Unidade: Vetores e Forças. Unidade I:
|
|
- Emanuel Quintão Amorim
- 5 Há anos
- Visualizações:
Transcrição
1 Unidade I: 0
2 Unidade: Vetores e Forças 2.VETORES 2.1 Introdução Os vetores são definidos como entes matemáticos que dão noção de intensidade, direção e sentido. De forma prática, o conceito de vetor pode ser bem assimilado com auxílio da representação matemática de grandezas físicas. Grandezas como temperatura, pressão, massa, potência e outras podem ser completamente definidas por um único valor numérico. Elas são denominadas escalares porque, na forma gráfica, podem visualizadas como um ponto em uma escala conforme (a) da Figura 1. Outras grandezas (como velocidade, força, aceleração, etc) precisam além de o valor escalar, de uma direção e graficamente são representadas por um segmento de reta com seta. Tais denominadas grandezas vetoriais. Portanto, um vetor define corretamente a grandeza através do seu comprimento e do ângulo que faz com uma referência, conforme (b) da figura. Figura 1 1
3 2.2 Operações com Vetores Igualdades Dois ou mais vetores são iguais se têm comprimentos e direções indênticas. Assim, eles estão em segmentos de reta paralelos, podendo ser coincidentes ou não. Na Figura 2 deste, a=b. Dois vetores são opostos se têm o mesmo comprimento e direções opostas. De forma similar, estarão em segmentos de retas paralelos, coincidentes ou não. A oposição é marcada por sinal negativo: c= d. Figura 2 É importante o leitor notar que esses conceitos de igualdade e oposição de vetores podem não ser suficientes para definir certos fenômenos físicos. Às vezes, é necessária a indicação dos pontos de origem. Exemplo: supõe-se que c e d da figura 2 são forças atuantes em um mesmo corpo. Se estiver no mesmo alinhamento, nenhum efeito é observado. Se estiverem deslocados conforme figura, há um esforço de rotação (momento) sobre o corpo, tanto maior quanto maior a distância entre eles. Na Figura 02, os vetores têm o mesmo comprimento, isto é, a = b = c = d. Onde se lê o módulo de a é igual ao módulo de b. O módulo de b é igual ao módulo de c. e assim por diante. É importante ressaltar que a diferença de direção é condição suficiente para a desigualdade, independente do comprimento. Tomemos como exemplo, b c apesar de b = c. Pois b tem o sentido oposto a c. 2
4 2.2.2 Multiplicação por um escalar A multiplicação ou divisão de vetor por um escalar resulta em um vetor em segmento de reta paralelo ao vetor original ou coincidente com este último. Que fique claro que não muda a direção do vetor e sim pode mudar seu sentido e intensidade. Observem a figura 3 onde são dados exemplos de multiplicação e divisão de vetores por um escalar. Figura 3 Vetor unitário é um vetor de módulo igual a uma unidade de referência no sistema em que se trabalha. O vetor unitário na mesma direção de um vetor genérico a é também denominado versor desse vetor e algumas vezes simbolizado por â. Portanto, â=a/ a Soma e subtração de vetores Para somar graficamente dois vetores a e b conforme Figura 4, move-se a origem de um até coincidir com o final do outro. A origem e o final restantes definem o vetor representativo da soma vetorial, de acordo com a mesma figura. 3
5 Figura 4 O módulo da soma não é necessariamente igual à soma dos módulos. Se a + b = a + b, então a e b têm a mesma direção. Para a subtração, consideram-se na Figura 05 os mesmos vetores a e b da figura anterior. Conforme parte esquerda, faz-se a coincidência das origens e as extremidades restantes formam o vetor da diferença. Figura 5 Alternativamente, pode ser obtida segundo parte direita da figura, isto é, a soma com o oposto: a b = a + ( b). De forma similar à adição, o módulo da diferença não é necessariamente igual à diferença dos módulos. 4
6 Se a b = a b, então a e b têm a mesma direção. Um outro método para a determinação gráfica da soma é a regra do paralelogramo, indicada na parte esquerda da Figura 6: Figura 6 Juntam-se as origens e a diagonal do paralelogramo formado, assim obtém a soma dos vetores. Para vetores no espaço, pode-se usar a similar regra do paralelepípedo, conforme parte direita da mesma figura 6. Algumas propriedades da soma e da multiplicação por escalar: a + b = b + a (m + n) a = ma + na m (na) = (mn)a a + (b + c ) = (a + b) + c m (a + b) = ma + mb Coordenadas de um vetor Considerando as regras da soma vetorial, se a origem de um sistema de coordenadas xy coincide com a origem do vetor, pode-se facilmente verificar que esse vetor é igual à soma dos vetores formados por suas projeções em cada eixo. Assim, na Figura 7, A = A x + A y 5
7 Ou seja, os vetores A x e A y são os componentes do vetor no sistema de coordenadas. u x = î u y = ĵ Figura 7 Sejam os vetores unitários nos eixos de coordenadas: Então, A = A x î + A y ĵ Os escalares A x e A y são as coordenadas do vetor no sistema. No caso de um vetor no espaço conforme Figura 8, acrescenta-se uma coordenada: Figura 8 A = A x i + A y j + A z k Onde u z = k 6
