Lista 2 - Vetores II. Prof. Edu Física 2. O que é necessário para determinar (caracterizar) uma: a) grandeza escalar? b) grandeza vetorial?

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Lista 2 - Vetores II. Prof. Edu Física 2. O que é necessário para determinar (caracterizar) uma: a) grandeza escalar? b) grandeza vetorial?"

Transcrição

1 Lista 2 - Vetores II O que é necessário para determinar (caracterizar) uma: a) grandeza escalar? grandeza vetorial?. Em que consiste a orientação espacial? 2. lassifique os itens abaixo em grandeza escalar (E) e grandeza vetorial (V). a) ( ) tempo ( ) velocidade c) ( ) massa d) ( ) temperatura e) ( ) força f ) ( ) deslocamento. figura a seguir representa diversos segmentos orientados. Quantos vetores estão nela representados? W Y Q Z Prof. Edu Física 2 II. Tomando por base o exercício anterior, pode-se afirmar que: a) + + = = + + III. Determine + +. dote o lado do quadrado como unidade. 6. Dados os vetores representados a seguir, determine seu vetor soma. D 4. respeito dos vetores representados abaixo, assinale verdadeiro (V) ou falso (F). a) ( ) = 4 ( ) tem direção para a direita e sentido horizontal c) ( ) = 4 d) ( ) = e) ( ) = 4 f) ( ) = g) ( ) e têm o mesmo sentido h) ( ) = - 7. Determine o módulo do vetor soma de e representados abaixo. Dados: = 0 = 0 a) 5. Os vetores a seguir referem-se as questões I, II e III. c) I. Indique qual dos vetores abaixo corresponde a + +.

2 8. a figura, estão desenhados dois vetores ( e Y ). Estes vetores representam deslocamentos sucessivos de um corpo. Qual é o módulo do vetor igual a + Y? a) 4 cm 5 cm c) 8 cm d) cm e) 25 cm Y 9. Três vetores de módulos iguais podem ser arranjados de forma a terem resultante nula? Justifique sua resposta. Observação: Por resultante, entenda-se vetor soma. 0. Quando escrevemos, o sinal ( ) indica que o vetor é negativo.. De maneira geral, + = + 2. De maneira geral, = cm. O produto de um vetor não nulo por um número real diferente de zero é sempre um vetor que conserva a direção de. 4. O produto de um vetor não nulo por um número real diferente de zero é sempre um vetor que conserva o sentido de. a) a= b= c= d a= b c) a + b = 0 d) a+ b = 2 a e) b+ c = 2 a 7. Dados dois vetores x e y de módulos respectivamente e 5, é correto afirmar sempre que: a) x + y = 8 x y = 2 c) x > y d) 2 x + y 8 e) x + y 5 8. Represente, no quadriculo a seguir, os vetores: R = i S = j T = 2 i + 5 j Q = i - j U = 5 i + 2 j V = 5 i - 2 j 5. ssinale a afirmativa correta. a) Um vetor, de módulo 5, somado com um vetor, de módulo 7, dá como resposta um vetor que tem sempre módulo 2. adição vetorial tem a propriedade comutativa, isto é, + = +. c) Dois vetores horizontais têm como soma um vetor de módulo sempre maior que zero. d) soma de um vetor 0 com um de direção vertical ( ) vetor de direção horizontal pode dar como soma um vetor nulo. 6. a figura, a e b são vetores paralelos ao eixo y e, c e d, paralelos ao eixo x. Sabendo que os quatro vetores têm o mesmo módulo, assinale a alternativa incorreta. Lista omplementar:. a figura a seguir estão representados os vetores a e b, com a = 5 e b = 8. Determine o módulo do vetor s tal que s= a+ b. a 5º 2. Para a situação do exercício anterior, determine o ângulo formado entre os vetores a e s. 5º a θ s b b

3 . Seja x a resultante dos vetores a e b representados abaixo. Determine x. Dados: a = 4 e b = 8. a 60º 4. Determine o módulo da resultante dos vetores representados abaixo, sabendo que x = 6 e y = 8. y 5. Determine o módulo da resultante s dos vetores dados. a = b = c = 5 a b b x c 6. o exercício abaixo, temos x = 5 e y = 2. Determine o vetor d tal que d= x y. x y 7. o caso a seguir, considere x = 6 e y = 4. Determine o módulo do vetor d tal que d= x y. x 8. a figura abaixo considere que cada divisão do quadriculado tem medida e que os vetores i e j são perpendiculares entre si. Represente os vetores a, b, c, d e e, em função de i e j. j i a d 9. Uma grandeza física vetorial fica perfeitamente definida quando se lhe conhecem: c b e y. ( ) valor numérico, desvio e unidade.. ( ) valor numérico, desvio, unidade e direção.. ( ) valor numérico, desvio, unidade e sentido. D. ( ) valor numérico, unidade, direção e sentido. E. ( ) desvio, direção, sentido e unidade. 0. São dados os vetores e. Qual dos diagramas a seguir representa o vetor, soma e?. ( ). ( ) E. ( ). ( ) D. ( ). Qual é a relação entre os vetores M,, P e R representados na figura? M P R. ( ) M+ + P+ R = 0. ( ) P+ M = R+. ( ) P+ R = M+ D. ( ) P R = M E. ( ) P+ R + = M 2. figura mostra três vetores, e. De acordo com a figura podemos afirmar que:. ( ) + + = 0. ( ) =. ( ) = D. ( ) + = E. ( ) = +. a figura abaixo estão desenhados dois vetores ( ) x e y. Estes vetores representam deslocamentos sucessivos de um corpo. Qual é o módulo do vetor igual a x+ y? ( escala da figura é :.)

