Pesquisa Operacional. Função Linear - Introdução. Função do 1 Grau. Função Linear - Exemplos Representação no Plano Cartesiano. Prof.

Save this PDF as:

Tamanho: px
Começar a partir da página:

Download "Pesquisa Operacional. Função Linear - Introdução. Função do 1 Grau. Função Linear - Exemplos Representação no Plano Cartesiano. Prof."

Transcrição

1 Pesquisa Operacional Prof. José Luiz Prof. José Luiz Função Linear - Introdução O conceito de função é encontrado em diversos setores da economia, por exemplo, nos valores pagos em um determinado período de um curso. O valor a ser pago vai depender da quantidade de disciplinas que o aluno está matriculado. Imagine x o valor por disciplina e y o valor total a ser pago no período. Então, temos: y = f(x) y = número de disciplinas. x Função do Grau Denominamos função do primeiro grau a qualquer função f: R R, tal que: f(x) = ax + b (com a 0) O gráfico de uma função do grau é sempre uma reta inclinada que encontra o eixo vertical quando y = b. O valor constante b da expressão ax + b é chamado coeficiente linear. O coeficiente a da expressão ax + b é chamado coeficiente angular e está associado ao grau de inclinação que a reta do gráfico terá (na verdade o valor de a é igual à tangente de um certo ângulo que a reta do gráfico forma com o eixo horizontal). Função Linear - Exemplos Representação no Plano Cartesiano f(x) = x, onde a = e b = - f(x) = -x, onde a = - e b = f(x) = x/ + /, onde a = / e b = / Uma reta real é orientada a um eixo, e cada ponto está associado a um único número real. O ponto zero é chamado origem, portanto, qualquer ponto á direita de 0, o número será positivo; à esquerda, será negativo. E quando coincidir com o zero, será nulo. f(x) = x, onde a = e b = 0 origem

2 Plano Cartesiano Vamos imaginar um número P = -. Teremos OP = -. Agora vamos praticar: Para P = - teremos OP = - Para P = + teremos OP = + Plano Cartesiano Consideremos num plano α de dois eixos, x e y, perpendiculares em 0, um ponto A pertencente a α, existem apenas duas retas, r e s, que passam por A de modo que r // y e s // x. origem P = Eixos: X = eixo das abscissas y = eixo das ordenadas α = plano cartesiano Plano Cartesiano O plano cartesiano está dividido em quatro quadrantes: Plano Cartesiano - Exemplos Podemos então localizar os pontos A(,), B(-,), C(-,-), D(,-), E(,0) e F(0,): Funções crescentes e decrescentes O gráfico de uma função de grau y = ax + b, com a 0 é uma reta oblíqua aos eixos Ox e Oy. Exemplo : Funções Crescentes Quando aumentamos o valor de x, os correspondentes valores de y também aumentam. Dizemos, então, que a função y = x é crescente. Construir o gráfico da função y = x - X Y = x 0 - / 0

3 Exemplo : Funções Decrescentes Construir o gráfico da função y = - x + Funções Decrescentes Quando aumentamos o valor de x, os correspondentes valores de y diminuem. Dizemos, então, que a função y = -x + é decrescente. X Y = -x + 0 / 0 INEQUAÇÕES DO º GRAU INEQUAÇÕES DO º GRAU PESQUISA OPERACIONAL TÉCNICAS DE SOLUÇÃO PARA MODELOS DE PROGRAMAÇÃO LINEAR MÉTODO GRÁFICO Conceito: Consiste em representar num sistema de eixos ortogonais o conjunto das possíveis soluções do problema, ou seja, o conjunto de pontos (x, x) que obedecem ao grupo de restrições impostas pelo sistema em estudo. O desempenho do modelo é avaliado através da representação gráfica da função objetivo. As soluções são classificadas de acordo com sua posição no gráfico. Gráfico: A representação gráfica de uma equação linear com duas variáveis é uma reta. A representação gráfica de uma inequação linear com duas variáveis é um dos semiplanos definidos pela reta correspondente à equação. Exemplo : Representar graficamente a inequação: x + x 0 a) Construir a reta correspondente à equação x + x = 0 Precisamos de dois pontos: Fazendo x = 0, teremos x = 0 x = Fazendo x = 0, teremos x = 0

4 b. Testar a inequação: x + x 0 X Tomamos um ponto qualquer de uma das regiões limitadas pela reta, por exemplo o ponto (x = 0, x = ). Substituindo na inequação: ou 0 0, o que é verdadeiro, portanto a região das soluções da inequação é aquela que contém o ponto testado. 0 0 X Exemplo : Representar graficamente a solução do sistema: x + x x + x x 0 x 0 Solução: Vamos representar cada uma das retas correspondentes:. x + x = ; se x = 0 x = ; se x = 0 x =. x + x ; se x = 0 x = ; se x = 0 x = As restrições de não negatividade x 0 e x 0 representam o primeiro quadrante do gráfico das soluções. Verificar para cada reta qual a região que corresponde à solução da inequação. Para isso, escolhe-se um ponto fora das retas, por exemplo o ponto (, ).. x + x ; substituindo x =, x =, obtém-se: +., ou ; a desigualdade é falsa. Solução: região oposta. (Verificar flecha indicativa) Avaliação do objetivo Devemos agora avaliar o desempenho da função objetivo: Maximizar L = x + x na região de soluções do gráfico a seguir.. x + x ; substituindo x =, x =, obtém-se:. +, ou ; a desigualdade é verdadeira (Flecha indicativa da solução na região do ponto testado.) A região de soluções aparece sombreada no gráfico.