8 Para simplificar a notação, muitas vezes é usada a forma O módulo do vetor pode ser dado por suas coordenadas: A = (X a 2 + Y a 2 + Z a 2 ) 1/2 Condição de paralelismo: se os vetores a e b são paralelos, as suas coordenadas são proporcionais: X b / X a = Y b / Y a = Z b / Z a = c Se o coeficiente de proporcionalidade c é positivo, eles têm a mesma direção. Se negativo, eles são opostos (obs: se um dos coeficientes de a é nulo, fica subentendido que o correspondente de b também é nulo). Soma de vetores: se vetores são somados, o resultado tem as somas das coordenadas. Seja c = a + b. Então, X c = X a + X b Y c = Y a + Y b Z c = Z a + Z b Multiplicação ou divisão por um escalar: as coordenadas do resultado têm a analogia. Seja c = m a. Então, X c = m X a Y c = m Y a Z c = m Z a 7
9 2.2.5 As leis dos senos e dos cossenos Considerando o triângulo arbitrário ABC das figura 9, as leis dos senos e dos cossenos podem ser resumidas como segue: 1. Lei dos senos: 2. Lei dos cossenos: sen Aˆ sen Bˆ sen Cˆ = = a b c ˆ a =b +c -2bccosA 2.3 FORÇA RESULTANTE Figura Introdução Em um sistema de forças qualquer, a força resultante é obtida a partir da soma vetorial de todas as forças que integram o sistema. Como no momento, estamos tratando de sistemas onde todas as forças são aplicadas em um único ponto, obviamente o ponto de aplicação da força resultante para esses sistemas é o mesmo onde estão aplicadas as demais forças. O aluno deve estar atento ao seguinte: A força resultante na realidade não está aplicada em um ponto, ou corpo, ela é apenas uma simplificação que se faz para tornar a análise do sistema mais fácil. Conceitualmente a força resultante é uma força que ``substitui'' as demais forças do sistema, mantendo os mesmos efeitos oriundos das forças aplicadas em conjunto, ou seja, ela é o resultado, em termos de efeitos sobre os corpos, do conjunto de forças aplicados. 8
10 Utilizamos-nos do conceito de força resultante por que é muito mais fácil analisar os efeitos das forças sobre os corpos quando reduzimos todo um sitema de forças a uma única. A partir da análise da força resultante podemos dizer se o corpo vai para a esquerda, ou se vai para a direita, ou se não vai a lugar nenhum, e assim por diante. Vamos a um exemplo: O parafuso tipo gancho da figura abaixo, está sujeito a duas forças F 1 e F 2. Determine a intensidade (módulo) e a direção da força resultante (figura 1). Figura Decomposição de Forças Quando se pensa em decomposição de forças é usual utilizar as componentes cartesianas das forças. Analisando as forças decompostas no plano (bidimensional) podemos achar as componentes retangulares das forças. A partir da regra do paralelogramo, o vetor da F da figura 11 pode ser escrito: F = Fx + Fy Onde Fx e Fy são as componentes do vetor F. 9
11 Figura 11 Usando os vetores unitários i e j (base canônica) podemos escrever F da seguinte forma (figura 3): F = Fx î + Fy ĵ Onde Fx e Fy são os módulos da força decomposta em x e y. Figura 12 As componentes em x e y da força F da figura 12 estão relacionadas à intensidade e direção de F através de: Fx = F cos Fy = F sen F² = Fx² + Fy² = arctg [Fy / Fx] 10
12 11 Responsável pelo Conteúdo: Prof. Esp. Alexandre Aparecido Neves. Campus Liberdade Rua Galvão Bueno, São Paulo SP Brasil Tel: (55 11)
4.2 Produto Vetorial. Orientação sobre uma reta r
94 4. Produto Vetorial Dados dois vetores u e v no espaço, vamos definir um novo vetor, ortogonal a u e v, denotado por u v (ou u v, em outros textos) e denominado produto vetorial de u e v. Mas antes,
Por que utilizar vetores?
Universidade Estadual de Mato Grosso do Sul Por que utilizar vetores? Existem grandezas físicas f perfeitamente definidas por seu tamanho e sua unidade. Para determinar outras grandezas, entretanto, são
1 Módulo ou norma de um vetor
Álgebra Linear I - Aula 3-2005.2 Roteiro 1 Módulo ou norma de um vetor A norma ou módulo do vetor ū = (u 1, u 2, u 3 ) de R 3 é ū = u 2 1 + u2 2 + u2 3. Geometricamente a fórmula significa que o módulo
GRANDEZAS FÍSICAS. Podemos dizer de modo mais usual que grandeza é tudo aquilo que pode variar quantitativamente.
FÍSIC 1 VETORES GRNDEZS FÍSICS Podemos dizer de modo mais usual que grandeza é tudo aquilo que pode variar quantitativamente. Deste modo, grandezas físicas são as que podem ser medidas. São divididas em
Vetores Lidando com grandezas vetoriais
Vetores Lidando com grandezas vetoriais matéria de vetores é de extrema importância para o ensino médio basta levar em consideração que a maioria das matérias de física envolve mecânica (movimento, dinâmica,
GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar
GAAL - 201/1 - Simulado - 1 Vetores e Produto Escalar SOLUÇÕES Exercício 1: Determinar os três vértices de um triângulo sabendo que os pontos médios de seus lados são M = (5, 0, 2), N = (, 1, ) e P = (4,
Conceitos Fundamentais
Capítulo 1 Conceitos Fundamentais Objetivos: No final do Capítulo o aluno deve saber: 1. distinguir o uso de vetores na Física e na Matemática; 2. resolver sistema lineares pelo método de Gauss-Jordan;
Vetores no R 2 : = OP e escreve-se: v = (x, y), identificando-se as coordenadas de P com as componentes de v.
