Conceito de Tensão. Índice

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Conceito de Tensão. Índice"

Transcrição

1 Conceito de Tensão Índice Breve Revisão dos Métodos da Estática 1 Tensões em Elementos Estruturais 2 nálise e Dimensionamento 3 Esforço xial; Tensão Normal 4 rincípio de Saint-Venant 5 Tensão Tangencial 6 Tensão num plano inclinado sujeito a esforço axial 7 Exercício Resolvido 9 Bibliografia 9 Breve Revisão dos Métodos da Estática Considere a estrutura representada na figura que foi concebida para suportar uma carga de 30 kn. Esta estrutura é constituída por: - uma escora B (barra bi-articulada sujeita a compressão) de secção transversal rectangular cujas dimensões são de 30x50 mm, - um tirante (barra bi-articulada sujeita à tracção) cuja secção circular tem 20 mm de diâmetro. escora e o tirante encontram-se ligados por uma articulação no ponto B e são suportados por apoios fixos em e C. O primeiro passo para análise desta estrutura é o traçado do diagrama de corpo livre da estrutura. ara tal isola-se a estrutura dos seus apoios em e C, e representa-se a acção que estes apoios exercem sobre a estrutura (reacções de apoio). Note-se que a representação da estrutura foi simplificada omitindo-se todos os detalhes supérfluos. Nesta altura é possível inferir que as barras B e BC estarão sujeitas apenas a esforço axial (pois trata-se de um sistema articulado plano). Mário Nuno Valente Setembro /9

2 + Este facto não será tomado em conta na determinação das reacções de apoio, assumindo-se que a direcção da reacção em cada ponto é desconhecida. Cada uma das reacções será então representada pelas suas componentes verticais e horizontais. odem escrever-se três equações de equilíbrio: - M = = 0 = 0 C x x - F = 0 + C = 0 C = C = 40kN x x x x x x - F = 0 + C 30= 0 + C = 30 y y y y y quarta equação de equilíbrio será escrita para a articulação B: - M corpob = 0 0.8= 0 = 0 B y y (Estes resultados poderiam ter sido obtidos de uma forma mais simples aplicando o Método dos Nós ao nó B) Conclui-se que para equilibrar uma carga vertical de 30 kn em B surge um esforço axial de tracção de 50 kn na barra BC e um esforço axial de compressão de 40 kn na barra B. Estes resultados embora necessários, não fornecem qualquer informação acerca da segurança da estrutura face à carga aplicada. O facto de o tirante BC, por exemplo, ceder ou não sob a acção da carga aplicada depende não só do valor encontrado para o esforço axial F BC, mas também da área da secção transversal do tirante e do material que o constitui. Tensões em Elementos Estruturais O esforço F BC determinado anteriormente, representa, na verdade, a resultante das forças internas que se encontram distribuídas em toda a área da secção transversal da barra BC, e a intensidade média dessas forças distribuídas é igual à força por unidade de área. força por unidade de área, ou intensidade das forças distribuídas sobre uma dada secção, é designada por tensão nessa secção e é denotada pela letra grega (sigma). tensão num elemento da área da secção transversal sujeito a um esforço axial é então obtida através do quociente do valor do esforço pela área : = (sinal positivo indica tracção e sinal negativo compressão) Mário Nuno Valente Setembro /9

