CAPÍTULO 2: TENSÃO E DEFORMAÇÃO: Carregamento Axial

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "CAPÍTULO 2: TENSÃO E DEFORMAÇÃO: Carregamento Axial"

Transcrição

1 Curso de ngenharia Civil Universidade stadual de Maringá Centro de Tecnologia Departamento de ngenharia Civil CÍTUO 2: TNSÃO DFOMÇÃO: Carregamento ial 2.1 Deformação specífica O diagrama carga deformação é referente a barra analisada, não podendo ser usado para prever deformações de outras barras com outras dimensões.

2 2.1 Deformação specífica Deformação Total: δ ou f Deformação specífica Normal (ε) [epsilon]: é a deformação por unidade de comprimento. ε Unidade: dimensional (/) Valores muito pequenos: Ordem de grandeza de 10-6 epresentada por µ (micro) 2.2 Diagrama Tensão - Deformação Caracteriza as propriedades do material e não depende das dimensões da amostra. relação (σ ε) depende: Tipo do material; Intensidade do esforço aplicado. É também denominada relação constitutva do material. relação é medida através de ensaios de tração ou compressão.

3 2.2 Diagrama Tensão - Deformação 2.2 Diagrama Tensão - Deformação

4 2.2 Diagrama Tensão - Deformação De maneira geral, eistem os materiais Dúcteis e Frágeis: Materiais Dúcteis: Sofrem grandes deformações antes de atingir a ruptura (com ou sem limite de escoamento)..: aço, alumínio. 2.2 Diagrama Tensão - Deformação Materiais Dúcteis com patamar de escoamento: 1- O: a deformação é proporcional a tensão até atingir o limite de proporcionalidade (σ p ) no ponto. 2- BC: patamar de escoamento, o ponto B representa o limite de escoamento (σ e ).

5 2.2 Diagrama Tensão - Deformação Materiais Dúcteis com patamar de escoamento: 3- O ponto D caracteriza o nível máimo de tensão, Tensão de uptura (σ u ). 4- O ponto é o ponto de ruptura. 5- Descarregando-se em um ponto C do diagrama, fora do limite elástico, as deformações ocorrem segundo uma linha paralela a O,porém conservando uma deformação residual. 2.2 Diagrama Tensão - Deformação Materiais Dúcteis sem patamar de escoamento: O limite de escoamento (σ e ) no ponto B, corresponde a uma deformação residual de 0,2% se a barra for descarregada.

6 2.2 Diagrama Tensão - Deformação Materiais Frágeis: São aqueles que sofrem ruptura de forma brusca (não apresentam deformações consideradas)..: concreto, vidro, cerâmica. σ σ i 2.3 ei de Hooke É a relação de proporcionalidade entre a tensão e a deformação. O coeficiente de proporcionalidade () entre a tensão (σ) e a deformação (ε) é chamado de MÓDUO D STICIDD (ou MÓDUO D YOUNG). α ε i ε σ ε σ tgα i ε i ei de Hooke

7 2.3 ei de Hooke Material elástico linear: obedece a ei de Hooke; Material não elástico: não obedece a ei de Hooke; Material lástico: material não elástico com deformação residual; Material lastoplástico: material com comportamento elástico, e após certo valor de tensão, apresenta deformações residuais. sta disciplina estuda apenas materiais com comportamento lástico. (Teoria da lasticidade) 2.4 Deformação de Barras Carregadas ialmente Sendo válida a lei de Hook, pode-se determinar a deformação de uma barra carregada aialmente. σ ; ε ; σ ε Combinando-se estas equações, a deformação é dada por: δ rigidez aial da barra

8 2.4 Deformação de Barras Carregadas ialmente stas equações são válidas para materiais homogêneos (const.) e barras de seção constante (const.) m casos em que as seções transversais sejam variáveis ou o material varie também em determinados trechos, a epressão de δ pode ser usada dividindo o problema em partes onde a equação seja individualmente satisfeita. O deslocamento total pode ser determinada por: i i d δ ou δ i i i Barras com Cargas iais Intermediárias Diagrama de sforço Normal / /3 2 - /3 3 + igidez ial

9 2.4.1 Barras com Cargas iais Intermediárias Trecho 1: Trecho 2: Trecho 3: δ 1 δ 2 δ (alongamento) (encurtamento) (alongamento) Barras com Cargas iais Intermediárias δ i i i i i δ + δ + δ δ δ Deformação total na barra (alongamento) 3

10 2.4.2 Barras com Trechos de Seções Transversais Diferentes ou Materiais Diferentes 1 Diagrama de sforço Normal 1 2 a 1 - δ 1 1 a 1 1 (encurtamento) b igidez ial do trecho igidez ial do trecho δ 2 ( + ) 1 2 b 1 a δ δ1 + δ (encurtamento) ( + ) b Barra com Seção Transversal e/ou Força ial Variando Continuamente ao longo da Barra d d Módulo de lasticidade d dδ δ 0 dδ 0 d

11 2.4 Deformação de Barras Carregadas ialmente emplo 1: Calcular a deformação de uma barra prismática submetida a uma força aial de tração, considerando a ação do peso próprio. γ - massa específica do material rigidez aial da barra. sboço no quadro 2.4 Deformação de Barras Carregadas ialmente emplo 2: Uma barra tronco-cônica, de diâmetro variando de 20cm a 40cm e 3m de comprimento, está sob a ação de 500kN de tração. Determine o alongamento da barra sendo 200Ga. sboço no quadro

12 2.5 struturas staticamente Indeterminadas a C b B F 0 + y B 1 quação 2 Incógnitas B (única equação da stática) Sistema staticamente Indeterminado 2.5 struturas staticamente Indeterminadas s equações de equilíbrio da estática são insuficientes para determinar as ações e reações da estrutura. STUTU STTICMNT INDTMIND. diciona-se às equações da stática, equações suplementares que levam em conta as deformações

13 2.5 struturas staticamente Indeterminadas Solução pelo Método das Forças: Considera-se uma das reações como redundante, ou seja, é desnecessária para o equilíbrio da estrutura. dota-se dois sistemas: 1) strutura com carregamento e sem a reação redundante; 2) strutura apenas com a ação da reação redundante como um carregamento. superposição dos dois sistemas deverá ser igual a estrutura analisada. 2.5 struturas staticamente Indeterminadas Solução pelo Método das Forças: emplo: scolhendo-se como redundante a C C b Sistema 1 Sistema 2 B B B

14 2.5 struturas staticamente Indeterminadas Solução pelo Método das Forças: a C C δ 2 δ 1 b B B Nestas condições é possível calcular as deformações de cada sistema: δ Sistema 1 Sistema 2 b 1 e 2 B δ 2.5 struturas staticamente Indeterminadas Solução pelo Método das Forças: Compatibilizando as deformações de cada sistema com a estrutura real, chega-se a equação de compatibilidade dos deslocamentos; Como a estrutura real é engastada nas duas etremidades, a deformação final da estrutura é nula: δ 0 δ δ δ Deformação final da estrutura quação de compatibilidade entre os dois sistemas

15 2.5 struturas staticamente Indeterminadas Solução pelo Método das Forças: Desenvolvendo a equação de compatibilidade dos deslocamentos: b b δ 1 δ 2 δ 2.5 struturas staticamente Indeterminadas Solução pelo Método das Forças: gora temos duas equações e duas incógnitas, tornando o sistema determinado: a b b b b II I + + B B B B ) ( Determinado Sistema ) ( ) (

16 2.5 struturas staticamente Indeterminadas emplo 3: ara a estrutura abaio, determine as reações nos apoios quando se aplica o carregamento indicado. 2.5 struturas staticamente Indeterminadas emplo 4: ara a estrutura abaio, qual é a deformação total do conjunto.