Vetores no R 2 : O conjunto R 2 = R x R = {(x, y) / x, y Є R} é interpretado geometricamente como sendo o plano cartesiano xoy. Qualquer vetor AB considerado neste plano tem sempre um representante OP
APOSTILA TECNOLOGIA MECANICA
FACULDADE DE TECNOLOGIA DE POMPEIA CURSO TECNOLOGIA EM MECANIZAÇÃO EM AGRICULTURA DE PRECISÃO APOSTILA TECNOLOGIA MECANICA Autor: Carlos Safreire Daniel Ramos Leandro Ferneta Lorival Panuto Patrícia de
REPRESENTAÇÃO FASORIAL DE SINAIS SENOIDAIS
REPRESENTAÇÃO FASORIAL DE SINAIS SENOIDAIS Neste capítulo será apresentada uma prática ferramenta gráfica e matemática que permitirá e facilitará as operações algébricas necessárias à aplicação dos métodos
Vetores. Definição geométrica de vetores
Vetores Várias grandezas físicas, tais como por exemplo comprimento, área, olume, tempo, massa e temperatura são completamente descritas uma ez que a magnitude (intensidade) é dada. Tais grandezas são
IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 3
Linhas de Força Mencionamos na aula passada que o físico inglês Michael Faraday (79-867) introduziu o conceito de linha de força para visualizar a interação elétrica entre duas cargas. Para Faraday, as
Conceitos de vetores. Decomposição de vetores
Conceitos de vetores. Decomposição de vetores 1. Introdução De forma prática, o conceito de vetor pode ser bem assimilado com auxílio da representação matemática de grandezas físicas. Figura 1.1 Grandezas
CINEMÁTICA - É a parte da mecânica que estuda os vários tipos de movimento, sem se preocupar com as causas destes movimentos.
INTRODUÇÃO À CINEMÁTICA REPOUSO OU MOVIMENTO? DEPENDE DO REFERENCIAL! CINEMÁTICA - É a parte da mecânica que estuda os vários tipos de movimento, sem se preocupar com as causas destes movimentos. REFERENCIAL.
Lista 2 - Vetores II. Prof. Edu Física 2. O que é necessário para determinar (caracterizar) uma: a) grandeza escalar? b) grandeza vetorial?
Lista 2 - Vetores II O que é necessário para determinar (caracterizar) uma: a) grandeza escalar? grandeza vetorial?. Em que consiste a orientação espacial? 2. lassifique os itens abaixo em grandeza escalar
Noções de Cálculo Vetorial Prof. Alberto Ricardo Präss
Noções de Cálculo Vetorial Prof. lberto Ricardo Präss Linguagem e conceitos Linguagem é um ingrediente essencial do pensamento abstrato. É difícil pensar clara e facilmente sobre conceitos sofisticados
Uma lei que associa mais de um valor y a um valor x é uma relação, mas não uma função. O contrário é verdadeiro (isto é, toda função é uma relação).
5. FUNÇÕES DE UMA VARIÁVEL 5.1. INTRODUÇÃO Devemos compreender função como uma lei que associa um valor x pertencente a um conjunto A a um único valor y pertencente a um conjunto B, ao que denotamos por
Simetria de Figuras Planas e Espaciais
Simetria de Figuras Planas e Espaciais Introdução A maioria das pessoas acreditam que a simetria está ligada mais a pensamentos sobre Arte e Natureza do que sobre Matemática. De fato, nossas ideias de
RESUMO 2 - FÍSICA III
RESUMO 2 - FÍSICA III CAMPO ELÉTRICO Assim como a Terra tem um campo gravitacional, uma carga Q também tem um campo que pode influenciar as cargas de prova q nele colocadas. E usando esta analogia, podemos
Engenharia Informática. Física II. 1º Ano 2º Semestre. Instituto politécnico de Bragança Escola Superior de Tecnologia e de Gestão
1º no º Semestre 1. Cálculo vectorial 1.1. Introdução análise vectorial é um assunto do âmbito da matemática e não propriamente da Engenharia. No entanto, é quase impossível estudar Electrostática e Magnetismo
PARTE 2 FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL
PARTE FUNÇÕES VETORIAIS DE UMA VARIÁVEL REAL.1 Funções Vetoriais de Uma Variável Real Vamos agora tratar de um caso particular de funções vetoriais F : Dom(f R n R m, que são as funções vetoriais de uma
MATEMÁTICA. Aula 1 Revisão. Prof. Anderson
MATEMÁTICA Aula 1 Revisão Prof. Anderson Assuntos Equação do 1º grau com uma variável. Sistemas de equações do 1º grau com duas variáveis. Equação do º grau com uma variável. Equação do 1º grau com uma
Aula 17 GRANDEZAS ESCALARES E VETORIAIS. META Apresentar as grandezas vetoriais e seu signifi cado
