Mecânica dos Materiais

Tamanho: px
Começar a partir da página:

Download "Mecânica dos Materiais"

Transcrição

1 Mecânica dos Materiais Esforços axiais Tensões e Deformações Esforços multiaxiais Lei de Hooke generalizada 2 Tradução e adaptação: Victor Franco Correia (versão 1/2013) Ref.: Mechanics of Materials, Beer, Johnston & DeWolf McGraw-Hill. Mechanics of Materials, R. Hibbeler, Pearsons Education.

2 Deformação normal P tensão normal A deformação normal L 2-2

3 Teste de tracção uniaxial: tensão-deformação 2-3

4 Diagrama tensão-deformação: materiais dúcteis 2-4

5 Diagrama tensão-deformação: materiais frágeis Aspecto da fractura de um material dúctil Aspecto da fractura de um material frágil 2-5

6 Lei de Hooke: Módulo de elasticidade No regime elástico: E E Módulode Young ou Módulo de elasticidade A resistência mecânica é influenciada pelos elementos de liga, tratamentos térmicos, processos de fabrico, etc. mas não a rigidez Módulo de Elasticidade que se mantém inalterado. 2-6

7 Comportamento elástico vs. plástico Quando a deformação se recupera totalmente quando a tensão é retirada, diz-se que o material tem um comportamento elástico A maior tensão para a qual este comportamento ocorre é designado por limite elástico ou tensão limite de elasticidade Quando a deformação não se recupera totalmente, depois de a tensão ter sido anulada, diz-se que o material tem um comportamento plástico 2-7

8

9

10

11 Deformações sob a acção de Forças Axiais Da Lei de Hooke E E P AE Da definição de deformação L Igualando e resolvendo em ordem ao deslocamento PL AE Se a barra tiver variações na força axial, na área da secção transversal ou nas propriedades materiais, ter-se-á: P il A E i i i i 2-11

12

13

14

15

16 Exercício Calcular: a) Diagrama de esforços normais b) Qual o perfil HEA adequado para suportar os esforços indicados, assumindo um aço S235 e um coeficiente de segurança de 2.5 em relação ao limite elástico? c) Expressão para cálculo do deslocamento vertical da extremidade superior do pilar?

17 Exercício Considere o sistema da figura, que é composto por duas barras de aço ligadas à barra de cobre através de um pino. A barra de cobre tem um comprimento de 2 m, uma área da secção transversal de 4800 mm 2 e um módulo de elasticidade E c = 120 GPa. As barras de aço têm um comprimento de 0.5 m, uma área da secção transversal de 4500 mm2 e um módulo de elasticidade E a = 200 GPa. barra de aço a) Determinar o deslocamento vertical da extremidade inferior da barra de cobre provocado por uma força P = 180 kn. (0,625mm + 0,05mm = 0,675 mm) b) Qual a força P máxima admissível se o deslocamento vertical da extremidade inferior da barra de cobre for limitado a 1 mm? barra de cobre (266,7 kn)

18 Exercício Considere o sistema da figura, que é composto por três tirantes em Titânio, (AB, DC e EF) e uma viga rígida AEC. A área da secção transversal de cada tirante é indicada na figura. Se for aplicada uma força vertical P = 20 kn em F, determinar: a) As tensões nos tirantes. b) O deslocamento vertical do ponto E. c) O deslocamento vertical do ponto F. E Titânio = 114 GPa

19 Exercício Considere o sistema da figura, constituído por uma viga rígida ABD e um tirante CB, contruído numa liga de alumínio 6061, cuja área da secção transversal é de 14 mm 2. As ligações em C, B e A são efectuadas através de pinos. Determinar o deslocamento vertical do ponto D quando é aplicada a carga distribuída de 300 N/m conforme ilustrado. E Aluminio = 70 GPa

20 Exemplo Determinar o deslocamento da extremidade D em relação a A, para a barra de aço ABCD, sujeita às forças indicadas. E = 200 GPa 2-20

21 Exemplo 2-21

22 Problema 2.1 A barra rigida BDE é suportada por 2 barras AB e CD. A barra AB é de aluminio (E = 70 GPa) e tem uma área da secção transversal de 500 mm 2. A barra CD é de aço (E = 200 GPa) e tem uma área da secção transversal de 600 mm 2. Para a força de 30-kN ilustrada, determinar os deslocamento dos pontos: B, D e E. 2-22

23 Problema 2.1 Diagrama de corpo livre da barra BDE Deslocamento de B: B PL AE N 0.3m m 7010 Pa m M F F AB B 0 CD M D kN 0.6m 0 30kN 0.4 m F 90kN tracção F CD AB 60kN compressão 0.2 m 0.2 m Deslocamento de D: D PL AE B 0.514mm N 0.4m m Pa m D 0.300mm 2-23

24 Problema 2.1 Deslocamento de D: BB DD BH HD 0.514mm mm x 73.7 mm 200mm x x EE DD E 0.300mm E HE HD 1.928mm mm 73.7 mm E 1.928mm 2-24

25 Problemas estaticamente indeterminados As estruturas, para as quais as forças internas e as reacções não podem ser calculadas através das equações da estática, dizem-se estaticamente indeterminadas (pq possuem mais apoios dos que aqueles que seriam estritamente necessários para manter o equilibrio) As reacções redundantes são substituídas pelas forças correspondentes, que em conjunto com as restantes forças actuantes na estrutura, têm de originar deformações compatíveis As deformações causadas pelas forças actuantes na estrutura e pelas reacções redundantes são calculadas separadamente e depois são adicionadas através do principio da sobreposição L R

26 Exemplo Determinar as reacções em A e B para a barra de aço ilustrada na figura. Assumir um ajustamento perfeito entre a barra e os apoios antes da aplicação das cargas representadas. L R

27 Exemplo (cont.) Calcular o deslocamento em B devido às forças aplicadas com a reacção redundante libertada P A L L 0 A L 2 i 2 P i 2 L 3 P L i i A E i P L m E 9 3 N A m P 4 A N 6 m 2 Calcular o deslocamento em B devido à reacção redundante P L δ 1 A 1 1 R P L 2 i 2 R P ili A E m i i B m 2 A E R B 6 m

28 Exemplo (cont.) Impor que os deslocamentos devidos às forças aplicadas e devido à reacção redundante têm de ser compatíveis: E R B L R E N 577kN R B 0 Calcular a reacção em A F R A y 0 R 323kN A 300kN 600kN 577kN R R A B 323kN 577kN 2-28

29 Exemplo Determinar as reacções em A e B para a barra de aço ilustrada na figura. Assumir que existe uma folga de 4.5 mm entre a barra e o apoio em B, antes da aplicação das cargas representadas. =4.5 mm L R E m E 3 R B m R B 115 kn; R A kn 2-29

30 Problemas estaticamente indeterminados Equação adicional obtida através de compatibilização de deslocamentos E Considere-se o sistema da figura composto por: uma barra rígida EAD articulada no pino A; um cabo de aço BC, com um comprimento não deformado de 200 mm e uma área da secção transversal de 22.5 mm 2 ; um bloco de alumínio em D, com um comprimentos não deformado de 50 mm e uma área da secção transversal de 40 mm 2. Se a barra rígida EAD for sujeita à força de 450 N ilustrada, calcular: a) As tensões normais médias no cabo BC e no bloco D b) A rotação da barra rígida

31 Tensões de origem térmica Uma variação de temperatura origina uma deformação de origem térmica: T Não existem tensões associadas, excepto se a deformação estiver restringida pelos apoios Assumir o apoio como redundante e aplicar o principio da sobreposição T T L coeficient e de dilatação P térmica PL AE A deformação térmica e a deformação provocada pela reacção redundante têm de ser compatíveis T P PL AE 0 T L 0 P AE P A T E T 2-31

32 Problema estaticamente indeterminado (B&J 6th ed.) A barra de aço ABC está fixa entre dois suportes rígidos A e B e está livre de tensões a uma temperatura de 25ºC. Se a temperatura da barra for aumentada até 150 ºC, determinar: a) As tensões normais nos troços AC e CB b) O deslocamento do ponto C E = 200 GPa, α = 11.7 x 10-6 /ºC

33 Exemplo 2.4 B&J 6th Ed. A barra rígida CDE está articulada num apoio em E e encosta em D num cilindro de latão BD com diâmetro de 30 mm. Um tirante AC, em aço, com 22 mm de diâmetro está fixo em C conforme mostra a figura e foi perfeitamente ajustado, quando a temperatura do conjunto era de 20ºC. A temperatura do cilindro de latão foi posteriormente aumentada até 50ºC enquanto o tirante de aço foi mantido a 20ºC. Assumindo que antes do aumento de temperatura as tensões eram zero, determinar as tensões no cilindro para as condições finais.