3 Dado que foram utilizadas as unidades do Sistema Internacional com expresso em newtons (N) e em metros quadrados (m 2 ), a tensão é expressa em N/m 2 (a ascal). presentam-se de seguida a conversão para o SI de outras unidades também utilizadas. 1lb N 1psi = 6.895ka 1in = m = (psi = pound per square inch) bar = 100 ka nálise e Dimensionamento Considere-se novamente a estrutura anterior e assuma-se que o tirante BC é constituído por aço cuja máxima tensão issível é = 165 Ma. oderá o tirante BC suportar com segurança a carga a que vai estar sujeito? 0 valor da força F BC no tirante foi encontrado anteriormente e é igual a 50 kn. Recordando que o diâmetro do tirante é 20 mm: + 50E3N = = = 159E6a = 159Ma π ( ) /2 m Dado que o valor obtido para é menor que o valor da tensão issível do aço utilizado, conclui-se que o tirante BC pode suportar com segurança a carga a que vai ser submetido. ara ser completa, a análise desta estrutura deveria incluir, também: - a determinação da tensão de compressão na escora B, - uma investigação das tensões desenvolvidas nas articulações, - determinar se as deformações induzidas pela solicitação são aceitáveis, - uma análise adicional, necessária para elementos sujeitos a compressão, envolvendo a estabilidade do membro, i. e., a sua capacidade para suportar uma dada carga sem que haja urna mudança súbita na sua configuração. ara além da análise de estruturas e máquinas existentes sujeitas a dadas condições de carregamento, é também importante o dimensionamento de novas estruturas e máquinas, ou seja, a selecção de componentes apropriados para desempenhar uma dada tarefa. Como exemplo de dimensionamento, considere-se novamente a estrutura anterior e ita-se que se pretende utilizar alumínio cuja tensão issível é ainda, = F BC = 50 kn para o mesmo carregamento, tem-se: = 100 Ma. Dado que o esforço na barra BC é, = 50E3N 500E 6m = = 100E6a = 2 Mário Nuno Valente Setembro /9

4 r = = 12.62E 3m= 12.62mm π Conclui-se que será adequado um tirante de alumínio com, pelo menos 26 mm de diâmetro. Esforço xial; Tensão Normal Como já foi indicado anteriormente, o tirante BC do exemplo precedente é um elemento de treliça, logo a força F BC é dirigida segundo o eixo da barra. Diz-se então que a barra está sujeita a esforço axial. Voltando à barra BC, recorde-se que o plano de seccionamento através da barra para determinar o esforço axial no elemento e a tensão correspondente, é perpendicular ao eixo da barra. O esforço axial é portanto normal à secção transversal e a correspondente tensão é denominada por tensão normal. Então, a seguinte equação exprime a tensão normal num membro submetido a esforço axial: = Note-se que nesta equação, obtém-se dividindo o valor (força resultante do esforço axial distribuído na secção transversal) pela área. representa então o valor médio da tensão na secção transversal, e não a tensão num ponto específico da mesma. ara definir a tensão num dado ponto Q da secção transversal considere-se uma área elementar Dividindo o módulo de valor médio da tensão sobre. F por obtém-se o. Fazendo tender para zero, obtém-se a tensão no ponto Q: F = lim 0 De um modo geral, o valor obtido para a tensão no ponto Q é diferente do valor da tensão média dado pela equação =, e verifica-se que varia ao longo da secção transversal. Mário Nuno Valente Setembro /9

5 Na prática, assume-se que a distribuição de tensões normais em peças sujeitas a esforço axial é uniforme, excepto na vizinhança dos pontos de aplicação das cargas. O valor da tensão é então igual a médio. No entanto, chama-se a atenção para o facto de que quando é assumida uma distribuição uniforme de tensões na secção, i.e., quando é assumido que as forças internas estão uniformemente distribuídas sobre a secção transversal, resulta da estática elementar, que a resultante das forças internas tem que ser aplicada no centróide C da secção. Isto significa que uma distribuição uniforme da tensão apenas é possível se a linha de acção das cargas concentradas e passar através do centróide da secção considerada. este tipo de solicitação chama-se carregamento centrado e assume-se que ocorre em todas as barras de eixo recto existente em treliças, tal como a considerada. rincípio de Saint-Venant Se forem aplicadas cargas concentradas num modelo de borracha conforme ilustrado na figura, os elementos na vizinhança imediata dos pontos de aplicação das cargas estão submetidos a tensões muito elevadas, enquanto os outros elementos na proximidade da extremidades da barra praticamente não são afectados pelas cargas. Este efeito pode ser verificado observando-se que os maiores deslocamentos, e logo as maiores tensões e deformações ocorrem perto dos pontos de aplicação das cargas, enquanto que nos cantos não se observam deformações. No entanto, à medida que se consideram secções mais afastadas das extremidades nota-se uma progressiva igualização das deformações envolvidas, logo uma distribuição de deformações e tensões quase uniforme na secção transversal. Este fenómeno está ilustrado na figura seguinte, em que estão representadas as distribuições de tensões em várias secções transversais de um placa rectangular fina submetida a cargas concentradas, obtidas com métodos matemáticos baseados na teoria da elasticidade. Mário Nuno Valente Setembro /9