GRANDEZAS ESCALARES E VETORIAIS META Apresentar as grandezas vetoriais e seu signifi cado OBJETIVOS Ao fi nal desta aula, o aluno deverá: Diferenciar grandezas escalares e vetoriais; compreender a notação
CIÊNCIA E CULTURA - REVISÃO PARA O VESTIBULAR - FÍSICA - AULA 8
Página 1 de 10 [HOME] [PÁGINA DA FÍSICA] [APRENDENDO CIÊNCIAS] [MUSEUS] [SALA DE LEITURA] [HISTÓRIA DA CIÊNCIA] [OLIMPÍADAS] TÓPICOS DA AULA Grandezas Fisicas GRANDEZAS FÍSICAS GRANDEZAS ESCALARES GRANDEZAS
Números Complexos. Capítulo 1. 1.1 Unidade Imaginária. 1.2 Números complexos. 1.3 O Plano Complexo
Capítulo 1 Números Complexos 11 Unidade Imaginária O fato da equação x 2 + 1 = 0 (11) não ser satisfeita por nenhum número real levou à denição dos números complexos Para solucionar (11) denimos a unidade
Mecânica Geral Básica
Mecânica Geral Básica Conceitos Básicos Prof. Nelson Luiz Reyes Marques Unidades - o sistema métrico O sistema internacional de unidades (SI) o sistema MKS Baseado em potências de 10 de unidades de base
IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 4
Lei de Gauss Considere uma distribuição arbitrária de cargas ou um corpo carregado no espaço. Imagine agora uma superfície fechada qualquer envolvendo essa distribuição ou corpo. A superfície é imaginária,
Capítulo 3. Cálculo Vetorial. 3.1 Segmentos Orientados
Capítulo 3 Cálculo Vetorial O objetivo deste capítulo é o estudo de vetores de um ponto de vista geométrico e analítico. De acordo com a necessidade, a abordagem do assunto será formal ou informal. O estudo
PROPRIEDADES DOS DETERMINANTES E O CÁLCULO DA ÁREA DE TRIÂN- GULOS: EXEMPLOS SIGNIFICATIVOS
A RTIGO PROPRIEDADES DOS DETERMINANTES E O CÁLCULO DA ÁREA DE TRIÂN- GULOS: EXEMPLOS SIGNIFICATIVOS Fábio Marson Ferreira e Walter Spinelli Professores do Colégio Móbile, São Paulo Recentemente nos desafiamos
6. Geometria, Primitivas e Transformações 3D
6. Geometria, Primitivas e Transformações 3D Até agora estudamos e implementamos um conjunto de ferramentas básicas que nos permitem modelar, ou representar objetos bi-dimensionais em um sistema também
Cap. 4 - Princípios da Dinâmica
Universidade Federal do Rio de Janeiro Instituto de Física Física I IGM1 2014/1 Cap. 4 - Princípios da Dinâmica e suas Aplicações Prof. Elvis Soares 1 Leis de Newton Primeira Lei de Newton: Um corpo permanece
Matemática Financeira Módulo 2
Fundamentos da Matemática O objetivo deste módulo consiste em apresentar breve revisão das regras e conceitos principais de matemática. Embora planilhas e calculadoras financeiras tenham facilitado grandemente
IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 6. O trabalho feito pela força para deslocar o corpo de a para b é dado por: = =
Energia Potencial Elétrica Física I revisitada 1 Seja um corpo de massa m que se move em linha reta sob ação de uma força F que atua ao longo da linha. O trabalho feito pela força para deslocar o corpo
São grandezas que para que a gente possa descrever 100%, basta dizer um número e a sua unidade.
Apostila de Vetores 1 INTRODUÇÃO Fala, galera! Essa é a primeira apostila do conteúdo de Física I. Os assuntos cobrados nas P1s são: Vetores, Cinemática Uni e Bidimensional, Leis de Newton, Conservação
ENERGIA POTENCIAL E CONSERVAÇÃO DE ENERGIA Física Geral I (1108030) - Capítulo 04
ENERGIA POTENCIAL E CONSERVAÇÃO DE ENERGIA Física Geral I (1108030) - Capítulo 04 I. Paulino* *UAF/CCT/UFCG - Brasil 2012.2 1 / 15 Sumário Trabalho e EP Energia potencial Forças conservativas Calculando
Lista 1: Vetores -Turma L
Lista 1: Vetores -Turma L Professora: Ivanete Zuchi Siple 1. Dados os vetores u e v da gura, mostrar num gráco um representante do vetor: (a) u v (b) v u (c) u + 4 v u v. Represente o vetor x = u + v w
BOM DIA!! ÁLGEBRA. Aula 3 COM JENNYFFER LANDIM. jl.matematica@outlook.com
BOM DIA!! ÁLGEBRA COM JENNYFFER LANDIM Aula 3 jl.matematica@outlook.com Números inteiros: operações e propriedades Adição Os termos da adição são chamadas parcelas e o resultado da operação de adição é
Tópico 02: Movimento Circular Uniforme; Aceleração Centrípeta