34 Cont.

35 Coeficiente de Poisson Para uma barra esbelta sujeita a força uniaxial: x x E, 0 y O alongamento na direcção x é acompanhado de uma contracção nas outras direcções. Assumindo que o material é isotrópico, z y z 0 O coeficiente de Poisson é definido como deformação lateral deformação axial y x z x 2-35

36 Compressão 2-36

37 Exemplo determinação de E e 2-37

38 Tensões em planos oblíquos Imaginemos uma secção que forma um ângulo q com a normal ao eixo da barra Das condições de equilibrio, as forças distribuídas no plano tensões têm de equilibrar a força P. Decompondo P nas suas componentes normal e tangencial à secção oblíqua, F Pcosq V Psinq A tensão normal e a tensão de corte médias, no plano oblíquo são: F A V A q q Pcosq A0 cosq Psinq A0 cosq P A P A 0 0 cos 2 q sinq cosq 2-38

39 Tensão normal e tensão de corte máximas Tensão normal e tensão de corte no plano oblíquo: P A 0 cos A tensão normal máxima ocorre quando o plano de referencia é perpendicular ao eixo da longitudinal da barra, ie. segundo a direcção da força aplicada: 2 max q, P, 0 A A tensão de corte máxima ocorre para um plano a + 45 o em relação ao eixo longitudinal da barra: P P P max sin45º cos 45º, A 2A A 0 P A sinq cos q

40 Estado de tensões num ponto As componentes das tensões são definidas segundo as direcções dos eixos x, y e z e actuando em planos perpendiculares aos eixos x, y e z. As forças resultantes têm de satisfazer as condições de equilibrio estático: F x M x 0; 0; xy z F y M yx yz 0; y 0; xy zy F z 0 M z xz 0 Se considerarmos os momentos em torno do eixo z : M 0 Aa Aa igualmente, e yx zx 2-40

41 Estado de tensões num ponto caso geral O estado de tensão num ponto pode ser representado, no caso geral, por 6 componentes independentes: x xy,, y, yz, z zx tensões normais tensões de corte com : xy yx, yz zy, zx xz 2-41

42 Forças multiaxiais - Lei de Hooke generalizada Para um elemento sujeito a forças multiaxiais, as componentes normais das deformações resultantes das tensões normais podem ser determinadas usando o principio da sobreposição, sendo condições necessárias: 1) relação linear entre deformações e tensões 2) pequenas deformações Nestas condições, as deformações normais são dadas pelas equações seguintes: x y z x E E E x x E y y E E E E E y z z z 2-42

43 Exemplo Lei de Hooke generalizada Considere-se a barra de cobre representada na figura, que está sujeita às forças uniformemente distribuídas representadas. A barra tem comprimento a = 300 mm, largura b = 50 mm e espessura t = 20 mm, antes da aplicação das forças distribuídas. Determinar as novas dimensões da barra (comprimento, largura e espessura) após a aplicação das forças. E cobre = 120 GPa, cobre = 0.34.

44

45 Estado de tensões num ponto Tensões de corte 2-45

46 Deformações ou distorções de corte Um elemento cubico infinitésimal sujeito a uma tensão de corte deforma-se como representado na figura. A relação entre as tensões de corte e as distorsões correspondentes é dada por: xy G xy yz G yz zx G zx em que G é o módulo de elasticidade transversal. 2-46

47 Exemplo distorções e tensões de corte

48 Relação entre E, e G Considere-se a barra sólida sujeita a uma força axial que sofre um alongamento na direcção axial e uma contracção na direcção transversal Um elemento cúbico orientado como ilustrado na figura de cima, sofrerá a deformação representada. A força axial origina uma deformação axial Se o elemento cúbico estiver orientado como ilustrado na figura de baixo, sofrerá a distorção representada: A força axial origina também uma distorção de corte Em materiais isotrópicos, o módulo de elasticidade E e o módulo de elasticidade transversal G estão relacionados: E E 2G1 ou G 2(1 ) 2-48

49 Materiais Compositos Materiais compósitos reforçados com fibras: laminas; fibras de reforço; matriz As tensões normais e as deformações estão relacionadas pela Lei de Hooke: E x x x, E y y xy, x y y, xz E z z As deformações transversais estão relacionadas com longitudinais através dos coeficientes de Poisson: z Os materiais compósitos, com propriedades mecânicas dependentes da direcção, dizem-se anisotrópicos. x z 2-49

50 Principio de Saint-Venant Principio de Saint-Venant: Pode-se assumir que a distribuíção de tensões é independente do modo de aplicação da força, excepto na vizinhança imediata do ponto de aplicação da força. 2-50

51 Concentração de tensões: furo circular max med Descontinuídades da secção transversal podem resultar efeitos de concentração de tensões K max med 2-51

52 Concentração de tensões: concordância max med 2-52

53 Exemplo r Determinar a maior força axial P que pode ser suportada em segurança por uma barra plana em aço com uma concordância, ou variação de secção: D para d, ambas com uma espessura de 10 mm. D= 60 mm; d= 40 mm; raio da concordância r = 8 mm. Assumir uma tensão normal admissivel de 165 MPa. 2-53

54 Determinar as relações geométricas e obter o factor K, a partir dos gráficos apropriados: D d 60mm 40mm 1.50 r d 8mm 40mm 0.20 K 1.82 Tensão normal máxima: max K med adm med K adm 165MPa MPa Força máxima: P A med mm10mm 90.7 MPa 3 N P 36.3kN 2-54

55 Deformações plásticas P med A max K A Deformação elástica: enquanto a tensão máxima é menor que a tensão limite de elasticidade e0.2 P Y e0.2a K A tensão máxima é igual à tensão limite de elasticidade para a carga máxima em regime elástico max e0.2 Para cargas acima do limite elástico, desenvolve-se uma região de deformações plásticas junto ao furo P U e02. K P Y A À medida que a carga aumenta, a região deformada plasticamente aumenta até que toda a secção está sujeita a uma tensão uniforme igual à tensão limite de elasticidade (material idealmente plástico) 2-55

56

57

58

59 Exemplo 250 mm O parafuso de aço tem um diâmetro nominal de 8 mm e é montado no tubo de alumínio como indicado na figura. O tubo de alumínio tem um diâmetro interior de 12 mm e um diâmetro exterior de 14 mm. A porca em A é ajustada por forma a somente eliminar a folga não introduzindo qualquer força de aperto. Se o conjunto estiver inicialmente a uma temperatura T i = 20º C e fôr aquecido até à temperatura T f = 80º C, calcular as tensões desenvolvidas no parafuso e no tubo.