5 Solução: Escolhemos um valor arbitrário para L, por exemplo, o valor 0. A equação: 0 = x + x fornece o conjunto de pontos (x, x) que dão para L o valor 0. Vamos representar esses pontos:. Afastamento da origem. Retas Paralelas x + x = 0 Se x = 0, então.0 +.x = 0. Portanto, x = 0/ ou x = Se x = 0, então.x +.0 = 0, Portanto, x = 0/ ou x = Escolhemos um segundo valor para L, por exemplo, o valor, então: x + x = Graficamente teremos: Se x = 0, então.0 +.x =. Portanto, x = / ou x = Se x = 0, então.x +.0 =, Portanto, x = / ou x =, Verificamos do gráfico que:. À medida que atribuirmos valores a L, obtemos retas paralelas.. À medida que os valor de L aumenta, a reta se afasta da origem do sistema de eixos. Podemos concluir que pelo ponto P do gráfico, teremos a paralela de maior valor que ainda apresenta um ponto na região de soluções. Portanto, o ponto P é a solução que maximiza L na região de soluções dadas. Como P = (0, ) e L = x + x, substituindo x = 0 e x =, teremos: L =.0 +. ou L máximo = 0 Exemplo Resolver o problema de programação linear: Minimizar Z = x + x x + x x + x 0 Sujeito às restrições: x x 0 x 0 Solução: a. Construir a região de soluções das restrições:. x + x = Se x = 0, então 0 + x = ou x = Se x = 0, então x + 0 = ou x = REGIÃO DE SOLUÇÕES DAS RESTRIÇÕES A região resultante está sombreada na figura. Tomando-se o ponto (, ) para o teste da região de solução de cada uma das inequações, temos, substituindo os valores x = e x = :. x + x, então + 0 ou 0 A desigualdade é verdadeira, flecha em para a região do ponto testado.. x + x 0, então. + 0 ou 0 0 A desigualdade é verdadeira, flecha em para a região do ponto testado.. x substituindo x =, teremos. A desigualdade é verdadeira, flecha em para a região do ponto (, ).. x + x = 0. x = Se x = 0, então.0 + x = 0 ou x = 0 Se x = 0, então.x + 0 = ou x = 0/ ou x = A representação gráfica é uma reta paralela ao eixo x pelo ponto x = b. Avaliar o desempenho da função objetivo. Arbitraremos dois valores para Z, por exemplo: Z = e Z = Para Z =, teremos: x + x = Se x = 0, então.0 +.x = ou x = Se x = 0, então.x +.0 = ou x = Para Z =, teremos: x + x = Conclusão: Se x = 0, então.0 +.x = ou x = Se x = 0, então.x +.0 = ou x = À medida que diminuímos o valor de Z, obteremos retas paralelas mais próximas da origem. Portanto, o ponto da região de soluções com o menor valor de Z é o ponto (, 0). (Verificação no gráfico). Resposta: Ponto de Mínimo: x = ; x = 0. Valor mínimo =. +.0 = 0 Exemplo Resolver o problema de programação linear: MAX L = x + x Sujeito às restrições: x + x 0 x + x x 0 x 0 Solução: a. Construir a região de soluções das restrições:. x + x = 0 Se x = 0, então 0 + x = 0 ou x = 0 Se x = 0, então x + 0 = 0 ou x =. x + x = Se x = 0, então 0 + x = ou x = Se x = 0, então x + 0 = ou x = Ponto (, 0)

6 REGIÃO DE SOLUÇÕES DAS RESTRIÇÕES A região resultante está sombreada na figura. Tomando-se o ponto (, ) para o teste da região de solução de cada uma das inequações, temos, substituindo os valores x = e x = :. x + x 0, então ou 0. A desigualdade é falsa, implica que a solução é oposta ao ponto testado. Flecha em.. x + x, então + ou 0. A desigualdade é verdadeira. A solução é a região do ponto testado. Flecha em Para L =, teremos: x + x = Se x = 0, então.0 +.x = ou x = Se x = 0, então.x +.0 = ou x =, Conclusão: Examinando o gráfico, concluímos que L atinge o maior valor na região de soluções sobre a reta. Portanto, todos os pontos do segmento PQ são soluções ótimas do modelo. Por exemplo: O Ponto Q: x = ; x = 0. L =. +.0 = 0 b. Avaliar o objetivo na região de soluções: Arbitraremos dois valores para L, por exemplo: L = e L = Para L =, teremos: x + x = Se x = 0, então.0 +.x = ou x = Se x = 0, então.x +.0 = ou x = Ponto (, 0) Exercícios Propostos Resolver Graficamente o modelo de Programação Linear MAXIMIZAR LUCRO = x + x Sujeito a: -x + x x + x x + x x 0; x 0 X MAXIMIZAR LUCRO = x + x 0 0 X Exercícios Propostos Resolver Graficamente o modelo de Programação Linear MAXIMIZAR RECEITA = 0,x + 0,x Sujeito a: x + x x + x x 0; x 0 X MAXIMIZAR RECEITA = 0,x + 0,x 0 0 X

7 Exercícios Propostos Resolver Graficamente o modelo de Programação Linear MAXIMIZAR LUCRO = x + x X Sujeito a: x + x -x + x x + x x 0; x 0 0 MAXIMIZAR LUCRO = x + x 0 X Exercícios Propostos Resolver Graficamente o modelo de Programação Linear MINIMIZAR CUSTO = 0x + x Sujeito a: x + x 0 x + x 0 x + x x 0; x 0 X MINIMIZAR CUSTO = 0x + x 0 0 X Exercícios Propostos Resolver Graficamente o modelo de Programação Linear MINIMIZAR Z = x + x Sujeito a: -x + x x x x + x x + x 0 x 0; x 0 X MINIMIZAR Z = x + x 0 0 X

8 Exercícios Propostos Resolver Graficamente o modelo de Programação Linear Resolver o problema da lista. MÁXIMO LUCRO = x + x; Sujeito a: 0x + x 0 x + x x 0; x 0 X MÁXIMO LUCRO = x + x 0 0 X

Funções algébricas do 1º grau. Maurício Bezerra Bandeira Junior

Funções algébricas do 1º grau. Maurício Bezerra Bandeira Junior Maurício Bezerra Bandeira Junior Definição Chama-se função polinomial do 1º grau, ou função afim, a qualquer função f de IR em IR dada por uma lei da forma f(x) = ax + b, onde a e b são números reais dados

Leia mais

Pesquisa Operacional. Prof. José Luiz

Pesquisa Operacional. Prof. José Luiz Pesquisa Operacional Prof. José Luiz Prof. José Luiz Função Linear - Introdução O conceito de função é encontrado em diversos setores da economia, por exemplo, nos valores pagos em um determinado período

Leia mais

Função. Definição formal: Considere dois conjuntos: o conjunto X com elementos x e o conjunto Y com elementos y. Isto é:

Função. Definição formal: Considere dois conjuntos: o conjunto X com elementos x e o conjunto Y com elementos y. Isto é: Função Toda vez que temos dois conjuntos e algum tipo de associação entre eles, que faça corresponder a todo elemento do primeiro conjunto um único elemento do segundo, ocorre uma função. Definição formal:

Leia mais

Uma lei que associa mais de um valor y a um valor x é uma relação, mas não uma função. O contrário é verdadeiro (isto é, toda função é uma relação).

