RESISTÊNCIA DOS MATERIAIS IX

Tamanho: px
Começar a partir da página:

Download "RESISTÊNCIA DOS MATERIAIS IX"

Transcrição

1 UNIVERSIDDE FEDERL FLUMINENSE CENTRO TECNOLÓGICO ESCOL DE ENGENHRI Departamento de Engenharia Civil RESISTÊNCI DOS MTERIIS IX Flávia Moll de Souza Judice Mara Soares Pereira Lima Perlingeiro 005

2 SUMÁRIO 1 I Introdução... II Isostática... 4 III Tração e Compressão IV Cisalhamento Puro... 6 V Torção... 8 VI Tensões em Vigas... 3 VII Fleão Composta VIII nálise de Tensões IX Deformação em Vigas X Flambagem... 6 ibliografia... 69

3 I INTRODUÇÃO Resistência dos Materiais, também conhecida como Mecânica dos Sólidos ou Mecânica dos Corpos Deformáveis, tem por objetivo prover métodos simples para a análise dos elementos mais comuns em estruturas. O desenvolvimento histórico da Resistência dos Materiais é uma combinação de teoria e eperiência. Homens famosos, como Leonardo da Vinci ( ) e Galileu Galilei ( ) fizeram eperiências para determinar a resistência de fios, barras e vigas, sem que tivessem desenvolvido teorias adequadas (pelos padrões de hoje) para eplicar os resultados atingidos. Outros, como Leonhard Euler ( ), desenvolveram teorias matemáticas muito antes de qualquer eperiência que evidenciasse a importância do seu achado. O curso aqui apresentado inicia com a discussão de alguns conceitos fundamentais, tais como tensões e deformações, para em seguida, investigar o comportamento de elementos estruturais simples sujeitos à tração, à compressão e ao cisalhamento. Sistema Internacional de Unidades (SI): Quantidade Símbolo Dimensional Unidade ásica Comprimento L metro (m) Tempo T segundo (s) Massa M quilograma (kg) Força F Newton (N) força é derivada das unidades básicas pela segunda lei de Newton. Por definição, um Newton é a força que fornece a um quilograma massa a aceleração de um metro por segundo ao quadrado. equivalência entre unidades é 1 N = 1 kg 1 m/s. Outras unidades derivadas do SI: Quantidade Unidade ásica Área metro quadrado (m ) Tensão Newton por metro quadrado (N/m ) ou Pascal (Pa) Prefios de Unidades: Prefio Símbolo Fator Giga G 10 9 Mega M 10 6 Quilo k 10 3 Deci d 10-1 Centi c 10 - Mili m 10-3 Micro µ 10-6 Nano n 10-9

4 Na prática, muitas vezes prefere-se usar o quilonewton (kn), o quilopascal (kpa), o megapascal (MPa) ou o gigapascal (GPa) N 10 kgf 10 kn 1tf 1 MPa = 1 N/mm 3 = 10 kn / m 1 kgf / cm

5 II ISOSTÁTIC 4 1 Grandezas Fundamentais 1.1 Força s forças são grandezas vetoriais caracterizadas por direção, sentido e intensidade. F 1 F F 3... F n 1. Momento O momento representa a tendência de giro (rotação) em torno de um ponto provocada por uma força. O M i = F d i i d i F i Condições de Equilíbrio. Um corpo qualquer submetido a um sistema de forças está em equilíbrio estático caso não haja qualquer tendência à translação ou à rotação. F 1 F M 1 M F 3 s equações universais da Estática que regem o equilíbrio de um sistema de forças no espaço são: F F F z = 0 = 0 = 0 M M M z = 0 = 0 = 0

6 3 Graus de Liberdade 5 Uma estrutura espacial possui seis graus de liberdade: três translações e três rotações segundo três eios ortogonais. fim de evitar a tendência de movimento da estrutura, estes graus de liberdade precisam ser restringidos. Esta restrição é dada pelos apoios (vínculos), que são dispositivos mecânicos que, por meio de esforços reativos, impedem certos deslocamentos da estrutura. Estes esforços reativos (reações), juntamente com as ações (cargas aplicadas à estrutura) formam um sistema em equilíbrio estático. 3.1 Tipos de poio Classificam-se em três categorias: a) poio móvel ou do 1º gênero é capaz de impedir o movimento do ponto vinculado do corpo numa direção pré-determinada; POIO MÓVEL SÍMOLO Pino deslizante rolete R representação esquemática indica a reação de apoio R na direção do único movimento impedido (deslocamento na vertical). b) poio fio ou do º gênero ou rótula é capaz de impedir qualquer movimento do ponto vinculado do corpo em todas as direções, permanecendo livre apenas a rotação; POIO FIXO H SÍMOLO rótula V

7 6 c) Engaste ou apoio do 3º gênero é capaz de impedir qualquer movimento do ponto vinculado do corpo e o movimento de rotação do corpo em relação a esse ponto. E N G S T E H M V SÍMOLO 3. Estaticidade e Estabilidade a) Estruturas isostáticas C M C H H C V V V C Quando o número de movimentos impedidos é igual ao estritamente necessário para impedir o movimento de corpo rígido da estrutura, diz-se que a estrutura é isostática, ocorrendo uma situação de equilíbrio estável. N b) Estruturas hipostáticas o reações = N o equações de equilíbrio C H C V V V C Quando o número de movimentos impedidos é menor que o necessário para impedir o movimento de corpo rígido da estrutura, diz-se que a estrutura é hipostática, ocorrendo uma situação indesejável de equilíbrio instável. c) Estruturas hiperestáticas C M C D H H H C H D V V V C

8 Quando o número de movimentos impedidos é maior que o necessário para impedir o movimento de corpo rígido da estrutura, diz-se que a estrutura é hiperestática, ocorrendo uma situação indesejável de equilíbrio estável. Nesse caso, as equações universais da Estática não são suficientes para a determinação das reações de apoio, sendo necessárias equações adicionais de compatibilidade de deformações. 7 4 Classificação das Estruturas a) Vigas são elementos estruturais geralmente compostos por barras de eios retilíneos que estão contidas no plano em que é aplicado o carregamento. viga apoiada viga em balanço b) Pórticos (ou Quadros) são elementos compostos por barras de eios retilíneos dispostas em mais de uma direção submetidos a cargas contidas no seu plano. presentam apenas três esforços internos: normal, cortante, momento fletor. pórtico plano c) Treliças são sistemas reticulados cujas barras têm todas as etremidades rotuladas (as barras podem girar independentemente das ligações) e cujas cargas são aplicadas em seus nós. presentam apenas esforços internos aiais. d) Grelhas são estruturas planas com cargas na direção perpendicular ao plano, incluindo momentos em torno de eios do plano. presentam três esforços internos: esforço cortante, momento fletor, momento torsor.

9 5 Tipos de Carregamento 8 a) Cargas concentradas são uma forma aproimada de tratar cargas distribuídas segundo áreas muito reduzidas (em presença das dimensões da estrutura). São representadas por cargas aplicadas pontualmente; F b) Cargas distribuídas são cargas distribuídas continuamente. Os tipos mais usuais são as cargas uniformemente distribuídas e as cargas triangulares (casos de empuos de terra ou água). q q c) Cargas-momento são cargas do tipo momento fletor (ou torsor) aplicadas em um ponto qualquer da estrutura. M 6 Esforços Simples Consideremos o corpo da figura submetido ao conjunto de forças em equilíbrio indicadas. Seccionemos o corpo por um plano P que o intercepta segundo uma seção S, dividindo-o nas duas partes E e D. m R D E S R m S Para ser possível esta divisão, preservando o equilíbrio destas duas partes, basta que apliquemos, na seção S da parte E, um sistema estático equivalente ao das forças que ficaram na parte da direita e, analogamente, na seção S da parte D, um sistema estático equivalente ao das forças situadas na parte da esquerda. Esses esquemas estáticos equivalentes são obtidos reduzindo as forças à esquerda e à direita da seção S ao centróide desta seção. Resumindo: a resultante R r que atua na parte da esquerda é obtida pelas forças da direita e vice-versa. O momento resultante m r que atua na parte da esquerda foi obtido pelas forças da direita e vice-versa.

10 Uma seção S de um corpo em equilíbrio está, em equilíbrio, submetida a um par de forças R r e (- R r ) e a um par de momentos m r e (- m r ) aplicados no seu centróide e resultantes da redução, a este centróide, das forças atuantes, respectivamente, à esquerda e à direita da seção S. 9 R S C C m R m Decompondo os vetores R r e m r em duas componentes, uma perpendicular à seção S e outra situada no próprio plano da seção S, obtemos as forças N r (perpendicular a S) e Q r (pertencente a S) e os momentos T r (perpendicular a S) e M r (pertencente a S), aos quais chamamos esforços simples atuantes na seção S. C Q N R C M T m OS: É indiferente calcular os esforços simples atuantes numa seção entrando com as forças da parte à esquerda ou da parte à direita da seção na prática. Usaremos as forças do lado que nos conduzir ao menor trabalho de cálculo. a) Esforço normal N r tende a promover variação da distância que separa as seções, permanecendo as mesmas paralelas uma à outra. O esforço normal será positivo quando de tração, ou seja, quando tender a afastar duas seções infinitamente próimas, e negativo quando de compressão. ds N N N N b) Esforço cortante Q r tende a promover o deslizamento relativo de uma seção em relação à outra (tendência de corte). Dizemos que o esforço cortante Q r é positivo quando, calculado pelas forças situadas do lado esquerdo da seção, tiver o sentido positivo do eio e quando calculado pelas forças situadas do lado direito da seção, tiver o sentido oposto ao sentido positivo do eio.