Conceito de tensão Tensões normais e tensões de corte

Conceito de tensão Tensões normais e tensões de corte Escola Superior Nautica Infante D. Henrique CET Manutenção Mecânica Naval Fundamentos de Resistência de Materiais Conceito de tensão Tensões normais e tensões de corte Tradução: V. Franco Ref.: Mechanics

Leia mais

5ª LISTA DE EXERCÍCIOS PROBLEMAS ENVOLVENDO FLEXÃO

5ª LISTA DE EXERCÍCIOS PROBLEMAS ENVOLVENDO FLEXÃO Universidade Federal da Bahia Escola Politécnica Departamento de Construção e Estruturas Professor: Armando Sá Ribeiro Jr. Disciplina: ENG285 - Resistência dos Materiais I-A www.resmat.ufba.br 5ª LISTA

Leia mais

Deformação de Vigas em flexão

Deformação de Vigas em flexão Mecânica dos Materiais Deformação de Vigas em fleão Tradução e adaptação: Victor Franco Ref.: Mechanics of Materials, eer, Johnston & DeWolf McGra-Hill. Mechanics of Materials, R. Hibbeler, Pearsons Education.

Leia mais

Relações entre tensões e deformações

Relações entre tensões e deformações 3 de dezembro de 0 As relações entre tensões e deformações são estabelecidas a partir de ensaios experimentais simples que envolvem apenas uma componente do tensor de tensões. Ensaios complexos com tensões

Leia mais

Capítulo 3 Propriedades Mecânicas dos Materiais

Capítulo 3 Propriedades Mecânicas dos Materiais Capítulo 3 Propriedades Mecânicas dos Materiais 3.1 O ensaio de tração e compressão A resistência de um material depende de sua capacidade de suportar uma carga sem deformação excessiva ou ruptura. Essa

Leia mais

Universidade Federal de Pelotas Centro de Engenharias. Resistência dos Materiais I Estruturas II. Capítulo 5 Torção

Universidade Federal de Pelotas Centro de Engenharias. Resistência dos Materiais I Estruturas II. Capítulo 5 Torção Capítulo 5 Torção 5.1 Deformação por torção de um eixo circular Torque é um momento que tende a torcer um elemento em torno de seu eixo longitudinal. Se o ângulo de rotação for pequeno, o comprimento e

Leia mais

Resistência. dos Materiais II

Resistência. dos Materiais II Resistência Prof. MSc Eng Halley Dias dos Materiais II Material elaborado pelo Prof. MSc Eng Halley Dias Instituto Federal de Educação Ciência e Tecnologia de Santa Catarina Aplicado ao Curso Técnico de

Leia mais

Curso de Engenharia Civil. Universidade Estadual de Maringá Centro de Tecnologia Departamento de Engenharia Civil CAPÍTULO 6: TORÇÃO

Curso de Engenharia Civil. Universidade Estadual de Maringá Centro de Tecnologia Departamento de Engenharia Civil CAPÍTULO 6: TORÇÃO Curso de Engenharia Civil Universidade Estadual de Maringá Centro de ecnologia Departamento de Engenharia Civil CPÍULO 6: ORÇÃO Revisão de Momento orçor Convenção de Sinais: : Revisão de Momento orçor

Leia mais

Terceira Lista de Exercícios

Terceira Lista de Exercícios Universidade Católica de Petrópolis Disciplina: Resitência dos Materiais I Prof.: Paulo César Ferreira Terceira Lista de Exercícios 1. Calcular o diâmetro de uma barra de aço sujeita a ação de uma carga

Leia mais

Mecânica dos Materiais. Flexão de Vigas. Tradução e adaptação: Victor Franco

Mecânica dos Materiais. Flexão de Vigas. Tradução e adaptação: Victor Franco Mecânica dos Materiais Flexão de Vigas 5 Tradução e adaptação: Victor Franco Ref.: Mechanics of Materials, Beer, Johnston & DeWolf McGraw-Hill. Mechanics of Materials, R. Hibbeler, Pearsons Education.

Leia mais

CORPOS RÍGIDOS: As forças que actuam num corpo rígido podem ser divididas em dois grupos:

CORPOS RÍGIDOS: As forças que actuam num corpo rígido podem ser divididas em dois grupos: CORPOS RÍGIDOS: As forças que actuam num corpo rígido podem ser divididas em dois grupos: 1. Forças externas (que representam as acções externas sobre o corpo rígido) 2. Forças internas (que representam

Leia mais

Conceito de Tensão. Índice

Conceito de Tensão. Índice Conceito de Tensão Índice Breve Revisão dos Métodos da Estática 1 Tensões em Elementos Estruturais 2 nálise e Dimensionamento 3 Esforço xial; Tensão Normal 4 rincípio de Saint-Venant 5 Tensão Tangencial

Leia mais

Mecânica Aplicada. Engenharia Biomédica ESFORÇOS INTERNOS EM PEÇAS LINEARES

Mecânica Aplicada. Engenharia Biomédica ESFORÇOS INTERNOS EM PEÇAS LINEARES Mecânica plicada Engenharia iomédica ESFORÇOS INTERNOS EM PEÇS INERES Versão 0.2 Setembro de 2008 1. Peça linear Uma peça linear é um corpo que se pode considerar gerado por uma figura plana cujo centro

Leia mais

CAPÍTULO 2: TENSÃO E DEFORMAÇÃO: Carregamento Axial

CAPÍTULO 2: TENSÃO E DEFORMAÇÃO: Carregamento Axial Curso de ngenharia Civil Universidade stadual de Maringá Centro de Tecnologia Departamento de ngenharia Civil CÍTUO 2: TNSÃO DFOMÇÃO: Carregamento ial 2.1 Deformação specífica O diagrama carga deformação

Leia mais

RESISTÊNCIA DOS MATERIAIS AMB 28 AULA 7. Professor Alberto Dresch Webler

RESISTÊNCIA DOS MATERIAIS AMB 28 AULA 7. Professor Alberto Dresch Webler Resistências dos Materiais dos Materiais - Aula 5 - Aula 7 RESISTÊNCIA DOS MATERIAIS AMB 28 AULA 7 Professor Alberto Dresch Webler 1 Aula 7 Tensão e deformação de cisalhamento; Tensões e cargas admissíveis;

Leia mais

Resistência dos Materiais

Resistência dos Materiais Aula 5 Carga Axial e Princípio de Saint-Venant Carga Axial A tubulação de perfuração de petróleo suspensa no guindaste da perfuratriz está submetida a cargas e deformações axiais extremamente grandes,

Leia mais

MEMÓRIA DESCRITIVA PÓRTICO METÁLICO COM PONTE GRUA

MEMÓRIA DESCRITIVA PÓRTICO METÁLICO COM PONTE GRUA MEMÓRIA DESCRITIVA PÓRTICO METÁLICO COM PONTE GRUA INSTITUTO POLITÉCNICO DE BRAGANÇA! "# $&%(')*&,+ -.,/!0 1 2 23 Índice: 1- Informações gerais sobre o projecto e cálculo...1 2- Tipologia estrutural...2

Leia mais

1. Equilíbrio de corpos rígidos

1. Equilíbrio de corpos rígidos 1. Equilíbrio de corpos rígidos No capítulo anterior foi referido que as forças exteriores que actuam num corpo rígido podem ser reduzidas a um sistema equivalente força/binário. Quando a força e o binário

Leia mais

2.0 DEFORMAÇÃO POR TORÇÃO DE UM EIXO CIRCULAR

2.0 DEFORMAÇÃO POR TORÇÃO DE UM EIXO CIRCULAR TORÇÃO 1.0 OBJETIVO No estudo da torção serão discutidos os efeitos da aplicação de esforços torcionais em um elemento linear longo, tal como um eixo ou um tubo. Será considerado que o elemento tenha seção

Leia mais

Disciplina: Resistência dos Materiais Unidade I - Tensão. Professor: Marcelino Vieira Lopes, Me.Eng. http://profmarcelino.webnode.

