IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 4

Tamanho: px
Começar a partir da página:

Download "IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 4"

Transcrição

1 Lei de Gauss Considere uma distribuição arbitrária de cargas ou um corpo carregado no espaço. Imagine agora uma superfície fechada qualquer envolvendo essa distribuição ou corpo. A superfície é imaginária, ela não existe de fato. A distribuição de cargas (ou o corpo carregado) produz um campo elétrico em todos os pontos do espaço. Em particular, haverá um valor de para cada ponto da superfície fechada imaginária. A ilustração abaixo dá um exemplo. A superfície fechada (lembra uma batata neste caso) engloba uma distribuição de cargas ou um corpo que, por causa do desenho, não é visível de fora. 1

2 Mesmo sem saber qual é a distribuição de cargas no interior da superfície fechada, o conhecimento do campo elétrico sobre a superfície nos fornece informação sobre a distribuição de cargas. Isto é possível por causa da lei de Gauss, que será estudada nesta aula. A lei de Gauss é uma das contribuições do grande matemático alemão Carl Friedrich Gauss ( ) à física. A figura 22.2 do livro-texto mostra exemplos do campo elétrico sobre uma superfície fechada com a forma de um paralelepípedo para as seguintes distribuições de cargas no interior da superfície: (a) uma carga positiva, (b) duas cargas positivas, (c) uma carga negativa e (d) duas cargas negativas. Estamos considerando uma situação em que a distribuição de cargas é estática, ou seja, o campo elétrico produzido por ela é estático; o seu valor em cada ponto não muda com o tempo. Porém, observando a figura anterior ou as figuras do livro-texto nos ocorre a impressão de estarmos olhando para um fluxo de algo. Essa impressão vem do fato de estarmos olhando para setas entrando ou saindo da superfície fechada. 2

3 Isso sugere que podemos fazer uma analogia entre as setas do campo elétrico vetorial ao longo de uma superfície imaginária no espaço e um fluxo, que será chamado de fluxo elétrico. Para construirmos essa analogia de forma coerente, temos que estabelecer regras auto-consistentes para definir o fluxo elétrico. Essas regras são as seguintes (a ideia é seguir nossa intuição a respeito do escoamento de fluidos reais, saindo de fontes ou indo para sorvedouros). 1. Cada carga no interior da superfície imaginária produz um fluxo elétrico através da superfície. Se a carga for positiva, o fluxo elétrico está saindo da superfície. Se a carga for negativa, o fluxo elétrico está entrando na superfície. 2. O fluxo elétrico líquido através de uma superfície fechada é dado pela soma do fluxo para fora da superfície (tomado como positivo) com o fluxo para dentro da superfície (tomado como negativo). 3. O fluxo elétrico líquido através de uma superfície fechada é diretamente proporcional à carga líquida no interior da superfície, mas não depende do tamanho da superfície fechada escolhida. 3

4 A figura 22.3 do livro-texto mostra três casos em que o fluxo líquido através de uma superfície fechada é zero: A superfície está vazia (não há cargas no seu interior); A quantidade de cargas positivas dentro da superfície é igual à quantidade de cargas negativas; A superfície está vazia e é imersa em um campo elétrico uniforme. Observe que neste último caso existe um campo elétrico no interior da superfície. Porém, o fluxo líquido é nulo (o que sai é igual ao que entra). Veja a figura abaixo. As regras definidas acima nos permitem ter uma compreensão qualitativa sobre o fluxo elétrico. Para podermos fazer estudos quantitativos, é necessário desenvolver uma abordagem matemática. Para tal, vamos começar com a definição de fluxo. Esse é um conceito muito usado quando se estuda fluidos em movimento e, portanto, vamos introduzi-lo a partir de um exemplo da fluidodinâmica. 4

5 Fluxo Considere um fluido em escoamento estacionário da esquerda para a direita. Como o escoamento é estacionário, cada elemento do fluido tem a mesma velocidade (o campo vetorial de velocidades é estacionário). Considere uma área circular imaginária no interior do fluido e perpendicular a. O volume de fluido que passa pela área num intervalo de tempo dt é dado por = d, onde A é a área do círculo (veja a figura abaixo). O fluxo do fluido através da área circular é dada por dv/dt (volume de fluido que passa pela área por intervalo de tempo). Portanto, o fluxo vale 5

6 Φ= =. Representamos o fluxo pela letra grega maiúscula Φ. Se a área A estiver inclinada de um ângulo φ (veja a figura abaixo), a área que conta para a passagem de fluido é a projeção da área inclinada sobre o plano vertical, Acosφ, e o fluxo vale Φ= = cos. (1) Observe que se a área A for paralela ao campo de velocidades (φ = π/2) o fluxo é nulo. A expressão para o fluxo pode ser definida em termos do chamado vetor área. 6

7 Considere uma área A qualquer (veja a figura abaixo). O vetor área é definido como o vetor que tem: Módulo: valor de A; Direção: da reta perpendicular à área A; Sentido: do vetor unitário normal a A definido de tal forma que quando a área faz parte de uma superfície fechada o vetor aponta para fora da superfície fechada. Note que, segundo essa definição, o sentido positivo de uma superfície fechada é o que aponta para fora dela e o sentido negativo é o que aponta para dentro (sentido de ). Usando a definição de vetor área, o fluxo através de uma área A pode ser escrito como o produto escalar Φ= = cos, (2) 7

8 onde φ é o ângulo entre os vetores e (veja a figura abaixo). Fluxo elétrico Em analogia com o fluxo de um fluido estacionário, define-se o fluxo elétrico (de um campo elétrico uniforme) através de uma superfície imaginária de área A como Φ = = cos. (3) Veja a figura abaixo. 8

9 Se o campo elétrico não for uniforme, isto é, variar de ponto para ponto, o fluxo elétrico através de uma superfície imaginária é dado pela soma dos fluxos elétricos através de cada pequeno elemento de área da superfície (veja a figura abaixo). No limite em que os pequenos elementos de área são infinitesimais ( = ), a soma torna-se uma integral de superfície: Φ = = = cos, (4)... onde sup. indica a integral pela superfície. Em particular, se a superfície for fechada (como é o caso da figura acima) teremos: Φ = = = cos, (5) onde significa integral por toda a superfície fechada S. 9

10 Exemplo 1: fluxo de um campo elétrico uniforme através de um cubo de lado L. O desenho abaixo mostra o cubo e o campo elétrico uniforme. Os vetores unitários normais às seis superfícies que formam o cubo estão mostrados também (,,,, e ). No caso do desenho, o vetor campo elétrico aponta na direção de. Você pode fazer como exercício para casa os casos em que ele aponta nas outras cinco direções e também o caso em que o cubo está girado de um ângulo θ em relação à direção do campo (veja o exemplo 22.2 do livro-texto). O fluxo elétrico através das áreas cujos vetores normais são,, e é nulo, pois nestes casos a direção de é ortogonal a esses vetores. 10