Uma lei que associa mais de um valor y a um valor x é uma relação, mas não uma função. O contrário é verdadeiro (isto é, toda função é uma relação). 5. FUNÇÕES DE UMA VARIÁVEL 5.1. INTRODUÇÃO Devemos compreender função como uma lei que associa um valor x pertencente a um conjunto A a um único valor y pertencente a um conjunto B, ao que denotamos por

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO DO 1º GRAU

Todos os exercícios sugeridos nesta apostila se referem ao volume 1. MATEMÁTICA I 1 FUNÇÃO DO 1º GRAU FUNÇÃO IDENTIDADE... FUNÇÃO LINEAR... FUNÇÃO AFIM... GRÁFICO DA FUNÇÃO DO º GRAU... IMAGEM... COEFICIENTES DA FUNÇÃO AFIM... ZERO DA FUNÇÃO AFIM... 8 FUNÇÕES CRESCENTES OU DECRESCENTES... 9 SINAL DE UMA

Leia mais

Capítulo 1. x > y ou x < y ou x = y

Capítulo 1. x > y ou x < y ou x = y Capítulo Funções, Plano Cartesiano e Gráfico de Função Ao iniciar o estudo de qualquer tipo de matemática não podemos provar tudo. Cada vez que introduzimos um novo conceito precisamos defini-lo em termos

Leia mais

FUNÇÃO DO 1º GRAU. Vamos iniciar o estudo da função do 1º grau, lembrando o que é uma correspondência:

FUNÇÃO DO 1º GRAU. Vamos iniciar o estudo da função do 1º grau, lembrando o que é uma correspondência: FUNÇÃO DO 1º GRAU Vamos iniciar o estudo da função do 1º grau, lembrando o que é uma correspondência: Correspondência: é qualquer conjunto de pares ordenados onde o primeiro elemento pertence ao primeiro

Leia mais

O coeficiente angular

O coeficiente angular A UA UL LA O coeficiente angular Introdução O coeficiente angular de uma reta já apareceu na Aula 30. Agora, com os conhecimentos obtidos nas Aulas 40 e 45, vamos explorar mais esse conceito e descobrir

Leia mais

Equações de primeiro grau

Equações de primeiro grau Equações de primeiro grau Considere a equação: 2x - 6 = 5-3y (com duas Incógnitas) Trata-se de uma equação com duas variáveis, x e y, pode ser transformada numa equação equivalente, em que passamos para

Leia mais

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS NOME: N O :

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS NOME: N O : ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA INTRODUÇÃO AO ESTUDO DAS FUNÇÕES PROF. CARLINHOS NOME: N O : 1 FUNÇÃO IDÉIA INTUITIVA DE FUNÇÃO O conceito de função é um dos mais importantes da matemática.

Leia mais

APLICAÇÕES DA DERIVADA

APLICAÇÕES DA DERIVADA Notas de Aula: Aplicações das Derivadas APLICAÇÕES DA DERIVADA Vimos, na seção anterior, que a derivada de uma função pode ser interpretada como o coeficiente angular da reta tangente ao seu gráfico. Nesta,

Leia mais

ANÁLISE GRÁFICA DOS RESULTADOS EXPERIMENTAIS

ANÁLISE GRÁFICA DOS RESULTADOS EXPERIMENTAIS ANÁLISE GRÁFICA DOS RESULTADOS EXPERIMENTAIS Após a realização de um experimento, deseja-se estabelecer a função matemática que relaciona as variáveis do fenómeno físico estudado. Nos nossos experimentos

Leia mais

Só Matemática O seu portal matemático http://www.somatematica.com.br FUNÇÕES

Só Matemática O seu portal matemático http://www.somatematica.com.br FUNÇÕES FUNÇÕES O conceito de função é um dos mais importantes em toda a matemática. O conceito básico de função é o seguinte: toda vez que temos dois conjuntos e algum tipo de associação entre eles, que faça

Leia mais

Equipe de Matemática MATEMÁTICA

Equipe de Matemática MATEMÁTICA Aluno (a): Série: 3ª Turma: TUTORIAL 10B Ensino Médio Equipe de Matemática Data: MATEMÁTICA Função Afim Um vendedor recebe, mensalmente, um salário que é composto por uma parte fixa de R$ 3.000,00 e uma

Leia mais

Potenciação no Conjunto dos Números Inteiros - Z

Potenciação no Conjunto dos Números Inteiros - Z Rua Oto de Alencar nº 5-9, Maracanã/RJ - tel. 04-98/4-98 Potenciação no Conjunto dos Números Inteiros - Z Podemos epressar o produto de quatro fatores iguais a.... por meio de uma potência de base e epoente

Leia mais

Unidade II MATEMÁTICA APLICADA À CONTABILIDADE

Unidade II MATEMÁTICA APLICADA À CONTABILIDADE MATEMÁTICA APLICADA À CONTABILIDADE Unidade II PREÇO E RECEITA TOTAL.1 Definição Receita é o valor em moeda que o produtor recebe pela venda de X unidades do produto produzido e vendido por ele. Consideremos

Leia mais

Vestibular 2ª Fase Resolução das Questões Discursivas

Vestibular 2ª Fase Resolução das Questões Discursivas COMISSÃO PERMANENTE DE SELEÇÃO COPESE PRÓ-REITORIA DE GRADUAÇÃO PROGRAD CONCURSO VESTIBULAR 010 Prova de Matemática Vestibular ª Fase Resolução das Questões Discursivas São apresentadas abaixo possíveis

Leia mais

Unidade II MATEMÁTICA APLICADA. Profa. Maria Ester Domingues de Oliveira

Unidade II MATEMÁTICA APLICADA. Profa. Maria Ester Domingues de Oliveira Unidade II MATEMÁTICA APLICADA À CONTABILIDADE Profa. Maria Ester Domingues de Oliveira Receita Total A receita é o valor em moeda que o produtor recebe pela venda de x unidades do produto produzido e

Leia mais

Geometria Analítica. Katia Frensel - Jorge Delgado. NEAD - Núcleo de Educação a Distância. Curso de Licenciatura em Matemática UFMA

Geometria Analítica. Katia Frensel - Jorge Delgado. NEAD - Núcleo de Educação a Distância. Curso de Licenciatura em Matemática UFMA Geometria Analítica NEAD - Núcleo de Educação a Distância Curso de Licenciatura em Matemática UFMA Katia Frensel - Jorge Delgado Março, 011 ii Geometria Analítica Conteúdo Prefácio ix 1 Coordenadas na

Leia mais

Maia Vest. Denominamos o fator de base e de expoente; é a n-ésima potência de. Portanto, potência é um produto de fatores iguais.

Maia Vest. Denominamos o fator de base e de expoente; é a n-ésima potência de. Portanto, potência é um produto de fatores iguais. Maia Vest Disciplina: Matemática Professor: Adriano Mariano FUNÇÃO EXPONENCIAL Revisão sobre potenciação Potência de expoente natural Sendo a um número real e n um número natural maior ou igual a 2, definimos

Leia mais

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS NOME: N O :

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PROF. CARLINHOS NOME: N O : ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA FUNÇÃO DO 1º GRAU PROF. CARLINHOS NOME: N O : 1 FUNÇÃO DO 1º GRAU DEFINIÇÃO Chama-se função do 1. grau toda função definida de por f() = a b com a, b e a 0.