4 x y cm cm. ( ) 4 cm. ( ) 5 cm. ( ) 8 cm D. ( ) cm E. ( ) 25 cm 4. resultante dos três vetores F, F 2 e F mostradas na figura é: R 5 F R R F R2 F 2 R 4. ( ) R. ( ) R 2. ( ) R D. ( ) R 4 E. ( ) R 5 5. as figuras seguintes estão representados pares de vetores x e y, nos quais cada segmento orientado está subdividido em ( ) segmentos unitários. 2 x x 90º y y x 4 x 5 y 90º 60º y Quais destes pares têm a mesma resultante?. ( ) e 5. ( ) 2 e 4. ( ) e 5 D. ( ) 2 e E. ( ) 2 e 5 x y 6. Dados os vetores U, V,, Y e W de mesmo módulo, qual das relações abaixo está correta? U Y 60º V. ( ) U+ W= Y. ( ) + W= U. ( ) + Y= U D. ( ) + Y+ V = U E. ( ) U+ V+ Y = W 7. onsidere um relógio com mostrador circular de 0 cm de raio e cujo ponteiro dos minutos tem comprimento igual ao raio do mostrador. onsidere esse ponteiro como um vetor de origem no centro do relógio e direção variável. O módulo da soma dos três vetores determinados pela posição desse ponteiro quando o relógio marca exatamente 2 horas, 2 horas e 20 minutos e, por fim, 2 horas e 40 minutos é, em cm, igual a: W. ( ) 0. ( ) 0( + ). ( ) 20 D. ( ) zero 8. O vetor representativo de uma certa grandeza física possui a intensidade igual a 2. s componentes ortogonais desse vetor medem e. Qual o ângulo que o vetor forma com a sua componente de maiôs intensidade? 9. o gráfico abaixo estão representados três vetores a, b e c. Os vetores i e j são unitários. nalise as expressões: (I) a= 2i+ j (II) b = 2j (III) b + c=+ i j a i Podemos afirma que:. ( ) são corretas apenas a (I) e a (II).. ( ) são corretas apenas a (II) e a (III).. ( ) são corretas apenas a (I) e a (III). D. ( ) são todas corretas. E. ( ) há apenas uma correta. 20. Represente o vetor soma dos seguintes vetores: ) Y ) P ) K D) G) Y Z Z T U b M E) D F E E H) I) c T F) D V 2O V O V V2 2. Dados dois vetores a e b de soma S e diferença D= a b, esboce, num só diagrama, as quatro grandezas vetoriais citadas. 22. Dado o conjunto de vetores, marque V para as equações verdadeiras e F para as falsas. y z s. ( ) y + z = s x + w = y + z. ( ) y+ w+ z= x D. ( ) s x= u+ v E. ( ) u+ v+ s+ x = 0 x. ( ) ( ) w u v E 4

5 F. ( ) u+ x+ y+ z v= 0 2. São grandezas escalares:. ( ) tempo, deslocamento e força.. ( ) força, velocidade e aceleração.. ( ) tempo, temperatura e volume. D. ( ) temperatura, velocidade e volume. 24. Observe a figura. Ela nos informa que: a) 5 U 60 o 20 U 0 U 0 U 8 U sen= 0,6 cos= 0,8 5 U. ( ) + = ( ) + = E. ( ) + =. ( ) + = D. ( ) + = 25. o esquema estão representados os vetores v, v 2, v e v 4. relação vetorial correta entre esses vetores é: v 29. Determine o vetor diferença D = em cada caso a seguir, calculando seu módulo e o ângulo formado com a horizontal: a) = 8 U = U 60 o sen cos = = 20 v 2. ( ) v + v 4 = v 2 + v. ( ) v+ v2+ v+ v4 = 0. ( ) v+ v+ v4 = v2 D. ( ) v+ v4 = v2 E. ( ) v + v = v soma de dois vetores ortogonais, isto é, perpendiculares entre si, um de módulo 2 e outro de módulo 6, terá módulo igual a:. ( ) 4. ( ) um valor compreendido entre 2 e 6. ( ) 20 D. ( ) 28 E. ( ) um valor maior que ssinale a alternativa errada. Dado o número real k e o vetor v, então:. ( ) o vetor u= kv tem o mesmo sentido de v se k> 0.. ( ) o vetor w = kv tem sentido contrário de v se k> 0.. ( ) a direção de g= kv é sempre igual à direção de v v qualquer que seja k 0. D. ( ) se a direção de g= kv é diferente da direção de v, k< Determine o vetor soma S em cada caso a seguir, calculando o seu módulo e o ângulo formado com a horizontal: v 4 0. Determine o vetor que satisfaz cada equação vetorial abaixo: 4.(5 4M + ) = 0 M M = 2 0 o =. Qual das relações abaixo não é satisfeita pelos vetores a seguir: I G H. ( ) + D =. ( ) + = H + I. ( ) E + D H = G D. ( ) + E + G = I E. ( ) I G = H + F 2. Dados: a =, b = 9 e a + b = 24, calcular a b F D E 5

6 . Quais condições devem satisfazer os vetores a e b para que se tenham as relações seguintes: a) a + b = a b a + b > a - b c) a + b < a b 4. o esquema a seguir, as cargas positivas e repelem a carga com forças de 5 e 7, respectivamente. Determine o módulo da força resultante na carga m + 7m 5. Define-se velocidade relativa de um de um móvel em relação a um móvel pela equação vetorial V = V V b m V = velocidade de em relação a. V = velocidade de em relação a Terra. V = velocidade de em relação a Terra. Determine V nos seguintes casos: a + 7. Determine os módulos dos componentes da resultante e o módulo da resultante da soma de dois deslocamentos vetoriais a e b. Suponha que os vetores a e b possuam os seguintes componentes em relação a um sistema cartesiano ortogonal: ax = 4, bx = - 2; ay = 0, by = 5; az =, bz = - 8. Dois vetores são dados por: a= i ˆ 2j ˆ kˆ e b= i ˆ ˆj 2k. ˆ Determine: a) a+ b a b c) a+ b 9. Dados dois vetores a= 2i ˆ ˆj e b= ˆi ˆj, determine o módulo e a direção de a, de b, de ( a b ), de ( a+ b ) e de ( b a ). 40. Uma partícula sofre três deslocamentos sucessivos sobre um plano: 2 m de orte para Sul, 4 m de Oeste para Leste e 2 m de baixo para cima numa direção que forma um ângulo de 60º com a direção Oeste-Leste. Escolha o eixo Ox apontando no sentido Oeste-Leste e o eixo Oy no sentido Sul-orte. Faça a origem O coincidir com a origem dos deslocamentos. Determine: a) os componentes de cada deslocamento, os componentes do deslocamento R resultante, c) o módulo, a direção e o sentido do deslocamento resultante. 4. onsidere o problema 8. Determine o vetor a 2b. a) V V V V V = 0 m/s V = 4 m/s c) d) V = 2 m/s V = m/s 60º V 20 m/s 20 m/s V V = 5 m/s V = 7 m/s sen = 0,6 cos = 0,8 6. onsidere a figura abaixo. Determine os vetores (a) P ; ( R ; (c) S ; (d) Q, em termos dos vetores e. R Q P S 6

Por que utilizar vetores?