Disciplina: Resistência dos Materiais Unidade I - Tensão. Professor: Marcelino Vieira Lopes, Me.Eng. http://profmarcelino.webnode. Disciplina: Resistência dos Materiais Unidade I - Tensão Professor: Marcelino Vieira Lopes, Me.Eng. http://profmarcelino.webnode.com/blog/ Referência Bibliográfica Hibbeler, R. C. Resistência de materiais.

Leia mais

Universidade Federal de Pelotas Centro de Engenharias. Resistência dos Materiais II Estruturas III. Capítulo 2 Torção

Universidade Federal de Pelotas Centro de Engenharias. Resistência dos Materiais II Estruturas III. Capítulo 2 Torção Capítulo 2 Torção 2.1 Revisão Torque é um momento que tende a torcer um elemento em torno de seu eixo longitudinal. Se o ângulo de rotação for pequeno, o comprimento e o raio do eixo permanecerão inalterados.

Leia mais

Tensão de Cisalhamento

Tensão de Cisalhamento - UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Tensão de Cisalhamento

Leia mais

Lista de exercícios sobre barras submetidas a força normal

Lista de exercícios sobre barras submetidas a força normal RESISTÊNCIA DOS MATERIAIS I Lista de exercícios sobre barras submetidas a força normal 1) O cabo e a barra formam a estrutura ABC (ver a figura), que suporta uma carga vertical P= 12 kn. O cabo tem a área

Leia mais

CAPÍTULO V CISALHAMENTO CONVENCIONAL

CAPÍTULO V CISALHAMENTO CONVENCIONAL 1 I. ASPECTOS GERAIS CAPÍTULO V CISALHAMENTO CONVENCIONAL Conforme já foi visto, a tensão representa o efeito de um esforço sobre uma área. Até aqui tratamos de peças submetidas a esforços normais a seção

Leia mais

TECNOLOGIA MECÂNICA. Aula 04. Carregamento Axial Tensão Normal

TECNOLOGIA MECÂNICA. Aula 04. Carregamento Axial Tensão Normal FACULDADE DE TECNOLOGIA SHUNJI NISHIMURA POMPÉIA TECNOLOGIA MECÂNICA Aula 04 Carregamento Axial Tensão Normal Prof. Me. Dario de Almeida Jané Mecânica dos Sólidos - Revisão do conceito de Tensão - Carregamento

Leia mais

Conteúdo. Resistência dos Materiais. Prof. Peterson Jaeger. 3. Concentração de tensões de tração. APOSTILA Versão 2013

Conteúdo. Resistência dos Materiais. Prof. Peterson Jaeger. 3. Concentração de tensões de tração. APOSTILA Versão 2013 Resistência dos Materiais APOSTILA Versão 2013 Prof. Peterson Jaeger Conteúdo 1. Propriedades mecânicas dos materiais 2. Deformação 3. Concentração de tensões de tração 4. Torção 1 A resistência de um

Leia mais

Caso (2) X 2 isolado no SP

Caso (2) X 2 isolado no SP Luiz Fernando artha étodo das Forças 6 5.5. Exemplos de solução pelo étodo das Forças Exemplo Determine pelo étodo das Forças o diagrama de momentos fletores do quadro hiperestático ao lado. Somente considere

Leia mais

ESTRUTURAS METÁLICAS UFPR CAPÍTULO 5 FLEXÃO SIMPLES

ESTRUTURAS METÁLICAS UFPR CAPÍTULO 5 FLEXÃO SIMPLES ESTRUTURAS METÁLICAS UFPR CAPÍTULO 5 FLEXÃO SIMPLES 1 INDICE CAPÍTULO 5 DIMENSIONAMENTO BARRAS PRISMÁTICAS À FLEXÃO... 1 1 INTRODUÇÃO... 1 2 CONCEITOS GERAIS... 1 2.1 Comportamento da seção transversal

Leia mais

Resistência dos Materiais

Resistência dos Materiais Sumário Introdução... 01 Comportamento dos Materiais... 02 Carregamento Axial - Tração... 02 Máquina de Ensaio e Corpo de Prova... 03 Diagrama Tensão x Deformação ( A )... 04 Fratura Frágil e Fratura Dúctil...

Leia mais

Exercícios de cargas axiais em barras rígidas - prof. Valério SA Universidade de São Paulo - USP

Exercícios de cargas axiais em barras rígidas - prof. Valério SA Universidade de São Paulo - USP São Paulo, dezembro de 015. 1. A barra rígida AC representa um muro de contenção de terra. Ela está apoiada em A e conectada ao tirante flexível BD em D. Esse tirante possui comprimento de 4 metros e módulo

Leia mais

EXERCÍCIOS DE ESTRUTURAS DE MADEIRA

EXERCÍCIOS DE ESTRUTURAS DE MADEIRA UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA CIVIL,ARQUITETURA E URBANISMO Departamento de Estruturas EXERCÍCIOS DE ESTRUTURAS DE MADEIRA RAFAEL SIGRIST PONTES MARTINS,BRUNO FAZENDEIRO DONADON

Leia mais

LIGAÇÕES DE PEÇAS METÁLICAS AO BETÃO COM BUCHAS CONCEPÇÃO E PORMENORIZAÇÃO

LIGAÇÕES DE PEÇAS METÁLICAS AO BETÃO COM BUCHAS CONCEPÇÃO E PORMENORIZAÇÃO SEMINÁRIO INTERNACIONAL SOBRE LIGAÇÕES ESTRUTURAIS REFORÇO DE ESTRUTURAS E ESTRUTURAS MISTAS LIGAÇÕES ENTRE DIFERENTES MATERIAS ESTRUTURAIS LIGAÇÕES DE PEÇAS METÁLICAS AO BETÃO COM BUCHAS ENG. TIAGO ABECASIS

Leia mais

Estruturas Mistas de Aço e Concreto

Estruturas Mistas de Aço e Concreto Universidade Federal do Espírito Santo Estruturas Mistas de Aço e Concreto Prof. Fernanda Calenzani Programa Detalhado Estruturas Mistas Aço e Concreto 1. Informações Básicas 1.1 Materiais 1.2 Propriedades

Leia mais

Propriedades Mecânicas dos Aços DEMEC TM175 Prof Adriano Scheid

Propriedades Mecânicas dos Aços DEMEC TM175 Prof Adriano Scheid Propriedades Mecânicas dos Aços DEMEC TM175 Prof Adriano Scheid Tensão Propriedades Mecânicas: Tensão e Deformação Deformação Elástica Comportamento tensão-deformação O grau com o qual a estrutura cristalina

Leia mais

Quarta Lista de Exercícios

Quarta Lista de Exercícios Universidade Católica de Petrópolis Disciplina: Resitência dos Materiais I Prof.: Paulo César Ferreira Quarta Lista de Exercícios 1. O tubo de aço (E s = 210 GPa) tem núcleo de alumínio (E a = 69 GPa)

Leia mais

RESISTÊNCIA DOS MATERIAIS

RESISTÊNCIA DOS MATERIAIS CAPÍTUO RESISTÊNCIA DOS MATERIAIS Terceira Edição Ferdinand P. Beer E. Russell Johnston Jr. Tensão e Deformação Carregamento Aial Capítulo 2 Tensão e Deformacão: Carregamento Aial 2.1 - Introdução 2.2

Leia mais

Estruturas Planas. Prof. António Ressano Garcia Lamas

Estruturas Planas. Prof. António Ressano Garcia Lamas Estruturas Planas Prof. António Ressano Garcia Lamas Estruturas planas são estruturas formadas por barras de eixo plano ligadas entre si de modo a os eixos serem complanares (geometria plana) e actuadas

Leia mais

A maioria dos corpos podem ser considerados rígidos, isto é, não se deformam quando sujeitos à acção de forças.