Leia mais

Módulo de Geometria Anaĺıtica 1. Paralelismo e Perpendicularismo. 3 a série E.M.

Módulo de Geometria Anaĺıtica 1. Paralelismo e Perpendicularismo. 3 a série E.M. Módulo de Geometria Anaĺıtica 1 Paralelismo e Perpendicularismo 3 a série EM Geometria Analítica 1 Paralelismo e Perpendicularismo 1 Exercícios Introdutórios Exercício 1 Determine se as retas de equações

Leia mais

Ponto, reta e plano no espaço tridimensional, cont.

Ponto, reta e plano no espaço tridimensional, cont. Ponto, reta e plano no espaço tridimensional, cont. Matemática para arquitetura Ton Marar 1. Posições relativas Posição relativa entre pontos Dois pontos estão sempre alinhados. Três pontos P 1 = (x 1,

Leia mais

PROFº. LUIS HENRIQUE MATEMÁTICA

PROFº. LUIS HENRIQUE MATEMÁTICA Geometria Analítica A Geometria Analítica, famosa G.A., ou conhecida como Geometria Cartesiana, é o estudo dos elementos geométricos no plano cartesiano. PLANO CARTESIANO O sistema cartesiano de coordenada,

Leia mais

Objetivos. Apresentar as superfícies regradas e superfícies de revolução. Analisar as propriedades que caracterizam as superfícies regradas e

Objetivos. Apresentar as superfícies regradas e superfícies de revolução. Analisar as propriedades que caracterizam as superfícies regradas e MÓDULO 2 - AULA 13 Aula 13 Superfícies regradas e de revolução Objetivos Apresentar as superfícies regradas e superfícies de revolução. Analisar as propriedades que caracterizam as superfícies regradas

Leia mais

Módulo de Geometria Anaĺıtica Parte 2. Distância entre Ponto e Reta. Professores Tiago Miranda e Cleber Assis

Módulo de Geometria Anaĺıtica Parte 2. Distância entre Ponto e Reta. Professores Tiago Miranda e Cleber Assis Módulo de Geometria Anaĺıtica Parte Distância entre Ponto e Reta a série E.M. Professores Tiago Miranda e Cleber Assis Geometria Analítica Parte Distância entre Ponto e Reta 1 Exercícios Introdutórios

Leia mais

GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar

GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar GAAL - 201/1 - Simulado - 1 Vetores e Produto Escalar SOLUÇÕES Exercício 1: Determinar os três vértices de um triângulo sabendo que os pontos médios de seus lados são M = (5, 0, 2), N = (, 1, ) e P = (4,

Leia mais

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.1. Função do 1 Grau. Isabelle Araujo 5º período de Engenharia de Produção

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.1. Função do 1 Grau. Isabelle Araujo 5º período de Engenharia de Produção CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2014.1 Função do 1 Grau Isabelle Araujo 5º período de Engenharia de Produção Funções Na linguagem do dia a dia é comum ouvirmos frases como: Uma coisa depende

Leia mais

Departamento de Matemática - UEL - 2010. Ulysses Sodré. http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.

Departamento de Matemática - UEL - 2010. Ulysses Sodré. http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010. Matemática Essencial Extremos de funções reais Departamento de Matemática - UEL - 2010 Conteúdo Ulysses Sodré http://www.mat.uel.br/matessencial/ Arquivo: minimaxi.tex - Londrina-PR, 29 de Junho de 2010.

Leia mais

Gráfico: O gráfico de uma função quadrática é uma parábola. Exemplos: 1) f(x) = x 2 + x -3-2 -1-1/2 1 3/2 2. 2) y = -x 2 + 1 -3-2 -1

Gráfico: O gráfico de uma função quadrática é uma parábola. Exemplos: 1) f(x) = x 2 + x -3-2 -1-1/2 1 3/2 2. 2) y = -x 2 + 1 -3-2 -1 Engenharia Civil/Mecânica Cálculo 1 1º semestre 2015 Profa Olga Função Quadrática Uma função f : R R chama-se função quadrática quando existem números reais a, b e c, com a 0, tais que f(x) = ax 2 + bx

Leia mais

ponto P terá as projecções P 1 e P 2. E o eixo X passa para X. Vamos ver o que acontece no plano do

ponto P terá as projecções P 1 e P 2. E o eixo X passa para X. Vamos ver o que acontece no plano do Mudança de planos 1- Introdução As projecções de uma figura só representam as suas verdadeiras grandezas se essa figura está contida num plano paralelo aos planos de projecção. Caso contrário as projecções

Leia mais

Lógica Matemática e Computacional 5 FUNÇÃO

Lógica Matemática e Computacional 5 FUNÇÃO 5 FUNÇÃO 5.1 Introdução O conceito de função fundamenta o tratamento científico de problemas porque descreve e formaliza a relação estabelecida entre as grandezas que o integram. O rigor da linguagem e

Leia mais

2. Função polinomial do 2 o grau

2. Função polinomial do 2 o grau 2. Função polinomial do 2 o grau Uma função f: IR IR que associa a cada IR o número y=f()=a 2 +b+c com a,b,c IR e a0 é denominada função polinomial do 2 o grau ou função quadrática. Forma fatorada: a(-r

Leia mais

Função Quadrática Função do 2º Grau

Função Quadrática Função do 2º Grau Colégio Adventista Portão EIEFM MATEMÁTICA Função Quadrática 1º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 5 º Bimestre/13 Aluno(a): Número: Turma: Função Quadrática

Leia mais

INSTITUTO TECNOLÓGICO

INSTITUTO TECNOLÓGICO PAC - PROGRAMA DE APRIMORAMENTO DE CONTEÚDOS. ATIVIDADES DE NIVELAMENTO BÁSICO. DISCIPLINAS: MATEMÁTICA & ESTATÍSTICA. PROFº.: PROF. DR. AUSTER RUZANTE 1ª SEMANA DE ATIVIDADES DOS CURSOS DE TECNOLOGIA

Leia mais

9. Derivadas de ordem superior

9. Derivadas de ordem superior 9. Derivadas de ordem superior Se uma função f for derivável, então f é chamada a derivada primeira de f (ou de ordem 1). Se a derivada de f eistir, então ela será chamada derivada segunda de f (ou de

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA 5 0 Encontro da RPM TRANSFORMAÇÕES NO PLANO

UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA 5 0 Encontro da RPM TRANSFORMAÇÕES NO PLANO UNIVERSIDADE FEDERAL DA BAHIA INSTITUTO DE MATEMÁTICA 5 0 Encontro da RPM TRANSFORMAÇÕES NO PLANO Jorge Costa do Nascimento Introdução Na produção desse texto utilizamos como fonte de pesquisa material