11 10 ds Q Q Q Q c) Momento torsor T r tende a promover uma rotação relativa entre duas seções infinitamente próimas em torno de um eio que lhes é perpendicular, passando pelo seu centro de gravidade (tendência de torcer a peça). O momento torsor é positivo quando o vetor de seta dupla que o representa estiver como que tracionando a seção. ds T T d) Momento fletor M r tende a provocar uma rotação da seção em torno de um eio situado em seu próprio plano. Como um momento pode ser substituído por um binário, o efeito de M r pode ser assimilado ao binário da figura, que provoca uma tendência de alongamento em uma das partes da seção e uma tendência de encurtamento na outra parte, deiando a peça fletida. ds M M Para o momento fletor, desejamos conhecer que fibras estão tracionadas e que fibras estão comprimidas (para, no caso das vigas de concreto armado, por eemplo, sabermos de que lado devemos colocar as barras de aço, que são o elemento resistente à tração). figura mostra a convenção de sinais adotada. Compressão Tração

12 7 Determinação da Resultante de um Carregamento Distribuído 11 Uma carga distribuída pode ser tratada como uma soma infinita de cargas concentradas infinitesimais, q ds, cuja resultante é: R = q ds (1) z s s q.ds R Ω Eq. (1) indica que a resultante do carregamento distribuído é igual à área Ω limitada entre a curva que define a lei de variação do carregamento e o eio da estrutura. Para obtermos a posição desta resultante, aplicamos o Teorema de Varignon o momento de um sistema de forças em equilíbrio é igual ao momento da resultante das forças. Chamando s a distância da resultante a um ponto genérico O, temos: Momento da resultante: R s = s q ds Soma dos momentos das componentes: ( q ds) s Igualando: s = q s ds q ds O ds que é a razão entre o momento estático da área Ω em relação ao eio z e o valor Ω dessa área. Isto indica que s é a distância do centróide da área Ω ao eio z. Finalmente, a resultante de um carregamento distribuído é igual à área compreendida entre a linha que define este carregamento e o eio da barra sobre a qual está aplicado, sendo seu ponto de aplicação o centróide da área referida.

13 8 s Equações Fundamentais da Estática. Diagramas de Esforços 1 s equações fundamentais da Estática, deduzidas para uma viga com carga vertical uniformemente distribuída, são: dm s = Q s () ds dq s = q( s ) (3) ds Essas epressões permitem obter os esforços solicitantes nas diversas seções da viga em função do carregamento q() atuante. representação gráfica dos esforços nas seções ao longo de todo o elemento é feita a partir dos diagrama de esforços (linhas de estado). Com base na Eq. (), temos que o coeficiente angular da tangente ao diagrama de momentos fletores numa seção S é igual ao esforço cortante nela atuante. partir da Eq. (3), temos que o coeficiente angular da tangente ao diagrama de esforços cortantes numa seção S é igual ao valor da taa de carga atuante nesta seção com o sinal trocado. 8.1 Caso de Vigas iapoiadas Sujeitas à Carga Concentrada P a b H V l V F = 0 H = 0 F = 0 V + V = P M = 0 V l P a = 0 V = P a V l = P b l DMF P b l P a b l DEC P a l

14 Pelas Eq. () e (3), sabemos que, num trecho descarregado ( q = 0 ), o DEC será dq dm uma reta horizontal = q = 0 e o DMF será uma reta ds ds = Q = constante. 13 OS: dm a) O DMF possui um ponto anguloso em S, pois temos = Qs esq ds s esq dm ds s dir = Qs dir e, no caso, Qs esq Qs dir ; e b) Na seção S, não se define o esforço cortante; ele é definido à esquerda e à direita da seção, sofrendo nela uma descontinuidade igual a P. Conclusão: Sob uma carga concentrada, o DMF apresenta um ponto anguloso e o DEC apresenta uma descontinuidade igual ao valor dessa carga. 8. Caso de Vigas iapoiadas Sujeitas à Carga Uniformemente Distribuída q q H V l V F = 0 H = 0 F = 0 V + V = q l l M = 0 V l q l = 0 V q l q l = V = Numa seção genérica S, temos: M s = q l q l = q l l Q s = q l q

15 14 q l M ma = q l 8 DMF DEC O DEC será uma linha reta que fica determinada pelos seus valores etremos correspondentes a = 0 e = l, que são: Q Q q l = q l = q l em O DMF será uma parábola de º grau, passando por zero em e e por um máimo = l dm q l 1 1 q l (seção onde Q = = 0 ), de valor M ma = =. d 4 8 Conclusão: Sob carga uniformemente distribuída, o DMF é parabólico do º grau e o DEC é retilíneo. * Construção Geométrica do DMF q l a) Sendo MM1 =, marcamos M 1M = MM1 8 b) Dividimos os segmentos M e M em partes iguais (por eemplo: oito), obtendo os pontos I a VII e I a VII que, ligados alternadamente, nos dão tangentes eternas à parábola que é, então, facilmente obtida. M I II III IV V VI VII M 1 I II III IV V VI VII M q l q l 8 8

16 8.3 Caso de Vigas iapoiadas Sujeitas à Carga-Momento 15 a M b H V l V F = 0 H = 0 F = 0 V + V = 0 M = 0 V l M = 0 V M b l M a l = M l V DMF DEC = M l M l Conclusão: O DMF, na seção de aplicação da carga-momento, sofre uma descontinuidade igual ao momento aplicado. Roteiro para traçado dos diagramas de esforços a) Cálculo das reações de apoio a partir das equações da Estática; b) Determinação dos esforços seccionais em todos os pontos de aplicação ou transição de carga. Normas: a) Os valores dos esforços seccionais serão marcados em escala, em retas perpendiculares ao eio da peça, nos pontos onde estão atuando; b) Valores positivos de esforço normal e esforço cortante serão marcados para cima nas barras horizontais e para fora nas verticais (ou inclinadas); N Q

17 c) Valores positivos de momento fletor serão marcados para baio nas barras horizontais ou para dentro nas verticais (ou inclinadas); 16 M d) Sob a ação de uma carga concentrada, o diagrama de momento fletor apresenta um ponto anguloso e o diagrama de esforço cortante uma descontinuidade de intensidade igual ao da carga atuante; DMF DEC e) Sob a ação de uma carga-momento, o diagrama de momento fletor apresenta uma descontinuidade de intensidade igual ao da carga-momento; DMF f) Num trecho descarregado, o diagrama de esforço cortante apresenta uma linha paralela em relação ao eio da peça; g) Sob a ação de uma carga uniformemente distribuída, o diagrama de esforço cortante apresenta uma linha inclinada em relação ao eio da peça. Já o diagrama de momento fletor apresenta uma curva de grau duas vezes superior ao da ordenada de carga no trecho. DMF DEC

18 III TRÇÃO E COMPRESSÃO 17 1 Tensões e deformações em barras carregadas aialmente Seja a barra com seção transversal constante e comprimento L, submetida às forças aiais P que produzem tração, conforme mostra a figura. P L δ P tensão, uniformemente distribuída na seção transversal da barra, devida à ação da força P, é: σ = P O alongamento total da barra é designado pela letra δ. O alongamento específico ou alongamento relativo ou deformação (alongamento por unidade de comprimento) é dado por: δ ε = L Propriedades Mecânicas.1 Teste de tração. Diagrama Tensão-Deformação relação entre as tensões e as deformações, para um determinado material, é encontrada por meio de um teste de tração. Um corpo-de-prova, em geral uma barra de seção circular, é colocado na máquina de testar e sujeito à tração. força atuante e os alongamentos resultantes são medidos à proporção que a carga aumenta. s tensões são obtidas dividindo-se as forças pela área da seção transversal da barra e a deformação específica dividindo-se o alongamento pelo comprimento ao longo do qual ocorre a deformação. figura seguinte mostra, esquematicamente, o ensaio na máquina universal de tração e compressão.

19 cilindro e êmbolo bomba hidráulica (medidor de vazão) 3 mesa (chassi) móvel 4 corpo de prova para tração 5 corpo de prova para compressão 6 mesa (chassi) fio 7 manômetro (medidor de pressão) 8 fluido hidráulico forma típica do diagrama tensão-deformação do aço é mostrada na figura seguinte. Nesse diagrama, as deformações aiais encontram-se representadas no eio horizontal e as tensões correspondentes no eio das ordenadas. σ (MPa) 350 D E * C E O F (ε) No trecho de 0 a, as tensões são diretamente proporcionais às deformações e o diagrama é linear. lém desse ponto, a proporcionalidade já não eiste mais e o ponto é chamado de limite de proporcionalidade.