17 2.5 struturas staticamente Indeterminadas emplo 5: Um pilar de concreto armado, seção quadrada de 25cm de lado e 2,80m de comprimento, não sujeito à flambagem, é armado com 4 barras longitudinais de ½ simetricamente colocadas. Determine as tensões no concreto e no aço para uma compressão aial de 400kN, adotando: a 210Ga e c 20Ga. sboço no quadro 2.6 Tensões Térmicas m sistemas estruturais isostáticos não se considera as deformações provocadas pela temperatura, porque nestes casos, os elementos estruturais são livres para epandir-se ou contrair-se, não provocando tensões. m sistemas estruturais estaticamente indeterminados, a epansão ou contração de um corpo pode ser restringida ou totalmente impedida, gerando tensões internas. T T Isostática δ T Hiperestática

18 2.6 Tensões Térmicas Deformação devido a variação da temperatura: δ T T α coeficiente de dilatação térmica α T T variação de temperatura comprimento inicial da barra Deformação térmica específica: α T εt ε α T T 2.6 Tensões Térmicas Tensão na barra devido ao acréscimo de temperatura T. rigidez da barra strutura estaticamente indeterminada: Método das forças 1- Inicialmente, suponha-se que a barra tenha uma das etremidades livres.

19 2.6 Tensões Térmicas 2- Calcule as deformações devido: a) somente a atuação da temperatura; b) somente a reação redundante. T T δ α δ T δ T δ 2.6 Tensões Térmicas T T T α α δ δ 3- Compatibilidade de deslocamentos: 4- Tensão na Barra: T T T ε α σ α σ ste resultado se aplica no caso de barra de seção transversal uniforme e material homogêneo.

20 2.6 Tensões Térmicas emplo 6: Um tubo de cobre de 50cm de comprimento, área da seção transversal 20cm 2, esta colocado entre dois cabeçotes de metal, os quais são ajustados por dois parafusos de aço com diâmetro de 20mm. Se o conjunto sofrer um aumento de temperatura de 40ºC, ache as tensões nos elementos. c 120Ga a 210Ga. α c 16,710-6 /ºC α c 11,710-6 /ºC Tubo de Cobre arafusos de aço 2.7 Coeficiente de oisson O alongamento produzido por uma força na direção dessa força é acompanhado por uma contração em qualquer direção transversal. or considerar o material homogêneo e isotrópico: ε y ε z Deformação specífica Transversal O valor absoluto da relação entre a deformação específica transversal e a deformação específica longitudinal é o COFICINT D OISSON (ν) [nii]: ε y ε z ν ε ε ogo : σ ε σ ε y ε z ν

21 2.7 Coeficiente de oisson emplo 7: ara o material ensaiado a tração conforme ensaio descrito abaio, determine o coeficiente de oisson e o Móduo de lasticidade ongitudianl. y 500mm d 16mm 12kN δ 300µm δ y -2,4µm 2.8 Generalização da ei de Hooke té o momento estudou-se cargas aiais atuando ao longo de um único eio.

22 2.8 Generalização da ei de Hooke nalisando as tensões em um ponto da seção, vemos que σ /, σ y, 0 e σ z 0 : σ y 0 σ z Generalização da ei de Hooke Se considerarmos carregamentos atuando nas três direções, carregamento multiaial, (σ, σ y, e σ z 0); Um cubo de dimensões unitárias, após o carregamento se tornará um paralelepípedo de lados: σ σ z (1+ε ) (1+ε z ) (1+ε y ) σ ( 1+ ε ) ( 1+ ε ) y ( 1+ ε ) z σ y

23 2.8 Generalização da ei de Hooke ode-se escrever as deformações em função das tensões; ara isso, considera-se separadamente o efeito de cada componente de tensão, após superpõe-se os resultados (rincípio da Superposição); Hipóteses: 1) Cada efeito é diretamente proporcional a carga que o produz; 2) deformação causada por qualquer dos carregamentos é pequena e não afeta as condições de aplicação dos outros carregamentos. 2.8 Generalização da ei de Hooke ε ε y ε z σ + σ σ ν σ ν σ y σ y ν σ y + σ y ν σ z σ ν z σ ν z + σ z

24 ε ε ε 2.8 Generalização da ei de Hooke Superpondo os resultados: y z σ σ y σ z ν ν σ σ y σ z ν + ν σ σ y σ z ν ν + Generalização da ei de Hooke 2.8 Generalização da ei de Hooke emplo 8: O bloco de aço com dimensões de 80mm 60mm 40mm, está submetido à ação de pressão uniforme em todas as faces. variação de comprimento B foi de -24µm. Determine: a) Variação do comprimento das outras duas faces; b) pressão p aplicada nas faces do bloco. dotar 200Ga e ν 0,29.

25 2.9 Tensão e Deformação no Cisalhamento Tensão de cisalhamento sobre planos ortogonais τ y τ y 2.9 Tensão e Deformação no Cisalhamento ara o equilíbrio do elemento, as tensões nos planos paralelos são numericamente iguais mas de sentidos opostos. τ y F y M 0 τ τ y y τ ( d z d y ) τ y ( d z d y ) 0 ( d d ) d τ ( d d ) y z y y z y d 0 O equilíbrio do elemento só está garantido se as tensões de cisalhamento ocorrerem simultaneamente nas quatro faces do elemento.

26 2.9.2 Deformação no Cisalhamento Sob a tensão das tensões de cisalhamento, o elemento se deforma do seguinte modo: γ y Distorção ou Deformação de Cisalhamento (em radianos) distorção é positiva quando reduz o ângulo entre e y Deformação no Cisalhamento Como não eistem tensões normais, não há alteração de comprimento nos lados do elemento. Hipóteses: equenas deformações; Material elástico linear. τ y G γ y G ei de Hooke para o Cisalhamento Módulo de lasticidade Transversal (ascal)

27 2.9.2 Deformação no Cisalhamento O Módulo de elasticidade transversal é medido em laboratório pelo ensaio de torção de um tubo de seção circular. perimentalmente, verificou-se que para os materiais dúcteis, a tensão de escoamento em cisalhamento é 0,5 a 0,6 da tensão normal de escoamento. e lação entre G, eν G 2 1+ ( ν ) 2.9 Tensão e Deformação no Cisalhamento emplo 9: Um bloco com dimensões a160mm, b50mm e h40mm, feito de material com G 600Ma, é colocado entre duas placas horizontais rígidas. placa inferior é fiada e a superior é submetida a força V. Sabendo-se que a placa superior se move d0,8mm, determine: a) a deformação de cisalhamento no material; b) a força V.