Aula 03: Movimento em um Plano Tópico 02: Movimento Circular Uniforme; Aceleração Centrípeta Caro aluno, olá! Neste tópico, você vai aprender sobre um tipo particular de movimento plano, o movimento circular
Produtos. 4.1 Produtos escalares
Capítulo 4 Produtos 4.1 Produtos escalares Neste tópico iremos estudar um novo tipo de operação entre vetores do plano e do espaço. Vamos fazer inicialmente uma consideração geométrica, como segue. Seja
A noção de função é imprescindível no decorrer do estudo de Cálculo e para se estabelecer essa noção tornam-se necessários:
1 1.1 Função Real de Variável Real A noção de função é imprescindível no decorrer do estudo de Cálculo e para se estabelecer essa noção tornam-se necessários: 1. Um conjunto não vazio para ser o domínio;
Vetores. Bibliografia da Aula: Tipler, Vol 1, 6 a Ed. Cap.1 Seção 1.7 Halliday, Vol 1. 8 a Ed. Cap 3. Prof. Ettore Baldini-Neto
Vetores Bibliografia da Aula: Tipler, Vol 1, 6 a Ed. Cap.1 Seção 1.7 Halliday, Vol 1. 8 a Ed. Cap 3 Prof. Ettore Baldini-Neto Programa da Aula Propriedades Gerais dos Vetores Definições, Notação, Representações,
Objetivos. Apresentar as superfícies regradas e superfícies de revolução. Analisar as propriedades que caracterizam as superfícies regradas e
MÓDULO 2 - AULA 13 Aula 13 Superfícies regradas e de revolução Objetivos Apresentar as superfícies regradas e superfícies de revolução. Analisar as propriedades que caracterizam as superfícies regradas
APLICAÇÕES DE NÚMEROS COMPLEXOS
http://hermes.ucs.br/ccet/deme/emsoares/inipes/complexos/ APLICAÇÕES DE NÚMEROS COMPLEXOS Silvia Carla Menti Propicio Universidade de Caxias do Sul Centro de Ciências Exatas e Tecnologia Departamento de
ROTEIRO DE ESTUDO - 2013 VP4 MATEMÁTICA 3 a ETAPA 6 o ao 9º Ano INTEGRAL ENSINO FUNDAMENTAL 1º E 2º ANOS INTEGRAIS ENSINO MÉDIO
6 o ANO MATEMÁTICA I Adição e subtração de frações: Frações com denominadores iguais. Frações com denominadores diferentes. Multiplicação de um número natural por uma fração. Divisão entre um número natural
Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO DO 1º GRAU
FUNÇÃO IDENTIDADE... FUNÇÃO LINEAR... FUNÇÃO AFIM... GRÁFICO DA FUNÇÃO DO º GRAU... IMAGEM... COEFICIENTES DA FUNÇÃO AFIM... ZERO DA FUNÇÃO AFIM... 8 FUNÇÕES CRESCENTES OU DECRESCENTES... 9 SINAL DE UMA
Campos Vetoriais e Integrais de Linha
Cálculo III Departamento de Matemática - ICEx - UFMG Marcelo Terra Cunha Campos Vetoriais e Integrais de Linha Um segundo objeto de interesse do Cálculo Vetorial são os campos de vetores, que surgem principalmente
Ponto, reta e plano no espaço tridimensional, cont.
Ponto, reta e plano no espaço tridimensional, cont. Matemática para arquitetura Ton Marar 1. Posições relativas Posição relativa entre pontos Dois pontos estão sempre alinhados. Três pontos P 1 = (x 1,
5910170 Física II Ondas, Fluidos e Termodinâmica USP Prof. Antônio Roque Aula 15
Ondas (continuação) Ondas propagando-se em uma dimensão Vamos agora estudar propagação de ondas. Vamos considerar o caso simples de ondas transversais propagando-se ao longo da direção x, como o caso de
INSTITUTO TECNOLÓGICO
PAC - PROGRAMA DE APRIMORAMENTO DE CONTEÚDOS. ATIVIDADES DE NIVELAMENTO BÁSICO. DISCIPLINAS: MATEMÁTICA & ESTATÍSTICA. PROFº.: PROF. DR. AUSTER RUZANTE 1ª SEMANA DE ATIVIDADES DOS CURSOS DE TECNOLOGIA
Empurra e puxa. Domingo, Gaspar reúne a família para uma. A força é um vetor
A U A UL LA Empurra e puxa Domingo, Gaspar reúne a família para uma voltinha de carro. Ele senta ao volante e dá a partida. Nada. Tenta outra vez e nada consegue. Diz então para todos: O carro não quer
Tópico 11. Aula Teórica/Prática: O Método dos Mínimos Quadrados e Linearização de Funções
Tópico 11. Aula Teórica/Prática: O Método dos Mínimos Quadrados e Linearização de Funções 1. INTRODUÇÃO Ao se obter uma sucessão de pontos experimentais que representados em um gráfico apresentam comportamento
Åaxwell Mariano de Barros
ÍÒ Ú Ö Ö Ð ÓÅ Ö Ò Ó Ô ÖØ Ñ ÒØÓ Å Ø Ñ Ø ÒØÖÓ Ò Ü Ø Ì ÒÓÐÓ ÆÓØ ÙÐ ¹¼ ÐÙÐÓÎ ØÓÖ Ð ÓÑ ØÖ Ò Ð Ø Åaxwell Mariano de Barros ¾¼½½ ËÓÄÙ ¹ÅA ËÙÑ Ö Ó 1 Vetores no Espaço 2 1.1 Bases.........................................