11 Só há fluxo não nulo através das duas superfícies pintadas no desenho. O fluxo pela superfície 1 (vetor normal ) é: Φ = = cos =. O fluxo pela superfície 2 (vetor normal ) é: Φ = = cos0=. O fluxo elétrico total pela superfície do cubo é então: Φ =Φ +Φ =0. Exemplo 2: Fluxo elétrico através de uma esfera com uma carga q em seu centro. A situação é ilustrada pela figura abaixo. A esfera tem raio r e a carga q está no centro. O campo elétrico aponta na direção radial (no caso do desenho ele aponta para fora da esfera, pois q > 0). A figura mostra também um elemento de área da sobre a superfície da esfera. O vetor normal ao elemento de área,, 11

12 também aponta na direção radial (no caso, ele tem o mesmo sentido de ). Portanto, O fluxo total através da esfera é Φ = sup. =. onde A é a área da esfera. Temos que Logo, = sup. =, = 1 4 e =4. Φ =. Se a carga q for negativa, o fluxo será negativo ( está entrando na esfera): Φ =. Note que o fluxo elétrico não depende do raio da esfera. Ele depende apenas da carga q. Exemplo 3: Fluxo elétrico através de uma superfície fechada qualquer com uma carga q em seu interior. Para resolver este problema, vamos primeiro obter o fluxo do campo elétrico gerado por q sobre um elemento de área circular da. 12

13 O desenho abaixo mostra esse caso. O centro da superfície circular está a uma distância r da carga q. O campo elétrico nesse ponto aponta na direção radial. Vamos continuar supondo, sem perda de generalidade, que a carga q é positiva, de maneira que o sentido de é se afastando de q. A superfície da é tal que seu vetor normal forma um ângulo θ com a direção do campo. O fluxo elétrico através da superfície da vale então: Φ = = ( ) ( ). O módulo do campo elétrico E(r) é ( )= 1 4, 13

14 e =cos, logo: Φ = 4 cos. (6) Define-se o ângulo sólido dω subentendido por um elemento de área orientado da, com normal, em relação a um ponto O, situado à distância r de da como: Ω cos, (7) onde θ é o ângulo entre e o vetor unitário na direção de r,. Para entender o conceito de ângulo sólido observe a figura abaixo. O conceito de ângulo sólido procura generalizar o conceito de ângulo da geometria plana para o caso tridimensional. 14

15 Note que, de acordo com o conceito de ângulo da geometria plana, dado um segmento de arco S e um ponto O, o ângulo subentendido pelo segmento de arco em relação a O é o mesmo para qualquer outro segmento de arco (S 1, S 2, etc) compreendido entre as linhas que unem o ponto O às extremidades do segmento (veja abaixo). Voltando a olhar para a figura da página 14, note que a abertura da superfície cônica subentendida entre a área da e o ponto O é a mesma que a subentendida pela área ds com o ponto O. Da figura, vemos que ds é a projeção de da sobre a esfera de raio r centrada em O, isto é, = cos = ( ). A abertura da superfície cônica também é a mesma para o elemento de área ds compreendido entre a superfície cônica (não mostrado na figura) de qualquer esfera de raio r centrada em O. Note que esses elementos de área esféricos (ds, ds, etc) têm áreas diferentes que crescem em proporção a r 2. 15

16 Mas nós queremos definir uma medida da abertura da superfície cônica subentendida entre a área da e o ponto O que não dependa da distância, como é o caso do ângulo na geometria plana. A maneira de fazer isso é dividir ds por r 2, o que corresponde a tomar a área dω da esfera de raio unitário centrada em O compreendida entre a superfície cônica (veja a figura novamente). Essa medida, dω, é chamada de ângulo sólido (equação 7). Note que a divisão por r 2 faz com que dω seja uma quantidade adimensional. Por analogia com o radiano usado para medir ângulos planos, define-se a unidade de ângulo sólido como o esterradiano. Para saber mais sobre ângulo sólido, procure na internet. Em termos do conceito de ângulo sólido, podemos reescrever o fluxo elétrico através de uma superfície circular qualquer gerado por uma carga puntiforme q (equação 6) como: Φ = 4 Ω. (8) Podemos agora tratar do problema principal deste exemplo, que é o cálculo do fluxo elétrico devido a uma carga puntiforme q através de uma superfície fechada qualquer. A figura abaixo ilustra a situação. 16

17 A superfície está indicada por S e a carga em seu interior por q. O fluxo elétrico através do elemento de área da indicado na figura é dado por Φ = 4 Ω, onde dω é o ângulo sólido indicado na figura (o elemento de área da esfera de raio unitário centrada em q compreendido pela superfície cônica que une as bordas de da com o ponto onde está q). Aplicando o princípio da superposição, o fluxo total pela superfície fechada S é dado pela soma de Φ E acima por todos os elementos de área da que cobrem S. Como vimos anteriormente (equação 5), este fluxo é dado pela integral da equação acima por toda a superfície fechada S: Φ = Ω. 4 17

18 Note que a integral de dω pela superfície fechada S é igual ao ângulo sólido total compreendido por S, que é igual à área da esfera de raio unitário no interior de S: Ω= Ω =4. (9) Portanto, o fluxo elétrico total através de uma superfície fechada qualquer devido a uma carga q no interior da superfície vale: Φ =. (10) Como qualquer distribuição de cargas pode ser decomposta em cargas elementares puntiformes e, pelo princípio da superposição, o campo elétrico gerado por essa distribuição de cargas em qualquer ponto do espaço é dado pela soma dos campos das cargas elementares, então o fluxo elétrico através de qualquer superfície é dado por: Φ = =, (11) onde Q é a carga líquida total contida no interior da superfície. Note que se Q = 0, isto é, se não houver carga líquida dentro da superfície fechada, o fluxo elétrico através da superfície é nulo. O enunciado acima é conhecido como Lei de Gauss. 18

19 A lei de Gauss é importante porque ela nos permite saber qual a carga líquida no interior de uma superfície fechada mesmo sem medir diretamente essa carga. Basta apenas medir o fluxo elétrico através da superfície. A situação é análoga à de um reservatório contendo um fluido. Pense, por exemplo, numa piscina cheia d água. Podemos saber se a piscina está sendo cheia ou esvaziada (por uma mangueira ou uma bomba de sucção, por exemplo) pela observação do fluxo de água através da superfície fechada composta pelo leito da piscina e sua superfície exposta. É comum dizer que a lei de Gauss significa que as cargas elétricas são as fontes do campo elétrico. 19

Lei de Gauss Origem: Wikipédia, a enciclopédia livre.