28 2.10 rincípio de Saint-Venant 2.10 rincípio de Saint-Venant dotamos que as tensões normais são uniformemente distribuídas em qualquer seção transversal; ssa suposição não se verifica na vizinhança do ponto de aplicação da força. rincípio de Saint-Venant: ara as seções transversais a uma distância igual ou maior que b da etremidade da barra, a distribuição de tensões na seção é considerada uniforme e igual a σ méd / b b b

Relações entre tensões e deformações

Relações entre tensões e deformações 3 de dezembro de 0 As relações entre tensões e deformações são estabelecidas a partir de ensaios experimentais simples que envolvem apenas uma componente do tensor de tensões. Ensaios complexos com tensões

Leia mais

Curso de Engenharia Civil. Universidade Estadual de Maringá Centro de Tecnologia Departamento de Engenharia Civil CAPÍTULO 6: TORÇÃO

Curso de Engenharia Civil. Universidade Estadual de Maringá Centro de Tecnologia Departamento de Engenharia Civil CAPÍTULO 6: TORÇÃO Curso de Engenharia Civil Universidade Estadual de Maringá Centro de ecnologia Departamento de Engenharia Civil CPÍULO 6: ORÇÃO Revisão de Momento orçor Convenção de Sinais: : Revisão de Momento orçor

Leia mais

Capítulo 3 Propriedades Mecânicas dos Materiais

Capítulo 3 Propriedades Mecânicas dos Materiais Capítulo 3 Propriedades Mecânicas dos Materiais 3.1 O ensaio de tração e compressão A resistência de um material depende de sua capacidade de suportar uma carga sem deformação excessiva ou ruptura. Essa

Leia mais

Discussão sobre as leis de Newton no contexto da análise de estruturas

Discussão sobre as leis de Newton no contexto da análise de estruturas Princípios físicos básicos para as condições de equilíbrio As condições de equilíbrio garantem o equilíbrio estático de qualquer porção isolada da estrutura ou da estrutura como um todo. Elas estão baseadas

Leia mais

Lista de exercícios sobre barras submetidas a força normal

Lista de exercícios sobre barras submetidas a força normal RESISTÊNCIA DOS MATERIAIS I Lista de exercícios sobre barras submetidas a força normal 1) O cabo e a barra formam a estrutura ABC (ver a figura), que suporta uma carga vertical P= 12 kn. O cabo tem a área

Leia mais

Caso (2) X 2 isolado no SP

Caso (2) X 2 isolado no SP Luiz Fernando artha étodo das Forças 6 5.5. Exemplos de solução pelo étodo das Forças Exemplo Determine pelo étodo das Forças o diagrama de momentos fletores do quadro hiperestático ao lado. Somente considere

Leia mais

Pontifícia Universidade Católica do Rio de Janeiro PUC-Rio. CIV 1111 Sistemas Estruturais na Arquitetura I

Pontifícia Universidade Católica do Rio de Janeiro PUC-Rio. CIV 1111 Sistemas Estruturais na Arquitetura I Pontifícia Universidade Católica do Rio de Janeiro PUC-Rio CIV 1111 Sistemas Estruturais na Arquitetura I Profa. Elisa Sotelino Prof. Luiz Fernando Martha Propriedades de Materiais sob Tração Objetivos

Leia mais

Mecânica dos Materiais

Mecânica dos Materiais Mecânica dos Materiais Esforços axiais Tensões e Deformações Esforços multiaxiais Lei de Hooke generalizada 2 Tradução e adaptação: Victor Franco Correia (versão 1/2013) Ref.: Mechanics of Materials, Beer,

Leia mais

2.0 DEFORMAÇÃO POR TORÇÃO DE UM EIXO CIRCULAR

2.0 DEFORMAÇÃO POR TORÇÃO DE UM EIXO CIRCULAR TORÇÃO 1.0 OBJETIVO No estudo da torção serão discutidos os efeitos da aplicação de esforços torcionais em um elemento linear longo, tal como um eixo ou um tubo. Será considerado que o elemento tenha seção

Leia mais

RESISTÊNCIA DOS MATERIAIS APOSTILA 02

RESISTÊNCIA DOS MATERIAIS APOSTILA 02 Engenharia da Computação 1 4º / 5 Semestre RESISTÊNCI DOS TERIIS OSTI rof Daniel Hasse Tensões e Deformações Esforços Solicitantes Tensões e Deformações na Fleão Deformações nas igas SÃO JOSÉ DOS COS,

Leia mais

TECNOLOGIA MECÂNICA. Aula 04. Carregamento Axial Tensão Normal

TECNOLOGIA MECÂNICA. Aula 04. Carregamento Axial Tensão Normal FACULDADE DE TECNOLOGIA SHUNJI NISHIMURA POMPÉIA TECNOLOGIA MECÂNICA Aula 04 Carregamento Axial Tensão Normal Prof. Me. Dario de Almeida Jané Mecânica dos Sólidos - Revisão do conceito de Tensão - Carregamento

Leia mais

Efeito do comportamento reológico do concreto

Efeito do comportamento reológico do concreto Efeito do comportamento reológico do concreto FLECHAS E ELEENTOS DE CONCRETO ARADO 1 - INTRODUÇÃO Todo o cálculo das deformações de barras, devidas à fleão, tem por base a clássica equação diferencial

Leia mais

Universidade Federal de Pelotas Centro de Engenharias. Resistência dos Materiais I Estruturas II. Capítulo 5 Torção

Universidade Federal de Pelotas Centro de Engenharias. Resistência dos Materiais I Estruturas II. Capítulo 5 Torção Capítulo 5 Torção 5.1 Deformação por torção de um eixo circular Torque é um momento que tende a torcer um elemento em torno de seu eixo longitudinal. Se o ângulo de rotação for pequeno, o comprimento e

Leia mais

RESISTÊNCIA DOS MATERIAIS AMB 28 AULA 7. Professor Alberto Dresch Webler

RESISTÊNCIA DOS MATERIAIS AMB 28 AULA 7. Professor Alberto Dresch Webler Resistências dos Materiais dos Materiais - Aula 5 - Aula 7 RESISTÊNCIA DOS MATERIAIS AMB 28 AULA 7 Professor Alberto Dresch Webler 1 Aula 7 Tensão e deformação de cisalhamento; Tensões e cargas admissíveis;

Leia mais

Resistência. dos Materiais II

Resistência. dos Materiais II Resistência Prof. MSc Eng Halley Dias dos Materiais II Material elaborado pelo Prof. MSc Eng Halley Dias Instituto Federal de Educação Ciência e Tecnologia de Santa Catarina Aplicado ao Curso Técnico de

Leia mais

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DOS VALES DO JEQUITINHONA E MUCURI DIAMANTINA MG ESTUDO DIRIGIDO

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DOS VALES DO JEQUITINHONA E MUCURI DIAMANTINA MG ESTUDO DIRIGIDO MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DOS VALES DO JEQUITINHONA E MUCURI DIAMANTINA MG ESTUDO DIRIGIDO Disciplina: Construções Rurais 2011/1 Código: AGR006/AGR007 Curso (s): Agronomia e Zootecnia

Leia mais

1. Definição dos Elementos Estruturais

1. Definição dos Elementos Estruturais A Engenharia e a Arquitetura não devem ser vistas como duas profissões distintas, separadas, independentes uma da outra. Na verdade elas devem trabalhar como uma coisa única. Um Sistema Estrutural definido

Leia mais

5ª LISTA DE EXERCÍCIOS PROBLEMAS ENVOLVENDO FLEXÃO

5ª LISTA DE EXERCÍCIOS PROBLEMAS ENVOLVENDO FLEXÃO Universidade Federal da Bahia Escola Politécnica Departamento de Construção e Estruturas Professor: Armando Sá Ribeiro Jr. Disciplina: ENG285 - Resistência dos Materiais I-A www.resmat.ufba.br 5ª LISTA

Leia mais

3) Calcule o alongamento elástico da peça do esquema abaixo. Seu material tem módulo de elasticidade de 2x10 5 N/mm 2.