Leia mais

PROBLEMA DE TRANSPORTE: MODELO E MÉTODO DE SOLUÇÃO

PROBLEMA DE TRANSPORTE: MODELO E MÉTODO DE SOLUÇÃO PROBLEMA DE TRANSPORTE: MODELO E MÉTODO DE SOLUÇÃO Luciano Pereira Magalhães - 8º - noite lpmag@hotmail.com Orientador: Prof Gustavo Campos Menezes Banca Examinadora: Prof Reinaldo Sá Fortes, Prof Eduardo

Leia mais

2 A Derivada. 2.1 Velocidade Média e Velocidade Instantânea

2 A Derivada. 2.1 Velocidade Média e Velocidade Instantânea 2 O objetivo geral desse curso de Cálculo será o de estudar dois conceitos básicos: a Derivada e a Integral. No decorrer do curso esses dois conceitos, embora motivados de formas distintas, serão por mais

Leia mais

Vestibular1 A melhor ajuda ao vestibulando na Internet Acesse Agora! www.vestibular1.com.br. Cinemática escalar

Vestibular1 A melhor ajuda ao vestibulando na Internet Acesse Agora! www.vestibular1.com.br. Cinemática escalar Cinemática escalar A cinemática escalar considera apenas o aspecto escalar das grandezas físicas envolvidas. Ex. A grandeza física velocidade não pode ser definida apenas por seu valor numérico e por sua

Leia mais

INTRODUÇÃO O sistema de coordenadas ao qual estamos acostumados é o sistema de coordenadas

INTRODUÇÃO O sistema de coordenadas ao qual estamos acostumados é o sistema de coordenadas Encontro de Ensino, Pesquisa e Extensão, Presidente Prudente, 22 a 25 de outubro, 2012 17 ESTUDO DAS CÔNICAS USANDO COORDENADAS POLARES Tiago Santos Arruda 1, Bruno Rogério Locatelli dos Santos, Eugenia

Leia mais

MATEMÁTICA GEOMETRIA ANALÍTICA I PROF. Diomedes. E2) Sabendo que a distância entre os pontos A e B é igual a 6, calcule a abscissa m do ponto B.

MATEMÁTICA GEOMETRIA ANALÍTICA I PROF. Diomedes. E2) Sabendo que a distância entre os pontos A e B é igual a 6, calcule a abscissa m do ponto B. I- CONCEITOS INICIAIS - Distância entre dois pontos na reta E) Sabendo que a distância entre os pontos A e B é igual a 6, calcule a abscissa m do ponto B. d(a,b) = b a E: Dados os pontos A e B de coordenadas

Leia mais

Resolução da Lista 2 - Modelos determinísticos

Resolução da Lista 2 - Modelos determinísticos EA044 - Planejamento e Análise de Sistemas de Produção Resolução da Lista 2 - Modelos determinísticos Exercício 1 a) x ij são as variáveis de decisão apropriadas para o problemas pois devemos indicar quantos

Leia mais

Matemática. Resolução das atividades complementares. M20 Geometria Analítica: Circunferência

Matemática. Resolução das atividades complementares. M20 Geometria Analítica: Circunferência Resolução das atividades complementares Matemática M Geometria Analítica: ircunferência p. (Uneb-A) A condição para que a equação 6 m 9 represente uma circunferência é: a), m, ou, m, c) < m < e), m, ou,

Leia mais

2. Estude o sinal da função f cujo gráfico é a reta de inclinação 3 e que passa pelo ponto ( 5, 2).

2. Estude o sinal da função f cujo gráfico é a reta de inclinação 3 e que passa pelo ponto ( 5, 2). MAT1157 Cálculo a uma Variável A - 2014.1 Lista de Exercícios 7 PUC-Rio Função afim: 1. (a) Qual é a inclinação de uma reta horizontal (paralela ao eixo-x)? (b) Qual é a expressão da função cujo gráfico

Leia mais

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2010 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2010 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 010 1 a Fase Profa Maria Antônia Gouveia QUESTÃO 01 Sobre números reais, é correto afirmar: (01) Se m é um número inteiro divisível por e n é um número inteiro divisível

Leia mais

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 3

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 3 Linhas de Força Mencionamos na aula passada que o físico inglês Michael Faraday (79-867) introduziu o conceito de linha de força para visualizar a interação elétrica entre duas cargas. Para Faraday, as

Leia mais

POLINÔMIOS. x 2x 5x 6 por x 1 x 2. 10 seja x x 3

POLINÔMIOS. x 2x 5x 6 por x 1 x 2. 10 seja x x 3 POLINÔMIOS 1. (Ueg 01) A divisão do polinômio a) x b) x + c) x 6 d) x + 6 x x 5x 6 por x 1 x é igual a:. (Espcex (Aman) 01) Os polinômios A(x) e B(x) são tais que A x B x x x x 1. Sabendo-se que 1 é raiz

Leia mais

Função do 2º Grau. Alex Oliveira

Função do 2º Grau. Alex Oliveira Função do 2º Grau Alex Oliveira Apresentação A função do 2º grau, também chamada de função quadrática é definida pela expressão do tipo: y = f(x) = ax² + bx + c onde a, b e c são números reais e a 0. Exemplos:

Leia mais

Lista 2 - Vetores II. Prof. Edu Física 2. O que é necessário para determinar (caracterizar) uma: a) grandeza escalar? b) grandeza vetorial?

Lista 2 - Vetores II. Prof. Edu Física 2. O que é necessário para determinar (caracterizar) uma: a) grandeza escalar? b) grandeza vetorial? Lista 2 - Vetores II O que é necessário para determinar (caracterizar) uma: a) grandeza escalar? grandeza vetorial?. Em que consiste a orientação espacial? 2. lassifique os itens abaixo em grandeza escalar

Leia mais

Projeção ortográfica

Projeção ortográfica Instituto Federal de Educação Ciências e Tecnologia IFCE Sobral Eixo de Controle e Processos Industriais Curso: Tecnologia em Mecatrônica Industrial Disciplina: Desenho Técnico e Mecânico Projeção ortográfica

Leia mais

Nesta aula iremos continuar com os exemplos de revisão.

Nesta aula iremos continuar com os exemplos de revisão. Capítulo 8 Nesta aula iremos continuar com os exemplos de revisão. 1. Exemplos de revisão Exemplo 1 Ache a equação do círculo C circunscrito ao triângulo de vértices A = (7, 3), B = (1, 9) e C = (5, 7).