Lei de Gauss Origem: Wikipédia, a enciclopédia livre. Lei de Gauss Origem: Wikipédia, a enciclopédia livre. A lei de Gauss é a lei que estabelece a relação entre o fluxo de campo elétrico que passa através de uma superfície fechada com a carga elétrica que

Leia mais

Lei de Gauss da Eletricidade. Prof. Rudi Gaelzer IFM/UFPel (Física Básica III )

Lei de Gauss da Eletricidade. Prof. Rudi Gaelzer IFM/UFPel (Física Básica III ) Lei de Gauss da Eletricidade Objetivos iremos aprender: O que significa fluxo elétrico e como é possível calcular o mesmo. Como é possível determinar a carga elétrica delimitada por uma superfície fechada

Leia mais

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 6. O trabalho feito pela força para deslocar o corpo de a para b é dado por: = =

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 6. O trabalho feito pela força para deslocar o corpo de a para b é dado por: = = Energia Potencial Elétrica Física I revisitada 1 Seja um corpo de massa m que se move em linha reta sob ação de uma força F que atua ao longo da linha. O trabalho feito pela força para deslocar o corpo

Leia mais

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 3

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 3 Linhas de Força Mencionamos na aula passada que o físico inglês Michael Faraday (79-867) introduziu o conceito de linha de força para visualizar a interação elétrica entre duas cargas. Para Faraday, as

Leia mais

Aula 2_1. Lei de Gauss I. Física Geral e Experimental III Prof. Cláudio Graça Capítulo 3

Aula 2_1. Lei de Gauss I. Física Geral e Experimental III Prof. Cláudio Graça Capítulo 3 Aula 2_1 Lei de Gauss I Física Geral e xperimental III Prof. Cláudio Graça Capítulo 3 Conceito de Fluxo do campo elétrico Fluxo do campo elétrico num campo uniforme Suponhamos uma superfície plana de área

Leia mais

ɸ E = ΣE.A (5) 14/04/2015. Bacharelado em Engenharia Civil. Física III

ɸ E = ΣE.A (5) 14/04/2015. Bacharelado em Engenharia Civil. Física III Bacharelado em Engenharia Civil Física III Prof a.: M.Sc. Mariana de Faria Gardingo Diniz FLUXO DE CAMPO ELÉTRICO Imagine que as linhas de campo da figura abaixo representem um campo elétrico de cargas

Leia mais

Disciplina : Termodinâmica. Aula 5 ANÁLISE DA MASSA E ENERGIA APLICADAS A VOLUMES DE CONTROLE

Disciplina : Termodinâmica. Aula 5 ANÁLISE DA MASSA E ENERGIA APLICADAS A VOLUMES DE CONTROLE Curso: Engenharia Mecânica Disciplina : Aula 5 ANÁLISE DA MASSA E ENERGIA APLICADAS A VOLUMES DE CONTROLE Prof. Evandro Rodrigo Dário, Dr. Eng. Vazão mássica e vazão volumétrica A quantidade de massa que

Leia mais

Tópico 02: Movimento Circular Uniforme; Aceleração Centrípeta

Tópico 02: Movimento Circular Uniforme; Aceleração Centrípeta Aula 03: Movimento em um Plano Tópico 02: Movimento Circular Uniforme; Aceleração Centrípeta Caro aluno, olá! Neste tópico, você vai aprender sobre um tipo particular de movimento plano, o movimento circular

Leia mais

Um capacitor é um sistema elétrico formado por dois condutores separados por um material isolante, ou pelo vácuo.

Um capacitor é um sistema elétrico formado por dois condutores separados por um material isolante, ou pelo vácuo. Capacitores e Dielétricos Um capacitor é um sistema elétrico formado por dois condutores separados por um material isolante, ou pelo vácuo. Imaginemos uma configuração como a de um capacitor em que os

Leia mais

GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar

GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar GAAL - 201/1 - Simulado - 1 Vetores e Produto Escalar SOLUÇÕES Exercício 1: Determinar os três vértices de um triângulo sabendo que os pontos médios de seus lados são M = (5, 0, 2), N = (, 1, ) e P = (4,

Leia mais

1 Módulo ou norma de um vetor

1 Módulo ou norma de um vetor Álgebra Linear I - Aula 3-2005.2 Roteiro 1 Módulo ou norma de um vetor A norma ou módulo do vetor ū = (u 1, u 2, u 3 ) de R 3 é ū = u 2 1 + u2 2 + u2 3. Geometricamente a fórmula significa que o módulo

Leia mais

RESUMO 2 - FÍSICA III

RESUMO 2 - FÍSICA III RESUMO 2 - FÍSICA III CAMPO ELÉTRICO Assim como a Terra tem um campo gravitacional, uma carga Q também tem um campo que pode influenciar as cargas de prova q nele colocadas. E usando esta analogia, podemos

Leia mais

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 8

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 8 Exemplos de Cálculo do Potencial Elétrico Vimos na aula passada que há duas maneiras de se calcular o potencial elétrico. Quando se conhece a distribuição de cargas (discreta ou contínua), usa-se as equações

Leia mais

Hoje estou elétrico!

Hoje estou elétrico! A U A UL LA Hoje estou elétrico! Ernesto, observado por Roberto, tinha acabado de construir um vetor com um pedaço de papel, um fio de meia, um canudo e um pedacinho de folha de alumínio. Enquanto testava

Leia mais

Um capacitor não armazena apenas carga, mas também energia.

Um capacitor não armazena apenas carga, mas também energia. Capacitores e Dielétricos (continuação) Energia armazenada num capacitor Um capacitor não armazena apenas carga, mas também energia. A energia armazenada num capacitor é igual ao trabalho necessário para

Leia mais

Aula do Curso Noic de Física, feito pela parceria do Noic com o Além do Horizonte

Aula do Curso Noic de Física, feito pela parceria do Noic com o Além do Horizonte Espelhos esféricos são superfícies refletoras muito comuns e interessantes de se estudar. Eles são capazes de formar imagens maiores ou menores, inversas ou direitas, dependendo do tipo de espelho, suas

Leia mais

Ponto, reta e plano no espaço tridimensional, cont.

Ponto, reta e plano no espaço tridimensional, cont. Ponto, reta e plano no espaço tridimensional, cont. Matemática para arquitetura Ton Marar 1. Posições relativas Posição relativa entre pontos Dois pontos estão sempre alinhados. Três pontos P 1 = (x 1,

Leia mais

FONTES DE CAMPO MAGNÉTICO. Caracterizar e mostrar o campo magnético produzido por uma carga a velocidade constante.