Por que utilizar vetores? Universidade Estadual de Mato Grosso do Sul Por que utilizar vetores? Existem grandezas físicas f perfeitamente definidas por seu tamanho e sua unidade. Para determinar outras grandezas, entretanto, são

Leia mais

1 Módulo ou norma de um vetor

1 Módulo ou norma de um vetor Álgebra Linear I - Aula 3-2005.2 Roteiro 1 Módulo ou norma de um vetor A norma ou módulo do vetor ū = (u 1, u 2, u 3 ) de R 3 é ū = u 2 1 + u2 2 + u2 3. Geometricamente a fórmula significa que o módulo

Leia mais

Física PRÉ VESTIBULAR / / Aluno: Nº: Turma: PRÉ-VESTIBULAR VETORES. O puxão da corda efetuado pelo trabalhador pode ser descrito como uma força que

Física PRÉ VESTIBULAR / / Aluno: Nº: Turma: PRÉ-VESTIBULAR VETORES. O puxão da corda efetuado pelo trabalhador pode ser descrito como uma força que PRÉ VESTIBULAR Física / / PRÉ-VESTIBULAR Aluno: Nº: Turma: VETORES 01. (UEM) Um corpo está sendo arrastado em uma superfície lisa (atrito desprezível), tracionado por duas cordas, conforme o diagrama de

Leia mais

Lista 1 Cinemática em 1D, 2D e 3D

Lista 1 Cinemática em 1D, 2D e 3D UNIVERSIDADE ESTADUAL DO SUDOESTE DA BAHIA DEPARTAMENTO DE ESTUDOS BÁSICOS E INSTRUMENTAIS CAMPUS DE ITAPETINGA PROFESSOR: ROBERTO CLAUDINO FERREIRA DISCIPLINA: FÍSICA I Aluno (a): Data: / / NOTA: Lista

Leia mais

CINEMÁTICA VETORIAL. Observe a trajetória a seguir com origem O.Pode-se considerar P a posição de certo ponto material, em um instante t.

CINEMÁTICA VETORIAL. Observe a trajetória a seguir com origem O.Pode-se considerar P a posição de certo ponto material, em um instante t. CINEMÁTICA VETORIAL Na cinemática escalar, estudamos a descrição de um movimento através de grandezas escalares. Agora, veremos como obter e correlacionar as grandezas vetoriais descritivas de um movimento,

Leia mais

CIÊNCIA E CULTURA - REVISÃO PARA O VESTIBULAR - FÍSICA - AULA 8

CIÊNCIA E CULTURA - REVISÃO PARA O VESTIBULAR - FÍSICA - AULA 8 Página 1 de 10 [HOME] [PÁGINA DA FÍSICA] [APRENDENDO CIÊNCIAS] [MUSEUS] [SALA DE LEITURA] [HISTÓRIA DA CIÊNCIA] [OLIMPÍADAS] TÓPICOS DA AULA Grandezas Fisicas GRANDEZAS FÍSICAS GRANDEZAS ESCALARES GRANDEZAS

Leia mais

Unidade: Vetores e Forças. Unidade I:

Unidade: Vetores e Forças. Unidade I: Unidade I: 0 Unidade: Vetores e Forças 2.VETORES 2.1 Introdução Os vetores são definidos como entes matemáticos que dão noção de intensidade, direção e sentido. De forma prática, o conceito de vetor pode

Leia mais

Bacharelado Engenharia Civil

Bacharelado Engenharia Civil Bacharelado Engenharia Civil Disciplina: Física Geral e Experimental I Força e Movimento- Leis de Newton Prof.a: Msd. Érica Muniz Forças são as causas das modificações no movimento. Seu conhecimento permite

Leia mais

CINEMÁTICA - É a parte da mecânica que estuda os vários tipos de movimento, sem se preocupar com as causas destes movimentos.

CINEMÁTICA - É a parte da mecânica que estuda os vários tipos de movimento, sem se preocupar com as causas destes movimentos. INTRODUÇÃO À CINEMÁTICA REPOUSO OU MOVIMENTO? DEPENDE DO REFERENCIAL! CINEMÁTICA - É a parte da mecânica que estuda os vários tipos de movimento, sem se preocupar com as causas destes movimentos. REFERENCIAL.

Leia mais

Exercícios de Física sobre Vetores com Gabarito

Exercícios de Física sobre Vetores com Gabarito Exercícios de Física sobre Vetores com Gabarito 1) (UFPE-1996) Uma pessoa atravessa uma piscina de 4,0m de largura, nadando com uma velocidade de módulo 4,0m/s em uma direção que faz um ângulo de 60 com

Leia mais

Mecânica Geral Básica

Mecânica Geral Básica Mecânica Geral Básica Conceitos Básicos Prof. Nelson Luiz Reyes Marques Unidades - o sistema métrico O sistema internacional de unidades (SI) o sistema MKS Baseado em potências de 10 de unidades de base

Leia mais

Tópico 02: Movimento Circular Uniforme; Aceleração Centrípeta

Tópico 02: Movimento Circular Uniforme; Aceleração Centrípeta Aula 03: Movimento em um Plano Tópico 02: Movimento Circular Uniforme; Aceleração Centrípeta Caro aluno, olá! Neste tópico, você vai aprender sobre um tipo particular de movimento plano, o movimento circular

Leia mais

PROVA G1 FIS 1033 23/08/2011 MECÅNICA NEWTONIANA

PROVA G1 FIS 1033 23/08/2011 MECÅNICA NEWTONIANA PROVA G1 FIS 1033 23/08/2011 MECÅNICA NEWTONIANA NOME LEGÇVEL: Gabarito TURMA: ASSINATURA: MATRÇCULA N o : QUESTÉO VALOR GRAU REVISÉO 1 1,0 2 1,0 3 4,0 4 4,0 TOTAL 10,0 Dados: r/ t = (v + v 0 )/2; v v

Leia mais

Aula 17 GRANDEZAS ESCALARES E VETORIAIS. META Apresentar as grandezas vetoriais e seu signifi cado

Aula 17 GRANDEZAS ESCALARES E VETORIAIS. META Apresentar as grandezas vetoriais e seu signifi cado GRANDEZAS ESCALARES E VETORIAIS META Apresentar as grandezas vetoriais e seu signifi cado OBJETIVOS Ao fi nal desta aula, o aluno deverá: Diferenciar grandezas escalares e vetoriais; compreender a notação

Leia mais

Universidade Federal do Paraná

Universidade Federal do Paraná Universidade Federal do Paraná Setor de Ciências Exatas Departamento de Matematica Prof. Juan Carlos Vila Bravo Curitiba, 1 de Dezembro de 005 1. A posição de uma particula é dada por: r(t) = (sen t)i+(cost)j

Leia mais

Prof. André Motta - mottabip@hotmail.com_ 4.O gráfico apresentado mostra a elongação em função do tempo para um movimento harmônico simples.

Prof. André Motta - mottabip@hotmail.com_ 4.O gráfico apresentado mostra a elongação em função do tempo para um movimento harmônico simples. Eercícios Movimento Harmônico Simples - MHS 1.Um movimento harmônico simples é descrito pela função = 7 cos(4 t + ), em unidades de Sistema Internacional. Nesse movimento, a amplitude e o período, em unidades

Leia mais

São grandezas que para que a gente possa descrever 100%, basta dizer um número e a sua unidade.