3) Calcule o alongamento elástico da peça do esquema abaixo. Seu material tem módulo de elasticidade de 2x10 5 N/mm 2. UNIVERSIDADE FEDERAL DE MATO GROSSO DO SUL CÂMPUS DE CHAPADÃO DO SUL DISCIPLINA: CONSTRUÇÕES RURAIS LISTA DE EXERCICIOS I RESISTÊNCIA DOS MATERIAIS PROFESSOR: PAULO CARTERI CORADI 1) Calcule a deformação

Leia mais

ESTRUTURAS DE CONCRETO CAPÍTULO 2 CARACTERÍSTICAS DO CONCRETO

ESTRUTURAS DE CONCRETO CAPÍTULO 2 CARACTERÍSTICAS DO CONCRETO ESTRUTURAS DE CONCRETO CAPÍTULO 2 Libânio M. Pinheiro, Cassiane D. Muzardo, Sandro P. Santos Março de 2004 CARACTERÍSTICAS DO CONCRETO Como foi visto no capítulo anterior, a mistura em proporção adequada

Leia mais

Ensaio de torção. Diz o ditado popular: É de pequenino que

Ensaio de torção. Diz o ditado popular: É de pequenino que A UU L AL A Ensaio de torção Diz o ditado popular: É de pequenino que se torce o pepino! E quanto aos metais e outros materiais tão usados no nosso dia-a-dia: o que dizer sobre seu comportamento quando

Leia mais

Elementos de Máquinas

Elementos de Máquinas Professor: Leonardo Leódido Aula 2 Revisão: Análise de alhas Aula 2 Análise de alhas Instituto ederal de Brasília Sumário Sistemas de orças Resistência dos Materiais lambagem alhas Estáticas alhas Dinâmicas

Leia mais

UNIVERSIDADE DE MARÍLIA

UNIVERSIDADE DE MARÍLIA UNIVERSIDADE DE MARÍLIA Faculdade de Engenharia, Arquitetura e Tecnologia SISTEMAS ESTRUTURAIS (NOTAS DE AULA) Professor Dr. Lívio Túlio Baraldi MARILIA, 2007 1. DEFINIÇÕES FUNDAMENTAIS Força: alguma causa

Leia mais

EXERCÍCIOS DE ESTRUTURAS DE MADEIRA

EXERCÍCIOS DE ESTRUTURAS DE MADEIRA UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA CIVIL,ARQUITETURA E URBANISMO Departamento de Estruturas EXERCÍCIOS DE ESTRUTURAS DE MADEIRA RAFAEL SIGRIST PONTES MARTINS,BRUNO FAZENDEIRO DONADON

Leia mais

2 a Prova de EDI-49 Concreto Estrutural II Prof. Flávio Mendes Junho de 2012 Duração prevista: até 4 horas.

2 a Prova de EDI-49 Concreto Estrutural II Prof. Flávio Mendes Junho de 2012 Duração prevista: até 4 horas. 2 a Prova de EDI-49 Concreto Estrutural II Prof. Flávio Mendes Junho de 212 Duração prevista: até 4 horas. Esta prova tem oito (8) questões e três (3) laudas. Consulta permitida somente ao formulário básico.

Leia mais

Disciplina: Resistência dos Materiais Unidade I - Tensão. Professor: Marcelino Vieira Lopes, Me.Eng. http://profmarcelino.webnode.

Disciplina: Resistência dos Materiais Unidade I - Tensão. Professor: Marcelino Vieira Lopes, Me.Eng. http://profmarcelino.webnode. Disciplina: Resistência dos Materiais Unidade I - Tensão Professor: Marcelino Vieira Lopes, Me.Eng. http://profmarcelino.webnode.com/blog/ Referência Bibliográfica Hibbeler, R. C. Resistência de materiais.

Leia mais

Resistência dos Materiais - Apostila I

Resistência dos Materiais - Apostila I Resistência dos Materiais - postila I 1 CÁLCULO DS REÇÕES... 1 1.1 Tipos de suportes (ou apoios)... 1 1. Tipos de carregamentos... 1. Classificação de vigas... 1.4 Cálculo das reações nas vigas... 4 DIGRMS

Leia mais

2. CONCEITOS BÁSICOS DE ANÁLISE ESTRUTURAL

2. CONCEITOS BÁSICOS DE ANÁLISE ESTRUTURAL 2. CONCEITOS BÁSICOS DE ANÁLISE ESTRUTURAL Este capítulo resume alguns conceitos básicos de análise estrutural para estruturas que são compostas por barras. Esses conceitos foram selecionados de forma

Leia mais

RESISTÊNCIA DOS MATERIAIS IX

RESISTÊNCIA DOS MATERIAIS IX UNIVERSIDDE FEDERL FLUMINENSE CENTRO TECNOLÓGICO ESCOL DE ENGENHRI Departamento de Engenharia Civil RESISTÊNCI DOS MTERIIS IX Flávia Moll de Souza Judice Mara Soares Pereira Lima Perlingeiro 005 SUMÁRIO

Leia mais

PROVAESCRITA CARGO: ENGENHARIA CIVIL I

PROVAESCRITA CARGO: ENGENHARIA CIVIL I MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO SUL DE MINAS GERAIS CONCURSO PÚBLICO DE DOCENTES DO QUADRO EFETIVO EDITAL

Leia mais

SUPERESTRUTURA estrutura superestrutura infra-estrutura lajes

SUPERESTRUTURA estrutura superestrutura infra-estrutura lajes SUPRSTRUTUR s estruturas dos edifícios, sejam eles de um ou vários pavimentos, são constituídas por diversos elementos cuja finalidade é suportar e distribuir as cargas, permanentes e acidentais, atuantes

Leia mais

MATERIAIS METÁLICOS AULA 5

MATERIAIS METÁLICOS AULA 5 UNIVERSIDADE ESTADUAL DE FEIRA DE SANTANA CURSO DE ENGENHARIA CIVIL DEPARTAMENTO DE TECNOLOGIA MATERIAIS DE CONSTRUÇÃO I E (TEC 156) MATERIAIS METÁLICOS AULA 5 Profª. Cintia Maria Ariani Fontes 1 Ensaio

Leia mais

ÍNDICE DO LIVRO CÁLCULO E DESENHO DE CONCRETO ARMADO autoria de Roberto Magnani SUMÁRIO LAJES

ÍNDICE DO LIVRO CÁLCULO E DESENHO DE CONCRETO ARMADO autoria de Roberto Magnani SUMÁRIO LAJES ÍNDICE DO LIVRO CÁLCULO E DESENHO DE CONCRETO ARMADO autoria de Roberto Magnani SUMÁRIO LAJES 2. VINCULAÇÕES DAS LAJES 3. CARREGAMENTOS DAS LAJES 3.1- Classificação das lajes retangulares 3.2- Cargas acidentais

Leia mais

COMPORTAMENTO DOS MATERIAIS SOB TENSÃO. Prof. Rubens Caram

COMPORTAMENTO DOS MATERIAIS SOB TENSÃO. Prof. Rubens Caram COMPORTAMENTO DOS MATERIAIS SOB TENSÃO Prof. Rubens Caram 1 TENSÃO X DEFORMAÇÃO O EFEITO DE TENSÕES NA ESTRUTURA DE METAIS PODE SER OBSERVADO NA FORMA DE DEFORMAÇÕES: EM ESTRUTURAS DE ENGENHARIA, ONDE

Leia mais

ESTRUTURAS METÁLICAS UFPR CAPÍTULO 5 FLEXÃO SIMPLES

ESTRUTURAS METÁLICAS UFPR CAPÍTULO 5 FLEXÃO SIMPLES ESTRUTURAS METÁLICAS UFPR CAPÍTULO 5 FLEXÃO SIMPLES 1 INDICE CAPÍTULO 5 DIMENSIONAMENTO BARRAS PRISMÁTICAS À FLEXÃO... 1 1 INTRODUÇÃO... 1 2 CONCEITOS GERAIS... 1 2.1 Comportamento da seção transversal

Leia mais

RESISTÊNCIA DOS MATERIAIS

RESISTÊNCIA DOS MATERIAIS 1 RESISTÊNCIA DOS MATERIAIS Prof.: J. E. Guimarães Revisão 7 20/01/08 2 RESISTÊNCIA DOS MATERIAIS Revisão de Matemática Faremos aqui uma pequena revisão de matemática necessária à nossa matéria, e sem

Leia mais

6.9 - Exercícios... 49 7 - CISALHAMENTO... 50 7.1 - Introdução... 50 7.2 - Tensão de Cisalhamento... 50 7.3 - Tensões de Esmagamento... 53 7.