Curvas em coordenadas polares
1 Curvas em coordenadas polares As coordenadas polares nos dão uma maneira alternativa de localizar pontos no plano e são especialmente adequadas para expressar certas situações, como veremos a seguir.
Computação Gráfica Interativa
Computação Gráfica Interativa conceitos, fundamentos geométricos e algoritmos 1. Introdução Computação Gráfica é a criação, armazenamento e a manipulação de modelos de objetos e suas imagens pelo computador.
O B. Podemos decompor a pirâmide ABCDE em quatro tetraedros congruentes ao tetraedro BCEO. ABCDE tem volume igual a V = a2.oe
GABARITO - QUALIFICAÇÃO - Setembro de 0 Questão. (pontuação: ) No octaedro regular duas faces opostas são paralelas. Em um octaedro regular de aresta a, calcule a distância entre duas faces opostas. Obs:
Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.
Matemática Essencial Equações do Segundo grau Conteúdo Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.br/matessencial/ 1 Introdução
O coeficiente angular
A UA UL LA O coeficiente angular Introdução O coeficiente angular de uma reta já apareceu na Aula 30. Agora, com os conhecimentos obtidos nas Aulas 40 e 45, vamos explorar mais esse conceito e descobrir
Lista 1. Sistema cartesiano ortogonal. 1. Observe a figura e determine os pontos, ou seja, dê suas coordenadas: a) A b) B c) C d) D e) E
Sistema cartesiano ortogonal Lista. Observe a figura e determine os pontos, ou seja, dê suas coordenadas: a) A b) B c) C d) D e) E. Marque num sistema de coordenadas cartesianas ortogonais os pontos: a)
Álgebra Linear. Mauri C. Nascimento Departamento de Matemática UNESP/Bauru. 19 de fevereiro de 2013
Álgebra Linear Mauri C. Nascimento Departamento de Matemática UNESP/Bauru 19 de fevereiro de 2013 Sumário 1 Matrizes e Determinantes 3 1.1 Matrizes............................................ 3 1.2 Determinante
02 Determine o módulo, a direção e o sentido dos seguintes vetores: a) A = 5 Λ i + 3 Λ j, b) B = 10 Λ i -7 Λ j, c) C = 2 Λ i - 3 Λ j + 4 Λ k.
Exercícios de apoio à disciplina Geometria Analítica e Cálculo Vetorial 1 01 Três vetores A, B e C possuem as seguintes componentes nas direções x e y: A x = 6, A y = -3; B x = -3, B y =4; C x =2, C y
MATEMÁTICA TIPO C. 01. A função tem como domínio e contradomínio o conjunto dos números reais e é definida por ( ). Analise a
1 MATEMÁTICA TIPO C 01. A função tem como domínio e contradomínio o conjunto dos números reais e é definida por ( ). Analise a veracidade das afirmações seguintes sobre, cujo gráfico está esboçado a seguir.
Prof. José Carlos Morilla
1 Cálculo Vetorial e Geometria Analítica Santos 009 1 CÁLCULO VETORIAL... 4 1.1 Segmentos Orientados... 4 1. Vetores... 4 1..1 Soma de um ponto com um vetor... 5 1.. Adição de vetores... 5 1..3 Diferença
Potenciação no Conjunto dos Números Inteiros - Z
Rua Oto de Alencar nº 5-9, Maracanã/RJ - tel. 04-98/4-98 Potenciação no Conjunto dos Números Inteiros - Z Podemos epressar o produto de quatro fatores iguais a.... por meio de uma potência de base e epoente
por séries de potências
Seção 23: Resolução de equações diferenciais por séries de potências Até este ponto, quando resolvemos equações diferenciais ordinárias, nosso objetivo foi sempre encontrar as soluções expressas por meio
POTENCIAL ELÉTRICO. por unidade de carga
POTENCIAL ELÉTRICO A lei de Newton da Gravitação e a lei de Coulomb da eletrostática são matematicamente idênticas, então os aspectos gerais discutidos para a força gravitacional podem ser aplicadas para
QUESTÃO 1 ALTERNATIVA B
1 QUESTÃO 1 Marcos tem 10 0,25 = 2,50 reais em moedas de 25 centavos. Logo ele tem 4,30 2,50 = 1,80 reais em moedas de 10 centavos, ou seja, ele tem 1,80 0,10 = 18 moedas de 10 centavos. Outra maneira
2. Cinemática vetorial
2. Cinemática vetorial Quando um objeto se desloca no espaço sem seguir uma trajetória determinada, a sua posição já não pode ser definida com uma única variável como nos exemplos estudados no capítulo
UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA 5 0 Encontro da RPM TRANSFORMAÇÕES NO PLANO
UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA 5 0 Encontro da RPM TRANSFORMAÇÕES NO PLANO Jorge Costa do Nascimento Introdução Na produção desse texto utilizamos como fonte de pesquisa material
Bacharelado Engenharia Civil
Bacharelado Engenharia Civil Disciplina: Física Geral e Experimental I Força e Movimento- Leis de Newton Prof.a: Msd. Érica Muniz Forças são as causas das modificações no movimento. Seu conhecimento permite
Erros. Número Aproximado. Erros Absolutos erelativos. Erro Absoluto
Erros Nenhum resultado obtido através de cálculos eletrônicos ou métodos numéricos tem valor se não tivermos conhecimento e controle sobre os possíveis erros envolvidos no processo. A análise dos resultados
Equilíbrio de um Ponto
LABORATÓRIO DE FÍSICA Equilíbrio de um Ponto Experiência 03/2014 Objetivos: Conceituar e aplicar as leis de Newton na vida cotidiana. Diferenciar grandezas escalares e grandezas vetoriais. Determinar o
FICHA N.º1:Isometrias: Reflexão, rotação e translação ISOMETRIAS
FICHA N.º1:Isometrias: Reflexão, rotação e translação Matemática 8º Ano Aluno: Data: / /2013 Nº Ano/Turma: 8º ISOMETRIAS Uma ISOMETRIA (iso = igual, metria = medição) é uma transformação geométrica que
Escalar: Grandeza à qual se associa um valor real independentemente da direção, ex: massa, comprimento, tempo, energia.