6 Verifica-se que a uma distância b de cada extremidade, sendo b a largura da placa, a distribuição de tensões é quase uniforme na secção, podendo itir-se que o valor da tensão dessa secção é igual a médio y em qualquer ponto. or outras palavras, à excepção da vizinhança imediata dos pontos de aplicação das cargas, pode itir-se que a distribuição das tensões é independente do modo de aplicação das cargas. Esta afirmação é conhecida pelo princípio de Saint-Venant ( ). Tensão Tangencial s forças internas e as correspondentes tensões discutidas anteriormente eram normais à secção transversal considerada. Quando duas forças e são aplicadas perpendicularmente ao eixo de uma barra B, surgem tensões de um tipo distinto Seccionando a barra B no ponto C, entre os pontos de aplicação das cargas, obtém-se o diagrama da parte C. Conclui-se que têm de existir forças internas no plano da secção e que a sua resultante é igual a. Estas forças internas distribuídas são denominadas tensões tangenciais ou tensões de corte e o valor da sua resultante,, é a força de corte na secção. Dividindo a forca de corte,, pela área da secção transversal, obtém-se a tensão tangencial média na secção. Indicando a tensão tangencial pela letra grega τ (tau), tem-se: τ = medio Note-se que o valor obtido é o valor médio da tensão tangencial ao longo da totalidade da secção. o contrário do que foi assumido anteriormente para a tensão normal, a distribuição de tensões tangenciais ao longo da secção não pode itir-se como sendo constante. O valor real da tensão tangencial, τ, varia Mário Nuno Valente Setembro /9

7 entre zero nas superfícies da peça até ao valor máximo, τ max, sobre uma determinada linha situada no interior da secção transversal, podendo ser significativamente superior ao valor médio. Ligação entre duas chapas com um parafuso sujeito ao corte Tensão num plano inclinado sujeito a esforço axial Foi visto anteriormente que: - forças axiais aplicadas numa barra originam tensões normais, - forças transversais exercidas sobre parafusos e cavilhas provocam aparecimento de tensões tangenciais nas ligações. razão apontada para a dependência entre as forças axiais e as tensões normais por um lado, e as forças transversais e as tensões tangenciais, por outro, consistiu no facto de as tensões terem sido determinadas apenas em planos perpendiculares ao eixo da barra ou da ligação. Como será discutido neste capítulo, forças axiais provocam tanto tensões normais como tensões tangenciais em planos que não são perpendiculares ao eixo da peça. De modo análogo, forças transversais exercidas sobre um parafuso ou rebite originam tanto tensões normais corno tensões tangenciais em planos que não sejam perpendiculares ao eixo do parafuso ou rebite. Mário Nuno Valente Setembro /9

8 Considere a barra da figura ao lado, sujeita à acção das forças axiais e. Seccionando a barra por um plano que faz um ângulo θ com o plano normal ao eixo da peça (figura a) e desenhando o respectivo diagrama de corpo livre da parte esquerda (figura b) conclui-se, através das equações de equilíbrio, que as forças distribuídas que actuam na secção têm de ser equivalentes à força. Decompondo a força nas componentes F e V, normal e tangencial à secção, respectivamente (figura c), pode escrever-se: F = cosθ V = senθ força F representa a resultante das forcas normais distribuídas sobre a secção e a força V a resultante das forças tangenciais. Os valores médios das correspondentes tensões normais e tangenciais são obtidos pela divisão de F e V pela área θ da secção, e observando na figura c que cos 0 θ θ =, obtém-se: F cosθ 2 = = = cos θ θ 0 0 cosθ V sinθ τ = = = sinθcosθ θ 0 0 cosθ ode observar-se através da primeira equação, que a máxima tensão normal, ocorre para θ = 0, i.e., quando o plano da secção transversal é perpendicular ao eixo da peca, e que tende para zero quando θ tende para 90. segunda equação mostra que a tensão tangencial é nula quando θ = 0º e θ = 90º, e que atinge o seu valor máximo para θ = 45º. Constata-se que o mesmo carregamento pode produzir tanto tensões normais sem gerar qualquer tensão tangencial ou provocar tensão normal e tangencial com o mesmo valor absoluto, dependendo da orientação da faceta considerada. Mário Nuno Valente Setembro /9