6.9 - Exercícios... 49 7 - CISALHAMENTO... 50 7.1 - Introdução... 50 7.2 - Tensão de Cisalhamento... 50 7.3 - Tensões de Esmagamento... 53 7. APRESENTAÇÃO RESISTÊNCIA DOS MATERIAIS Comumente observamos que eixos empenam, pinos são esmagados e cortados, vigas deformam, rolamentos se desgastam, chavetas quebram, etc. Mas por que isso acontece?

Leia mais

6 Vigas: Solicitações de Flexão

6 Vigas: Solicitações de Flexão 6 Vigas: Solicitações de Fleão Introdução Dando seqüência ao cálculo de elementos estruturais de concreto armado, partiremos agora para o cálculo e dimensionamento das vigas à fleão. Ações As ações geram

Leia mais

Resistência dos Materiais I

Resistência dos Materiais I Resistência dos Materiais I Profa. Patrícia Habib Hallak Prof Afonso Lemonge 3º. Período de 2012 Aspectos gerais do curso Objetivos Gerais Fornecer ao aluno conhecimentos básicos das propriedades mecânicas

Leia mais

UNIVERSIDADE SALGADO DE OLIVEIRA Campus RECIFE. Curso: Engenharia de Produção Disciplina: Materiais para Produção Industrial

UNIVERSIDADE SALGADO DE OLIVEIRA Campus RECIFE. Curso: Engenharia de Produção Disciplina: Materiais para Produção Industrial UNIVERSIDADE SALGADO DE OLIVEIRA Campus RECIFE Curso: Disciplina: Aula 1 PROPRIEDADES MECÂNICAS DOS METAIS POR QUÊ ESTUDAR? A determinação e/ou conhecimento das propriedades mecânicas é muito importante

Leia mais

Uma estrutura pode estar em equilíbrio ou movimento.

Uma estrutura pode estar em equilíbrio ou movimento. 1. INTRODUÇÃO Uma estrutura pode estar em equilíbrio ou movimento. Existem estruturas que são dimensionadas para estarem em equilíbrio (edifícios, pontes, pórticos, etc.) e as que são dimensionadas para

Leia mais

Facear Concreto Estrutural I

Facear Concreto Estrutural I 1. ASSUNTOS DA AULA Durabilidade das estruturas, estádios e domínios. 2. CONCEITOS As estruturas de concreto devem ser projetadas e construídas de modo que, quando utilizadas conforme as condições ambientais

Leia mais

Propriedades Mecânicas dos Aços DEMEC TM175 Prof Adriano Scheid

Propriedades Mecânicas dos Aços DEMEC TM175 Prof Adriano Scheid Propriedades Mecânicas dos Aços DEMEC TM175 Prof Adriano Scheid Tensão Propriedades Mecânicas: Tensão e Deformação Deformação Elástica Comportamento tensão-deformação O grau com o qual a estrutura cristalina

Leia mais

Universidade Federal de Santa Catarina Departamento de Engenharia Mecânica Grupo de Análise e Projeto Mecânico

Universidade Federal de Santa Catarina Departamento de Engenharia Mecânica Grupo de Análise e Projeto Mecânico Universidade Federal de Santa Catarina Departamento de Engenharia Mecânica Grupo de nálise e Projeto Mecânico CURSO DE MECÂNIC DOS SÓLIDOS Prof. José Carlos Pereira gosto de 00 SUMÁRIO 1 CÁLCULO DS REÇÕES...

Leia mais

Ensaios Mecânicos de Materiais. Aula 10 Ensaio de Torção. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Ensaios Mecânicos de Materiais. Aula 10 Ensaio de Torção. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues Ensaios Mecânicos de Materiais Aula 10 Ensaio de Torção Tópicos Abordados Nesta Aula Ensaio de Torção. Propriedades Avaliadas do Ensaio. Exemplos de Cálculo. Definições O ensaio de torção consiste em aplicação

Leia mais

1. Determinar a tensão normal nos pontos das seções S 1 e S 2 da barra da figura.

1. Determinar a tensão normal nos pontos das seções S 1 e S 2 da barra da figura. 16 10 mm 10 mm 1. eterminar a tensão normal nos pontos das seções S 1 e S 2 da barra da figura. S1 S1 20 kn 300 mm 160 mm 50 mm 80 mm S 1 40MPa S 2 3,98MPa 2. Para a barra da figura, determinar a variação

Leia mais

As lajes de concreto são consideradas unidirecionais quando apenas um ou dois lados são considerados apoiados.

As lajes de concreto são consideradas unidirecionais quando apenas um ou dois lados são considerados apoiados. LAJES DE CONCRETO ARMADO 1. Unidirecionais As lajes de concreto são consideradas unidirecionais quando apenas um ou dois lados são considerados apoiados. 1.1 Lajes em balanço Lajes em balanço são unidirecionais

Leia mais

Observa-se ainda que, para pequenos giros, os pontos de uma seção transversal não sofrem deslocamento na direção longitudinal.

Observa-se ainda que, para pequenos giros, os pontos de uma seção transversal não sofrem deslocamento na direção longitudinal. Universiae Feeral e Alagoas Centro e ecnologia Curso e Engenharia Civil Disciplina: Mecânica os Sólios Cóigo: ECIV030 Professor: Euaro Nobre ages orção em Barras e Seção ransversal Circular Cheia ou Vazaa

Leia mais

MESOESTRUTURA ESFORÇOS OS ATUANTES NOS PILARES

MESOESTRUTURA ESFORÇOS OS ATUANTES NOS PILARES MESOESTRUTURA ESFORÇOS OS ATUANTES NOS PILARES DETERMINAÇÃO DE ESFORÇOS OS HORIZONTAIS ESFORÇOS ATUANTES NOS PILARES Os pilares estão submetidos a esforços verticais e horizontais. Os esforços verticais

Leia mais

Propriedades Mecânicas. Prof. Hamilton M. Viana

Propriedades Mecânicas. Prof. Hamilton M. Viana Propriedades Mecânicas Prof. Hamilton M. Viana Propriedades Mecânicas Propriedades Mecânicas Definem a resposta do material à aplicação de forças (solicitação mecânica). Força (tensão) Deformação Principais

Leia mais

de forças não concorrentes.

de forças não concorrentes. Universidade Federal de Alagoas Centro de Tecnologia Curso de Engenharia Civil Disciplina: Mecânica dos Sólidos 1 Código: ECIV018 Professor: Eduardo Nobre Lages Equilíbrio de Corpos Rígidos Maceió/AL Objetivo