A maioria dos corpos podem ser considerados rígidos, isto é, não se deformam quando sujeitos à acção de forças. CAPÍTULO 3 CORPOS RÍGIDOS E SISTEMAS EQUIVALENTES DE FORÇAS Nem sempre é possível considerar todos os corpos como partículas. Em muitos casos, as dimensões dos corpos influenciam os resultados e deverão

Leia mais

Carga axial. Princípio de Saint-Venant

Carga axial. Princípio de Saint-Venant Carga axial Princípio de Saint-Venant O princípio Saint-Venant afirma que a tensão e deformação localizadas nas regiões de aplicação de carga ou nos apoios tendem a nivelar-se a uma distância suficientemente

Leia mais

PROPRIEDADES MECÂNICAS DOS METAIS

PROPRIEDADES MECÂNICAS DOS METAIS UNIVERSIDADE DO ESTADO DE SANTA CATARINA CENTRO DE CIÊNCIAS TECNOLÓGICAS DEPARTAMENTO DE ENGENHARIA MECÂNICA PROPRIEDADES MECÂNICAS DOS METAIS CMA CIÊNCIA DOS MATERIAIS 2º Semestre de 2014 Prof. Júlio

Leia mais

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DOS VALES DO JEQUITINHONA E MUCURI DIAMANTINA MG ESTUDO DIRIGIDO

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DOS VALES DO JEQUITINHONA E MUCURI DIAMANTINA MG ESTUDO DIRIGIDO MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DOS VALES DO JEQUITINHONA E MUCURI DIAMANTINA MG ESTUDO DIRIGIDO Disciplina: Construções Rurais 2011/1 Código: AGR006/AGR007 Curso (s): Agronomia e Zootecnia

Leia mais

CAPÍTULO 3 PROBLEMA 3.1

CAPÍTULO 3 PROBLEMA 3.1 PÍTULO 3 PROLM 3.1 onsidere a placa em forma de L, que faz parte da fundação em ensoleiramento geral de um edifício, e que está sujeita às cargas indicadas. etermine o módulo, a direcção, o sentido e o

Leia mais

6.9 - Exercícios... 49 7 - CISALHAMENTO... 50 7.1 - Introdução... 50 7.2 - Tensão de Cisalhamento... 50 7.3 - Tensões de Esmagamento... 53 7.

6.9 - Exercícios... 49 7 - CISALHAMENTO... 50 7.1 - Introdução... 50 7.2 - Tensão de Cisalhamento... 50 7.3 - Tensões de Esmagamento... 53 7. APRESENTAÇÃO RESISTÊNCIA DOS MATERIAIS Comumente observamos que eixos empenam, pinos são esmagados e cortados, vigas deformam, rolamentos se desgastam, chavetas quebram, etc. Mas por que isso acontece?

Leia mais

mecânica e estruturas geodésicas II FLAMBAGEM PROF. DR. CARLOS AURÉLIO NADL

mecânica e estruturas geodésicas II FLAMBAGEM PROF. DR. CARLOS AURÉLIO NADL mecânica e estruturas geodésicas II FLAMBAGEM PROF. DR. CARLOS AURÉLIO NADL FONTE:AutoFEM Buckling Analysis Buckling = FLAMBAGEM Flambagem em trilho ferroviário (tala de junção) Ensaio em laboratório de

Leia mais

ENG1200 Mecânica Geral Semestre 2013.2 Lista de Exercícios 3 Equilíbrio de Corpos Rígidos

ENG1200 Mecânica Geral Semestre 2013.2 Lista de Exercícios 3 Equilíbrio de Corpos Rígidos ENG1200 Mecânica Geral Semestre 2013.2 Lista de Exercícios 3 Equilíbrio de Corpos Rígidos Questão 1 Prova P2-2013.1 A estrutura ilustrada na figura é sustentada por três cabos (BD, CD e EF) e uma rótula

Leia mais

OE Seminário Aplicação do Eurocódigo 8 ao Projecto de Edifícios Projecto de estruturas para resistência aos sismos EC8-1

OE Seminário Aplicação do Eurocódigo 8 ao Projecto de Edifícios Projecto de estruturas para resistência aos sismos EC8-1 Projecto de estruturas para resistência aos sismos EC8-1 Exemplo de aplicação 2 Ordem dos Engenheiros Lisboa 11 de Novembro de 2011 Porto 18 de Novembro de 2011 António Costa EXEMPLO EDIFÍCIO COM ESTRUTURA

Leia mais

DINÂMICA DE MÁQUINAS

DINÂMICA DE MÁQUINAS DINÂMICA DE MÁQUINAS CAPITULO 2 Momentos de inércia de componentes de máquinas com diferentes geometrias 1. O corpo composto mostrado na figura consiste em uma barra esbelta de 3 kg e uma placa fina de

Leia mais

MATERIAIS METÁLICOS AULA 5

MATERIAIS METÁLICOS AULA 5 UNIVERSIDADE ESTADUAL DE FEIRA DE SANTANA CURSO DE ENGENHARIA CIVIL DEPARTAMENTO DE TECNOLOGIA MATERIAIS DE CONSTRUÇÃO I E (TEC 156) MATERIAIS METÁLICOS AULA 5 Profª. Cintia Maria Ariani Fontes 1 Ensaio

Leia mais

Pontifícia Universidade Católica do Rio de Janeiro PUC-Rio. CIV 1111 Sistemas Estruturais na Arquitetura I

Pontifícia Universidade Católica do Rio de Janeiro PUC-Rio. CIV 1111 Sistemas Estruturais na Arquitetura I Pontifícia Universidade Católica do Rio de Janeiro PUC-Rio CIV 1111 Sistemas Estruturais na Arquitetura I Profa. Elisa Sotelino Prof. Luiz Fernando Martha Propriedades de Materiais sob Tração Objetivos

Leia mais

Carga axial. Princípio de Saint-Venant. Princípio de Saint-Venant

Carga axial. Princípio de Saint-Venant. Princípio de Saint-Venant Capítulo 4: Carga axial Adaptado pela prof. Dra. Danielle Bond Princípio de Saint-Venant Anteriormente desenvolvemos os conceitos de: Tensão (um meio para medir a distribuição de força no interior de um

Leia mais

TECNOLOGIA DA DEFORMAÇÃO PLÁSTICA. VOL II APLICAÇÕES INDUSTRIAIS (Enunciados de Exercícios Complementares)

TECNOLOGIA DA DEFORMAÇÃO PLÁSTICA. VOL II APLICAÇÕES INDUSTRIAIS (Enunciados de Exercícios Complementares) TECNOLOGIA DA DEFORMAÇÃO PLÁSTICA VOL II APLICAÇÕES INDUSTRIAIS (Enunciados de Exercícios Complementares) Nota Introdutória Este documento é um anexo ao livro Tecnologia Mecânica Tecnologia da Deformação

Leia mais

COMPARAÇÃO DE CÁLCULOS ANALÍTICOS COM ELEMENTOS FINITOS DE VIGAS COMPOSTAS

COMPARAÇÃO DE CÁLCULOS ANALÍTICOS COM ELEMENTOS FINITOS DE VIGAS COMPOSTAS COMPARAÇÃO DE CÁLCULOS ANALÍTICOS COM ELEMENTOS FINITOS DE VIGAS COMPOSTAS Benedito Rabelo de Moura Junior 1, Denis da Silva Ponzo 2, Júlio César Moraes 3, Leandro Aparecido dos Santos 4, Vagner Luiz Silva

Leia mais

Critérios de falha. - determinam a segurança do componente; - coeficientes de segurança arbitrários não garantem um projeto seguro;

Critérios de falha. - determinam a segurança do componente; - coeficientes de segurança arbitrários não garantem um projeto seguro; Critérios de falha - determinam a segurança do componente; - coeficientes de segurança arbitrários não garantem um projeto seguro; - compreensão clara do(s) mecanismo(s) de falha (modos de falha); -aspectos

Leia mais

Um corpo é submetido ao esforço de cisalhamento quando sofre a ação de um carregamento (força cortante) que atua na direção transversal ao seu eixo.