Leia mais

A função do primeiro grau

A função do primeiro grau Módulo 1 Unidade 9 A função do primeiro grau Para início de conversa... Já abordamos anteriormente o conceito de função. Mas, a fim de facilitar e aprofundar o seu entendimento, vamos estudar algumas funções

Leia mais

Módulo de Geometria Anaĺıtica 1. Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano. 3 a série E.M.

Módulo de Geometria Anaĺıtica 1. Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano. 3 a série E.M. Módulo de Geometria Anaĺıtica 1 Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano a série EM Geometria Analítica 1 Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano 1 Exercícios

Leia mais

Í N D I C E Introdução Função Constante... 01 Função Linear... 02

Í N D I C E Introdução Função Constante... 01 Função Linear... 02 UNIVERSIDADE CRUZEIRO DO SUL Conhecendo a teoria III Curso: Pós-graduação / MBA Campus Virtual Cruzeiro do Sul - 009 Professor Responsável: Carlos Henrique de Jesus Costa Professores Conteudistas: Carlos

Leia mais

A noção de função é imprescindível no decorrer do estudo de Cálculo e para se estabelecer essa noção tornam-se necessários:

A noção de função é imprescindível no decorrer do estudo de Cálculo e para se estabelecer essa noção tornam-se necessários: 1 1.1 Função Real de Variável Real A noção de função é imprescindível no decorrer do estudo de Cálculo e para se estabelecer essa noção tornam-se necessários: 1. Um conjunto não vazio para ser o domínio;

Leia mais

Tópico 11. Aula Teórica/Prática: O Método dos Mínimos Quadrados e Linearização de Funções

Tópico 11. Aula Teórica/Prática: O Método dos Mínimos Quadrados e Linearização de Funções Tópico 11. Aula Teórica/Prática: O Método dos Mínimos Quadrados e Linearização de Funções 1. INTRODUÇÃO Ao se obter uma sucessão de pontos experimentais que representados em um gráfico apresentam comportamento

Leia mais

Universidade Federal do Rio Grande do Norte. Centro De Ciências Exatas e da Terra. Departamento de Física Teórica e Experimental

Universidade Federal do Rio Grande do Norte. Centro De Ciências Exatas e da Terra. Departamento de Física Teórica e Experimental Universidade Federal do Rio Grande do Norte Centro De Ciências Exatas e da Terra Departamento de Física Teórica e Experimental Programa de Educação Tutorial Curso de Nivelamento: Pré-Cálculo PET DE FÍSICA:

Leia mais

x0 = 1 x n = 3x n 1 x k x k 1 Quantas são as sequências com n letras, cada uma igual a a, b ou c, de modo que não há duas letras a seguidas?

x0 = 1 x n = 3x n 1 x k x k 1 Quantas são as sequências com n letras, cada uma igual a a, b ou c, de modo que não há duas letras a seguidas? Recorrências Muitas vezes não é possível resolver problemas de contagem diretamente combinando os princípios aditivo e multiplicativo. Para resolver esses problemas recorremos a outros recursos: as recursões

Leia mais

( ) = = MATEMÁTICA. Prova: 28/07/13. Questão 17. Questão 18

( ) = = MATEMÁTICA. Prova: 28/07/13. Questão 17. Questão 18 Prova: 8/07/13 MATEMÁTICA Questão 17 A equação x 3 4 x + 5x + 3 = 0 possui as raízes m, p e q. O valor da expressão m + p + q é pq mq mp (A). (B) 3. (C). (D) 3. Gabarito: Letra A. A expressão é igual a:

Leia mais

(b) (1,0 ponto) Reciprocamente, mostre que, se um número x R possui representação infinita em toda base β, então x é irracional.

(b) (1,0 ponto) Reciprocamente, mostre que, se um número x R possui representação infinita em toda base β, então x é irracional. Sociedade Brasileira de Matemática Mestrado Profissional em Matemática em Rede Nacional MA11 Números e Funções Reais Avaliação 3 - GABARITO 06 de julho de 013 1. (1,5 pontos) Determine se as afirmações

Leia mais

7 AULA. Curvas Polares LIVRO. META Estudar as curvas planas em coordenadas polares (Curvas Polares).

7 AULA. Curvas Polares LIVRO. META Estudar as curvas planas em coordenadas polares (Curvas Polares). 1 LIVRO Curvas Polares 7 AULA META Estudar as curvas planas em coordenadas polares (Curvas Polares). OBJETIVOS Estudar movimentos de partículas no plano. Cálculos com curvas planas em coordenadas polares.

Leia mais

Utilização do SOLVER do EXCEL

Utilização do SOLVER do EXCEL Utilização do SOLVER do EXCEL 1 Utilização do SOLVER do EXCEL José Fernando Oliveira DEEC FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO MAIO 1998 Para ilustrar a utilização do Solver na resolução de

Leia mais

FUNÇÃO REAL DE UMA VARIÁVEL REAL

FUNÇÃO REAL DE UMA VARIÁVEL REAL Hewlett-Packard FUNÇÃO REAL DE UMA VARIÁVEL REAL Aulas 01 a 04 Elson Rodrigues, Gabriel Carvalho e Paulo Luís Ano: 2015 Sumário INTRODUÇÃO AO PLANO CARTESIANO... 2 PRODUTO CARTESIANO... 2 Número de elementos

Leia mais

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980 Questão 1. Uma venda imobiliária envolve o pagamento de 12 prestações mensais iguais a R$ 10.000,00, a primeira no ato da venda, acrescidas de uma parcela final de R$ 100.000,00, 12 meses após a venda.

Leia mais

Módulo 2 Unidade 5. Função Afim. Para início de conversa... que envolvem gráficos? Basta abrir um jornal, uma revista

Módulo 2 Unidade 5. Função Afim. Para início de conversa... que envolvem gráficos? Basta abrir um jornal, uma revista Módulo 2 Unidade 5 Função Afim Para início de conversa... Gráfico de jornal americano mostra como o mundo engordou nos últimos 30 anos 10 de fevereiro de 2011 O site do jornal americano The Washington

Leia mais

Unidade: Vetores e Forças. Unidade I:

Unidade: Vetores e Forças. Unidade I: Unidade I: 0 Unidade: Vetores e Forças 2.VETORES 2.1 Introdução Os vetores são definidos como entes matemáticos que dão noção de intensidade, direção e sentido. De forma prática, o conceito de vetor pode

Leia mais

AULA DE REPOSIÇÃO 001 / 3º ANO

AULA DE REPOSIÇÃO 001 / 3º ANO UL DE REPOSIÇÃO 00 / 3º NO Introdução Inicialmente, para a primeira aula, será feita uma retomada de todo o assunto já estudado, uma vez que não é nada fácil simplesmente retomar o conteúdo sem que sejam

Leia mais

GA Estudo das Retas. 1. (Pucrj 2013) O triângulo ABC da figura abaixo tem área 25 e vértices A = (4, 5), B = (4, 0) e C = (c, 0).