Leia mais

REFORÇO DE VIGAS DE CONCRETO ARMADO, Á FLEXAO, COM FIBRA DE CARBONO

REFORÇO DE VIGAS DE CONCRETO ARMADO, Á FLEXAO, COM FIBRA DE CARBONO CURSO PRÁTICO DE DIAGNOSTICO, REPARO, PROTEÇÃO E REFORÇO DE ESTRUTURAS DE CONCRETO REFORÇO DE VIGAS DE CONCRETO ARMADO, Á FLEXAO, COM FIBRA DE CARBONO PROF. FERNANDO JOSÉ RELVAS frelvas@exataweb.com.br

Leia mais

Equipe de Física FÍSICA

Equipe de Física FÍSICA Aluno (a): Série: 3ª Turma: TUTORIAL 8B Ensino Médio Equipe de Física Data: FÍSICA Estática de um ponto Para que um ponto esteja em equilíbrio precisa satisfazer a seguinte condição: A resultante de todas

Leia mais

1.1 Conceitos fundamentais... 19 1.2 Vantagens e desvantagens do concreto armado... 21. 1.6.1 Concreto fresco...30

1.1 Conceitos fundamentais... 19 1.2 Vantagens e desvantagens do concreto armado... 21. 1.6.1 Concreto fresco...30 Sumário Prefácio à quarta edição... 13 Prefácio à segunda edição... 15 Prefácio à primeira edição... 17 Capítulo 1 Introdução ao estudo das estruturas de concreto armado... 19 1.1 Conceitos fundamentais...

Leia mais

CAPÍTULO V CISALHAMENTO CONVENCIONAL

CAPÍTULO V CISALHAMENTO CONVENCIONAL 1 I. ASPECTOS GERAIS CAPÍTULO V CISALHAMENTO CONVENCIONAL Conforme já foi visto, a tensão representa o efeito de um esforço sobre uma área. Até aqui tratamos de peças submetidas a esforços normais a seção

Leia mais

13 PROPRIEDADES MECÂNICAS DOS MATERIAIS

13 PROPRIEDADES MECÂNICAS DOS MATERIAIS NG01140 Turma C (Prof. Aleandre Pacheco) 39 13 PROPRIDADS MCÂNICAS DOS MATRIAIS Os ensaios de tração e compressão stes ensaios são provavelmente uns dos mais comuns a serem usados em engenharia. les são

Leia mais

Deformação de Vigas em flexão

Deformação de Vigas em flexão Mecânica dos Materiais Deformação de Vigas em fleão Tradução e adaptação: Victor Franco Ref.: Mechanics of Materials, eer, Johnston & DeWolf McGra-Hill. Mechanics of Materials, R. Hibbeler, Pearsons Education.

Leia mais

Terceira Lista de Exercícios

Terceira Lista de Exercícios Universidade Católica de Petrópolis Disciplina: Resitência dos Materiais I Prof.: Paulo César Ferreira Terceira Lista de Exercícios 1. Calcular o diâmetro de uma barra de aço sujeita a ação de uma carga

Leia mais

Capítulo 3: Propriedades mecânicas dos materiais

Capítulo 3: Propriedades mecânicas dos materiais Capítulo 3: Propriedades mecânicas dos materiais O ensaio de tração e compressão A resistência de um material depende de sua capacidade de suportar uma carga sem deformação excessiva ou ruptura. Essa propriedade

Leia mais

LISTA 3 EXERCÍCIOS SOBRE ENSAIOS DE COMPRESSÃO, CISALHAMENTO, DOBRAMENTO, FLEXÃO E TORÇÃO

LISTA 3 EXERCÍCIOS SOBRE ENSAIOS DE COMPRESSÃO, CISALHAMENTO, DOBRAMENTO, FLEXÃO E TORÇÃO LISTA 3 EXERCÍCIOS SOBRE ENSAIOS DE COMPRESSÃO, CISALHAMENTO, DOBRAMENTO, FLEXÃO E TORÇÃO 1. Uma mola, com comprimento de repouso (inicial) igual a 30 mm, foi submetida a um ensaio de compressão. Sabe-se

Leia mais

Propriedades dos Materiais CAP 3

Propriedades dos Materiais CAP 3 Universidade Federal do Ceará Resistência dos Materiais I Propriedades dos Materiais CAP 3 Profa. Tereza Denyse de Araújo Março/2010 Roteiro de aula Ensaio de Cisalhamento Ensaio de Torção Falhas de Materiais

Leia mais

MEMORIAL DE CÁLCULO 071811 / 1-0. PLATAFORMA PARA ANDAIME SUSPENSO 0,60 m X 2,00 m MODELO RG PFM 2.1

MEMORIAL DE CÁLCULO 071811 / 1-0. PLATAFORMA PARA ANDAIME SUSPENSO 0,60 m X 2,00 m MODELO RG PFM 2.1 MEMORIAL DE CÁLCULO 071811 / 1-0 PLATAFORMA PARA ANDAIME SUSPENSO 0,60 m X 2,00 m MODELO RG PFM 2.1 FABRICANTE: Metalúrgica Rodolfo Glaus Ltda ENDEREÇO: Av. Torquato Severo, 262 Bairro Anchieta 90200 210

Leia mais

e-mail: ederaldoazevedo@yahoo.com.br

e-mail: ederaldoazevedo@yahoo.com.br Centro de Ensino Superior do Amapá-CEAP Curso: Arquitetura e Urbanismo Assunto: Cálculo de Pilares Prof. Ederaldo Azevedo Aula 4 e-mail: ederaldoazevedo@yahoo.com.br Centro de Ensino Superior do Amapá-CEAP

Leia mais

2.1 O Comportamento Estrutural

2.1 O Comportamento Estrutural 2 Vigas As vigas consistem basicamente de barras, contínuas ou não, com eixo reto ou curvo, equiibradas por um sistema de apoios, de modo a garantir que essas barras sejam, no mínimo, isostáticas. Estão

Leia mais

Critérios de falha. - determinam a segurança do componente; - coeficientes de segurança arbitrários não garantem um projeto seguro;

Critérios de falha. - determinam a segurança do componente; - coeficientes de segurança arbitrários não garantem um projeto seguro; Critérios de falha - determinam a segurança do componente; - coeficientes de segurança arbitrários não garantem um projeto seguro; - compreensão clara do(s) mecanismo(s) de falha (modos de falha); -aspectos

Leia mais

Sociedade Goiana de Cultura Universidade Católica de Goiás Departamento de Engenharia Laboratório de Materiais de Construção

Sociedade Goiana de Cultura Universidade Católica de Goiás Departamento de Engenharia Laboratório de Materiais de Construção Sociedade Goiana de Cultura Universidade Católica de Goiás Departamento de Engenharia Laboratório de Materiais de Construção Ensaios de Stuttgart Reprodução em Laboratório Consorte, Anna Karlla G. Oliveira,

Leia mais

Resistência dos Materiais

Resistência dos Materiais Aula 5 Carga Axial e Princípio de Saint-Venant Carga Axial A tubulação de perfuração de petróleo suspensa no guindaste da perfuratriz está submetida a cargas e deformações axiais extremamente grandes,

Leia mais

Este curso consiste de uma introdução ao cálculo estrutural das vigas de concreto armado, ilustrada através do estudo de vigas retas de edifícios.