São grandezas que para que a gente possa descrever 100%, basta dizer um número e a sua unidade. Apostila de Vetores 1 INTRODUÇÃO Fala, galera! Essa é a primeira apostila do conteúdo de Física I. Os assuntos cobrados nas P1s são: Vetores, Cinemática Uni e Bidimensional, Leis de Newton, Conservação

Leia mais

Curso Física 1. Aula - 4. Vetores

Curso Física 1. Aula - 4. Vetores Curso Física 1 Aula - 4 Vetores Escalares e Vetores Uma quantidade escalar é completamente especificada por um único valor com uma unidade apropriada e não tem nenhuma direção especifica. Exemplos: - Distância

Leia mais

PROCESSO SELETIVO TURMA DE 2010 FASE 1 PROVA DE FÍSICA E SEU ENSINO

PROCESSO SELETIVO TURMA DE 2010 FASE 1 PROVA DE FÍSICA E SEU ENSINO PROCESSO SELETIVO TURM DE 2010 FSE 1 PROV DE FÍSIC E SEU ENSINO Caro professor, esta prova tem 4 (quatro) questões, com valores diferentes indicados nas próprias questões. Duas das questões são objetivas,

Leia mais

FORÇA MAGNÉTICA. Força magnética sobre cargas em um campo magnético uniforme

FORÇA MAGNÉTICA. Força magnética sobre cargas em um campo magnético uniforme FORÇA MAGNÉTICA Força magnética sobre cargas em um campo magnético uniforme Em eletrostática vimos que quando uma carga penetra em uma região onde existe um campo elétrico, fica sujeita a ação de uma força

Leia mais

Pesquisa Operacional. Função Linear - Introdução. Função do 1 Grau. Função Linear - Exemplos Representação no Plano Cartesiano. Prof.

Pesquisa Operacional. Função Linear - Introdução. Função do 1 Grau. Função Linear - Exemplos Representação no Plano Cartesiano. Prof. Pesquisa Operacional Prof. José Luiz Prof. José Luiz Função Linear - Introdução O conceito de função é encontrado em diversos setores da economia, por exemplo, nos valores pagos em um determinado período

Leia mais

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 3

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 3 Linhas de Força Mencionamos na aula passada que o físico inglês Michael Faraday (79-867) introduziu o conceito de linha de força para visualizar a interação elétrica entre duas cargas. Para Faraday, as

Leia mais

APOSTILA TECNOLOGIA MECANICA

APOSTILA TECNOLOGIA MECANICA FACULDADE DE TECNOLOGIA DE POMPEIA CURSO TECNOLOGIA EM MECANIZAÇÃO EM AGRICULTURA DE PRECISÃO APOSTILA TECNOLOGIA MECANICA Autor: Carlos Safreire Daniel Ramos Leandro Ferneta Lorival Panuto Patrícia de

Leia mais

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980 Questão 1. Uma venda imobiliária envolve o pagamento de 12 prestações mensais iguais a R$ 10.000,00, a primeira no ato da venda, acrescidas de uma parcela final de R$ 100.000,00, 12 meses após a venda.

Leia mais

LISTA 10 INDUÇÃO ELETROMAGNÉTICA

LISTA 10 INDUÇÃO ELETROMAGNÉTICA 1. (Ufmg 95) Esta figura mostra uma espira retangular, de lados a = 0,20 m e b = 0,50 m, sendo empurrada, com velocidade constante v = 0,50 m/s, para uma região onde existe um campo magnético uniforme

Leia mais

Aluno(a): Nº. Professor: Fabrízio Gentil Série: 3 o ano Disciplina: Física - Magnetismo

Aluno(a): Nº. Professor: Fabrízio Gentil Série: 3 o ano Disciplina: Física - Magnetismo Lista de Exercícios Pré Universitário Uni-Anhanguera Aluno(a): Nº. Professor: Fabrízio Gentil Série: 3 o ano Disciplina: Física - Magnetismo 01 - (PUC SP) Na figura abaixo temos a representação de dois

Leia mais

Vetores no R 2 : = OP e escreve-se: v = (x, y), identificando-se as coordenadas de P com as componentes de v.

Vetores no R 2 : = OP e escreve-se: v = (x, y), identificando-se as coordenadas de P com as componentes de v. Vetores no R 2 : O conjunto R 2 = R x R = {(x, y) / x, y Є R} é interpretado geometricamente como sendo o plano cartesiano xoy. Qualquer vetor AB considerado neste plano tem sempre um representante OP

Leia mais

Lista de exercícios / 2 Bimestre Unidades 1 e 2. 3 Entenda os exercícios para um bom desenvolvimento. Nome: nº

Lista de exercícios / 2 Bimestre Unidades 1 e 2. 3 Entenda os exercícios para um bom desenvolvimento. Nome: nº Nota Lista de exercícios / 2 Bimestre Unidades 1 e 2 Data: 18 de maio de 2012 Instruções gerais Para a resolução desta avaliação, siga as orientações abaixo: Curso: Ensino Médio 1 ano A 1 Leia com atenção

Leia mais

4.2 Produto Vetorial. Orientação sobre uma reta r

4.2 Produto Vetorial. Orientação sobre uma reta r 94 4. Produto Vetorial Dados dois vetores u e v no espaço, vamos definir um novo vetor, ortogonal a u e v, denotado por u v (ou u v, em outros textos) e denominado produto vetorial de u e v. Mas antes,

Leia mais

Soluções das Questões de Física do Processo Seletivo de Admissão à Escola Preparatória de Cadetes do Exército EsPCEx

Soluções das Questões de Física do Processo Seletivo de Admissão à Escola Preparatória de Cadetes do Exército EsPCEx Soluções das Questões de Física do Processo Seletivo de dmissão à Escola Preparatória de Cadetes do Exército EsPCEx Questão Concurso 009 Uma partícula O descreve um movimento retilíneo uniforme e está

Leia mais

VETORES. Física. primeiro à extremidade do último vetor traçado. magnético.

VETORES. Física. primeiro à extremidade do último vetor traçado. magnético. Prof. Paulino Mourão VETORES Física MARÇO/009 ursos C 1. GRANDEZAS FÍSICAS 3. SOMA DE VETORES º E.M. Master 11/03/09 1.1. Grandezas Escalares São totalmente definidas somente por um valor numérico associado

Leia mais

Produtos. 4.1 Produtos escalares

Produtos. 4.1 Produtos escalares Capítulo 4 Produtos 4.1 Produtos escalares Neste tópico iremos estudar um novo tipo de operação entre vetores do plano e do espaço. Vamos fazer inicialmente uma consideração geométrica, como segue. Seja

Leia mais

Lista de Exercícios - Unidade 8 Eu tenho a força!