GA Estudo das Retas. 1. (Pucrj 2013) O triângulo ABC da figura abaixo tem área 25 e vértices A = (4, 5), B = (4, 0) e C = (c, 0). GA Estudo das Retas 1. (Pucrj 01) O triângulo ABC da figura abaixo tem área 5 e vértices A = (, 5), B = (, 0) e C = (c, 0). A equação da reta r que passa pelos vértices A e C é: a) y x 7 x b) y 5 x c)

Leia mais

SESSÃO 5: DECLINAÇÃO SOLAR AO LONGO DO ANO

SESSÃO 5: DECLINAÇÃO SOLAR AO LONGO DO ANO SESSÃO 5: DECLINAÇÃO SOLAR AO LONGO DO ANO Respostas breves: 1.1) 9,063 N 1.2) norte, pois é positiva. 1.3) São José (Costa Rica). 2) Não, porque Santa Maria não está localizada sobre ou entre os dois

Leia mais

As cônicas. c, a 2 elipse é uma curva do plano em que qualquer um de seus pontos, por exemplo,, satisfaz a relação:

As cônicas. c, a 2 elipse é uma curva do plano em que qualquer um de seus pontos, por exemplo,, satisfaz a relação: As cônicas As cônicas podem ser definidas a partir de certas relações que caracterizam seus pontos. A partir delas podemos obter suas equações analíticas e, a partir delas, suas propriedades.. A elipse

Leia mais

CONSTRUÇÃO DE GRÁFICOS

CONSTRUÇÃO DE GRÁFICOS GOVERNO DO ESTADO DO RIO DE JANEIRO FUNDAÇÃO DE APOIO À ESCOLA TÉCNICA FAETEC ESCOLA TÉCNICA ESTADUAL SANTA CRUZ ETESC DISCIPLINA DE QUÍMICA EXPERIMENTAL Profs.: Ana Cristina, Denis Dutra e José Lucas

Leia mais

b) A quantidade mínima de peças que a empresa precisa vender para obter lucro.

b) A quantidade mínima de peças que a empresa precisa vender para obter lucro. Avaliação Trimestral Amanda Marques Adm-Manhã 1. Uma empresa produz um tipo de peça para automóveis. O custo de produção destas peças é dado por um custo fixo de R$10,00 mais R$5,00 por peça produzida.

Leia mais

Conceitos: A fração como coeficiente. A fração e a sua representação gráfica. Termos que compõem uma fração. Fração unidade. Fração de um número.

Conceitos: A fração como coeficiente. A fração e a sua representação gráfica. Termos que compõem uma fração. Fração unidade. Fração de um número. Unidade 1. As frações. Enquadramento Curricular em Espanha: Objetos de aprendizagem: 1.1. Conceito de fração Identificar os termos de uma fração. Escrever e ler frações. Comparar frações com igual denominador.

Leia mais

Exercícios de Matemática Geometria Analítica - Circunferência

Exercícios de Matemática Geometria Analítica - Circunferência Exercícios de Matemática Geometria Analítica - Circunferência ) (Unicamp-000) Sejam A e B os pontos de intersecção da parábola y = x com a circunferência de centro na origem e raio. a) Quais as coordenadas

Leia mais

C U R S O T É C N I C O E M S E G U R A N Ç A D O T R A B A L H O. matemática. Função: definição, domínio e imagem. Elizabete Alves de Freitas

C U R S O T É C N I C O E M S E G U R A N Ç A D O T R A B A L H O. matemática. Função: definição, domínio e imagem. Elizabete Alves de Freitas C U R S O T É C N I C O E M S E G U R A N Ç A D O T R A B A L H O 11 matemática Função: definição, domínio e imagem Elizabete Alves de Freitas Governo Federal Ministério da Educação Projeto Gráfico Secretaria

Leia mais

O gráfico de. Freqüentemente você se depara com tabelas. Nossa aula

O gráfico de. Freqüentemente você se depara com tabelas. Nossa aula O gráfico de uma função A UUL AL A Freqüentemente você se depara com tabelas e gráficos, em jornais, revistas e empresas que tentam transmitir de forma simples fatos do dia-a-dia. Fala-se em elevação e

Leia mais

Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.

Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel. Matemática Essencial Equações do Primeiro grau Matemática - UEL - 2010 - Compilada em 18 de Março de 2010. Prof. Ulysses Sodré Matemática Essencial: http://www.mat.uel.br/matessencial/ Resumo: Notas de

Leia mais

Matemática. Subtraindo a primeira equação da terceira obtemos x = 1. Substituindo x = 1 na primeira e na segunda equação obtém-se o sistema

Matemática. Subtraindo a primeira equação da terceira obtemos x = 1. Substituindo x = 1 na primeira e na segunda equação obtém-se o sistema Matemática 01. A ilustração a seguir é de um cubo com aresta medindo 6 cm. A, B, C e D são os vértices indicados do cubo, E é o centro da face contendo C e D, e F é o pé da perpendicular a BD traçada a

Leia mais

Computação Gráfica Interativa

Computação Gráfica Interativa Computação Gráfica Interativa conceitos, fundamentos geométricos e algoritmos 1. Introdução Computação Gráfica é a criação, armazenamento e a manipulação de modelos de objetos e suas imagens pelo computador.

Leia mais

ficha 3 espaços lineares

ficha 3 espaços lineares Exercícios de Álgebra Linear ficha 3 espaços lineares Exercícios coligidos por Jorge Almeida e Lina Oliveira Departamento de Matemática, Instituto Superior Técnico 2 o semestre 2011/12 3 Notação Sendo

Leia mais

Por que utilizar vetores?

Por que utilizar vetores? Universidade Estadual de Mato Grosso do Sul Por que utilizar vetores? Existem grandezas físicas f perfeitamente definidas por seu tamanho e sua unidade. Para determinar outras grandezas, entretanto, são

Leia mais

É usual representar uma função f de uma variável real a valores reais e com domínio A, simplesmente por y=f(x), x A

É usual representar uma função f de uma variável real a valores reais e com domínio A, simplesmente por y=f(x), x A 4. Função O objeto fundamental do cálculo são as funções. Assim, num curso de Pré-Cálculo é importante estudar as idéias básicas concernentes às funções e seus gráficos, bem como as formas de combiná-los

Leia mais

[a11 a12 a1n 4. SISTEMAS LINEARES 4.1. CONCEITO. Um sistema de equações lineares é um conjunto de equações do tipo

[a11 a12 a1n 4. SISTEMAS LINEARES 4.1. CONCEITO. Um sistema de equações lineares é um conjunto de equações do tipo 4. SISTEMAS LINEARES 4.1. CONCEITO Um sistema de equações lineares é um conjunto de equações do tipo a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 11 x 1 + a 12 x 2 +... + a 1n x n = b 2... a n1 x 1 + a

Leia mais

ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Considere os conjuntos S = {0,2,4,6}, T = {1,3,5} e U = {0,1} e as afirmações: I. {0} S e S U. II. {2} S\U e S T U={0,1}.