Este curso consiste de uma introdução ao cálculo estrutural das vigas de concreto armado, ilustrada através do estudo de vigas retas de edifícios. Introdução 1 1. Introdução O objetivo do cálculo de uma estrutura de concreto armado é o de se garantir: uma segurança adequada contra a ruptura decorrente das solicitações; deformações decorrentes das

Leia mais

IME - 2003 2º DIA FÍSICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

IME - 2003 2º DIA FÍSICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR IME - 2003 2º DIA FÍSICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Física Questão 01 Um pequeno refrigerador para estocar vacinas está inicialmente desconectado da rede elétrica e o ar em seu interior encontra-se

Leia mais

Universidade Federal de Minas Gerais. Escola de Engenharia. Departamento de Engenharia de Estruturas DISCIPLINA. Profa. Jacqueline Maria Flor

Universidade Federal de Minas Gerais. Escola de Engenharia. Departamento de Engenharia de Estruturas DISCIPLINA. Profa. Jacqueline Maria Flor Universidade Federal de Minas Gerais Escola de Engenharia Departamento de Engenharia de Estruturas CURSO DE GRADUAÇÃO EM ENGENHARIA CIVIL DISCIPLINA EES 023 - ANÁLISE ESTRUTURAL I APOSTILA DO PROGRAMA

Leia mais

Questão 1. Questão 2. Resposta. Resposta

Questão 1. Questão 2. Resposta. Resposta Questão 1 Na natureza, muitos animais conseguem guiar-se e até mesmo caçar com eficiência, devido à grande sensibilidade que apresentam para a detecção de ondas, tanto eletromagnéticas quanto mecânicas.

Leia mais

CAPÍTULO II INTRODUÇÃO À MECÂNICA DOS SÓLIDOS EQUILÍBRIO EXTERNO I. OBJETIVO PRINCIPAL DA MECÂNICA DOS SÓLIDOS

CAPÍTULO II INTRODUÇÃO À MECÂNICA DOS SÓLIDOS EQUILÍBRIO EXTERNO I. OBJETIVO PRINCIPAL DA MECÂNICA DOS SÓLIDOS 1 CAPÍTULO II INTRODUÇÃO À MECÂNICA DOS SÓLIDOS EQUILÍBRIO EXTERNO I. OBJETIVO PRINCIPAL DA MECÂNICA DOS SÓLIDOS O principal objetivo de um curso de mecânica dos sólidos é o desenvolvimento de relações

Leia mais

Universidade Federal de Ouro Preto. Escola de Minas. Departamento de Engenharia Civil CIV 107. Resistência dos Materiais e Estruturas

Universidade Federal de Ouro Preto. Escola de Minas. Departamento de Engenharia Civil CIV 107. Resistência dos Materiais e Estruturas Universidade Federal de Ouro Preto Escola de Minas Departamento de Engenharia Civil CIV 07 Resistência dos Materiais e Estruturas Geraldo Donizetti de Paula Jaime Florencio Martins Ouro Preto, Agosto/

Leia mais

RESISTÊNCIA DOS MATERIAIS

RESISTÊNCIA DOS MATERIAIS CAPÍTUO RESISTÊNCIA DOS MATERIAIS Terceira Edição Ferdinand P. Beer E. Russell Johnston Jr. Tensão e Deformação Carregamento Aial Capítulo 2 Tensão e Deformacão: Carregamento Aial 2.1 - Introdução 2.2

Leia mais

Capítulo 1 - Estática

Capítulo 1 - Estática Capítulo 1 - Estática 1.1. Generalidades sobre forças 1.1.1. A Grandeza Vetorial A finalidade da Estática, parte da Mecânica Geral, é o estudo das condições nas quais um sólido ou um sistema de sólidos,

Leia mais

MEMÓRIA DESCRITIVA PÓRTICO METÁLICO COM PONTE GRUA

MEMÓRIA DESCRITIVA PÓRTICO METÁLICO COM PONTE GRUA MEMÓRIA DESCRITIVA PÓRTICO METÁLICO COM PONTE GRUA INSTITUTO POLITÉCNICO DE BRAGANÇA! "# $&%(')*&,+ -.,/!0 1 2 23 Índice: 1- Informações gerais sobre o projecto e cálculo...1 2- Tipologia estrutural...2

Leia mais

ENSAIOS DE STUTTGART REPRODUÇÃO EM LABORATÓRIO

ENSAIOS DE STUTTGART REPRODUÇÃO EM LABORATÓRIO ENSAIOS DE STUTTGART RERODUÇÃO EM LABORATÓRIO Andrea Corrêa Rocha (1); Maria das Graças Duarte Oliveira (1); aulo Sérgio Oliveira Resende (1); Alberto Vilela Chaer (2) (1) Acadêmicos de Engenharia Civil,

Leia mais

Forças internas. Objetivos da aula: Mostrar como usar o método de seções para determinar as cargas internas em um membro.

Forças internas. Objetivos da aula: Mostrar como usar o método de seções para determinar as cargas internas em um membro. Forças internas Objetivos da aula: Mostrar como usar o método de seções para determinar as cargas internas em um membro. Generalizar esse procedimento formulando equações que podem ser representadas de

Leia mais

FUNDAÇÕES FUNDAÇÕES FUNDAÇÕES FUNDAÇÕES. Tutorial. Tutorial. Tutorial. Tutorial. MULTIPLUS www.multiplus.com. MULTIPLUS www.multiplus.

FUNDAÇÕES FUNDAÇÕES FUNDAÇÕES FUNDAÇÕES. Tutorial. Tutorial. Tutorial. Tutorial. MULTIPLUS www.multiplus.com. MULTIPLUS www.multiplus. Tutorial Tutorial FUNDAÇÕES FUNDAÇÕES Hot Line: (11) 3337-5552 SIM /controle/acesso.asp Praça da República, 386 6º and 01045-000 São Paulo - SP Hot Line: (11) 3337-5552 SIM /controle/acesso.asp Praça da

Leia mais

Técnico em Fabricação Mecânica Disciplina de Resistência dos Materiais LORENA BRAGA MOURA

Técnico em Fabricação Mecânica Disciplina de Resistência dos Materiais LORENA BRAGA MOURA Ministério da Educação - MEC Secretaria de Educação Profissional e Tecnológica (SETEC) Instituto Federal de Educação, Ciência e Tecnologia do Ceará Técnico em Fabricação Mecânica Disciplina de Resistência

Leia mais

RESISTÊNCIA DOS MATERIAIS

RESISTÊNCIA DOS MATERIAIS RESISTÊNCIA DOS MATERIAIS José Fernando Xavier Faraco Presidente da FIESC Sérgio Roberto Arruda Diretor Regional do Antônio José Carradore Diretor de Educação e Tecnologia do Marco Antônio Dociatti Diretor

Leia mais

Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Engenharia Civil. Mecânica Vetorial ENG01035

Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Engenharia Civil. Mecânica Vetorial ENG01035 Universidade ederal do Rio Grande do Sul scola de ngenharia epartamento de ngenharia ivil Mecânica Vetorial NG0035 Prof. Inácio. Morsch LIST PROLMS PROV tualiada em 03/03 XRÍIOS a. ÁR QUILÍRIO PRTÍUL (PROLMS

Leia mais

Governador Cid Ferreira Gomes. Vice Governador Domingos Gomes de Aguiar Filho. Secretária da Educação Maria Izolda Cela de Arruda Coelho

Governador Cid Ferreira Gomes. Vice Governador Domingos Gomes de Aguiar Filho. Secretária da Educação Maria Izolda Cela de Arruda Coelho Governador Cid Ferreira Gomes Vice Governador Domingos Gomes de Aguiar Filho Secretária da Educação Maria Izolda Cela de Arruda Coelho Secretário Adjunto Maurício Holanda Maia Secretário Executivo Antônio

Leia mais

Aço é uma liga metálica composta principalmente de ferro e de pequenas quantidades de carbono (em torno de 0,002% até 2%).