1 2. Vetores Força 2.1- Escalares e Vetores Escalar: Grandeza à qual se associa um valor real independentemente da direção, ex: massa, comprimento, tempo, energia. Vetor: Grandeza a qual se associa um
Ivan Guilhon Mitoso Rocha. As grandezas fundamentais que serão adotadas por nós daqui em frente:
Rumo ao ITA Física Análise Dimensional Ivan Guilhon Mitoso Rocha A análise dimensional é um assunto básico que estuda as grandezas físicas em geral, com respeito a suas unidades de medida. Como as grandezas
CADERNO DE ATIVIDADES
1 PONTIFÍCIA UNIVERSIDADE CATÓLICA DE MINAS GERAIS Programa de Pós-Graduação em Ensino de Ciências e Matemática CADERNO DE ATIVIDADES DESENVOLVIMENTO DE UMA SEQUÊNCIA DIDÁTICA PARA O PROCESSO DE APRENDIZAGEM
TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. Questão 4. alternativa C. alternativa A. alternativa B
Questão TIPO DE PROVA: A Um taxista inicia o dia de traalho com o tanque de comustível de seu carro inteiramente cheio. Percorre 35 km e reaastece, sendo necessários 5 litros para completar o tanque. Em
Lei de Gauss Origem: Wikipédia, a enciclopédia livre.
Lei de Gauss Origem: Wikipédia, a enciclopédia livre. A lei de Gauss é a lei que estabelece a relação entre o fluxo de campo elétrico que passa através de uma superfície fechada com a carga elétrica que
Leitura e interpretação de gráficos: Cada vez mais os vestibulares exigem essa competência
Leitura e interpretação de gráficos: Cada vez mais os vestibulares exigem essa competência Por: George Schlesinger Existem diversos tipos de gráficos: linhas, barras, pizzas etc. Estudaremos aqui os gráficos
Bem, produto interno serve para determinar ângulos e distâncias entre vetores e é representado por produto interno de v com w).
Produto Interno INTRODUÇÃO Galera, vamos aprender agora as definições e as aplicações de Produto Interno. Essa matéria não é difícil, mas para ter segurança nela é necessário que o aluno tenha certa bagagem
2aula TEORIA DE ERROS I: ALGARISMOS SIGNIFICATIVOS, ARREDONDAMENTOS E INCERTEZAS. 2.1 Algarismos Corretos e Avaliados
2aula Janeiro de 2012 TEORIA DE ERROS I: ALGARISMOS SIGNIFICATIVOS, ARREDONDAMENTOS E INCERTEZAS Objetivos: Familiarizar o aluno com os algarismos significativos, com as regras de arredondamento e as incertezas
Programa Princípios Gerais Forças, vetores e operações vetoriais
Programa Princípios Gerais Forças, vetores e operações vetoriais Representação gráfica de vetores Graficamente, um vetor é representado por uma flecha: a intensidade é o comprimento da flecha; a direção
Movimentos Periódicos: representação vetorial
Aula 5 00 Movimentos Periódicos: representação vetorial A experiência mostra que uma das maneiras mais úteis de descrever o movimento harmônico simples é representando-o como uma projeção perpendicular
PLANO DE ESTUDOS DE MATEMÁTICA 8.º ANO
DE MATEMÁTICA 8.º ANO Ano Letivo 2015 2016 PERFIL DO ALUNO No domínio dos Números e Operações, o aluno deve ser capaz de relacionar números racionais e dízimas, completar a reta numérica e ordenar números
TRIÂNGULO RETÂNGULO. Os triângulos AHB e AHC são semelhantes, então podemos estabelecer algumas relações métricas importantes:
TRIÂNGULO RETÂNGULO Num triângulo retângulo, os lados perpendiculares, aqueles que formam um ângulo de 90º, são denominados catetos e o lado oposto ao ângulo de 90º recebe o nome de hipotenusa. O teorema
Faculdade de Administração e Negócios de Sergipe
Faculdade de Administração e Negócios de Sergipe Disciplina: Física Geral e Experimental III Curso: Engenharia de Produção Assunto: Gravitação Prof. Dr. Marcos A. P. Chagas 1. Introdução Na gravitação
Pesquisa Operacional. Função Linear - Introdução. Função do 1 Grau. Função Linear - Exemplos Representação no Plano Cartesiano. Prof.