9 Exercício Resolvido Duas peças de madeira com uma secção transversal rectangular uniforme de 90 x 140 mm são unidas através de uma emenda simplesmente colada, como é indicado. Sabendo que a máxima tensão tangencial issível na cola é de 500 ka, determine o valor da máxima carga axial,, que pode ser aplicada em segurança. = 90x140 mm θ = 20º Resolução - Da decomposição da força em componentes normais e tangenciais ao plano da emenda, sabe-se que V - Observando a figura sabe-se que = cos 0 θ ; - tensão tangencial provocada pela força é de θ = senθ ; V τ =. θ sinθ τ = = sinθcosθ 500ka 500E3 19.6E3N 0 0 sin20º cos20º cosθ Bibliografia Beer, Ferdinand., Johnston, E. Russell, DeWolf, John T., Mecânica dos Materiais, 3ª edição, McGraw-Hill, ortugal Mário Nuno Valente Setembro /9

Resistência dos Materiais

Resistência dos Materiais Aula 5 Carga Axial e Princípio de Saint-Venant Carga Axial A tubulação de perfuração de petróleo suspensa no guindaste da perfuratriz está submetida a cargas e deformações axiais extremamente grandes,

Leia mais

Esforços axiais e tensões normais

Esforços axiais e tensões normais Esforços axiais e tensões normais (Ref.: Beer & Johnston, Resistência dos Materiais, ª ed., Makron) Considere a estrutura abaixo, construída em barras de aço AB e BC, unidas por ligações articuladas nas

Leia mais

Terceira Lista de Exercícios

Terceira Lista de Exercícios Universidade Católica de Petrópolis Disciplina: Resitência dos Materiais I Prof.: Paulo César Ferreira Terceira Lista de Exercícios 1. Calcular o diâmetro de uma barra de aço sujeita a ação de uma carga

Leia mais

CORPOS RÍGIDOS: As forças que actuam num corpo rígido podem ser divididas em dois grupos:

CORPOS RÍGIDOS: As forças que actuam num corpo rígido podem ser divididas em dois grupos: CORPOS RÍGIDOS: As forças que actuam num corpo rígido podem ser divididas em dois grupos: 1. Forças externas (que representam as acções externas sobre o corpo rígido) 2. Forças internas (que representam

Leia mais

TECNOLOGIA MECÂNICA. Aula 04. Carregamento Axial Tensão Normal

TECNOLOGIA MECÂNICA. Aula 04. Carregamento Axial Tensão Normal FACULDADE DE TECNOLOGIA SHUNJI NISHIMURA POMPÉIA TECNOLOGIA MECÂNICA Aula 04 Carregamento Axial Tensão Normal Prof. Me. Dario de Almeida Jané Mecânica dos Sólidos - Revisão do conceito de Tensão - Carregamento

Leia mais

Mecânica dos Materiais

Mecânica dos Materiais Mecânica dos Materiais Esforços axiais Tensões e Deformações Esforços multiaxiais Lei de Hooke generalizada 2 Tradução e adaptação: Victor Franco Correia (versão 1/2013) Ref.: Mechanics of Materials, Beer,

Leia mais

Introdução A tensão plana existe praticamente em todas as estruturas comuns, incluindo prédios máquinas, veículos e aeronaves.