Aço é uma liga metálica composta principalmente de ferro e de pequenas quantidades de carbono (em torno de 0,002% até 2%). ESTRUTURAS DE CONCRETO CAPÍTULO 3 Libânio M. Pinheiro, Cassiane D. Muzardo, Sandro P. Santos. 31 de março, 2003. AÇOS PARA ARMADURAS 3.1 DEFINIÇÃO E IMPORTÂNCIA Aço é uma liga metálica composta principalmente

Leia mais

Teoria das Estruturas

Teoria das Estruturas Teoria das Estruturas Aula 02 Morfologia das Estruturas Professor Eng. Felix Silva Barreto ago-15 Q que vamos discutir hoje: Morfologia das estruturas Fatores Morfogênicos Funcionais Fatores Morfogênicos

Leia mais

Física. Resolução. Q uestão 01 - A

Física. Resolução. Q uestão 01 - A Q uestão 01 - A Uma forma de observarmos a velocidade de um móvel em um gráfico d t é analisarmos a inclinação da curva como no exemplo abaixo: A inclinação do gráfico do móvel A é maior do que a inclinação

Leia mais

Lajes de Edifícios de Concreto Armado

Lajes de Edifícios de Concreto Armado Lajes de Edifícios de Concreto Armado 1 - Introdução As lajes são elementos planos horizontais que suportam as cargas verticais atuantes no pavimento. Elas podem ser maciças, nervuradas, mistas ou pré-moldadas.

Leia mais

Mecânica Aplicada. Engenharia Biomédica ESFORÇOS INTERNOS EM PEÇAS LINEARES

Mecânica Aplicada. Engenharia Biomédica ESFORÇOS INTERNOS EM PEÇAS LINEARES Mecânica plicada Engenharia iomédica ESFORÇOS INTERNOS EM PEÇS INERES Versão 0.2 Setembro de 2008 1. Peça linear Uma peça linear é um corpo que se pode considerar gerado por uma figura plana cujo centro

Leia mais

Prof. André Motta - mottabip@hotmail.com_ 4.O gráfico apresentado mostra a elongação em função do tempo para um movimento harmônico simples.

Prof. André Motta - mottabip@hotmail.com_ 4.O gráfico apresentado mostra a elongação em função do tempo para um movimento harmônico simples. Eercícios Movimento Harmônico Simples - MHS 1.Um movimento harmônico simples é descrito pela função = 7 cos(4 t + ), em unidades de Sistema Internacional. Nesse movimento, a amplitude e o período, em unidades

Leia mais

CONSTRUÇÕES RURAIS: FUNDAMENTOS DE RESISTÊNCIA DOS MATERIAIS. Vandoir Holtz 1

CONSTRUÇÕES RURAIS: FUNDAMENTOS DE RESISTÊNCIA DOS MATERIAIS. Vandoir Holtz 1 Vandoir Holtz 1 DIMENSIONAMENTO DE ELEMENTOS TRACIONADOS: Nos cálculos de resistência à tração, devem ser considerados todos os enfraquecimentos na seção transversal, provocados por orifícios de rebites,

Leia mais

Módulo 6 Pilares: Estados Limites Últimos Detalhamento Exemplo. Imperfeições Geométricas Globais. Imperfeições Geométricas Locais

Módulo 6 Pilares: Estados Limites Últimos Detalhamento Exemplo. Imperfeições Geométricas Globais. Imperfeições Geométricas Locais NBR 68 : Estados Limites Últimos Detalhamento Exemplo P R O O Ç Ã O Conteúdo Cargas e Ações Imperfeições Geométricas Globais Imperfeições Geométricas Locais Definições ELU Solicitações Normais Situações

Leia mais

Estruturas Mistas de Aço e Concreto

Estruturas Mistas de Aço e Concreto Universidade Federal do Espírito Santo Estruturas Mistas de Aço e Concreto Prof. Fernanda Calenzani Programa Detalhado Estruturas Mistas Aço e Concreto 1. Informações Básicas 1.1 Materiais 1.2 Propriedades

Leia mais

INTRODUÇÃO À ANÁLISE DE ESTRUTURAS

INTRODUÇÃO À ANÁLISE DE ESTRUTURAS INTRODUÇÃO À ANÁLISE DE ESTRUTURAS Lui Fernando Martha Processo do Projeto Estrutural Concepção (arquitetônica) da obra atendimento às necessidades funcionais e econômicas Anteprojeto estrutural plantas

Leia mais

Tensões Admissíveis e Tensões Últimas; Coeficiente de Segurança

Tensões Admissíveis e Tensões Últimas; Coeficiente de Segurança - UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Tensões Admissíveis e Tensões

Leia mais

MATERIAIS PARA ENGENHARIA DE PETRÓLEO - EPET069 - Conformação dos Metais

MATERIAIS PARA ENGENHARIA DE PETRÓLEO - EPET069 - Conformação dos Metais MATERIAIS PARA ENGENHARIA DE PETRÓLEO - EPET069 - Conformação dos Metais CONFORMAÇÃO DOS METAIS Fundamentos da Conformação Plástica Diagrama Tensão x Deformação CONFORMAÇÃO DOS METAIS Fundamentos da Conformação

Leia mais

Curso de Engenharia Industrial Mecânica ENSAIOS DOS MATERIAIS

Curso de Engenharia Industrial Mecânica ENSAIOS DOS MATERIAIS Curso de Engenharia Industrial Mecânica ENSAIOS DOS MATERIAIS Santo Ângelo, Janeiro de 2007 Ensaios dos Materiais Acadêmica: Gabrieli Bortoli Dalcin Santo Ângelo, Janeiro de 2007 Sumário 1.ENSAIO DE TRAÇÃO...

Leia mais

Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Engenharia Civil. Mecânica Vetorial ENG01035

Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Engenharia Civil. Mecânica Vetorial ENG01035 Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Engenharia Civil EXERCÍCIOS D 2 a. ÁRE Mecânica Vetorial ENG035 LIST DE PROLEMS DE PROV CENTRO DE GRVIDDE 1) peça representada

Leia mais

Mecânica dos Sólidos EQ

Mecânica dos Sólidos EQ PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA CIVIL Mecânica dos Sólidos EQ Notas de Aula Profa. Maria Regina Costa Leggerini 1 CAPÍTULO I REVISÃO

Leia mais

FÍSICA - 1 o ANO MÓDULO 11 EQUILÍBRIO: DO PONTO MATERIAL E CORPO EXTENSO REVISÃO

FÍSICA - 1 o ANO MÓDULO 11 EQUILÍBRIO: DO PONTO MATERIAL E CORPO EXTENSO REVISÃO FÍSICA - 1 o ANO MÓDULO 11 EQUILÍBRIO: DO PONTO MATERIAL E CORPO EXTENSO REVISÃO Fixação F 1) (CESGRANRIO) A figura a seguir mostra uma peça de madeira, no formato de uma forca, 2 utilizada para suspender

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA CIVIL. Notas de Aula

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA CIVIL. Notas de Aula PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA CIVIL Resistência dos Materiais I Notas de Aula Profa. Maria Regina Costa Leggerini CAPÍTULO I INTRODUÇÃO

Leia mais