FONTES DE CAMPO MAGNÉTICO. Caracterizar e mostrar o campo magnético produzido por uma carga a velocidade constante. FONTES DE CAMPO MAGNÉTICO META Aula 8 Caracterizar e mostrar o campo magnético produzido por uma carga a velocidade constante. Mostrar a lei da circulação de Ampère-Laplace e a lei de Biot-Savart. Estudar

Leia mais

Cap. 7 - Fontes de Campo Magnético

Cap. 7 - Fontes de Campo Magnético Universidade Federal do Rio de Janeiro Instituto de Física Física III 2014/2 Cap. 7 - Fontes de Campo Magnético Prof. Elvis Soares Nesse capítulo, exploramos a origem do campo magnético - cargas em movimento.

Leia mais

Conservação de Massa. A quantidade de fluido entrando no cubo pela face y z intervalo t

Conservação de Massa. A quantidade de fluido entrando no cubo pela face y z intervalo t Conservação de Massa Em um fluido real, massa deve ser conservada não podendo ser destruída nem criada. Se a massa se conserva, o que entrou e não saiu ficou acumulado. Matematicamente nós formulamos este

Leia mais

UNIVERSIDADE FEDERAL FLUMINENSE

UNIVERSIDADE FEDERAL FLUMINENSE UNIVERSIDADE FEDERAL FLUMINENSE Escola de Engenharia Industrial Metalúrgica de Volta Redonda PROVAS RESOLVIDAS DE CÁLCULO VETORIAL Professora Salete Souza de Oliveira Aluna Thais Silva de Araujo P1 Turma

Leia mais

Aula 18 Elipse. Objetivos

Aula 18 Elipse. Objetivos MÓDULO 1 - AULA 18 Aula 18 Elipse Objetivos Descrever a elipse como um lugar geométrico. Determinar a equação reduzida da elipse no sistema de coordenadas com origem no ponto médio entre os focos e eixo

Leia mais

Cap. 6 - Campo Magnético e Força Magnética

Cap. 6 - Campo Magnético e Força Magnética Universidade Federal do Rio de Janeiro Instituto de Física Física III 2014/2 Cap. 6 - Campo Magnético e Força Magnética Prof. Elvis Soares Nesse capítulo, estudaremos as forças que agem em cargas elétricas

Leia mais

Potencial Elétrico. e dividindo-se pela carga de prova q 0 temos o campo elétrico E:

Potencial Elétrico. e dividindo-se pela carga de prova q 0 temos o campo elétrico E: Potencial Elétrico Quando estudamos campo elétrico nas aulas passadas, vimos que ele pode ser definido em termos da força elétrica F que uma carga q exerce sobre uma carga de prova q 0. Essa força é, pela

Leia mais

Eletricidade e Magnetismo - Lista de Exercícios IV CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA

Eletricidade e Magnetismo - Lista de Exercícios IV CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA Eletricidade e Magnetismo - Lista de Exercícios IV CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA Campo Magnético (Fundamentos de Física Vol.3 Halliday, Resnick e Walker, Cap.

Leia mais

POTENCIAL ELÉTRICO. por unidade de carga

POTENCIAL ELÉTRICO. por unidade de carga POTENCIAL ELÉTRICO A lei de Newton da Gravitação e a lei de Coulomb da eletrostática são matematicamente idênticas, então os aspectos gerais discutidos para a força gravitacional podem ser aplicadas para

Leia mais

Objetivos. Apresentar as superfícies regradas e superfícies de revolução. Analisar as propriedades que caracterizam as superfícies regradas e

Objetivos. Apresentar as superfícies regradas e superfícies de revolução. Analisar as propriedades que caracterizam as superfícies regradas e MÓDULO 2 - AULA 13 Aula 13 Superfícies regradas e de revolução Objetivos Apresentar as superfícies regradas e superfícies de revolução. Analisar as propriedades que caracterizam as superfícies regradas

Leia mais

Ivan Guilhon Mitoso Rocha. As grandezas fundamentais que serão adotadas por nós daqui em frente:

Ivan Guilhon Mitoso Rocha. As grandezas fundamentais que serão adotadas por nós daqui em frente: Rumo ao ITA Física Análise Dimensional Ivan Guilhon Mitoso Rocha A análise dimensional é um assunto básico que estuda as grandezas físicas em geral, com respeito a suas unidades de medida. Como as grandezas

Leia mais

18 a QUESTÃO Valor: 0,25

18 a QUESTÃO Valor: 0,25 6 a A 0 a QUESTÃO FÍSICA 8 a QUESTÃO Valor: 0,25 6 a QUESTÃO Valor: 0,25 Entre as grandezas abaixo, a única conservada nas colisões elásticas, mas não nas inelásticas é o(a): 2Ω 2 V 8Ω 8Ω 2 Ω S R 0 V energia

Leia mais

Rotação de Espelhos Planos

Rotação de Espelhos Planos Rotação de Espelhos Planos Introdução Um assunto que costuma aparecer em provas, isoladamente ou como parte de um exercício envolvendo outros tópicos, é a rotação de espelhos planos. Neste artigo, exploraremos

Leia mais

Primeira lista de física para o segundo ano 1)

Primeira lista de física para o segundo ano 1) Primeira lista de física para o segundo ano 1) Dois espelhos planos verticais formam um ângulo de 120º, conforme a figura. Um observador está no ponto A. Quantas imagens de si mesmo ele verá? a) 4 b) 2

Leia mais

Unidade: Vetores e Forças. Unidade I:

Unidade: Vetores e Forças. Unidade I: Unidade I: 0 Unidade: Vetores e Forças 2.VETORES 2.1 Introdução Os vetores são definidos como entes matemáticos que dão noção de intensidade, direção e sentido. De forma prática, o conceito de vetor pode

Leia mais

Fundamentos do Eletromagnetismo (FEMZ4)

Fundamentos do Eletromagnetismo (FEMZ4) Fundamentos do Eletromagnetismo (FEMZ4) Aulas (período diurno): 3as-feiras: Três aulas de teoria 5as.-feiras: Duas aulas de laboratório Conteúdo: Campos Magnéticos. Forças Magnéticas. Leis de Maxwell:

Leia mais

Espelho, espelho meu...

Espelho, espelho meu... A UU L AL A Espelho, espelho meu... No meio do trânsito ouve-se a sirene da ambulância. Ernesto vira-se e pergunta ao pai: - Por que as letras escritas no capô da ambulância estão todas invertidas? Figura

Leia mais

CÁLCULO: VOLUME III MAURICIO A. VILCHES - MARIA LUIZA CORRÊA. Departamento de Análise - IME UERJ

CÁLCULO: VOLUME III MAURICIO A. VILCHES - MARIA LUIZA CORRÊA. Departamento de Análise - IME UERJ CÁLCULO: VOLUME III MAURICIO A. VILCHES - MARIA LUIZA CORRÊA Departamento de Análise - IME UERJ 2 Copyright by Mauricio A. Vilches Todos os direitos reservados Proibida a reprodução parcial ou total 3

Leia mais

São grandezas que para que a gente possa descrever 100%, basta dizer um número e a sua unidade.