Pesquisa Operacional Prof. José Luiz Prof. José Luiz Função Linear - Introdução O conceito de função é encontrado em diversos setores da economia, por exemplo, nos valores pagos em um determinado período
Num cilindro as bases são círculos. O perímetro do círculo é igual ao comprimento da circunferência que limita o círculo.
1. Círculos e cilindros 1.1. Planificação da superfície de um cilindro Num cilindro as bases são círculos. O perímetro do círculo é igual ao comprimento da circunferência que limita o círculo. A planificação
Conceitos e fórmulas
1 Conceitos e fórmulas 1).- Triângulo: definição e elementos principais Definição - Denominamos triângulo (ou trilátero) a toda figura do plano euclidiano formada por três segmentos AB, BC e CA, tais que
UNIVERSIDADE CATÓLICA DE GOIÁS. DEPARTAMENTO DE MATEMÁTICA E FÍSICA Disciplina: FÍSICA GERAL E EXPERIMENTAL I (MAF 2201) Prof.
01 UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE MATEMÁTICA E FÍSICA Disciplina: FÍSICA GERAL E EXPERIMENTAL I (MAF 2201) Prof. EDSON VAZ NOTA DE AULA III (Capítulo 7 e 8) CAPÍTULO 7 ENERGIA CINÉTICA
AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980
Questão 1. Uma venda imobiliária envolve o pagamento de 12 prestações mensais iguais a R$ 10.000,00, a primeira no ato da venda, acrescidas de uma parcela final de R$ 100.000,00, 12 meses após a venda.
UMA NOVA PROPOSTA PARA GEOMETRIA ANALÍTICA NO ENSINO MÉDIO
UMA NOVA PROPOSTA PARA GEOMETRIA ANALÍTICA NO ENSINO MÉDIO DANIELLA ASSEMANY DA GUIA CAp- UFRJ danyprof@bol.com.br 1.1. RESUMO Esta comunicação científica tem como objetivo tratar e apresentar a Geometria
Universidade Estadual de Santa Cruz. Departamento de Ciências Exatas e Tecnológicas. Especialização em Matemática. Disciplina: Estruturas Algébricas
1 Universidade Estadual de Santa Cruz Departamento de Ciências Exatas e Tecnológicas Especialização em Matemática Disciplina: Estruturas Algébricas Profs.: Elisangela S. Farias e Sérgio Motta Operações
UNIDADE DE ENSINO POTENCIALMENTE SIGNIFICATIVA PARA TÓPICOS DE MECÂNICA VETORIAL
UNIVERSIDADE SEVERINO SOMBA PROGRAMA DE PÓS-GRADUAÇÃO STRICTO SENSU MESTRADO PROFISSIONAL EM EDUCAÇÃO MATEMÁTICA UNIDADE DE ENSINO POTENCIALMENTE SIGNIFICATIVA PARA TÓPICOS DE MECÂNICA VETORIAL BRUNO NUNES
Curso de Computação Gráfica (CG) 2014/2- Unidade 1- Modelagem de objetos. Exercício 1 (individual) - Entrega: quarta 13/08
Curso de Computação Gráfica (CG) 2014/2- Unidade 1- Modelagem de objetos Exercício 1 (individual) - Entrega: quarta 13/08 Escolha um objeto entre os que possivelmente compõem uma clínica médica de exames
Conjuntos numéricos. Notasdeaula. Fonte: Leithold 1 e Cálculo A - Flemming. Dr. Régis Quadros
Conjuntos numéricos Notasdeaula Fonte: Leithold 1 e Cálculo A - Flemming Dr. Régis Quadros Conjuntos numéricos Os primeiros conjuntos numéricos conhecidos pela humanidade são os chamados inteiros positivos
x0 = 1 x n = 3x n 1 x k x k 1 Quantas são as sequências com n letras, cada uma igual a a, b ou c, de modo que não há duas letras a seguidas?
Recorrências Muitas vezes não é possível resolver problemas de contagem diretamente combinando os princípios aditivo e multiplicativo. Para resolver esses problemas recorremos a outros recursos: as recursões
3.3 Espaço Tridimensional - R 3 - versão α 1 1
1 3.3 Espaço Tridimensional - R 3 - versão α 1 1 3.3.1 Sistema de Coordenadas Tridimensionais Como vimos no caso do R, para localizar um ponto no plano precisamos de duas informações e assim um ponto P
Retas e Planos. Equação Paramétrica da Reta no Espaço
Retas e lanos Equações de Retas Equação aramétrica da Reta no Espaço Considere o espaço ambiente como o espaço tridimensional Um vetor v = (a, b, c) determina uma direção no espaço Dado um ponto 0 = (x
MATEMÁTICA TIPO A GABARITO: VFFVF. Solução: é a parábola com foco no ponto (0, 3) e reta diretriz y = -3.
1 MATEMÁTICA TIPO A 01. Seja o conjunto de pontos do plano cartesiano, cuja distância ao ponto é igual à distância da reta com equação. Analise as afirmações a seguir. 0-0) é a parábola com foco no ponto
Sumário. Prefácio... xi. Prólogo A Física tira você do sério?... 1. Lei da Ação e Reação... 13
Sumário Prefácio................................................................. xi Prólogo A Física tira você do sério?........................................... 1 1 Lei da Ação e Reação..................................................