Introdução A tensão plana existe praticamente em todas as estruturas comuns, incluindo prédios máquinas, veículos e aeronaves. - UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Vasos de Pressão Introdução

Leia mais

CAPÍTULO IX CISALHAMENTO CONVENCIONAL

CAPÍTULO IX CISALHAMENTO CONVENCIONAL I. ASECTOS GERAIS CAÍTULO IX CISALHAMENTO CONVENCIONAL O cisalhamento convencional é adotado em casos especiais, que é a ligação de peças de espessura pequena. Considera-se inicialmente um sistema formado

Leia mais

CAPÍTULO V CISALHAMENTO CONVENCIONAL

CAPÍTULO V CISALHAMENTO CONVENCIONAL 1 I. ASPECTOS GERAIS CAPÍTULO V CISALHAMENTO CONVENCIONAL Conforme já foi visto, a tensão representa o efeito de um esforço sobre uma área. Até aqui tratamos de peças submetidas a esforços normais a seção

Leia mais

Conceito de tensão Tensões normais e tensões de corte

Conceito de tensão Tensões normais e tensões de corte Escola Superior Nautica Infante D. Henrique CET Manutenção Mecânica Naval Fundamentos de Resistência de Materiais Conceito de tensão Tensões normais e tensões de corte Tradução: V. Franco Ref.: Mechanics

Leia mais

Mecânica dos Materiais. Flexão de Vigas. Tradução e adaptação: Victor Franco

Mecânica dos Materiais. Flexão de Vigas. Tradução e adaptação: Victor Franco Mecânica dos Materiais Flexão de Vigas 5 Tradução e adaptação: Victor Franco Ref.: Mechanics of Materials, Beer, Johnston & DeWolf McGraw-Hill. Mechanics of Materials, R. Hibbeler, Pearsons Education.

Leia mais

Universidade Federal de Pelotas Centro de Engenharias. Resistência dos Materiais II Estruturas III. Capítulo 2 Torção

Universidade Federal de Pelotas Centro de Engenharias. Resistência dos Materiais II Estruturas III. Capítulo 2 Torção Capítulo 2 Torção 2.1 Revisão Torque é um momento que tende a torcer um elemento em torno de seu eixo longitudinal. Se o ângulo de rotação for pequeno, o comprimento e o raio do eixo permanecerão inalterados.

Leia mais

CAP. 3 - EXTENSÔMETROS - "STRAIN GAGES" Exemplo: extensômetro Huggenberger

CAP. 3 - EXTENSÔMETROS - STRAIN GAGES Exemplo: extensômetro Huggenberger CAP. 3 - EXTENSÔMETOS - "STAIN GAGES" 3. - Extensômetros Mecânicos Exemplo: extensômetro Huggenberger Baseia-se na multiplicação do deslocamento através de mecanismos de alavancas. Da figura: l' = (w /

Leia mais

106-Mecânica Aplicada

106-Mecânica Aplicada 06-Mecânica plicada curso de ilotagem ENIDH Elementos de Estática Teto de apoio 6 Momento de uma força ou sea momento = força braço e tratar o momento como uma grandea escalar. Em Estática consideram-se

Leia mais

Introdução: momento fletor.

Introdução: momento fletor. Flexão em Vigas e Projeto de Vigas APOSTILA Mecânica dos Sólidos II Introdução: As vigas certamente podem ser consideradas entre os mais importantes de todos os elementos estruturais. Citamos como exemplo

Leia mais

Exercícios de Física Eletromagnetismo

Exercícios de Física Eletromagnetismo Exercícios de Física Eletromagnetismo 1-Considerando as propriedades dos ímãs, assinale a alternativa correta. a) Quando temos dois ímãs, podemos afirmar que seus pólos magnéticos de mesmo nome (norte

Leia mais

Exercícios de Física Eletromagnetismo

Exercícios de Física Eletromagnetismo Exercícios de Física Eletromagnetismo 1-Considerando as propriedades dos ímãs, assinale a alternativa correta. a) Quando temos dois ímãs, podemos afirmar que seus pólos magnéticos de mesmo nome (norte

Leia mais

Exercícios Eletromagnetismo

Exercícios Eletromagnetismo Exercícios Eletromagnetismo 1-Considerando as propriedades dos ímãs, assinale a alternativa correta. a) Quando temos dois ímãs, podemos afirmar que seus pólos magnéticos de mesmo nome (norte e norte, ou

Leia mais

Capítulo 6 Transformação de tensões e critérios de falhas

Capítulo 6 Transformação de tensões e critérios de falhas Capítulo 6 Transformação de tensões e critérios de falhas 6.1 Tensões principais no plano- O estado geral de tensão em um ponto é caracterizado por seis componentes independentes da tensão normal e de