20 Com o aumento da carga, as deformações crescem mais rapidamente do que as tensões, passando a aparecer uma deformação considerável sem que haja aumento apreciável da força de tração. Esse fenômeno é conhecido como escoamento do material e a tensão no ponto é denominada tensão de escoamento. Na região C, diz-se que o material tornou-se plástico e a barra pode deformar-se plasticamente, da ordem de 10 a 15 vezes o alongamento ocorrido até o limite de proporcionalidade. No ponto C, o material começa a oferecer resistência adicional ao aumento da carga, acarretando acréscimo de tensão para um aumento de deformação, atingindo o valor máimo ou tensão máima (tensão de ruptura) no ponto D. lém desse ponto, maior deformação é acompanhada por uma redução da carga, ocorrendo, finalmente, a ruptura do corpo-de-prova no ponto E do diagrama. Durante o alongamento da barra, há contração lateral, que resulta na diminuição da área da seção transversal. Isto não tem nenhum efeito no diagrama tensão-deformação até o ponto C. Porém, deste ponto em diante, a redução da área faz com que a tensão verdadeira seja sempre crescente (como indicado na linha pontilhada até E ). É a favor da segurança adotar-se como valor das tensões limites aquelas calculadas como se a área se mantivesse com seu tamanho original, obtendo-se valores para a tensão ligeiramente menores do que os reais. lguns materiais não apresentam claramente no diagrama tensão-deformação todos os pontos anteriormente citados. Para que se possa determinar o ponto de escoamento desses materiais, convencionou-se adotar uma deformação residual de 0,%. partir dessa deformação, traça-se uma reta paralela ao trecho linear O, até atingir a curva tensãodeformação. presença de um ponto de escoamento pronunciado, seguido de grande deformação plástica, é uma das características do aço. 19 σ σ 0 ε 0 ε a) diagrama σ ε típico de b) diagrama σ ε típico de material dúctil material frágil Tanto os aços quanto as ligas de alumínio podem sofrer grandes deformações antes da ruptura, sendo classificados como dúcteis. Por outro lado, materiais frágeis ou quebradiços quebram com valores relativamente baios das deformações. s cerâmicas, o ferro fundido, o concreto, certas ligas metálicas e o vidro são eemplos desses materiais. É possível traçar diagramas análogos aos de tração, para vários materiais sob compressão, estabelecendo-se tensões características, tais como limite de proporcionalidade, escoamento e tensão máima. Para o aço, verificou-se que as tensões do limite de proporcionalidade e do escoamento são, aproimadamente, as mesmas na tração e na compressão. Para muitos materiais quebradiços, as tensões características em compressão são muito maiores que as de tração.

21 3 Elasticidade 0 Os diagramas tensão-deformação ilustram o comportamento dos materiais, quando carregados por tração (ou compressão). Quando um corpo-de-prova do material é descarregado, isto é, a carga é gradualmente reduzida até zero, a deformação sofrida durante o carregamento desaparecerá parcial ou completamente. Esta propriedade do material, pela qual ele tende a retornar à forma original, é denominada elasticidade. Quando o material volta completamente à forma original, diz-se que é perfeitamente elástico. Se o retorno não for total, diz-se que é parcialmente elástico. Nesse caso, a deformação que permanece depois da retirada da carga é denominada deformação permanente. O processo de carregamento e descarregamento do material pode ser repetido sucessivamente, para valores cada vez mais altos de tração. À tensão cujo descarregamento acarrete uma deformação residual permanente, chama-se limite elástico. Para os aços e alguns outros materiais, os limites elástico e de proporcionalidade são aproimadamente coincidentes. Materiais semelhantes à borracha possuem uma propriedade a elasticidade que pode continuar muito além do limite de proporcionalidade. 3.1 Lei de Hooke Os diagramas tensão-deformação da maioria dos materiais apresentam uma região inicial de comportamento elástico e linear. relação linear entre a tensão e a deformação, no caso de uma barra em tração, pode ser epressa por: σ = E ε onde E é uma constante de proporcionalidade conhecida como módulo de elasticidade do material. Este é o coeficiente angular da parte linear do diagrama tensão-deformação e é diferente para cada material. O módulo de elasticidade é também conhecido como módulo de Young e a equação anterior é chamada de Lei de Hooke. P Quando uma barra é carregada por tração simples, a tensão aial é σ = e a δ deformação específica é ε =. L Combinando estas epressões com a lei de Hooke, tem-se que o alongamento da P L barra é δ =. E Esta equação mostra que o alongamento de uma barra linearmente elástica é diretamente proporcional à carga e ao seu comprimento e inversamente proporcional ao módulo de elasticidade e à área da seção transversal. O produto E é conhecido como rigidez aial da barra. fleibilidade da barra é definida como a deformação decorrente de uma carga unitária. Da equação anterior, vemos que a fleibilidade é L E. De modo análogo, a rijeza da barra é definida como a força necessária para produzir uma deformação unitária. Então, a rijeza é igual a E, que é o inverso da fleibilidade. L

22 Vários casos que envolvem barras com carregamento aial podem ser solucionados P L aplicando-se a epressão: δ =. E figura mostra uma barra carregada aialmente. O procedimento para determinação da deformação da barra consiste em obter a força aial em cada parte da barra (, C e CD) e, em seguida, calcular separadamente o alongamento (ou encurtamento) de cada parte. 1 P C P P L 1 L L 3 P a b D P soma algébrica dessas variações de comprimento dará a variação total de comprimento da barra, tal que: δ = n i= 1 Pi Li Ei i O mesmo método pode ser usado quando a barra é formada por partes com diferentes seções transversais. 3. Coeficiente de Poisson. Variação volumétrica Conforme foi dito anteriormente, quando uma barra é tracionada, o alongamento aial é acompanhado por uma contração lateral, isto é, a largura torna-se menor e seu comprimento cresce. δl P P L δ a relação entre as deformações transversal e longitudinal é constante, dentro da região elástica, e é conhecida como relação ou coeficiente de Poisson; dada por: deformação lateral ν = (0 ν 0,5) deformação aial Para os materiais que têm as mesmas propriedades elásticas em todas as direções, denominados isotrópicos, Poisson achou ν = 0,5.

23 Para fins práticos, o valor numérico de ν é o mesmo, independentemente do material estar sob tração ou compressão. Conhecendo-se o coeficiente de Poisson e o módulo de elasticidade do material, pode-se calcular a variação do volume da barra tracionada. Tal variação é mostrada na figura seguinte. ν.ε 1 P 1 ν.ε P 1 ε Inicialmente, o cubo que tinha dimensões unitárias, sofre alongamento na direção da força P e encurtamento das arestas na direção transversal. ssim, a área da seção transversal do cubo passa a ser ( 1 ν ε ) e o volume passa a ser ( 1+ ε ) ( 1 ν ε ). Desenvolvendo a epressão, chega-se a: V' = V' = V' = ( 1 + ε ) ( 1 ν ε ) ( 1 + ε ) ( 1 ν ε + ν ε ) 3 ( 1 ν ε + ν ε + ε ν ε + ν ε ) Desprezando-se os termos de ordem superior, obtém-se: V ' ( 1+ ε ν ε ) = variação do volume é dada pela diferença entre os volumes final e inicial: V ' ( 1+ ε ν ε ) 1 = ε ( 1 ν ) V = V = variação do volume unitário é epressa por: V V ( 1 ν ) = ε equação anterior pode ser usada para calcular a variação do volume de uma barra tracionada, desde que se conheçam a deformação ε e o coeficiente de Poisson ν. Como não é razoável admitir-se que um material diminua de volume quando tracionado, pode-se concluir que ν é sempre menor do que 0,5.

24 4 Tensão dmissível ou Tensão-Limite 3 Para permitir sobrecargas acidentais, bem como para levar em conta certas imprecisões na construção e possíveis desconhecimentos de algumas variáveis na análise da estrutura, normalmente emprega-se um coeficiente de segurança. σ Para os materiais dúcteis, tem-se. γ > 1 σ Para os materiais frágeis, tem-se u. γ > 1 No concreto armado, γ aço = 1, 15 e γ conc = 1, 4. 5 Estruturas Estaticamente Indeterminadas Haverá casos em que as equações de equilíbrio não são suficientes para se chegar às solicitações da estrutura. s equações a mais, necessárias para solucionar o problema, são encontradas nas condições de deformação. Um eemplo de estrutura estaticamente indeterminada é mostrado na figura seguinte. R L 1 L C F R R + + R -F DEN barra tem as etremidades presas a suportes rígidos e está carregada com uma força F em um ponto intermediário C. s reações R e R aparecem nas etremidades da barra, porém suas intensidades não podem ser calculadas apenas pela Estática. única equação fornecida pelo equilíbrio é: R + R = F Sabe-se, porém, que a variação de comprimento da barra é nula; logo: L = 0 L1 + L = 0 ( R F ) R L1 L + = 0 E E R L1 + R L F L = 0 R ( L1 + L ) = F L