Lista de Exercícios - Unidade 8 Eu tenho a força! Lista de Exercícios - Unidade 8 Eu tenho a força! Forças 1. (UFSM 2013) O uso de hélices para propulsão de aviões ainda é muito frequente. Quando em movimento, essas hélices empurram o ar para trás; por

Leia mais

Primeira lista de física para o segundo ano 1)

Primeira lista de física para o segundo ano 1) Primeira lista de física para o segundo ano 1) Dois espelhos planos verticais formam um ângulo de 120º, conforme a figura. Um observador está no ponto A. Quantas imagens de si mesmo ele verá? a) 4 b) 2

Leia mais

1 P r o j e t o F u t u r o M i l i t a r w w w. f u t u r o m i l i t a r. c o m. b r

1 P r o j e t o F u t u r o M i l i t a r w w w. f u t u r o m i l i t a r. c o m. b r Exercícios Potencial Elétrico 01. O gráfico que melhor descreve a relação entre potencial elétrico V, originado por uma carga elétrica Q < 0, e a distância d de um ponto qualquer à carga, é: 05. Duas cargas

Leia mais

Engenharias, Física Elétrica, prof. Simões. Eletromagnetismo. Campo magnético produzido em um fio percorrido por uma corrente elétrica. Exercícios 1.

Engenharias, Física Elétrica, prof. Simões. Eletromagnetismo. Campo magnético produzido em um fio percorrido por uma corrente elétrica. Exercícios 1. Engenharias, Física Elétrica, prof. Simões Eletromagnetismo. Campo magnético produzido em um fio percorrido por uma corrente elétrica. Exercícios 1. 1.(EEM-SP) É dado um fio metálico reto, muito longo,

Leia mais

Exercícios de Física Eletromagnetismo

Exercícios de Física Eletromagnetismo Exercícios de Física Eletromagnetismo 1-Considerando as propriedades dos ímãs, assinale a alternativa correta. a) Quando temos dois ímãs, podemos afirmar que seus pólos magnéticos de mesmo nome (norte

Leia mais

Exercícios de Física Eletromagnetismo

Exercícios de Física Eletromagnetismo Exercícios de Física Eletromagnetismo 1-Considerando as propriedades dos ímãs, assinale a alternativa correta. a) Quando temos dois ímãs, podemos afirmar que seus pólos magnéticos de mesmo nome (norte

Leia mais

Exercícios Eletromagnetismo

Exercícios Eletromagnetismo Exercícios Eletromagnetismo 1-Considerando as propriedades dos ímãs, assinale a alternativa correta. a) Quando temos dois ímãs, podemos afirmar que seus pólos magnéticos de mesmo nome (norte e norte, ou

Leia mais

Lista de Eletromagnetismo - Tubarão. amostra em relação à localização dos. 1. Num laboratório de biofísica, um. lagos de onde vieram.

Lista de Eletromagnetismo - Tubarão. amostra em relação à localização dos. 1. Num laboratório de biofísica, um. lagos de onde vieram. 1. Num laboratório de biofísica, um pesquisador realiza uma experiência com "bactérias magnéticas", bactérias que tem pequenos ímãs no seu interior. Com auxílio desses imãs, amostra em relação à localização

Leia mais

Vestibular1 A melhor ajuda ao vestibulando na Internet Acesse Agora! www.vestibular1.com.br. Cinemática escalar

Vestibular1 A melhor ajuda ao vestibulando na Internet Acesse Agora! www.vestibular1.com.br. Cinemática escalar Cinemática escalar A cinemática escalar considera apenas o aspecto escalar das grandezas físicas envolvidas. Ex. A grandeza física velocidade não pode ser definida apenas por seu valor numérico e por sua

Leia mais

Lista de Eletromagnetismo. 1 Analise as afirmativas seguintes e marque a opção correta.

Lista de Eletromagnetismo. 1 Analise as afirmativas seguintes e marque a opção correta. Lista de Eletromagnetismo 1 Analise as afirmativas seguintes e marque a opção correta. I. Se duas barras de ferro sempre se atraem, podemos concluir que uma das duas não está magnetizada. II. Para conseguirmos

Leia mais

GRANDEZAS FÍSICAS. Podemos dizer de modo mais usual que grandeza é tudo aquilo que pode variar quantitativamente.

GRANDEZAS FÍSICAS. Podemos dizer de modo mais usual que grandeza é tudo aquilo que pode variar quantitativamente. FÍSIC 1 VETORES GRNDEZS FÍSICS Podemos dizer de modo mais usual que grandeza é tudo aquilo que pode variar quantitativamente. Deste modo, grandezas físicas são as que podem ser medidas. São divididas em

Leia mais

Força Magnética (Força de Lorentz) sobre Carga Lançada em Campo Magnético

Força Magnética (Força de Lorentz) sobre Carga Lançada em Campo Magnético PROESSOR Edney Melo ALUNO(A): Nº TURMA: TURNO: DATA: / / COLÉGIO: orça Magnética (orça de Lorentz) sobre Carga Lançada em Campo Magnético magnética, a força magnética tem o sentido de um tapa dado com

Leia mais

3.3 Espaço Tridimensional - R 3 - versão α 1 1

3.3 Espaço Tridimensional - R 3 - versão α 1 1 1 3.3 Espaço Tridimensional - R 3 - versão α 1 1 3.3.1 Sistema de Coordenadas Tridimensionais Como vimos no caso do R, para localizar um ponto no plano precisamos de duas informações e assim um ponto P

Leia mais

Lista de exercícios nº 2

Lista de exercícios nº 2 F107 Física (Biologia) Turma B Prof. Odilon D. D. Couto Jr. Lista de exercícios nº 2 MOVIMENTO EM UMA DIMENSÃO Exercício 1: A velocidade escalar média é definida como a razão entre a distância total percorrida

Leia mais

COMENTÁRIO DA PROVA DE FÍSICA

COMENTÁRIO DA PROVA DE FÍSICA COMENTÁRIO DA PROVA DE FÍSICA A prova de Física da UFPR 2013/2014 apresentou algumas questões fáceis, algumas difíceis e maioria de questões médias. Dessa forma, é possível afirmar que, quanto ao nível,

Leia mais

Exercícios resolvidos P2

Exercícios resolvidos P2 Exercícios resolvidos P Questão 1 Dena as funções seno hiperbólico e cosseno hiperbólico, respectivamente, por sinh(t) = et e t e cosh(t) = et + e t. (1) 1. Verique que estas funções satisfazem a seguinte

Leia mais

Velocidade Média Velocidade Instantânea Unidade de Grandeza Aceleração vetorial Aceleração tangencial Unidade de aceleração Aceleração centrípeta

Velocidade Média Velocidade Instantânea Unidade de Grandeza Aceleração vetorial Aceleração tangencial Unidade de aceleração Aceleração centrípeta Velocidade Média Velocidade Instantânea Unidade de Grandeza Aceleração vetorial Aceleração tangencial Unidade de aceleração Aceleração centrípeta Classificação dos movimentos Introdução Velocidade Média

Leia mais

Objetivos. Apresentar as superfícies regradas e superfícies de revolução. Analisar as propriedades que caracterizam as superfícies regradas e