São grandezas que para que a gente possa descrever 100%, basta dizer um número e a sua unidade. Apostila de Vetores 1 INTRODUÇÃO Fala, galera! Essa é a primeira apostila do conteúdo de Física I. Os assuntos cobrados nas P1s são: Vetores, Cinemática Uni e Bidimensional, Leis de Newton, Conservação

Leia mais

O que é uma interação física? Como concebê-la?

O que é uma interação física? Como concebê-la? Campo elétrico Um pouco de filosofia (com um pouco de história) O que é uma interação física? Como concebê-la? Há basicamente duas maneiras distintas de imaginar como dois corpos A e B separados por uma

Leia mais

Leis de Newton INTRODUÇÃO 1 TIPOS DE FORÇA

Leis de Newton INTRODUÇÃO 1 TIPOS DE FORÇA Leis de Newton INTRODUÇÃO Isaac Newton foi um revolucionário na ciência. Teve grandes contribuições na Física, Astronomia, Matemática, Cálculo etc. Mas com certeza, uma das suas maiores contribuições são

Leia mais

4.2 Produto Vetorial. Orientação sobre uma reta r

4.2 Produto Vetorial. Orientação sobre uma reta r 94 4. Produto Vetorial Dados dois vetores u e v no espaço, vamos definir um novo vetor, ortogonal a u e v, denotado por u v (ou u v, em outros textos) e denominado produto vetorial de u e v. Mas antes,

Leia mais

Leis de Conservação. Exemplo: Cubo de gelo de lado 2cm, volume V g. =8cm3, densidade ρ g. = 0,917 g/cm3. Massa do. ρ g = m g. m=ρ.

Leis de Conservação. Exemplo: Cubo de gelo de lado 2cm, volume V g. =8cm3, densidade ρ g. = 0,917 g/cm3. Massa do. ρ g = m g. m=ρ. Leis de Conservação Em um sistema isolado, se uma grandeza ou propriedade se mantém constante em um intervalo de tempo no qual ocorre um dado processo físico, diz-se que há conservação d a propriedade

Leia mais

9. Derivadas de ordem superior

9. Derivadas de ordem superior 9. Derivadas de ordem superior Se uma função f for derivável, então f é chamada a derivada primeira de f (ou de ordem 1). Se a derivada de f eistir, então ela será chamada derivada segunda de f (ou de

Leia mais

NOTA DE AULA PROF. JOSÉ GOMES RIBEIRO FILHO CAMPO ELÉTRICO

NOTA DE AULA PROF. JOSÉ GOMES RIBEIRO FILHO CAMPO ELÉTRICO NOTA DE AULA PROF. JOSÉ GOMES RIBEIRO FILHO CAMPO ELÉTRICO 1.CAMPO ELÉTRICO Suponhamos que se fixe, num determinado ponto, uma partícula com carga positiva, q 1, e a seguir coloquemos em suas proximidades

Leia mais

Problemas de eletricidade

Problemas de eletricidade Problemas de eletricidade 1 - Um corpo condutor está eletrizado positivamente. Podemos afirmar que: a) o número de elétrons é igual ao número de prótons. b) o número de elétrons é maior que o número de

Leia mais

6. Geometria, Primitivas e Transformações 3D

6. Geometria, Primitivas e Transformações 3D 6. Geometria, Primitivas e Transformações 3D Até agora estudamos e implementamos um conjunto de ferramentas básicas que nos permitem modelar, ou representar objetos bi-dimensionais em um sistema também

Leia mais

LISTA DE EXERCÍCIOS CAMPO MAGNÉTICO

LISTA DE EXERCÍCIOS CAMPO MAGNÉTICO 1. (Fuvest 96) A figura esquematiza um ímã permanente, em forma de cruz de pequena espessura, e oito pequenas bússolas, colocadas sobre uma mesa. As letras N e S representam, respectivamente, pólos norte

Leia mais

AULA 3 FORÇA ELÉTRICA. O conceito de força é a capacidade de provocar a mudança de intensidade, direção e sentido da velocidade.

AULA 3 FORÇA ELÉTRICA. O conceito de força é a capacidade de provocar a mudança de intensidade, direção e sentido da velocidade. AULA 3 FORÇA ELÉTRICA O conceito de força é a capacidade de provocar a mudança de intensidade, direção e sentido da velocidade. - Um objeto em repouso (v= 0) entra em movimento, mediante a aplicação de

Leia mais

LISTA 2. 4. y = e 2 x + y 1, y(0) = 1

LISTA 2. 4. y = e 2 x + y 1, y(0) = 1 MAT 01167 Equações Diferenciais LISTA Resolva: 1. x y y = x sen x. y + y tan x = x sen x cos x, y0) =. x + 1) dy dx x y = 1 4. y = e x + y 1, y0) = 1 5. x y + x + x + ) dy dx = 0 ) x 6. Resolva a equação

Leia mais

Atira mais em cima! O pessoal está reunido na casa de Gaspar e

Atira mais em cima! O pessoal está reunido na casa de Gaspar e A U A UL LA Atira mais em cima! O pessoal está reunido na casa de Gaspar e Alberta. O almoço acabou e todos conversam em torno da mesa. - Eu soube que você está interessado em ótica - diz Gaspar a Ernesto.

Leia mais

Saber calcular o fluxo elétrico e o campo elétrico através de uma superfície de contorno bem definida.

Saber calcular o fluxo elétrico e o campo elétrico através de uma superfície de contorno bem definida. Aula 5 LEI DE GAUSS META Mostrar a fundamental importância da lei de Gauss para a compreensão do campo elétrico e como essa lei facilita o desenvolvimento matemático de problemas complexos de eletricidade.

Leia mais

Considerando a polaridade do ímã, as linhas de indução magnética criadas por ele e o sentido da corrente elétrica induzida no tubo condutor de cobre

Considerando a polaridade do ímã, as linhas de indução magnética criadas por ele e o sentido da corrente elétrica induzida no tubo condutor de cobre 1. Em uma aula de laboratório, os estudantes foram divididos em dois grupos. O grupo A fez experimentos com o objetivo de desenhar linhas de campo elétrico e magnético. Os desenhos feitos estão apresentados

Leia mais

PARTE 2 FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL

PARTE 2 FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL PARTE FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL.1 Funções Vetoriais de Uma Variável Real Vamos agora tratar de um caso particular de funções vetoriais F : Dom(f R n R m, que são as funções vetoriais de uma

Leia mais

Centro de Massa. Curso: Engenharia Disciplina: complementos de Física Professor: Douglas Assunto: Centro de Massa E Momento de Inércia

Centro de Massa. Curso: Engenharia Disciplina: complementos de Física Professor: Douglas Assunto: Centro de Massa E Momento de Inércia Curso: Engenharia Disciplina: complementos de Física Professor: Douglas Assunto: Centro de Massa E Momento de Inércia Centro de Massa O centro de massa de um sistema de partículas é o ponto que se move

Leia mais

ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma.

ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço reservado para a mesma. 2ª Fase Matemática Introdução A prova de matemática da segunda fase é constituída de 12 questões, geralmente apresentadas em ordem crescente de dificuldade. As primeiras questões procuram avaliar habilidades

Leia mais

Eletricidade e Magnetismo - Lista de Exercícios I CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA

Eletricidade e Magnetismo - Lista de Exercícios I CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA Eletricidade e Magnetismo - Lista de Exercícios I CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA Carga Elétrica e Lei de Coulomb 1. Consideremos o ponto P no centro de um quadrado

Leia mais

Figuras geométricas. Se olhar ao seu redor, você verá que os objetos. Nossa aula. Figuras geométricas elementares

Figuras geométricas. Se olhar ao seu redor, você verá que os objetos. Nossa aula. Figuras geométricas elementares A UU L AL A Figuras geométricas Se olhar ao seu redor, você verá que os objetos têm forma, tamanho e outras características próprias. As figuras geométricas foram criadas a partir da observação das formas

Leia mais

Compreendendo os Efeitos da Projeção nas Imagens Aéreas

Compreendendo os Efeitos da Projeção nas Imagens Aéreas Compreendendo os Efeitos da Projeção nas Imagens Aéreas Introdução Com a atual popularização dos sistemas CAD, ficou muito fácil para usuários de cartografia carregarem um arquivo vetorial, oriundo de

Leia mais

Limalhas de ferro sob ação de um campo magnético (Esquerda). Linhas de campo magnético da Terra (Direita)

Limalhas de ferro sob ação de um campo magnético (Esquerda). Linhas de campo magnético da Terra (Direita) O ampo Magnético Os primeiros registros de campos magnéticos foram feitos pelos gregos quando descobriram a quase 6 anos A.. uma pedra que tinha a propriedade de atrair metais Esta pedra, mais precisamente

Leia mais

Taxas Relacionadas. Começaremos nossa discussão com um exemplo que descreve uma situação real.

Taxas Relacionadas. Começaremos nossa discussão com um exemplo que descreve uma situação real. 6/0/008 Fatec/Tatuí Calculo II - Taxas Relacionadas 1 Taxas Relacionadas Um problema envolvendo taxas de variação de variáveis relacionadas é chamado de problema de taxas relacionadas. Os passos a seguir

Leia mais

Faculdade de Administração e Negócios de Sergipe

Faculdade de Administração e Negócios de Sergipe Faculdade de Administração e Negócios de Sergipe Disciplina: Física Geral e Experimental III Curso: Engenharia de Produção Assunto: Gravitação Prof. Dr. Marcos A. P. Chagas 1. Introdução Na gravitação

Leia mais

Campos. Exemplos de campos: - Campo de temperaturas (térmico) - Campo de pressões - Campo gravitacional - Campo elétrico

Campos. Exemplos de campos: - Campo de temperaturas (térmico) - Campo de pressões - Campo gravitacional - Campo elétrico Campos Podemos definir campo, de forma genérica, como sendo uma região do espaço caracterizada por um conjunto de valores de uma grandeza física que dependem apenas de coordenadas que utilizem uma determinada

Leia mais

Microfone e altifalante. Conversão de um sinal sonoro num sinal elétrico. sinal elétrico num sinal sonoro.

Microfone e altifalante. Conversão de um sinal sonoro num sinal elétrico. sinal elétrico num sinal sonoro. Microfone e altifalante Conversão de um sinal sonoro num sinal elétrico. Conversão de um sinal elétrico num sinal sonoro. O funcionamento dos microfones e dos altifalantes baseia-se na: - acústica; - no

Leia mais

OBJETIVO Verificar as leis da Reflexão Verificar qualitativamente e quantitativamente a lei de Snell. Observar a dispersão da luz em um prisma.

OBJETIVO Verificar as leis da Reflexão Verificar qualitativamente e quantitativamente a lei de Snell. Observar a dispersão da luz em um prisma. UNIVERSIDADE CATÓLICA DE BRASÍLIA CURSO DE FÍSICA LABORATÓRIO ÓPTICA REFLEXÃO E REFRAÇÃO OBJETIVO Verificar as leis da Reflexão Verificar qualitativamente e quantitativamente a lei de Snell. Observar a

Leia mais

MATEMÁTICA PARA CONCURSOS II

MATEMÁTICA PARA CONCURSOS II 1 MATEMÁTICA PARA CONCURSOS II Fonte: http://www.migmeg.com.br/ MÓDULO II Estudaremos neste módulo geometria espacial e volume dos principais sólidos geométricos. Mas antes de começar a aula, segue uma

Leia mais

Difusão. Introdução Histórica

Difusão. Introdução Histórica Estas notas de aula estão fortemente baseadas no livro de T. F. Weiss (2 vols.) indicado na bibliografia. Difusão A difusão pode ser definida como o processo pelo qual uma população de partículas é transportada

Leia mais

Velocidade Média Velocidade Instantânea Unidade de Grandeza Aceleração vetorial Aceleração tangencial Unidade de aceleração Aceleração centrípeta

Velocidade Média Velocidade Instantânea Unidade de Grandeza Aceleração vetorial Aceleração tangencial Unidade de aceleração Aceleração centrípeta Velocidade Média Velocidade Instantânea Unidade de Grandeza Aceleração vetorial Aceleração tangencial Unidade de aceleração Aceleração centrípeta Classificação dos movimentos Introdução Velocidade Média

Leia mais

Num cilindro as bases são círculos. O perímetro do círculo é igual ao comprimento da circunferência que limita o círculo.

Num cilindro as bases são círculos. O perímetro do círculo é igual ao comprimento da circunferência que limita o círculo. 1. Círculos e cilindros 1.1. Planificação da superfície de um cilindro Num cilindro as bases são círculos. O perímetro do círculo é igual ao comprimento da circunferência que limita o círculo. A planificação

Leia mais

Você acha que o rapaz da figura abaixo está fazendo força?