25 F L L = F R = ( L1 + L ) L 4 L = F F L L = F L R 1 O diagrama real do esforço normal é: L F L + DEN - L F 1 L 6 Tensões Térmicas Como é sabido, as dimensões dos corpos sofrem alterações em função da variação de temperatura. Quando a estrutura é estaticamente determinada, a variação uniforme da temperatura não acarreta nenhuma tensão, já que a estrutura é capaz de se epandir ou se contrair livremente. Por outro lado, a variação de temperatura em estruturas estaticamente indeterminadas produz tensões nos elementos, denominadas tensões térmicas. propriedade física que estabelece a relação de proporcionalidade entre a variação da dimensão longitudinal de uma peça e a variação de temperatura correspondente é denominada coeficiente de dilatação térmica α. Seja a barra da figura restringida pelos apoios e. Com a variação de temperatura, a barra tende a se deformar. Porém, os apoios impedem essa deformação e surgem reações nos apoios iguais a R. R L R O diagrama de esforço normal é:

26 5 R - DEN Como a variação de comprimento da barra é nula, tem-se: LN + L T = 0 R L - + α L T = 0 E R = α T E σ R = = α T E

27 IV CISLHMENTO PURO 6 Vimos que as forças aiais provocam tensões normais nos elementos estruturais. No entanto, pode ocorrer que as forças atuantes no elemento estejam inclinadas com relação à sua seção transversal. Nesse caso, essas forças podem ser decompostas em componentes paralelas e perpendiculares ao plano de corte considerado. componente normal N à seção transversal do elemento irá provocar tensão normal σ (sigma) e a componente vertical V irá provocar tensão de cisalhamento τ (tau). Conclusão: as tensões normais resultam de esforços perpendiculares ao plano de corte, enquanto as tensões de cisalhamento resultam de esforços paralelos a esse mesmo plano. Consideremos duas chapas e ligadas pelo rebite CD. F C D F onde a área da seção transversal do rebite é denominada por. Sob a ação da força F, surgem esforços cortantes (tangenciais) à seção transversal F do rebite e, portanto, tensões de cisalhamento τ cuja intensidade média é τ med =. fim de visualizar as deformações produzidas por uma tensão de cisalhamento, consideremos o cubo elementar (elemento infinitesimal) submetido à tensão de cisalhamento τ na sua face superior. τ τ τ τ Como não há tensões normais agindo sobre o elemento, seu equilíbrio na direção horizontal só é possível se, na face inferior, eistir tensão de cisalhamento igual e em sentido contrario à da face superior. lém disso, essas tensões de cisalhamento irão produzir momento que deve ser equilibrado por outro momento originado pelas tensões que atuam nas faces verticais. Portanto, essas tensões de cisalhamento devem ser também iguais a τ para que o elemento permaneça em equilíbrio. Um elemento sujeito apenas às tensões de cisalhamento mostradas na figura anterior é dito em cisalhamento puro. Conclusão: a) as tensões de cisalhamento que agem em um elemento ocorrem aos pares, iguais e opostos; b) as tensões de cisalhamento eistem sempre em planos perpendiculares entre si. Tais tensões são iguais em intensidade e têm sentidos opostos que se aproimam ou se afastam da linha de interseção dos planos.

28 deformação do elemento infinitesimal está representada na figura abaio, que mostra a face frontal do cubo submetido a cisalhamento puro. Como não há tensões normais agindo no elemento, os comprimentos das arestas ab, bc, cd e ac não variam, porém o quadrado de lado abcd transforma-se no paralelogramo representado em tracejado. c τ d O ângulo no vértice c, que media π antes da deformação, fica reduzido a π γ. o mesmo tempo, o ângulo no vértice a ficará aumentado para π + γ. O ângulo γ é a medida da distorção do elemento provocada pelo cisalhamento, e é denominado deformação de cisalhamento. Pela figura, nota-se que a deformação de cisalhamento γ é igual ao deslizamento horizontal da aresta superior em relação à aresta inferior, dividido pela distância entre essas duas arestas (altura do elemento). determinação das tensões de cisalhamento τ em função das deformações de cisalhamento γ pode ser feita a partir de um teste de cisalhamento puro, obtendo-se o diagrama tensão-deformação de cisalhamento do material, cujo aspecto é muito semelhante ao diagrama tensão-deformação obtido do ensaio de tração. ssim, se o material tiver uma região elástica-linear, o diagrama tensão-deformação de cisalhamento será uma reta e as tensões de cisalhamento serão proporcionais às deformações de cisalhamento: τ = G γ onde G é o módulo de elasticidade ao cisalhamento do material, também conhecido como módulo de elasticidade transversal. O módulo de elasticidade transversal relaciona-se com o módulo de elasticidade longitudinal do material de acordo com a seguinte epressão: E G = ( 1 +ν ) τ a γ τ b τ γ 7

Discussão sobre as leis de Newton no contexto da análise de estruturas

Discussão sobre as leis de Newton no contexto da análise de estruturas Princípios físicos básicos para as condições de equilíbrio As condições de equilíbrio garantem o equilíbrio estático de qualquer porção isolada da estrutura ou da estrutura como um todo. Elas estão baseadas

Leia mais

Forças internas. Objetivos da aula: Mostrar como usar o método de seções para determinar as cargas internas em um membro.

Forças internas. Objetivos da aula: Mostrar como usar o método de seções para determinar as cargas internas em um membro. Forças internas Objetivos da aula: Mostrar como usar o método de seções para determinar as cargas internas em um membro. Generalizar esse procedimento formulando equações que podem ser representadas de

Leia mais

Caso (2) X 2 isolado no SP

Caso (2) X 2 isolado no SP Luiz Fernando artha étodo das Forças 6 5.5. Exemplos de solução pelo étodo das Forças Exemplo Determine pelo étodo das Forças o diagrama de momentos fletores do quadro hiperestático ao lado. Somente considere

Leia mais

Relações entre tensões e deformações

Relações entre tensões e deformações 3 de dezembro de 0 As relações entre tensões e deformações são estabelecidas a partir de ensaios experimentais simples que envolvem apenas uma componente do tensor de tensões. Ensaios complexos com tensões

Leia mais

CAPÍTULO 2: TENSÃO E DEFORMAÇÃO: Carregamento Axial

CAPÍTULO 2: TENSÃO E DEFORMAÇÃO: Carregamento Axial Curso de ngenharia Civil Universidade stadual de Maringá Centro de Tecnologia Departamento de ngenharia Civil CÍTUO 2: TNSÃO DFOMÇÃO: Carregamento ial 2.1 Deformação specífica O diagrama carga deformação

Leia mais

Curso de Engenharia Civil. Universidade Estadual de Maringá Centro de Tecnologia Departamento de Engenharia Civil CAPÍTULO 6: TORÇÃO

Curso de Engenharia Civil. Universidade Estadual de Maringá Centro de Tecnologia Departamento de Engenharia Civil CAPÍTULO 6: TORÇÃO Curso de Engenharia Civil Universidade Estadual de Maringá Centro de ecnologia Departamento de Engenharia Civil CPÍULO 6: ORÇÃO Revisão de Momento orçor Convenção de Sinais: : Revisão de Momento orçor

Leia mais

9. Derivadas de ordem superior

9. Derivadas de ordem superior 9. Derivadas de ordem superior Se uma função f for derivável, então f é chamada a derivada primeira de f (ou de ordem 1). Se a derivada de f eistir, então ela será chamada derivada segunda de f (ou de

Leia mais

1. Definição dos Elementos Estruturais

1. Definição dos Elementos Estruturais A Engenharia e a Arquitetura não devem ser vistas como duas profissões distintas, separadas, independentes uma da outra. Na verdade elas devem trabalhar como uma coisa única. Um Sistema Estrutural definido

Leia mais

Efeito do comportamento reológico do concreto

Efeito do comportamento reológico do concreto Efeito do comportamento reológico do concreto FLECHAS E ELEENTOS DE CONCRETO ARADO 1 - INTRODUÇÃO Todo o cálculo das deformações de barras, devidas à fleão, tem por base a clássica equação diferencial

Leia mais

5ª LISTA DE EXERCÍCIOS PROBLEMAS ENVOLVENDO FLEXÃO

5ª LISTA DE EXERCÍCIOS PROBLEMAS ENVOLVENDO FLEXÃO Universidade Federal da Bahia Escola Politécnica Departamento de Construção e Estruturas Professor: Armando Sá Ribeiro Jr. Disciplina: ENG285 - Resistência dos Materiais I-A www.resmat.ufba.br 5ª LISTA

Leia mais

Ensaio de torção. Diz o ditado popular: É de pequenino que

Ensaio de torção. Diz o ditado popular: É de pequenino que A UU L AL A Ensaio de torção Diz o ditado popular: É de pequenino que se torce o pepino! E quanto aos metais e outros materiais tão usados no nosso dia-a-dia: o que dizer sobre seu comportamento quando

Leia mais

Teoria das Estruturas

Teoria das Estruturas Teoria das Estruturas Aula 02 Morfologia das Estruturas Professor Eng. Felix Silva Barreto ago-15 Q que vamos discutir hoje: Morfologia das estruturas Fatores Morfogênicos Funcionais Fatores Morfogênicos

Leia mais

Capítulo 3 Propriedades Mecânicas dos Materiais

Capítulo 3 Propriedades Mecânicas dos Materiais Capítulo 3 Propriedades Mecânicas dos Materiais 3.1 O ensaio de tração e compressão A resistência de um material depende de sua capacidade de suportar uma carga sem deformação excessiva ou ruptura. Essa

Leia mais

de forças não concorrentes.