Objetivos. Apresentar as superfícies regradas e superfícies de revolução. Analisar as propriedades que caracterizam as superfícies regradas e MÓDULO 2 - AULA 13 Aula 13 Superfícies regradas e de revolução Objetivos Apresentar as superfícies regradas e superfícies de revolução. Analisar as propriedades que caracterizam as superfícies regradas

Leia mais

2. Cinemática vetorial

2. Cinemática vetorial 2. Cinemática vetorial Quando um objeto se desloca no espaço sem seguir uma trajetória determinada, a sua posição já não pode ser definida com uma única variável como nos exemplos estudados no capítulo

Leia mais

Aula de Véspera - Inv-2008

Aula de Véspera - Inv-2008 01. Um projétil foi lançado no vácuo formando um ângulo θ com a horizontal, conforme figura abaixo. Com base nesta figura, analise as afirmações abaixo: (001) Para ângulos complementares teremos o mesmo

Leia mais

CADERNO DE ATIVIDADES

CADERNO DE ATIVIDADES 1 PONTIFÍCIA UNIVERSIDADE CATÓLICA DE MINAS GERAIS Programa de Pós-Graduação em Ensino de Ciências e Matemática CADERNO DE ATIVIDADES DESENVOLVIMENTO DE UMA SEQUÊNCIA DIDÁTICA PARA O PROCESSO DE APRENDIZAGEM

Leia mais

Exercícios: Funções e Campos Vetoriais

Exercícios: Funções e Campos Vetoriais Eercícios: Funções e Campos Vetoriais. Faça a representação gráfica dos campos vetoriais gerados por: a) V [, y] b) V y i j c) V [, y ]. Determine o lugar no espaço onde os vetores, do eercício anterior,

Leia mais

FÍSICA 3ª Série LISTA DE EXERCÍCIOS/ELETROSTÁTICA Data: 20/03/07

FÍSICA 3ª Série LISTA DE EXERCÍCIOS/ELETROSTÁTICA Data: 20/03/07 1. O campo elétrico de uma carga puntiforme em repouso tem, nos pontos A e B, as direções e sentidos indicados pelas flechas na figura a seguir. O módulo do campo elétrico no ponto B vale 24V/m. O módulo

Leia mais

LISTA DE EXERCÍCIOS CAMPO MAGNÉTICO

LISTA DE EXERCÍCIOS CAMPO MAGNÉTICO 1. (Fuvest 96) A figura esquematiza um ímã permanente, em forma de cruz de pequena espessura, e oito pequenas bússolas, colocadas sobre uma mesa. As letras N e S representam, respectivamente, pólos norte

Leia mais

Olimpíada Brasileira de Física 2001 2ª Fase

Olimpíada Brasileira de Física 2001 2ª Fase Olimpíada Brasileira de Física 2001 2ª Fase Gabarito dos Exames para o 1º e 2º Anos 1ª QUESTÃO Movimento Retilíneo Uniforme Em um MRU a posição s(t) do móvel é dada por s(t) = s 0 + vt, onde s 0 é a posição

Leia mais

Força Magnética. www.soexatas.com Página 1

Força Magnética. www.soexatas.com Página 1 Força Magnética 1. (Fuvest 2014) Partículas com carga elétrica positiva penetram em uma câmara em vácuo, onde há, em todo seu interior, um campo elétrico de módulo E e um campo magnético de módulo B, ambos

Leia mais

Noções de Cálculo Vetorial Prof. Alberto Ricardo Präss

Noções de Cálculo Vetorial Prof. Alberto Ricardo Präss Noções de Cálculo Vetorial Prof. lberto Ricardo Präss Linguagem e conceitos Linguagem é um ingrediente essencial do pensamento abstrato. É difícil pensar clara e facilmente sobre conceitos sofisticados

Leia mais

Seja D R. Uma função vetorial r(t) com domínio D é uma correspondência que associa a cada número t em D exatamente um vetor r(t) em R 3

Seja D R. Uma função vetorial r(t) com domínio D é uma correspondência que associa a cada número t em D exatamente um vetor r(t) em R 3 1 Universidade Salvador UNIFACS Cursos de Engenharia Cálculo IV Profa: Ilka Rebouças Freire Cálculo Vetorial Texto 01: Funções Vetoriais Até agora nos cursos de Cálculo só tratamos de funções cujas imagens

Leia mais

FÍSICA - 3 o ANO MÓDULO 13 CINEMÁTICA VETORIAL E COMPOSIÇÃO DE MOVIMENTOS

FÍSICA - 3 o ANO MÓDULO 13 CINEMÁTICA VETORIAL E COMPOSIÇÃO DE MOVIMENTOS FÍSICA - 3 o ANO MÓDULO 13 CINEMÁTICA VETORIAL E COMPOSIÇÃO DE MOVIMENTOS Como pode cair no enem (UERJ) Pardal é a denominação popular do dispositivo óptico-eletrônico utilizado para fotografar veículos

Leia mais

Curvas em coordenadas polares

Curvas em coordenadas polares 1 Curvas em coordenadas polares As coordenadas polares nos dão uma maneira alternativa de localizar pontos no plano e são especialmente adequadas para expressar certas situações, como veremos a seguir.

Leia mais

18 a QUESTÃO Valor: 0,25

18 a QUESTÃO Valor: 0,25 6 a A 0 a QUESTÃO FÍSICA 8 a QUESTÃO Valor: 0,25 6 a QUESTÃO Valor: 0,25 Entre as grandezas abaixo, a única conservada nas colisões elásticas, mas não nas inelásticas é o(a): 2Ω 2 V 8Ω 8Ω 2 Ω S R 0 V energia

Leia mais

Nesta aula iremos continuar com os exemplos de revisão.

Nesta aula iremos continuar com os exemplos de revisão. Capítulo 8 Nesta aula iremos continuar com os exemplos de revisão. 1. Exemplos de revisão Exemplo 1 Ache a equação do círculo C circunscrito ao triângulo de vértices A = (7, 3), B = (1, 9) e C = (5, 7).

Leia mais

7] As polias indicadas na figura se movimentam em rotação uniforme, ligados por um eixo fixo.

7] As polias indicadas na figura se movimentam em rotação uniforme, ligados por um eixo fixo. Colégio Militar de Juiz de Fora Lista de Exercícios C PREP Mil Prof.: Dr. Carlos Alessandro A. Silva Cinemática: Vetores, Cinemática Vetorial, Movimento Circular e Lançamento de Projéteis. Nível I 1] Dois

Leia mais

1 Analise a figura a seguir, que representa o esquema de um circuito com a forma da letra U, disposto perpendicularmente à superfície da Terra.