Você acha que o rapaz da figura abaixo está fazendo força? Aula 04: Leis de Newton e Gravitação Tópico 02: Segunda Lei de Newton Como você acaba de ver no Tópico 1, a Primeira Lei de Newton ou Princípio da Inércia diz que todo corpo livre da ação de forças ou

Leia mais

Cinemática Unidimensional

Cinemática Unidimensional Cinemática Unidimensional 1 INTRODUÇÃO Na Cinemática Unidimensional vamos estudar o movimento de corpos e partículas, analisando termos como deslocamento, velocidade, aceleração e tempo.os assuntos que

Leia mais

Exercícios de Física Eletromagnetismo

Exercícios de Física Eletromagnetismo Exercícios de Física Eletromagnetismo 1-Considerando as propriedades dos ímãs, assinale a alternativa correta. a) Quando temos dois ímãs, podemos afirmar que seus pólos magnéticos de mesmo nome (norte

Leia mais

Exercícios de Física Eletromagnetismo

Exercícios de Física Eletromagnetismo Exercícios de Física Eletromagnetismo 1-Considerando as propriedades dos ímãs, assinale a alternativa correta. a) Quando temos dois ímãs, podemos afirmar que seus pólos magnéticos de mesmo nome (norte

Leia mais

Exercícios Eletromagnetismo

Exercícios Eletromagnetismo Exercícios Eletromagnetismo 1-Considerando as propriedades dos ímãs, assinale a alternativa correta. a) Quando temos dois ímãs, podemos afirmar que seus pólos magnéticos de mesmo nome (norte e norte, ou

Leia mais

APLICAÇÕES DA DERIVADA

APLICAÇÕES DA DERIVADA Notas de Aula: Aplicações das Derivadas APLICAÇÕES DA DERIVADA Vimos, na seção anterior, que a derivada de uma função pode ser interpretada como o coeficiente angular da reta tangente ao seu gráfico. Nesta,

Leia mais

Força Magnética. www.soexatas.com Página 1

Força Magnética. www.soexatas.com Página 1 Força Magnética 1. (Fuvest 2014) Partículas com carga elétrica positiva penetram em uma câmara em vácuo, onde há, em todo seu interior, um campo elétrico de módulo E e um campo magnético de módulo B, ambos

Leia mais

Unisanta - Mecânica Geral - Prof. Damin - Aula n.º - Data / / SISTEMA DE FORÇAS

Unisanta - Mecânica Geral - Prof. Damin - Aula n.º - Data / / SISTEMA DE FORÇAS Força (F ) e (Beer and Johnston,1991) SISTEMA DE FRÇAS Força não tem definição, é um conceito primitivo ou intuitivo. Matematicamente a força é o vetor aplicado (P,F ), caracterizado por módulo, direção

Leia mais

Mecânica Geral Básica

Mecânica Geral Básica Mecânica Geral Básica Conceitos Básicos Prof. Nelson Luiz Reyes Marques Unidades - o sistema métrico O sistema internacional de unidades (SI) o sistema MKS Baseado em potências de 10 de unidades de base

Leia mais

Prof. Dr. Ronaldo Rodrigues Pelá. 4 de junho de 2013

Prof. Dr. Ronaldo Rodrigues Pelá. 4 de junho de 2013 GRAVITAÇÃO Mecânica II (FIS-26) Prof. Dr. Ronaldo Rodrigues Pelá IEFF-ITA 4 de junho de 2013 Roteiro 1 Lei da Universal Roteiro Lei da Universal 1 Lei da Universal Motivação Lei da Universal Movimento

Leia mais

A noção de função é imprescindível no decorrer do estudo de Cálculo e para se estabelecer essa noção tornam-se necessários:

A noção de função é imprescindível no decorrer do estudo de Cálculo e para se estabelecer essa noção tornam-se necessários: 1 1.1 Função Real de Variável Real A noção de função é imprescindível no decorrer do estudo de Cálculo e para se estabelecer essa noção tornam-se necessários: 1. Um conjunto não vazio para ser o domínio;

Leia mais

1. Descobertas de Oersted

1. Descobertas de Oersted Parte II - ELETROMAGNETISMO 1. Descobertas de Oersted Até o início do século XIX acreditava-se que não existia relação entre os fenômenos elétricos e magnéticos. Em 1819, um professor e físico dinamarquês

Leia mais

Produtos. 4.1 Produtos escalares

Produtos. 4.1 Produtos escalares Capítulo 4 Produtos 4.1 Produtos escalares Neste tópico iremos estudar um novo tipo de operação entre vetores do plano e do espaço. Vamos fazer inicialmente uma consideração geométrica, como segue. Seja

Leia mais

FÍSICA - MOVIMENTO CIRCULAR UNIFORME - PARÂMETROS SITE: www.sofstica.com.br Responsável: Sebastião Alves da Silva Filho Data: 02.12.

FÍSICA - MOVIMENTO CIRCULAR UNIFORME - PARÂMETROS SITE: www.sofstica.com.br Responsável: Sebastião Alves da Silva Filho Data: 02.12. O MOVIMENTO CIRCULAR Podemos definir movimento circular como todo aquele em que a trajetória percorrida por um móvel corresponde a uma circunferência. Não custa insistir, ainda uma vez, que a circunferência

Leia mais

Integrais Duplas e Coordenadas Polares. 3.1 Coordenadas Polares: Revisão

Integrais Duplas e Coordenadas Polares. 3.1 Coordenadas Polares: Revisão Cálculo III Departamento de Matemática - ICEx - UFMG Marcelo Terra Cunha Integrais Duplas e Coordenadas Polares Nas primeiras aulas discutimos integrais duplas em algumas regiões bem adaptadas às coordenadas

Leia mais

TIPO DE PROVA: A. Questão 4. Questão 1. Questão 2. Questão 5. Questão 3. Questão 6. alternativa D. alternativa C. alternativa D.

TIPO DE PROVA: A. Questão 4. Questão 1. Questão 2. Questão 5. Questão 3. Questão 6. alternativa D. alternativa C. alternativa D. Questão TIPO DE PROVA: A Um pintor pintou 0% de um muro e outro pintou 60% do que sobrou. A porcentagem do muro que falta pintar é: a) 0% b) % c) % d) 8% e) % O primeiro pintou 0% do muro, logo restou

Leia mais

1 P r o j e t o F u t u r o M i l i t a r w w w. f u t u r o m i l i t a r. c o m. b r

1 P r o j e t o F u t u r o M i l i t a r w w w. f u t u r o m i l i t a r. c o m. b r Exercícios Potencial Elétrico 01. O gráfico que melhor descreve a relação entre potencial elétrico V, originado por uma carga elétrica Q < 0, e a distância d de um ponto qualquer à carga, é: 05. Duas cargas

Leia mais

A Equação de Bernoulli

A Equação de Bernoulli Aula 4 A equação de Bernoulli Objetivos O aluno deverá ser capaz de: Descrever a dinâmica de escoamento de um fluido. Deduzir a Equação de Bernoulli. Aplicar a Equação de Bernoulli e a Equação da Continuidade