de forças não concorrentes. Universidade Federal de Alagoas Centro de Tecnologia Curso de Engenharia Civil Disciplina: Mecânica dos Sólidos 1 Código: ECIV018 Professor: Eduardo Nobre Lages Equilíbrio de Corpos Rígidos Maceió/AL Objetivo

Leia mais

Mecânica Aplicada. Engenharia Biomédica ESFORÇOS INTERNOS EM PEÇAS LINEARES

Mecânica Aplicada. Engenharia Biomédica ESFORÇOS INTERNOS EM PEÇAS LINEARES Mecânica plicada Engenharia iomédica ESFORÇOS INTERNOS EM PEÇS INERES Versão 0.2 Setembro de 2008 1. Peça linear Uma peça linear é um corpo que se pode considerar gerado por uma figura plana cujo centro

Leia mais

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 9

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 9 RACIOCÍNIO LÓGICO AULA 9 TRIGONOMETRIA TRIÂNGULO RETÂNGULO Considere um triângulo ABC, retângulo em  ( = 90 ), onde a é a medida da hipotenusa, b e c, são as medidas dos catetos e a, β são os ângulos

Leia mais

UNIVERSIDADE DE MARÍLIA

UNIVERSIDADE DE MARÍLIA UNIVERSIDADE DE MARÍLIA Faculdade de Engenharia, Arquitetura e Tecnologia SISTEMAS ESTRUTURAIS (NOTAS DE AULA) Professor Dr. Lívio Túlio Baraldi MARILIA, 2007 1. DEFINIÇÕES FUNDAMENTAIS Força: alguma causa

Leia mais

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 3

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 3 Linhas de Força Mencionamos na aula passada que o físico inglês Michael Faraday (79-867) introduziu o conceito de linha de força para visualizar a interação elétrica entre duas cargas. Para Faraday, as

Leia mais

Potenciação no Conjunto dos Números Inteiros - Z

Potenciação no Conjunto dos Números Inteiros - Z Rua Oto de Alencar nº 5-9, Maracanã/RJ - tel. 04-98/4-98 Potenciação no Conjunto dos Números Inteiros - Z Podemos epressar o produto de quatro fatores iguais a.... por meio de uma potência de base e epoente

Leia mais

Facear Concreto Estrutural I

Facear Concreto Estrutural I 1. ASSUNTOS DA AULA Durabilidade das estruturas, estádios e domínios. 2. CONCEITOS As estruturas de concreto devem ser projetadas e construídas de modo que, quando utilizadas conforme as condições ambientais

Leia mais

CAPÍTULO V CISALHAMENTO CONVENCIONAL

CAPÍTULO V CISALHAMENTO CONVENCIONAL 1 I. ASPECTOS GERAIS CAPÍTULO V CISALHAMENTO CONVENCIONAL Conforme já foi visto, a tensão representa o efeito de um esforço sobre uma área. Até aqui tratamos de peças submetidas a esforços normais a seção

Leia mais

LISTA 3 EXERCÍCIOS SOBRE ENSAIOS DE COMPRESSÃO, CISALHAMENTO, DOBRAMENTO, FLEXÃO E TORÇÃO

LISTA 3 EXERCÍCIOS SOBRE ENSAIOS DE COMPRESSÃO, CISALHAMENTO, DOBRAMENTO, FLEXÃO E TORÇÃO LISTA 3 EXERCÍCIOS SOBRE ENSAIOS DE COMPRESSÃO, CISALHAMENTO, DOBRAMENTO, FLEXÃO E TORÇÃO 1. Uma mola, com comprimento de repouso (inicial) igual a 30 mm, foi submetida a um ensaio de compressão. Sabe-se

Leia mais

Universidade Federal de Pelotas Centro de Engenharias. Resistência dos Materiais I Estruturas II. Capítulo 5 Torção

Universidade Federal de Pelotas Centro de Engenharias. Resistência dos Materiais I Estruturas II. Capítulo 5 Torção Capítulo 5 Torção 5.1 Deformação por torção de um eixo circular Torque é um momento que tende a torcer um elemento em torno de seu eixo longitudinal. Se o ângulo de rotação for pequeno, o comprimento e

Leia mais

Disciplina: Resistência dos Materiais Unidade I - Tensão. Professor: Marcelino Vieira Lopes, Me.Eng. http://profmarcelino.webnode.

Disciplina: Resistência dos Materiais Unidade I - Tensão. Professor: Marcelino Vieira Lopes, Me.Eng. http://profmarcelino.webnode. Disciplina: Resistência dos Materiais Unidade I - Tensão Professor: Marcelino Vieira Lopes, Me.Eng. http://profmarcelino.webnode.com/blog/ Referência Bibliográfica Hibbeler, R. C. Resistência de materiais.

Leia mais

PROBLEMAS DE OTIMIZAÇÃO

PROBLEMAS DE OTIMIZAÇÃO (Tóp. Teto Complementar) PROBLEMAS DE OTIMIZAÇÃO 1 PROBLEMAS DE OTIMIZAÇÃO Este teto estuda um grupo de problemas, conhecido como problemas de otimização, em tais problemas, quando possuem soluções, é

Leia mais

Resolução dos Exercícios sobre Derivadas

Resolução dos Exercícios sobre Derivadas Resolução dos Eercícios sobre Derivadas Eercício Utilizando a idéia do eemplo anterior, encontre a reta tangente à curva nos pontos onde e Vamos determinar a reta tangente à curva nos pontos de abscissas

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA 5 0 Encontro da RPM TRANSFORMAÇÕES NO PLANO

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA 5 0 Encontro da RPM TRANSFORMAÇÕES NO PLANO UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA 5 0 Encontro da RPM TRANSFORMAÇÕES NO PLANO Jorge Costa do Nascimento Introdução Na produção desse texto utilizamos como fonte de pesquisa material

Leia mais

RESISTÊNCIA DOS MATERIAIS APOSTILA 01

RESISTÊNCIA DOS MATERIAIS APOSTILA 01 Engenaria da Computação º / 5 Semestre RESSTÊNC DOS TERS POSTL 0 Prof Daniel Hasse Características Geométricas de Figuras Planas SÃO JOSÉ DOS CPOS, SP 5 CRCTERÍSTCS GEOÉTRCS DE FGURS PLNS O dimensionamento

Leia mais

e-mail: ederaldoazevedo@yahoo.com.br

e-mail: ederaldoazevedo@yahoo.com.br Centro de Ensino Superior do Amapá-CEAP Curso: Arquitetura e Urbanismo Assunto: Cálculo de Pilares Prof. Ederaldo Azevedo Aula 4 e-mail: ederaldoazevedo@yahoo.com.br Centro de Ensino Superior do Amapá-CEAP

Leia mais

Introdução: momento fletor.

Introdução: momento fletor. Flexão em Vigas e Projeto de Vigas APOSTILA Mecânica dos Sólidos II Introdução: As vigas certamente podem ser consideradas entre os mais importantes de todos os elementos estruturais. Citamos como exemplo

Leia mais

Bacharelado Engenharia Civil

Bacharelado Engenharia Civil Bacharelado Engenharia Civil Disciplina: Física Geral e Experimental I Força e Movimento- Leis de Newton Prof.a: Msd. Érica Muniz Forças são as causas das modificações no movimento. Seu conhecimento permite

Leia mais

Pontifícia Universidade Católica do Rio de Janeiro PUC-Rio. CIV 1111 Sistemas Estruturais na Arquitetura I

Pontifícia Universidade Católica do Rio de Janeiro PUC-Rio. CIV 1111 Sistemas Estruturais na Arquitetura I Pontifícia Universidade Católica do Rio de Janeiro PUC-Rio CIV 1111 Sistemas Estruturais na Arquitetura I Profa. Elisa Sotelino Prof. Luiz Fernando Martha Propriedades de Materiais sob Tração Objetivos

Leia mais

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 6. O trabalho feito pela força para deslocar o corpo de a para b é dado por: = =

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 6. O trabalho feito pela força para deslocar o corpo de a para b é dado por: = = Energia Potencial Elétrica Física I revisitada 1 Seja um corpo de massa m que se move em linha reta sob ação de uma força F que atua ao longo da linha. O trabalho feito pela força para deslocar o corpo

Leia mais

2 a Prova de EDI-49 Concreto Estrutural II Prof. Flávio Mendes Junho de 2012 Duração prevista: até 4 horas.

2 a Prova de EDI-49 Concreto Estrutural II Prof. Flávio Mendes Junho de 2012 Duração prevista: até 4 horas. 2 a Prova de EDI-49 Concreto Estrutural II Prof. Flávio Mendes Junho de 212 Duração prevista: até 4 horas. Esta prova tem oito (8) questões e três (3) laudas. Consulta permitida somente ao formulário básico.

Leia mais

RESISTÊNCIA DOS MATERIAIS

RESISTÊNCIA DOS MATERIAIS 1 RESISTÊNCIA DOS MATERIAIS Prof.: J. E. Guimarães Revisão 7 20/01/08 2 RESISTÊNCIA DOS MATERIAIS Revisão de Matemática Faremos aqui uma pequena revisão de matemática necessária à nossa matéria, e sem

Leia mais

Departamento de Matemática - UEL - 2010. Ulysses Sodré. http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.