Um corpo é submetido ao esforço de cisalhamento quando sofre a ação de um carregamento (força cortante) que atua na direção transversal ao seu eixo. 47 8. CISALHAMENTO Um corpo é submetido ao esforço de cisalhamento quando sofre a ação de um carregamento (força cortante) que atua na direção transversal ao seu eixo. A tensão de cisalhamento ( ) é obtida

Leia mais

Capítulo 2 Tração, compressão e cisalhamento

Capítulo 2 Tração, compressão e cisalhamento Capítulo 2 Tração, compressão e cisalhamento Resistência dos materiais I SLIDES 02 Prof. MSc. Douglas M. A. Bittencourt prof.douglas.pucgo@gmail.com 2.1 Cargas resultantes internas A distribuição de forças

Leia mais

ESTÁTICA DE FLUIDOS. Introdução e Revisão de conceitos básicos

ESTÁTICA DE FLUIDOS. Introdução e Revisão de conceitos básicos ESTÁTCA DE FLUDOS ntrodução e Revisão de conceitos básicos Em qualquer ponto da superfície de um corpo submerso, a força exercida pelo fluido estático é perpendicular à superfície do objecto. A pressão

Leia mais

Forças internas. Objetivos da aula: Mostrar como usar o método de seções para determinar as cargas internas em um membro.

Forças internas. Objetivos da aula: Mostrar como usar o método de seções para determinar as cargas internas em um membro. Forças internas Objetivos da aula: Mostrar como usar o método de seções para determinar as cargas internas em um membro. Generalizar esse procedimento formulando equações que podem ser representadas de

Leia mais

CEMEF ENGENHARIA S/C LTDA. RELATÓRIO RT2142-15 ANALISE ESTRUTURAL DE JANELA DE INSPEÇÃO. Cliente: INFRARED

CEMEF ENGENHARIA S/C LTDA. RELATÓRIO RT2142-15 ANALISE ESTRUTURAL DE JANELA DE INSPEÇÃO. Cliente: INFRARED CEMEF ENGENHARIA S/C LTDA. RELATÓRIO RT2142-15 ANALISE ESTRUTURAL DE JANELA DE INSPEÇÃO Cliente: INFRARED Data: 06 de maio de 2015 REVISÃO: 00 DATA: 06 de maio de 2015 Identificação DESCRIÇÃO: Esta análise

Leia mais

Materiais em Engenharia. Aula Teórica 6. Ensaios mecânicos (continuação dos ensaios de tracção, ensaios de compressão e de dureza)

Materiais em Engenharia. Aula Teórica 6. Ensaios mecânicos (continuação dos ensaios de tracção, ensaios de compressão e de dureza) Aula Teórica 6 Ensaios mecânicos (continuação dos ensaios de tracção, ensaios de compressão e de dureza) 1 ENSAIO DE TRACÇÃO A partir dos valores da força (F) e do alongamento ( I) do provete obtêm-se

Leia mais

Resistência dos Materiais I

Resistência dos Materiais I Resistência dos Materiais I Profa. Patrícia Habib Hallak Prof Afonso Lemonge 3º. Período de 2012 Aspectos gerais do curso Objetivos Gerais Fornecer ao aluno conhecimentos básicos das propriedades mecânicas

Leia mais

COMPORTAMENTO DOS MATERIAIS SOB TENSÃO. Prof. Rubens Caram

COMPORTAMENTO DOS MATERIAIS SOB TENSÃO. Prof. Rubens Caram COMPORTAMENTO DOS MATERIAIS SOB TENSÃO Prof. Rubens Caram 1 TENSÃO X DEFORMAÇÃO O EFEITO DE TENSÕES NA ESTRUTURA DE METAIS PODE SER OBSERVADO NA FORMA DE DEFORMAÇÕES: EM ESTRUTURAS DE ENGENHARIA, ONDE

Leia mais

Ensaios Mecânicos de Materiais. Aula 10 Ensaio de Torção. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Ensaios Mecânicos de Materiais. Aula 10 Ensaio de Torção. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues Ensaios Mecânicos de Materiais Aula 10 Ensaio de Torção Tópicos Abordados Nesta Aula Ensaio de Torção. Propriedades Avaliadas do Ensaio. Exemplos de Cálculo. Definições O ensaio de torção consiste em aplicação

Leia mais

Universidade Federal de Pelotas Centro de Engenharias. Resistência dos Materiais II Estruturas III. Capítulo 5 Flambagem

Universidade Federal de Pelotas Centro de Engenharias. Resistência dos Materiais II Estruturas III. Capítulo 5 Flambagem Capítulo 5 Flambagem 5.1 Experiências para entender a flambagem 1) Pegue uma régua escolar de plástico e pressione-a entre dois pontos bem próximos, um a cinco centímetros do outro. Você está simulando

Leia mais

Engenharia de Máquinas Marítimas

Engenharia de Máquinas Marítimas ESCOLA NÁUTICA INFANTE D. HENRIQUE DEPARTAMENTO DE MÁQUINAS MARÍTIMAS Engenharia de Máquinas Marítimas ORGÃOS DE MÁQUINAS Ligações aparafusadas Victor Franco Correia (Professor Adjunto) 2005 1 Ligações

Leia mais

Faculdade de Ciência e Tecnologia Universidade Fernando Pessoa Exercícios de Ciências dos Materiais

Faculdade de Ciência e Tecnologia Universidade Fernando Pessoa Exercícios de Ciências dos Materiais Faculdade de Ciência e Tecnologia Universidade Fernando Pessoa Exercícios de Ciências dos Materiais Isabel Abreu Maria Alzira Dinis UFP 2005/2006 ESTRUTURA ATÓMICA E LIGAÇÕES 1. Calcule: a. A massa em

Leia mais

Física Geral. Série de problemas. Unidade II Mecânica Aplicada. Departamento Engenharia Marítima

Física Geral. Série de problemas. Unidade II Mecânica Aplicada. Departamento Engenharia Marítima Física Geral Série de problemas Unidade II Mecânica Aplicada Departamento Engenharia Marítima 2009/2010 Módulo I As Leis de movimento. I.1 Uma esfera com uma massa de 2,8 10 4 kg está pendurada no tecto

Leia mais

1) Qual propriedade de um material reproduz a lei de Hooke? Escrever a expressão que traduz a lei. 2) Um cilindro de 90,0 cm de comprimento (figura) está submetido a uma força de tração de 120 kn. Uma

Leia mais

ESTRUTURAS DE CONCRETO CAPÍTULO 2 CARACTERÍSTICAS DO CONCRETO

ESTRUTURAS DE CONCRETO CAPÍTULO 2 CARACTERÍSTICAS DO CONCRETO ESTRUTURAS DE CONCRETO CAPÍTULO 2 Libânio M. Pinheiro, Cassiane D. Muzardo, Sandro P. Santos Março de 2004 CARACTERÍSTICAS DO CONCRETO Como foi visto no capítulo anterior, a mistura em proporção adequada

Leia mais

Exercícios propostos de RESISTÊNCIA DOS MATERIAIS 1

Exercícios propostos de RESISTÊNCIA DOS MATERIAIS 1 Universidade Federal de Uberlândia Exercícios propostos de RESISTÊNI OS MTERIIS 1 PROJETO PIEG olsistas: Renata ristina de astro Gomide Luciano arros da Silva Profª. Eliane Regina Flores Oliveira ÍNIE

Leia mais

3) Calcule o alongamento elástico da peça do esquema abaixo. Seu material tem módulo de elasticidade de 2x10 5 N/mm 2.