Leia mais

COLÉGIO SANTA MARIA 2009 RUMO AOS 70 ANOS AVALIAÇÃO 2ª ETAPA 1º BLOCO ENSINO MÉDIO

COLÉGIO SANTA MARIA 2009 RUMO AOS 70 ANOS AVALIAÇÃO 2ª ETAPA 1º BLOCO ENSINO MÉDIO OLÉGIO SANTA MAIA 009 UMO AOS 0 ANOS AALIAÇÃO ª TAPA 1º BLOO NSINO MÉDIO NOTA: POFSSO:TADU DISIPLINA: FÍSIA II DATA: / / 3º MÉDIO: ALUNO(A): N Atenção! É importante a escrita legível. Não serão aceitas

Leia mais

Vestibular1 A melhor ajuda ao vestibulando na Internet Acesse Agora! www.vestibular1.com.br. Cinemática escalar

Vestibular1 A melhor ajuda ao vestibulando na Internet Acesse Agora! www.vestibular1.com.br. Cinemática escalar Cinemática escalar A cinemática escalar considera apenas o aspecto escalar das grandezas físicas envolvidas. Ex. A grandeza física velocidade não pode ser definida apenas por seu valor numérico e por sua

Leia mais

Departamento de Matemática - UEL - 2010. Ulysses Sodré. http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.

Departamento de Matemática - UEL - 2010. Ulysses Sodré. http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010. Matemática Essencial Extremos de funções reais Departamento de Matemática - UEL - 2010 Conteúdo Ulysses Sodré http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.

Leia mais

Aula 17 GRANDEZAS ESCALARES E VETORIAIS. META Apresentar as grandezas vetoriais e seu signifi cado

Aula 17 GRANDEZAS ESCALARES E VETORIAIS. META Apresentar as grandezas vetoriais e seu signifi cado GRANDEZAS ESCALARES E VETORIAIS META Apresentar as grandezas vetoriais e seu signifi cado OBJETIVOS Ao fi nal desta aula, o aluno deverá: Diferenciar grandezas escalares e vetoriais; compreender a notação

Leia mais

Vestibular UFRGS 2015. Resolução da Prova de Física

Vestibular UFRGS 2015. Resolução da Prova de Física Vestibular URGS 2015 Resolução da Prova de ísica 1. Alternativa (C) O módulo da velocidade relativa de móveis em movimentos retilíneos de sentidos opostos pode ser obtido pela expressão matemática: v r

Leia mais

Movimentos Periódicos: representação vetorial

Movimentos Periódicos: representação vetorial Aula 5 00 Movimentos Periódicos: representação vetorial A experiência mostra que uma das maneiras mais úteis de descrever o movimento harmônico simples é representando-o como uma projeção perpendicular

Leia mais

Movimento Harmônico Simples: Exemplos (continuação)

Movimento Harmônico Simples: Exemplos (continuação) Movimento Harmônico Simples: Exemplos (continuação) O Pêndulo Físico O chamado pêndulo físico é qualquer pêndulo real. Ele consiste de um corpo rígido (com qualquer forma) suspenso por um ponto O e que

Leia mais

Professores: Gilberto / Gustavo / Luciano / Maragato CURSO DOMÍNIO. Comentário: Energia de Capacitor. Comentário: Questão sobre atrito

Professores: Gilberto / Gustavo / Luciano / Maragato CURSO DOMÍNIO. Comentário: Energia de Capacitor. Comentário: Questão sobre atrito Professores: Gilberto / Gustavo / Luciano / Maragato CURSO DOMÍNIO A prova de física exigiu um bom conhecimento dos alunos. Há questões relacionadas principalmente com a investigação e compreensão dos

Leia mais

POTENCIAL ELÉTRICO E FORÇA ELÉTRICA

POTENCIAL ELÉTRICO E FORÇA ELÉTRICA POTENCIAL ELÉTRICO E FORÇA ELÉTRICA 1. No movimento de A para B (figura) ao longo de uma linha de campo elétrico, o campo realiza 3,94 x 10-19 J de trabalho sobre um elétron. Quais são as diferenças de

Leia mais

Lista 2 - Vetores II. Prof. Edu Física 2. O que é necessário para determinar (caracterizar) uma: a) grandeza escalar? b) grandeza vetorial?

Lista 2 - Vetores II. Prof. Edu Física 2. O que é necessário para determinar (caracterizar) uma: a) grandeza escalar? b) grandeza vetorial? Lista 2 - Vetores II O que é necessário para determinar (caracterizar) uma: a) grandeza escalar? grandeza vetorial?. Em que consiste a orientação espacial? 2. lassifique os itens abaixo em grandeza escalar

Leia mais

γ = 5,0m/s 2 2) Cálculo da distância percorrida para a velocidade escalar reduzir-se de 30m/s para 10m/s. V 2 2

γ = 5,0m/s 2 2) Cálculo da distância percorrida para a velocidade escalar reduzir-se de 30m/s para 10m/s. V 2 2 OBSERVAÇÃO (para todas as questões de Física): o valor da aceleração da gravidade na superfície da Terra é representado por g. Quando necessário, adote: para g, o valor 10 m/s 2 ; para a massa específica

Leia mais

RECUPERAÇÃO TURMAS: 2º ANO FÍSICA

RECUPERAÇÃO TURMAS: 2º ANO FÍSICA RECUPERAÇÃO TURMAS: 2º ANO Professor: XERXES DATA: 22 / 11 / 2015 RECUPERAÇÃO FINAL FORÇA ELÉTRICA (LEI DE COULOMB) FÍSICA Para todas as questões, considere a constante eletrostática no vácuo igual a 9.10

Leia mais

objetivos A partícula livre Meta da aula Pré-requisitos

objetivos A partícula livre Meta da aula Pré-requisitos A partícula livre A U L A 7 Meta da aula Estudar o movimento de uma partícula quântica livre, ou seja, aquela que não sofre a ação de nenhuma força. objetivos resolver a equação de Schrödinger para a partícula

Leia mais

Nesta aula iremos continuar com os exemplos de revisão.

Nesta aula iremos continuar com os exemplos de revisão. Capítulo 8 Nesta aula iremos continuar com os exemplos de revisão. 1. Exemplos de revisão Exemplo 1 Ache a equação do círculo C circunscrito ao triângulo de vértices A = (7, 3), B = (1, 9) e C = (5, 7).

Leia mais

Reflexão da luz. Espelhos planos

Reflexão da luz. Espelhos planos PARTE II Unidade E 11 capítulo Reflexão da luz Espelhos planos seções: 111 Reflexão da luz Leis da reflexão 112 Imagens em um espelho plano 113 Deslocamento de um espelho plano 114 Imagens de um objeto

Leia mais

5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 21

5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 21 Aula 1 Ondas sonoras harmônicas Na aula passada deduzimos a equação de onda para ondas sonoras propagando-se em uma dimensão. Vimos que ela pode ser escrita em termos de três variáveis medidas em relação

Leia mais