Departamento de Matemática - UEL - 2010. Ulysses Sodré. http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010. Matemática Essencial Extremos de funções reais Departamento de Matemática - UEL - 2010 Conteúdo Ulysses Sodré http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.

Leia mais

EXERCÍCIOS DE ESTRUTURAS DE MADEIRA

EXERCÍCIOS DE ESTRUTURAS DE MADEIRA UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA CIVIL,ARQUITETURA E URBANISMO Departamento de Estruturas EXERCÍCIOS DE ESTRUTURAS DE MADEIRA RAFAEL SIGRIST PONTES MARTINS,BRUNO FAZENDEIRO DONADON

Leia mais

Disciplinas: Mecânica dos Materiais 2 6º Período E Dinâmica e Projeto de Máquinas 2-10º Período

Disciplinas: Mecânica dos Materiais 2 6º Período E Dinâmica e Projeto de Máquinas 2-10º Período UNIVERSIDADE DO ESTADO DO RIO DE JANEIRO INSTITUTO POLITÉCNICO Graduação em Engenharia Mecânica Disciplinas: Mecânica dos Materiais 2 6º Período E Dinâmica e Projeto de Máquinas 2-10º Período Professor:

Leia mais

APOSTILA TECNOLOGIA MECANICA

APOSTILA TECNOLOGIA MECANICA FACULDADE DE TECNOLOGIA DE POMPEIA CURSO TECNOLOGIA EM MECANIZAÇÃO EM AGRICULTURA DE PRECISÃO APOSTILA TECNOLOGIA MECANICA Autor: Carlos Safreire Daniel Ramos Leandro Ferneta Lorival Panuto Patrícia de

Leia mais

Lista de exercícios sobre barras submetidas a força normal

Lista de exercícios sobre barras submetidas a força normal RESISTÊNCIA DOS MATERIAIS I Lista de exercícios sobre barras submetidas a força normal 1) O cabo e a barra formam a estrutura ABC (ver a figura), que suporta uma carga vertical P= 12 kn. O cabo tem a área

Leia mais

DINÂMICA. Força Resultante: É a força que produz o mesmo efeito que todas as outras aplicadas a um corpo.

DINÂMICA. Força Resultante: É a força que produz o mesmo efeito que todas as outras aplicadas a um corpo. DINÂMICA Quando se fala em dinâmica de corpos, a imagem que vem à cabeça é a clássica e mitológica de Isaac Newton, lendo seu livro sob uma macieira. Repentinamente, uma maçã cai sobre a sua cabeça. Segundo

Leia mais

2. Função polinomial do 2 o grau

2. Função polinomial do 2 o grau 2. Função polinomial do 2 o grau Uma função f: IR IR que associa a cada IR o número y=f()=a 2 +b+c com a,b,c IR e a0 é denominada função polinomial do 2 o grau ou função quadrática. Forma fatorada: a(-r

Leia mais

2.0 DEFORMAÇÃO POR TORÇÃO DE UM EIXO CIRCULAR

2.0 DEFORMAÇÃO POR TORÇÃO DE UM EIXO CIRCULAR TORÇÃO 1.0 OBJETIVO No estudo da torção serão discutidos os efeitos da aplicação de esforços torcionais em um elemento linear longo, tal como um eixo ou um tubo. Será considerado que o elemento tenha seção

Leia mais

Equipe de Física FÍSICA

Equipe de Física FÍSICA Aluno (a): Série: 3ª Turma: TUTORIAL 8B Ensino Médio Equipe de Física Data: FÍSICA Estática de um ponto Para que um ponto esteja em equilíbrio precisa satisfazer a seguinte condição: A resultante de todas

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO DO 1º GRAU

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO DO 1º GRAU FUNÇÃO IDENTIDADE... FUNÇÃO LINEAR... FUNÇÃO AFIM... GRÁFICO DA FUNÇÃO DO º GRAU... IMAGEM... COEFICIENTES DA FUNÇÃO AFIM... ZERO DA FUNÇÃO AFIM... 8 FUNÇÕES CRESCENTES OU DECRESCENTES... 9 SINAL DE UMA

Leia mais

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 4

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 4 Lei de Gauss Considere uma distribuição arbitrária de cargas ou um corpo carregado no espaço. Imagine agora uma superfície fechada qualquer envolvendo essa distribuição ou corpo. A superfície é imaginária,

Leia mais

Capítulo 1 - Estática

Capítulo 1 - Estática Capítulo 1 - Estática 1.1. Generalidades sobre forças 1.1.1. A Grandeza Vetorial A finalidade da Estática, parte da Mecânica Geral, é o estudo das condições nas quais um sólido ou um sistema de sólidos,

Leia mais

APLICAÇÕES DA DERIVADA

APLICAÇÕES DA DERIVADA Notas de Aula: Aplicações das Derivadas APLICAÇÕES DA DERIVADA Vimos, na seção anterior, que a derivada de uma função pode ser interpretada como o coeficiente angular da reta tangente ao seu gráfico. Nesta,

Leia mais

CAPÍTULO II INTRODUÇÃO À MECÂNICA DOS SÓLIDOS EQUILÍBRIO EXTERNO I. OBJETIVO PRINCIPAL DA MECÂNICA DOS SÓLIDOS

CAPÍTULO II INTRODUÇÃO À MECÂNICA DOS SÓLIDOS EQUILÍBRIO EXTERNO I. OBJETIVO PRINCIPAL DA MECÂNICA DOS SÓLIDOS 1 CAPÍTULO II INTRODUÇÃO À MECÂNICA DOS SÓLIDOS EQUILÍBRIO EXTERNO I. OBJETIVO PRINCIPAL DA MECÂNICA DOS SÓLIDOS O principal objetivo de um curso de mecânica dos sólidos é o desenvolvimento de relações

Leia mais

ÍNDICE DO LIVRO CÁLCULO E DESENHO DE CONCRETO ARMADO autoria de Roberto Magnani SUMÁRIO LAJES

ÍNDICE DO LIVRO CÁLCULO E DESENHO DE CONCRETO ARMADO autoria de Roberto Magnani SUMÁRIO LAJES ÍNDICE DO LIVRO CÁLCULO E DESENHO DE CONCRETO ARMADO autoria de Roberto Magnani SUMÁRIO LAJES 2. VINCULAÇÕES DAS LAJES 3. CARREGAMENTOS DAS LAJES 3.1- Classificação das lajes retangulares 3.2- Cargas acidentais

Leia mais

Cap. 4 - Princípios da Dinâmica

Cap. 4 - Princípios da Dinâmica Universidade Federal do Rio de Janeiro Instituto de Física Física I IGM1 2014/1 Cap. 4 - Princípios da Dinâmica e suas Aplicações Prof. Elvis Soares 1 Leis de Newton Primeira Lei de Newton: Um corpo permanece

Leia mais

Prof. André Motta - mottabip@hotmail.com_ 4.O gráfico apresentado mostra a elongação em função do tempo para um movimento harmônico simples.

Prof. André Motta - mottabip@hotmail.com_ 4.O gráfico apresentado mostra a elongação em função do tempo para um movimento harmônico simples. Eercícios Movimento Harmônico Simples - MHS 1.Um movimento harmônico simples é descrito pela função = 7 cos(4 t + ), em unidades de Sistema Internacional. Nesse movimento, a amplitude e o período, em unidades

Leia mais

Ivan Guilhon Mitoso Rocha. As grandezas fundamentais que serão adotadas por nós daqui em frente:

Ivan Guilhon Mitoso Rocha. As grandezas fundamentais que serão adotadas por nós daqui em frente: Rumo ao ITA Física Análise Dimensional Ivan Guilhon Mitoso Rocha A análise dimensional é um assunto básico que estuda as grandezas físicas em geral, com respeito a suas unidades de medida. Como as grandezas

Leia mais

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DOS VALES DO JEQUITINHONA E MUCURI DIAMANTINA MG ESTUDO DIRIGIDO

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DOS VALES DO JEQUITINHONA E MUCURI DIAMANTINA MG ESTUDO DIRIGIDO MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DOS VALES DO JEQUITINHONA E MUCURI DIAMANTINA MG ESTUDO DIRIGIDO Disciplina: Construções Rurais 2011/1 Código: AGR006/AGR007 Curso (s): Agronomia e Zootecnia

Leia mais

Só Matemática O seu portal matemático http://www.somatematica.com.br FUNÇÕES

Só Matemática O seu portal matemático http://www.somatematica.com.br FUNÇÕES FUNÇÕES O conceito de função é um dos mais importantes em toda a matemática. O conceito básico de função é o seguinte: toda vez que temos dois conjuntos e algum tipo de associação entre eles, que faça

Leia mais

SUPERESTRUTURA estrutura superestrutura infra-estrutura lajes

SUPERESTRUTURA estrutura superestrutura infra-estrutura lajes SUPRSTRUTUR s estruturas dos edifícios, sejam eles de um ou vários pavimentos, são constituídas por diversos elementos cuja finalidade é suportar e distribuir as cargas, permanentes e acidentais, atuantes

Leia mais

CÁLCULO DE ZEROS DE FUNÇÕES REAIS

CÁLCULO DE ZEROS DE FUNÇÕES REAIS 15 CÁLCULO DE ZEROS DE FUNÇÕES REAIS Um dos problemas que ocorrem mais frequentemente em trabalhos científicos é calcular as raízes de equações da forma: f() = 0. A função f() pode ser um polinômio em