1 Analise a figura a seguir, que representa o esquema de um circuito com a forma da letra U, disposto perpendicularmente à superfície da Terra. FÍSIC 1 nalise a figura a seguir, que representa o esquema de um circuito com a forma da letra U, disposto perpendicularmente à superfície da Terra. Esse circuito é composto por condutores ideais (sem

Leia mais

GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar

GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar GAAL - 201/1 - Simulado - 1 Vetores e Produto Escalar SOLUÇÕES Exercício 1: Determinar os três vértices de um triângulo sabendo que os pontos médios de seus lados são M = (5, 0, 2), N = (, 1, ) e P = (4,

Leia mais

Exercícios de Matemática Geometria Analítica - Circunferência

Exercícios de Matemática Geometria Analítica - Circunferência Exercícios de Matemática Geometria Analítica - Circunferência ) (Unicamp-000) Sejam A e B os pontos de intersecção da parábola y = x com a circunferência de centro na origem e raio. a) Quais as coordenadas

Leia mais

2. Estude o sinal da função f cujo gráfico é a reta de inclinação 3 e que passa pelo ponto ( 5, 2).

2. Estude o sinal da função f cujo gráfico é a reta de inclinação 3 e que passa pelo ponto ( 5, 2). MAT1157 Cálculo a uma Variável A - 2014.1 Lista de Exercícios 7 PUC-Rio Função afim: 1. (a) Qual é a inclinação de uma reta horizontal (paralela ao eixo-x)? (b) Qual é a expressão da função cujo gráfico

Leia mais

LANÇAMENTO OBLÍQUO (PROF. VADO)

LANÇAMENTO OBLÍQUO (PROF. VADO) LANÇAMENTO OBLÍQUO (PROF. VADO) 01) PUCSP- Suponha que em uma partida de futebol, o goleiro, ao bater o tiro de meta, chuta a bola, imprimindo-lhe uma velocidade V 0 cujo vetor forma, com a horizontal,

Leia mais

2. Função polinomial do 2 o grau

2. Função polinomial do 2 o grau 2. Função polinomial do 2 o grau Uma função f: IR IR que associa a cada IR o número y=f()=a 2 +b+c com a,b,c IR e a0 é denominada função polinomial do 2 o grau ou função quadrática. Forma fatorada: a(-r

Leia mais

Física 1 ano Prof. Miranda. Lista de Exercícios II Unidade

Física 1 ano Prof. Miranda. Lista de Exercícios II Unidade Física 1 ano Prof. Miranda Lista de Exercícios II Unidade mirandawelber@gmail.com 01. O que é necessário para determinar (caracterizar) uma: a) grandeza escalar? b) grandeza vetorial? 02. Classifique os

Leia mais

Objetivos: Construção de tabelas e gráficos, escalas especiais para construção de gráficos e ajuste de curvas à dados experimentais.

Objetivos: Construção de tabelas e gráficos, escalas especiais para construção de gráficos e ajuste de curvas à dados experimentais. 7aula Janeiro de 2012 CONSTRUÇÃO DE GRÁFICOS I: Papel Milimetrado Objetivos: Construção de tabelas e gráficos, escalas especiais para construção de gráficos e ajuste de curvas à dados experimentais. 7.1

Leia mais

Prof. Rogério Porto. Assunto: Eletrostática

Prof. Rogério Porto. Assunto: Eletrostática Questões COVEST Física Elétrica Prof. Rogério Porto Assunto: Eletrostática 1. Duas esferas condutoras A e B possuem a mesma carga Q. Uma terceira esfera C, inicialmente descarregada e idêntica às esferas

Leia mais

ENERGIA CINÉTICA E TRABALHO

ENERGIA CINÉTICA E TRABALHO ENERGIA CINÉTICA E TRABALHO O que é energia? O termo energia é tão amplo que é diícil pensar numa deinição concisa. Teoricamente, a energia é uma grandeza escalar associada ao estado de um ou mais objetos;

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática 3 a Lista - MAT 137 - Introdução à Álgebra Linear 2013/I

Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática 3 a Lista - MAT 137 - Introdução à Álgebra Linear 2013/I 1 Universidade Federal de Viçosa Centro de Ciências Exatas Departamento de Matemática 3 a Lista - MAT 137 - Introdução à Álgebra Linear 013/I 1 Sejam u = ( 4 3) v = ( 5) e w = (a b) Encontre a e b tais

Leia mais

EXERCÍCIOS DE RECUPERAÇÃO PARALELA 4º BIMESTRE

EXERCÍCIOS DE RECUPERAÇÃO PARALELA 4º BIMESTRE EXERCÍCIOS DE RECUPERAÇÃO PARALELA 4º BIMESTRE NOME Nº SÉRIE : 1º EM DATA : / / BIMESTRE 3º PROFESSOR: Renato DISCIPLINA: Física 1 VISTO COORDENAÇÃO ORIENTAÇÕES: 1. O trabalho deverá ser feito em papel

Leia mais

Aula do Curso Noic de Física, feito pela parceria do Noic com o Além do Horizonte

Aula do Curso Noic de Física, feito pela parceria do Noic com o Além do Horizonte Espelhos esféricos são superfícies refletoras muito comuns e interessantes de se estudar. Eles são capazes de formar imagens maiores ou menores, inversas ou direitas, dependendo do tipo de espelho, suas

Leia mais

Prof. Rogério Porto. Assunto: Cinemática em uma Dimensão II

Prof. Rogério Porto. Assunto: Cinemática em uma Dimensão II Questões COVEST Física Mecânica Prof. Rogério Porto Assunto: Cinemática em uma Dimensão II 1. Um carro está viajando numa estrada retilínea com velocidade de 72 km/h. Vendo adiante um congestionamento

Leia mais

Empurra e puxa. Domingo, Gaspar reúne a família para uma. A força é um vetor

Empurra e puxa. Domingo, Gaspar reúne a família para uma. A força é um vetor A U A UL LA Empurra e puxa Domingo, Gaspar reúne a família para uma voltinha de carro. Ele senta ao volante e dá a partida. Nada. Tenta outra vez e nada consegue. Diz então para todos: O carro não quer

Leia mais

Equipe de Física FÍSICA

Equipe de Física FÍSICA Aluno (a): Série: 3ª Turma: TUTORIAL 8B Ensino Médio Equipe de Física Data: FÍSICA Estática de um ponto Para que um ponto esteja em equilíbrio precisa satisfazer a seguinte condição: A resultante de todas

Leia mais

CÁLCULO: VOLUME III MAURICIO A. VILCHES - MARIA LUIZA CORRÊA. Departamento de Análise - IME UERJ

CÁLCULO: VOLUME III MAURICIO A. VILCHES - MARIA LUIZA CORRÊA. Departamento de Análise - IME UERJ CÁLCULO: VOLUME III MAURICIO A. VILCHES - MARIA LUIZA CORRÊA Departamento de Análise - IME UERJ 2 Copyright by Mauricio A. Vilches Todos os direitos reservados Proibida a reprodução parcial ou total 3

Leia mais

7 AULA. Curvas Polares LIVRO. META Estudar as curvas planas em coordenadas polares (Curvas Polares).

7 AULA. Curvas Polares LIVRO. META Estudar as curvas planas em coordenadas polares (Curvas Polares). 1 LIVRO Curvas Polares 7 AULA META Estudar as curvas planas em coordenadas polares (Curvas Polares). OBJETIVOS Estudar movimentos de partículas no plano. Cálculos com curvas planas em coordenadas polares.