3) Calcule o alongamento elástico da peça do esquema abaixo. Seu material tem módulo de elasticidade de 2x10 5 N/mm 2. UNIVERSIDADE FEDERAL DE MATO GROSSO DO SUL CÂMPUS DE CHAPADÃO DO SUL DISCIPLINA: CONSTRUÇÕES RURAIS LISTA DE EXERCICIOS I RESISTÊNCIA DOS MATERIAIS PROFESSOR: PAULO CARTERI CORADI 1) Calcule a deformação

Leia mais

5ª Experiência : Dilatação Térmica

5ª Experiência : Dilatação Térmica 5ª Experiência : Dilatação Térmica Objetivo Determinar o coeficiente de dilatação linear para três materiais: cobre, latão e alumínio. Introdução As conseqüências habituais de variações na temperatura

Leia mais

RELATÓRIO TÉCNICO. Joaquim Carneiro

RELATÓRIO TÉCNICO. Joaquim Carneiro Escola de Ciências RELATÓRIO TÉCNICO ANÁLISE DE CHAPAS REVESTIDAS Cliente AMT COATINGS Engenharia e Tratamento de Superfícies, Lda. CACE-Ruas das Novas Empresas, Fontiscos PT-4780-511 Santo Tirso PORTUGAL

Leia mais

CAPÍTULO II INTRODUÇÃO À MECÂNICA DOS SÓLIDOS EQUILÍBRIO EXTERNO I. OBJETIVO PRINCIPAL DA MECÂNICA DOS SÓLIDOS

CAPÍTULO II INTRODUÇÃO À MECÂNICA DOS SÓLIDOS EQUILÍBRIO EXTERNO I. OBJETIVO PRINCIPAL DA MECÂNICA DOS SÓLIDOS 1 CAPÍTULO II INTRODUÇÃO À MECÂNICA DOS SÓLIDOS EQUILÍBRIO EXTERNO I. OBJETIVO PRINCIPAL DA MECÂNICA DOS SÓLIDOS O principal objetivo de um curso de mecânica dos sólidos é o desenvolvimento de relações

Leia mais

MINISTÉRIO DO DESENVOLVIMENTO, INDÚSTRIA E COMÉRCIO EXTERIOR - MDIC INSTITUTO NACIONAL DE METROLOGIA, NORMALIZAÇÃO E QUALIDADE INDUSTRIAL-INMETRO

MINISTÉRIO DO DESENVOLVIMENTO, INDÚSTRIA E COMÉRCIO EXTERIOR - MDIC INSTITUTO NACIONAL DE METROLOGIA, NORMALIZAÇÃO E QUALIDADE INDUSTRIAL-INMETRO MINISTÉRIO DO DESENVOLVIMENTO, INDÚSTRIA E COMÉRCIO EXTERIOR - MDIC INSTITUTO NACIONAL DE METROLOGIA, NORMALIZAÇÃO E QUALIDADE INDUSTRIAL-INMETRO Portaria n.º 33,de 22 de janeiro de 2004. O PRESIDENTE

Leia mais

2. CONCEITOS BÁSICOS DE ANÁLISE ESTRUTURAL

2. CONCEITOS BÁSICOS DE ANÁLISE ESTRUTURAL 2. CONCEITOS BÁSICOS DE ANÁLISE ESTRUTURAL Este capítulo resume alguns conceitos básicos de análise estrutural para estruturas que são compostas por barras. Esses conceitos foram selecionados de forma

Leia mais

de forças não concorrentes.

de forças não concorrentes. Universidade Federal de Alagoas Centro de Tecnologia Curso de Engenharia Civil Disciplina: Mecânica dos Sólidos 1 Código: ECIV018 Professor: Eduardo Nobre Lages Equilíbrio de Corpos Rígidos Maceió/AL Objetivo

Leia mais

Questão 1. Questão 2. Resposta. Resposta

Questão 1. Questão 2. Resposta. Resposta Questão 1 Na natureza, muitos animais conseguem guiar-se e até mesmo caçar com eficiência, devido à grande sensibilidade que apresentam para a detecção de ondas, tanto eletromagnéticas quanto mecânicas.

Leia mais

DIMENSIONAMENTO DE LAJES ARMADAS EM DUAS DIRECÇÕES

DIMENSIONAMENTO DE LAJES ARMADAS EM DUAS DIRECÇÕES DIMENSIONAMENTO DE LAJES ARMADAS EM DUAS DIRECÇÕES EXEMPLO DE APLICAÇÃO Carlos Moutinho FEUP, Maio de 2002 1. Dados Gerais - Laje destinada a zona comercial (Q = 4 kn/m 2 ) - Peso de revestimentos e paredes

Leia mais

Objetivo do capítulo. O ensaio de tração e compressão

Objetivo do capítulo. O ensaio de tração e compressão Capítulo 3: Propriedades mecânicas dos materiais Adaptado pela prof. Dra. Danielle Bond Objetivo do capítulo Agora que já discutimos os conceitos básicos de tensão e deformação, mostraremos, neste capítulo,

Leia mais

a) os módulos das velocidades angulares ωr NOTE E ADOTE

a) os módulos das velocidades angulares ωr NOTE E ADOTE 1. Um anel condutor de raio a e resistência R é colocado em um campo magnético homogêneo no espaço e no tempo. A direção do campo de módulo B é perpendicular à superfície gerada pelo anel e o sentido está

Leia mais

e-mail: ederaldoazevedo@yahoo.com.br

e-mail: ederaldoazevedo@yahoo.com.br Centro de Ensino Superior do Amapá-CEAP Curso: Arquitetura e Urbanismo Assunto: Cálculo de Pilares Prof. Ederaldo Azevedo Aula 4 e-mail: ederaldoazevedo@yahoo.com.br Centro de Ensino Superior do Amapá-CEAP

Leia mais

UNIVERSIDADE DE MARÍLIA

UNIVERSIDADE DE MARÍLIA UNIVERSIDADE DE MARÍLIA Faculdade de Engenharia, Arquitetura e Tecnologia SISTEMAS ESTRUTURAIS (NOTAS DE AULA) Professor Dr. Lívio Túlio Baraldi MARILIA, 2007 1. DEFINIÇÕES FUNDAMENTAIS Força: alguma causa

Leia mais

Ensaio de torção. Diz o ditado popular: É de pequenino que

Ensaio de torção. Diz o ditado popular: É de pequenino que A UU L AL A Ensaio de torção Diz o ditado popular: É de pequenino que se torce o pepino! E quanto aos metais e outros materiais tão usados no nosso dia-a-dia: o que dizer sobre seu comportamento quando

Leia mais

LOM Introdução à Mecânica dos Sólidos. Parte 3. Estado plano de tensão. Tensões em tubos e vasos de pressão de parede fina

LOM Introdução à Mecânica dos Sólidos. Parte 3. Estado plano de tensão. Tensões em tubos e vasos de pressão de parede fina LOM 3081 - Parte 3. Estado plano de tensão. Tensões em tubos e vasos de pressão de parede fina DEMAR USP Professores responsáveis: Viktor Pastoukhov, Carlos A.R.P. Baptista Ref. 1: F.P. BEER, E.R. JOHNSTON,

Leia mais

Os desenhos do projecto devem incluir desenhos de dimensionamento e desenhos de pormenorização de armaduras.