Leia mais

1ª LISTA DE REVISÃO SOBRE ESTÁTICA DO CORPO EXTENSO Professor Alexandre Miranda Ferreira

1ª LISTA DE REVISÃO SOBRE ESTÁTICA DO CORPO EXTENSO Professor Alexandre Miranda Ferreira 1ª LISTA DE REVISÃO SOBRE ESTÁTICA DO CORPO EXTENSO Professor Alexandre Miranda Ferreira www.proamfer.com.br amfer@uol.com.br 1 Em uma experiência, a barra homogênea, de secção reta constante e peso 100

Leia mais

Resistência. dos Materiais II

Resistência. dos Materiais II Resistência Prof. MSc Eng Halley Dias dos Materiais II Material elaborado pelo Prof. MSc Eng Halley Dias Instituto Federal de Educação Ciência e Tecnologia de Santa Catarina Aplicado ao Curso Técnico de

Leia mais

P U C R S PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA CURSO DE ENGENHARIA CIVIL CONCRETO ARMADO II FLEXÃO SIMPLES

P U C R S PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA CURSO DE ENGENHARIA CIVIL CONCRETO ARMADO II FLEXÃO SIMPLES P U C R S PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE ENGENHARIA CURSO DE ENGENHARIA CIVIL CONCRETO ARMADO II FLEXÃO SIMPLES (OUTRA APRESENTAÇÃO) Prof. Almir Schäffer PORTO ALEGRE

Leia mais

Noções de Topografia Para Projetos Rodoviarios

Noções de Topografia Para Projetos Rodoviarios Página 1 de 8 Noções de Topografia Para Projetos Rodoviarios Capitulos 01 - Requisitos 02 - Etaqpas 03 - Traçado 04 - Trafego e Clssificação 05 - Geometria 06 - Caracteristicas Técnicas 07 - Distancia

Leia mais

Estudo do efeito de sistemas de forças não concorrentes. Eduardo Nobre Lages CTEC/UFAL

Estudo do efeito de sistemas de forças não concorrentes. Eduardo Nobre Lages CTEC/UFAL Universidade Federal de lagoas Faculdade de rquitetura e Urbanismo Curso de rquitetura e Urbanismo Disciplina: Fundamentos para a nálise Estrutural Código: URB006 Turma: Período Letivo: 2007-2 Professor:

Leia mais

Questão 1. Questão 2. Resposta. Resposta

Questão 1. Questão 2. Resposta. Resposta Questão 1 Na natureza, muitos animais conseguem guiar-se e até mesmo caçar com eficiência, devido à grande sensibilidade que apresentam para a detecção de ondas, tanto eletromagnéticas quanto mecânicas.

Leia mais

Deformação de Vigas em flexão

Deformação de Vigas em flexão Mecânica dos Materiais Deformação de Vigas em fleão Tradução e adaptação: Victor Franco Ref.: Mechanics of Materials, eer, Johnston & DeWolf McGra-Hill. Mechanics of Materials, R. Hibbeler, Pearsons Education.

Leia mais

Física Aplicada PROF.: MIRANDA. 2ª Lista de Exercícios DINÂMICA. Física

Física Aplicada PROF.: MIRANDA. 2ª Lista de Exercícios DINÂMICA. Física PROF.: MIRANDA 2ª Lista de Exercícios DINÂMICA Física Aplicada Física 01. Uma mola possui constante elástica de 500 N/m. Ao aplicarmos sobre esta uma força de 125 Newtons, qual será a deformação da mola?

Leia mais

Análise estrutural. Objetivos da aula. Mostrar como determinar as forças nos membros de treliças usando o método dos nós e o método das seções.

Análise estrutural. Objetivos da aula. Mostrar como determinar as forças nos membros de treliças usando o método dos nós e o método das seções. Análise estrutural Objetivos da aula Mostrar como determinar as forças nos membros de treliças usando o método dos nós e o método das seções. slide 1 Treliças simples Treliça é uma estrutura de vigas conectadas

Leia mais

Esforços axiais e tensões normais

Esforços axiais e tensões normais Esforços axiais e tensões normais (Ref.: Beer & Johnston, Resistência dos Materiais, ª ed., Makron) Considere a estrutura abaixo, construída em barras de aço AB e BC, unidas por ligações articuladas nas

Leia mais

Capítulo 5: Aplicações da Derivada

Capítulo 5: Aplicações da Derivada Instituto de Ciências Exatas - Departamento de Matemática Cálculo I Profª Maria Julieta Ventura Carvalho de Araujo Capítulo 5: Aplicações da Derivada 5- Acréscimos e Diferenciais - Acréscimos Seja y f

Leia mais

FORÇA DE ATRITO PLANO INCLINADO

FORÇA DE ATRITO PLANO INCLINADO FORÇA DE ATRITO PLANO INCLINADO Prof. Ms. Edgar Leis de Newton - dinâmica Pensamento Antigo Associavam o movimento a presença obrigatória de uma força. Esta idéia era defendida por Aristóteles, e só foi

Leia mais

Resolução da Prova da Escola Naval 2009. Matemática Prova Azul

Resolução da Prova da Escola Naval 2009. Matemática Prova Azul Resolução da Prova da Escola Naval 29. Matemática Prova Azul GABARITO D A 2 E 2 E B C 4 D 4 C 5 D 5 A 6 E 6 C 7 B 7 B 8 D 8 E 9 A 9 A C 2 B. Os 6 melhores alunos do Colégio Naval submeteram-se a uma prova

Leia mais

PROVAESCRITA CARGO: ENGENHARIA CIVIL I

PROVAESCRITA CARGO: ENGENHARIA CIVIL I MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO SUL DE MINAS GERAIS CONCURSO PÚBLICO DE DOCENTES DO QUADRO EFETIVO EDITAL

Leia mais

6.9 - Exercícios... 49 7 - CISALHAMENTO... 50 7.1 - Introdução... 50 7.2 - Tensão de Cisalhamento... 50 7.3 - Tensões de Esmagamento... 53 7.

6.9 - Exercícios... 49 7 - CISALHAMENTO... 50 7.1 - Introdução... 50 7.2 - Tensão de Cisalhamento... 50 7.3 - Tensões de Esmagamento... 53 7. APRESENTAÇÃO RESISTÊNCIA DOS MATERIAIS Comumente observamos que eixos empenam, pinos são esmagados e cortados, vigas deformam, rolamentos se desgastam, chavetas quebram, etc. Mas por que isso acontece?

Leia mais

TRELIÇAS. Tipo sheed (cobertura)

TRELIÇAS. Tipo sheed (cobertura) TRELIÇAS Treliças são estruturas compostas por barras com extremidades articuladas. São usadas para vários fins, entre os quais, vencer pequenos, médios e grandes vãos. Pelo fato de usar barras articuladas

Leia mais

SISTEMAS ESTRUTURAIS

SISTEMAS ESTRUTURAIS 1 SISTEMS ESTRUTURIS postila 1: Sistemas Estruturais: plicações Prof. Engº Civil Ederaldo da Silva zevedo Macapá, Setembro de 2013 2 1. VIGS ISOSTÁTIC 1.1. Cálculo das Reações Como já vimos, as reações

Leia mais

ESTRUTURAS DE MADEIRA. DIMENSIONAMENTO À TRAÇÃO Aulas 10 e 11 Eder Brito

ESTRUTURAS DE MADEIRA. DIMENSIONAMENTO À TRAÇÃO Aulas 10 e 11 Eder Brito ESTRUTURS DE MDEIR DIMESIOMETO À TRÇÃO ulas 10 e 11 Eder Brito .3. Tração Conforme a direção de aplicação do esforço de tração, em relação às fibras da madeira, pode-se ter a madeira submetida à tração

Leia mais

( ) ( ) ( ( ) ( )) ( )

( ) ( ) ( ( ) ( )) ( ) Física 0 Duas partículas A e, de massa m, executam movimentos circulares uniormes sobre o plano x (x e representam eixos perpendiculares) com equações horárias dadas por xa ( t ) = a+acos ( ωt ), ( t )

Leia mais

Capítulo 6 Transformação de tensões e critérios de falhas

Capítulo 6 Transformação de tensões e critérios de falhas Capítulo 6 Transformação de tensões e critérios de falhas 6.1 Tensões principais no plano- O estado geral de tensão em um ponto é caracterizado por seis componentes independentes da tensão normal e de

Leia mais

Hoje estou elétrico!

Hoje estou elétrico! A U A UL LA Hoje estou elétrico! Ernesto, observado por Roberto, tinha acabado de construir um vetor com um pedaço de papel, um fio de meia, um canudo e um pedacinho de folha de alumínio. Enquanto testava

Leia mais

CONSERVAÇÃO DA ENERGIA MECÂNICA

CONSERVAÇÃO DA ENERGIA MECÂNICA Departamento de Física da Faculdade de Ciências da Universidade de Lisboa T3 Física Experimental I - 2007/08 CONSERVAÇÃO DA ENERGIA MECÂNICA 1. Objectivo Verificar a conservação da energia mecânica de

Leia mais

6 Vigas: Solicitações de Flexão

6 Vigas: Solicitações de Flexão 6 Vigas: Solicitações de Fleão Introdução Dando seqüência ao cálculo de elementos estruturais de concreto armado, partiremos agora para o cálculo e dimensionamento das vigas à fleão. Ações As ações geram

Leia mais

3) Calcule o alongamento elástico da peça do esquema abaixo. Seu material tem módulo de elasticidade de 2x10 5 N/mm 2.