Leia mais

CDF-CURSO DE FÍSICA SIMULADO VIRTUAL

CDF-CURSO DE FÍSICA SIMULADO VIRTUAL 1.Suponha que desejo medir o tamanho do besouro, vamos medir com uma régua especial, graduada em centímetros, como mostra a figura.. qual das alternativas abaixo melhor caracteriza a medida do tamanho

Leia mais

Força Eletromotriz Induzida

Força Eletromotriz Induzida Força Eletromotriz Induzida 1. (Uerj 2013) Um transformador que fornece energia elétrica a um computador está conectado a uma rede elétrica de tensão eficaz igual a 120 V. A tensão eficaz no enrolamento

Leia mais

FÍSICA. Questões de 01 a 04

FÍSICA. Questões de 01 a 04 GRUPO 1 TIPO A FÍS. 1 FÍSICA Questões de 01 a 04 01. Considere uma partícula presa a uma mola ideal de constante elástica k = 420 N / m e mergulhada em um reservatório térmico, isolado termicamente, com

Leia mais

Vetores. Definição geométrica de vetores

Vetores. Definição geométrica de vetores Vetores Várias grandezas físicas, tais como por exemplo comprimento, área, olume, tempo, massa e temperatura são completamente descritas uma ez que a magnitude (intensidade) é dada. Tais grandezas são

Leia mais

Universidade Federal do Pampa - UNIPAMPA Prova Escrita de Física III A Professor: Jorge Pedraza Arpasi, SALA 325 - UNIPAMPA Alegrete

Universidade Federal do Pampa - UNIPAMPA Prova Escrita de Física III A Professor: Jorge Pedraza Arpasi, SALA 325 - UNIPAMPA Alegrete Universidade Federal do Pampa - UNIPAMPA Prova Escrita de Física III A Professor: Jorge Pedraza Arpasi, SALA 325 - UNIPAMPA Alegrete Nome: 1 Algumas instruções Na primeira questão marque com caneta com

Leia mais

Se ele optar pelo pagamento em duas vezes, pode aplicar o restante à taxa de 25% ao mês (30 dias), então. tem-se

Se ele optar pelo pagamento em duas vezes, pode aplicar o restante à taxa de 25% ao mês (30 dias), então. tem-se "Gigante pela própria natureza, És belo, és forte, impávido colosso, E o teu futuro espelha essa grandeza Terra adorada." 01. Um consumidor necessita comprar um determinado produto. Na loja, o vendedor

Leia mais

Cinemática Unidimensional

Cinemática Unidimensional Cinemática Unidimensional 1 INTRODUÇÃO Na Cinemática Unidimensional vamos estudar o movimento de corpos e partículas, analisando termos como deslocamento, velocidade, aceleração e tempo.os assuntos que

Leia mais

Movimento Retilíneo Uniforme (MRU) Equação Horária do MRU

Movimento Retilíneo Uniforme (MRU) Equação Horária do MRU Movimento Retilíneo Uniforme (MRU) velocímetro do automóvel da figura abaixo marca sempre a mesma velocidade. Quando um móvel possui sempre a mesma velocidade e se movimenta sobre uma reta dizemos que

Leia mais

1 Considere o gráfico da figura a seguir, que representa a funçãov(t), relativa a um dado movimento rectilineo. v(ms 1 )

1 Considere o gráfico da figura a seguir, que representa a funçãov(t), relativa a um dado movimento rectilineo. v(ms 1 ) Parte B Física 1- Movimento a uma dimensão 1 Considere o gráfico da figura a seguir, que representa a funçãov(t), relativa a um dado movimento rectilineo. v(ms 1 ) 1.1 Qualovalordavelocidadeinicialdomóvel?

Leia mais

Potenciação no Conjunto dos Números Inteiros - Z

Potenciação no Conjunto dos Números Inteiros - Z Rua Oto de Alencar nº 5-9, Maracanã/RJ - tel. 04-98/4-98 Potenciação no Conjunto dos Números Inteiros - Z Podemos epressar o produto de quatro fatores iguais a.... por meio de uma potência de base e epoente

Leia mais

PARTE 2 FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL

PARTE 2 FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL PARTE FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL.1 Funções Vetoriais de Uma Variável Real Vamos agora tratar de um caso particular de funções vetoriais F : Dom(f R n R m, que são as funções vetoriais de uma

Leia mais

Lista 1: Vetores -Turma L

Lista 1: Vetores -Turma L Lista 1: Vetores -Turma L Professora: Ivanete Zuchi Siple 1. Dados os vetores u e v da gura, mostrar num gráco um representante do vetor: (a) u v (b) v u (c) u + 4 v u v. Represente o vetor x = u + v w

Leia mais

Física. Pré Vestibular / / Aluno: Nº: Turma: ENSINO MÉDIO

Física. Pré Vestibular / / Aluno: Nº: Turma: ENSINO MÉDIO Pré Vestibular ísica / / luno: Nº: Turma: LEIS DE NEWTON 01. (TEC daptada) Dois blocos e de massas 10 kg e 20 kg, respectivamente, unidos por um fio de massa desprezível, estão em repouso sobre um plano

Leia mais

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 4

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 4 Lei de Gauss Considere uma distribuição arbitrária de cargas ou um corpo carregado no espaço. Imagine agora uma superfície fechada qualquer envolvendo essa distribuição ou corpo. A superfície é imaginária,

Leia mais

Capítulo 3. Cálculo Vetorial. 3.1 Segmentos Orientados

Capítulo 3. Cálculo Vetorial. 3.1 Segmentos Orientados Capítulo 3 Cálculo Vetorial O objetivo deste capítulo é o estudo de vetores de um ponto de vista geométrico e analítico. De acordo com a necessidade, a abordagem do assunto será formal ou informal. O estudo

Leia mais

Eletricidade e Magnetismo - Lista de Exercícios IV CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA

Eletricidade e Magnetismo - Lista de Exercícios IV CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA Eletricidade e Magnetismo - Lista de Exercícios IV CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA Campo Magnético (Fundamentos de Física Vol.3 Halliday, Resnick e Walker, Cap.

Leia mais

LISTA DE EXERCÍCIO DE CINEMÁTICA

LISTA DE EXERCÍCIO DE CINEMÁTICA CURSINHO PRÉ-VESTIBULAR PET LETRAS FÍSICA 1 MECÂNICA PROFº EVERSON VARGAS LISTA DE EXERCÍCIO DE CINEMÁTICA 01. Uma pessoa repousa num sofá em seu lar. É correto afirmar que: a) esta pessoa está em movimento

Leia mais