Os desenhos do projecto devem incluir desenhos de dimensionamento e desenhos de pormenorização de armaduras. 9.7 Notas sobre Desenhos de Projecto 9.7.1 Observações Gerais Os desenhos do projecto devem incluir desenhos de dimensionamento e desenhos de pormenorização de armaduras. Os desenhos de dimensionamento

Leia mais

Introdução cargas externas cargas internas deformações estabilidade

Introdução cargas externas cargas internas deformações estabilidade TENSÃO Introdução A mecânica dos sólidos estuda as relações entre as cargas externas aplicadas a um corpo deformável e a intensidade das cargas internas que agem no interior do corpo. Esse assunto também

Leia mais

2 Revisão Bibliográfica

2 Revisão Bibliográfica 2 Revisão Bibliográfica Neste capítulo são apresentados trabalhos relacionados ao comprimento de ancoragem e a resistência de aderência do CFC-substrato de concreto. São mostradas de forma resumida as

Leia mais

Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785 rrpela@ita.br www.ief.ita.br/~rrpela

Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785 rrpela@ita.br www.ief.ita.br/~rrpela Mecânica I (FIS-14) Prof. Dr. Ronaldo Rodrigues Pelá Sala 2602A-1 Ramal 5785 rrpela@ita.br www.ief.ita.br/~rrpela Onde estamos? Nosso roteiro ao longo deste capítulo A equação do movimento Equação do movimento

Leia mais

MEMORIAL DE CÁLCULO 071811 / 1-0. PLATAFORMA PARA ANDAIME SUSPENSO 0,60 m X 2,00 m MODELO RG PFM 2.1

MEMORIAL DE CÁLCULO 071811 / 1-0. PLATAFORMA PARA ANDAIME SUSPENSO 0,60 m X 2,00 m MODELO RG PFM 2.1 MEMORIAL DE CÁLCULO 071811 / 1-0 PLATAFORMA PARA ANDAIME SUSPENSO 0,60 m X 2,00 m MODELO RG PFM 2.1 FABRICANTE: Metalúrgica Rodolfo Glaus Ltda ENDEREÇO: Av. Torquato Severo, 262 Bairro Anchieta 90200 210

Leia mais

Apostila de Resistência dos Materiais. prof. Flávio de Souza Barbosa (flavio.barbosa@ufjf.edu.br)

Apostila de Resistência dos Materiais. prof. Flávio de Souza Barbosa (flavio.barbosa@ufjf.edu.br) postila de Resistência dos Materiais prof. Flávio de Souza Barbosa (flavio.barbosa@ufjf.edu.br) 5 de agosto de 2008 Sumário 1 Introdução 3 1.1 spectos gerais do curso............................ 3 1.1.1

Leia mais

MATERIAIS PARA ENGENHARIA DE PETRÓLEO - EPET069 - Conformação dos Metais

MATERIAIS PARA ENGENHARIA DE PETRÓLEO - EPET069 - Conformação dos Metais MATERIAIS PARA ENGENHARIA DE PETRÓLEO - EPET069 - Conformação dos Metais CONFORMAÇÃO DOS METAIS Fundamentos da Conformação Plástica Diagrama Tensão x Deformação CONFORMAÇÃO DOS METAIS Fundamentos da Conformação

Leia mais

Universidade Federal de Minas Gerais. Escola de Engenharia. Departamento de Engenharia de Estruturas DISCIPLINA. Profa. Jacqueline Maria Flor

Universidade Federal de Minas Gerais. Escola de Engenharia. Departamento de Engenharia de Estruturas DISCIPLINA. Profa. Jacqueline Maria Flor Universidade Federal de Minas Gerais Escola de Engenharia Departamento de Engenharia de Estruturas CURSO DE GRADUAÇÃO EM ENGENHARIA CIVIL DISCIPLINA EES 023 - ANÁLISE ESTRUTURAL I APOSTILA DO PROGRAMA

Leia mais

5 Modelos Estruturais

5 Modelos Estruturais 5 Modelos Estruturais 5.1 Introdução Neste capítulo, os modelos estruturais utilizados para avaliação do conforto humano serão descritos segundo suas características geométricas e físicas referentes aos

Leia mais

1.1 Conceitos fundamentais... 19 1.2 Vantagens e desvantagens do concreto armado... 21. 1.6.1 Concreto fresco...30

1.1 Conceitos fundamentais... 19 1.2 Vantagens e desvantagens do concreto armado... 21. 1.6.1 Concreto fresco...30 Sumário Prefácio à quarta edição... 13 Prefácio à segunda edição... 15 Prefácio à primeira edição... 17 Capítulo 1 Introdução ao estudo das estruturas de concreto armado... 19 1.1 Conceitos fundamentais...

Leia mais

CORPOS RÍGIDOS: As forças que actuam num corpo rígido podem ser divididas em dois grupos:

CORPOS RÍGIDOS: As forças que actuam num corpo rígido podem ser divididas em dois grupos: CORPOS RÍGIDOS: As forças que actuam num corpo rígido podem ser divididas em dois grupos: 1. Forças externas (que representam as acções externas sobre o corpo rígido) 2. Forças internas (que representam

Leia mais

RESISTÊNCIA DOS MATERIAIS

RESISTÊNCIA DOS MATERIAIS RESISTÊNCIA DOS MATERIAIS José Fernando Xavier Faraco Presidente da FIESC Sérgio Roberto Arruda Diretor Regional do Antônio José Carradore Diretor de Educação e Tecnologia do Marco Antônio Dociatti Diretor

Leia mais

1. Definição dos Elementos Estruturais

1. Definição dos Elementos Estruturais A Engenharia e a Arquitetura não devem ser vistas como duas profissões distintas, separadas, independentes uma da outra. Na verdade elas devem trabalhar como uma coisa única. Um Sistema Estrutural definido

Leia mais

Resistência dos Materiais

Resistência dos Materiais Aula 2 Tensão Normal Média e Tensão de Cisalhamento Média Tópicos Abordados Nesta Aula Definição de Tensão. Tensão Normal Média. Tensão de Cisalhamento Média. Conceito de Tensão Representa a intensidade

Leia mais

Análise Elástica de Estruturas Reticuladas

Análise Elástica de Estruturas Reticuladas UNIVERSIDADE DE ISBOA INSTITUTO SUPERIOR TÉCNICO Análise Elástica de Estruturas Reticuladas João António Teixeira de Freitas Carlos Tiago 31 de Agosto de 15 Índice Índice i 1 Introdução 1 1.1 Objectivo.....................................

Leia mais

Reforço de lajes fungiformes com adição de nova camada de betão Ensaios experimentais e Modelo Teórico do Comportamento

Reforço de lajes fungiformes com adição de nova camada de betão Ensaios experimentais e Modelo Teórico do Comportamento Reforço de lajes fungiformes com adição de nova camada de betão Ensaios experimentais e Modelo Teórico do Comportamento Hugo Daniel Pereira Fernandes Relatório n.º 5 FLAT Comportamento de Lajes Fungiformes

Leia mais