Leia mais

4.2 Produto Vetorial. Orientação sobre uma reta r

4.2 Produto Vetorial. Orientação sobre uma reta r 94 4. Produto Vetorial Dados dois vetores u e v no espaço, vamos definir um novo vetor, ortogonal a u e v, denotado por u v (ou u v, em outros textos) e denominado produto vetorial de u e v. Mas antes,

Leia mais

O Método Simplex para

O Método Simplex para O Método Simplex para Programação Linear Formas de Programas Lineares O problema de Programação Matemática consiste na determinação do valor de n variáveis x 1, x 2,, x n que tornam mínimo ou máximo o

Leia mais

Esboço de Plano de Aula. Conteúdo específico: O uso do software WXMaxima nas equações do 1º Grau.

Esboço de Plano de Aula. Conteúdo específico: O uso do software WXMaxima nas equações do 1º Grau. Esboço de Plano de Aula Bolsista: Rafael de Oliveira. Duração: 120 minutos. Conteúdo: Equações do 1º Grau. Conteúdo específico: O uso do software WXMaxima nas equações do 1º Grau. Objetivo geral: Permitir

Leia mais

I CAPÍTULO 19 RETA PASSANDO POR UM PONTO DADO

I CAPÍTULO 19 RETA PASSANDO POR UM PONTO DADO Matemática Frente I CAPÍTULO 19 RETA PASSANDO POR UM PONTO DADO 1 - RECORDANDO Na última aula, nós vimos duas condições bem importantes: Logo, se uma reta passa por um ponto e tem um coeficiente angular,

Leia mais

CINEMÁTICA VETORIAL. Observe a trajetória a seguir com origem O.Pode-se considerar P a posição de certo ponto material, em um instante t.

CINEMÁTICA VETORIAL. Observe a trajetória a seguir com origem O.Pode-se considerar P a posição de certo ponto material, em um instante t. CINEMÁTICA VETORIAL Na cinemática escalar, estudamos a descrição de um movimento através de grandezas escalares. Agora, veremos como obter e correlacionar as grandezas vetoriais descritivas de um movimento,

Leia mais

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão

Microeconomia II. Cursos de Economia e de Matemática Aplicada à Economia e Gestão Microeconomia II Cursos de Economia e de Matemática Aplicada à Economia e Gestão AULA 3.2 Utilidade Esperada Von Neumann-Morgenstern: Aplicação ao Mercado de Seguros Isabel Mendes 2007-2008 18-03-2008

Leia mais

Roda de Samba. Série Matemática na Escola

Roda de Samba. Série Matemática na Escola Roda de Samba Série Matemática na Escola Objetivos 1. Apresentar uma aplicação de funções quadráticas; 2. Analisar pontos de máximo de uma parábola;. Avaliar o comportamento da parábola com variações em

Leia mais

Lista de Exercícios 03

Lista de Exercícios 03 Lista de Exercícios 03 Aplicações das relações e funções no cotidiano Ao lermos um jornal ou uma revista, diariamente nos deparamos com gráficos, tabelas e ilustrações. Estes, são instrumentos muito utilizados

Leia mais

UNIVERSIDADE CATÓLICA DE GOIÁS. DEPARTAMENTO DE MATEMÁTICA E FÍSICA Disciplina: FÍSICA GERAL E EXPERIMENTAL I (MAF 2201) Prof.

UNIVERSIDADE CATÓLICA DE GOIÁS. DEPARTAMENTO DE MATEMÁTICA E FÍSICA Disciplina: FÍSICA GERAL E EXPERIMENTAL I (MAF 2201) Prof. 01 UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE MATEMÁTICA E FÍSICA Disciplina: FÍSICA GERAL E EXPERIMENTAL I (MAF 2201) Prof. EDSON VAZ NOTA DE AULA III (Capítulo 7 e 8) CAPÍTULO 7 ENERGIA CINÉTICA

Leia mais

Faculdade Sagrada Família

Faculdade Sagrada Família AULA 12 - AJUSTAMENTO DE CURVAS E O MÉTODO DOS MÍNIMOS QUADRADOS Ajustamento de Curvas Sempre que desejamos estudar determinada variável em função de outra, fazemos uma análise de regressão. Podemos dizer

Leia mais

Variantes sobre o método Simplex: Método do grande M

Variantes sobre o método Simplex: Método do grande M Variantes sobre o método Simplex: Método do grande M Revisões Simplex básico Solução óptima multipla Em simplex: valores 0 na função custo Solução degenerada Em simplex: empates na variável a sair, variáveis

Leia mais

Projeção Perspectiva. Desenho Técnico I Profº Msc. Edgar Nogueira Demarqui

Projeção Perspectiva. Desenho Técnico I Profº Msc. Edgar Nogueira Demarqui Projeção Perspectiva Desenho Técnico I Profº Msc. Edgar Nogueira Demarqui Definição Quando olhamos para um objeto, temos a sensação de profundidade e relevo; O desenho, para transmitir essa mesma idéia,

Leia mais

Testa os conhecimentos de Geometria Descritiva

Testa os conhecimentos de Geometria Descritiva Testa os conhecimentos de Geometria Descritiva Para testar os conhecimentos de Geometria Descritiva, procede da seguinte forma: responde por escrito à questão escolhida; em seguida, clica no Hiperlink

Leia mais

CINEMÁTICA - É a parte da mecânica que estuda os vários tipos de movimento, sem se preocupar com as causas destes movimentos.

CINEMÁTICA - É a parte da mecânica que estuda os vários tipos de movimento, sem se preocupar com as causas destes movimentos. INTRODUÇÃO À CINEMÁTICA REPOUSO OU MOVIMENTO? DEPENDE DO REFERENCIAL! CINEMÁTICA - É a parte da mecânica que estuda os vários tipos de movimento, sem se preocupar com as causas destes movimentos. REFERENCIAL.

Leia mais

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu

Faculdade de Engenharia Optimização. Prof. Doutor Engº Jorge Nhambiu 1 Programação Não Linear Aula 25: Programação Não-Linear - Funções de Uma única variável Mínimo; Mínimo Global; Mínimo Local; Optimização Irrestrita; Condições Óptimas; Método da Bissecção; Método de Newton.

Leia mais