3) Calcule o alongamento elástico da peça do esquema abaixo. Seu material tem módulo de elasticidade de 2x10 5 N/mm 2. UNIVERSIDADE FEDERAL DE MATO GROSSO DO SUL CÂMPUS DE CHAPADÃO DO SUL DISCIPLINA: CONSTRUÇÕES RURAIS LISTA DE EXERCICIOS I RESISTÊNCIA DOS MATERIAIS PROFESSOR: PAULO CARTERI CORADI 1) Calcule a deformação

Leia mais

Elementos de Máquinas

Elementos de Máquinas Professor: Leonardo Leódido Aula 2 Revisão: Análise de alhas Aula 2 Análise de alhas Instituto ederal de Brasília Sumário Sistemas de orças Resistência dos Materiais lambagem alhas Estáticas alhas Dinâmicas

Leia mais

GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar

GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar GAAL - 201/1 - Simulado - 1 Vetores e Produto Escalar SOLUÇÕES Exercício 1: Determinar os três vértices de um triângulo sabendo que os pontos médios de seus lados são M = (5, 0, 2), N = (, 1, ) e P = (4,

Leia mais

MÓDULO 03 - PROPRIEDADES DO FLUIDOS. Bibliografia

MÓDULO 03 - PROPRIEDADES DO FLUIDOS. Bibliografia MÓDULO 03 - PROPRIEDADES DO FLUIDOS Bibliografia 1) Estática dos Fluidos Professor Dr. Paulo Sergio Catálise Editora, São Paulo, 2011 CDD-620.106 2) Introdução à Mecânica dos Fluidos Robert W. Fox & Alan

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2013 DA UNICAMP-FASE 2. RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2013 DA UNICAMP-FASE 2. RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA RESOLUÇÃO D PROV DE MTEMÁTIC DO VESTIBULR 0 D UNICMP-FSE. PROF. MRI NTÔNI C. GOUVEI. Em de outubro de 0, Feli Baumgartner uebrou o recorde de velocidade em ueda livre. O salto foi monitorado oficialmente

Leia mais

CÁLCULO DE LAJES - RESTRIÇÕES ÀS FLECHAS DAS LAJES

CÁLCULO DE LAJES - RESTRIÇÕES ÀS FLECHAS DAS LAJES CÁLCULO DE LAJES - RESTRIÇÕES ÀS FLECHAS DAS LAJES No item 4.2.3. 1.C da NB-1 alerta-se que nas lajes (e vigas) deve-se limitar as flechas das estruturas. No caso das lajes maciças, (nosso caso), será

Leia mais

Conjuntos numéricos. Notasdeaula. Fonte: Leithold 1 e Cálculo A - Flemming. Dr. Régis Quadros

Conjuntos numéricos. Notasdeaula. Fonte: Leithold 1 e Cálculo A - Flemming. Dr. Régis Quadros Conjuntos numéricos Notasdeaula Fonte: Leithold 1 e Cálculo A - Flemming Dr. Régis Quadros Conjuntos numéricos Os primeiros conjuntos numéricos conhecidos pela humanidade são os chamados inteiros positivos

Leia mais

1. Equilíbrio de corpos rígidos

1. Equilíbrio de corpos rígidos 1. Equilíbrio de corpos rígidos No capítulo anterior foi referido que as forças exteriores que actuam num corpo rígido podem ser reduzidas a um sistema equivalente força/binário. Quando a força e o binário

Leia mais

Conceito de Tensão. Índice

Conceito de Tensão. Índice Conceito de Tensão Índice Breve Revisão dos Métodos da Estática 1 Tensões em Elementos Estruturais 2 nálise e Dimensionamento 3 Esforço xial; Tensão Normal 4 rincípio de Saint-Venant 5 Tensão Tangencial

Leia mais

Tópico 8. Aula Prática: Movimento retilíneo uniforme e uniformemente variado (Trilho de ar)

Tópico 8. Aula Prática: Movimento retilíneo uniforme e uniformemente variado (Trilho de ar) Tópico 8. Aula Prática: Movimento retilíneo uniforme e uniformemente variado (Trilho de ar) 1. OBJETIVOS DA EXPERIÊNCIA 1) Esta aula experimental tem como objetivo o estudo do movimento retilíneo uniforme

Leia mais

LEI DE OHM. Professor João Luiz Cesarino Ferreira. Conceitos fundamentais

LEI DE OHM. Professor João Luiz Cesarino Ferreira. Conceitos fundamentais LEI DE OHM Conceitos fundamentais Ao adquirir energia cinética suficiente, um elétron se transforma em um elétron livre e se desloca até colidir com um átomo. Com a colisão, ele perde parte ou toda energia

Leia mais

REFLEXÃO DA LUZ: ESPELHOS 412EE TEORIA

REFLEXÃO DA LUZ: ESPELHOS 412EE TEORIA 1 TEORIA 1 DEFININDO ESPELHOS PLANOS Podemos definir espelhos planos como toda superfície plana e polida, portanto, regular, capaz de refletir a luz nela incidente (Figura 1). Figura 1: Reflexão regular

Leia mais

RESISTÊNCIA DOS MATERIAIS APOSTILA 02

RESISTÊNCIA DOS MATERIAIS APOSTILA 02 Engenharia da Computação 1 4º / 5 Semestre RESISTÊNCI DOS TERIIS OSTI rof Daniel Hasse Tensões e Deformações Esforços Solicitantes Tensões e Deformações na Fleão Deformações nas igas SÃO JOSÉ DOS COS,

Leia mais

CISALHAMENTO EM VIGAS CAPÍTULO 13 CISALHAMENTO EM VIGAS

CISALHAMENTO EM VIGAS CAPÍTULO 13 CISALHAMENTO EM VIGAS CISALHAMENTO EM VIGAS CAPÍTULO 13 Libânio M. Pinheiro, Cassiane D. Muzardo, Sandro P. Santos 25 ago 2010 CISALHAMENTO EM VIGAS Nas vigas, em geral, as solicitações predominantes são o momento fletor e

Leia mais

Desenho e Projeto de tubulação Industrial

Desenho e Projeto de tubulação Industrial Desenho e Projeto de tubulação Industrial Módulo I Aula 08 1. PROJEÇÃO ORTOGONAL Projeção ortogonal é a maneira que o profissional recebe o desenho em industrias, 1 onde irá reproduzi-lo em sua totalidade,

Leia mais

ESTRUTURAS DE CONCRETO CAPÍTULO 2 CARACTERÍSTICAS DO CONCRETO

ESTRUTURAS DE CONCRETO CAPÍTULO 2 CARACTERÍSTICAS DO CONCRETO ESTRUTURAS DE CONCRETO CAPÍTULO 2 Libânio M. Pinheiro, Cassiane D. Muzardo, Sandro P. Santos Março de 2004 CARACTERÍSTICAS DO CONCRETO Como foi visto no capítulo anterior, a mistura em proporção adequada

Leia mais

Física Parte 2. Fórmulas para obtenção das grandezas: 1.Superfície 2.Volume 3.Densidades 4.Vazão 5.Pressão 6.Teorema de Pascal 7.

Física Parte 2. Fórmulas para obtenção das grandezas: 1.Superfície 2.Volume 3.Densidades 4.Vazão 5.Pressão 6.Teorema de Pascal 7. Física Parte 2 Fórmulas para obtenção das grandezas: 1.Superfície 2.Volume 3.Densidades 4.Vazão 5.Pressão 6.Teorema de Pascal 7.Empuxo Introdução A memorização de unidades para as diversas grandezas existentes

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2014 DA FUVEST-FASE 1. POR PROFA. MARIA ANTÔNIA C. GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 2014 DA FUVEST-FASE 1. POR PROFA. MARIA ANTÔNIA C. GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA DO VESTIBULAR 014 DA FUVEST-FASE 1. POR PROFA. MARIA ANTÔNIA C. GOUVEIA Q ) Um apostador ganhou um premio de R$ 1.000.000,00 na loteria e decidiu investir parte do valor

Leia mais

Matemática. Resolução das atividades complementares. M20 Geometria Analítica: Circunferência

Matemática. Resolução das atividades complementares. M20 Geometria Analítica: Circunferência Resolução das atividades complementares Matemática M Geometria Analítica: ircunferência p. (Uneb-A) A condição para que a equação 6 m 9 represente uma circunferência é: a), m, ou, m, c) < m < e), m, ou,

Leia mais

2 A Derivada. 2.1 Velocidade Média e Velocidade Instantânea

2 A Derivada. 2.1 Velocidade Média e Velocidade Instantânea 2 O objetivo geral desse curso de Cálculo será o de estudar dois conceitos básicos: a Derivada e a Integral. No decorrer do curso esses dois conceitos, embora motivados de formas distintas, serão por mais

Leia mais