Trabalho elaborado por: Diana Vicente nº 9-7ºB No âmbito da disciplina de Ciências Naturais Escola E. B. 2º e 3º ciclos do Paul Trabalho elaborado por: Diana Vicente nº 9-7ºB No âmbito da disciplina de Ciências Naturais Introdução Formação do sistema solar Constituição * Sol * Os planetas * Os

Leia mais

Pelo princípio da independência dos movimentos, na horizontal, temos: V. = 0, o corpo se comporta como em queda livre, por isso: F g.

Pelo princípio da independência dos movimentos, na horizontal, temos: V. = 0, o corpo se comporta como em queda livre, por isso: F g. Questão 01 008 Um astronauta, de pé sobre a superfície da Lua, arremessa uma pedra, horizontalmente, a partir de uma altura de 1,5 m, e verifica que ela atinge o solo a uma distância de 15 m. Considere

Leia mais

10 Plasma: o quarto estado da matéria

10 Plasma: o quarto estado da matéria 10 Plasma: o quarto estado da matéria Petrus Josephus Wilhelmus Debye (1884-1966) Químico holandês nascido em Maastricht, que deixou importantes estudos no domínio da estrutura molecular. Em 1908 obteve

Leia mais

b) Calcule as temperaturas em Kelvin equivalentes às temperaturas de 5,0 ºC e 17,0 ºC.

b) Calcule as temperaturas em Kelvin equivalentes às temperaturas de 5,0 ºC e 17,0 ºC. Questão 1 A pressão P no interior de um fluido em equilíbrio varia com a profundidade h como P = P 0 + ρgh. A equação dos gases ideais relaciona a pressão, o volume e a temperatura do gás como PV = nrt,

Leia mais