Leia mais

ESTÁTICA DEC - COD 3764 I - 2007

ESTÁTICA DEC - COD 3764 I - 2007 ESTÁTICA DEC - COD 3764 I - 2007 Resumo das notas de aula do professor. Adaptação do material de vários professores, e do livro Mecânica vetorial para engenheiros, Ferdinand. Beer e E. Russell Johnston,

Leia mais

MEMORIAL DE CÁLCULO 012310/1-0

MEMORIAL DE CÁLCULO 012310/1-0 1 SSC MEMORIAL DE CÁLCULO 012310/1-0 ANDAIME FACHADEIRO CONTRATANTE: Nopin Brasil Equipamentos para Construção Civil Ltda ENDEREÇO: Rodovia RS 122 nº 7470 Pavilhões 10 e 11 95110-310 Caxias do Sul - RS

Leia mais

FÍSICA CADERNO DE QUESTÕES

FÍSICA CADERNO DE QUESTÕES CONCURSO DE ADMISSÃO AO CURSO DE FORMAÇÃO E GRADUAÇÃO FÍSICA CADERNO DE QUESTÕES 2015 1 a QUESTÃO Valor: 1,00 Uma mola comprimida por uma deformação x está em contato com um corpo de massa m, que se encontra

Leia mais

3 Dimensionamento Clássico de Cordões de Solda

3 Dimensionamento Clássico de Cordões de Solda 3 Dimensionamento Clássico de Cordões de Solda A união de placas em uma estrutura é conhecida como junta. Uma junta pode ser obtida utilizando-se os mais variados elementos de fixação: parafusos, rebites,

Leia mais

Estruturas de Betão Armado II 12 Método das Escores e Tirantes

Estruturas de Betão Armado II 12 Método das Escores e Tirantes Estruturas de Betão Armado II 12 Método das Escores e Tirantes 1 INTRODUÇÃO Método de análise de zonas de descontinuidade, baseado no Teorema Estático da Teoria da Plasticidade. Este método permite obter

Leia mais

Cap. 7 - Fontes de Campo Magnético

Cap. 7 - Fontes de Campo Magnético Universidade Federal do Rio de Janeiro Instituto de Física Física III 2014/2 Cap. 7 - Fontes de Campo Magnético Prof. Elvis Soares Nesse capítulo, exploramos a origem do campo magnético - cargas em movimento.

Leia mais

Olimpíada Brasileira de Física 2001 2ª Fase

Olimpíada Brasileira de Física 2001 2ª Fase Olimpíada Brasileira de Física 2001 2ª Fase Gabarito dos Exames para o 1º e 2º Anos 1ª QUESTÃO Movimento Retilíneo Uniforme Em um MRU a posição s(t) do móvel é dada por s(t) = s 0 + vt, onde s 0 é a posição

Leia mais

6. Erosão. Início do transporte sólido por arrastamento

6. Erosão. Início do transporte sólido por arrastamento 6. Erosão. Início do transporte sólido por arrastamento 6.1. Introdução A erosão consiste na remoção do material do leito pelas forças de arrastamento que o escoamento provoca. O oposto designa-se por

Leia mais

Elementos de Engenharia Civil 2007/2008. Enunciados dos problemas *

Elementos de Engenharia Civil 2007/2008. Enunciados dos problemas * DEPARTAMENTO DE ENGENHARIA CIVIL E ARQUITECTURA SECÇÁO DE HIDRÁULICA E RECURSOS HÍDRICOS E AMBIENTAIS Elementos de Engenharia Civil 2007/2008 2 SEMESTRE Enunciados dos problemas * (módulo de Hidráulica)

Leia mais

Capítulo 5: Aplicações da Derivada

Capítulo 5: Aplicações da Derivada Instituto de Ciências Exatas - Departamento de Matemática Cálculo I Profª Maria Julieta Ventura Carvalho de Araujo Capítulo 5: Aplicações da Derivada 5- Acréscimos e Diferenciais - Acréscimos Seja y f

Leia mais

Critérios de Resistência

Critérios de Resistência Critérios de Resistência Coeficiente de segurança ensão uivalente Seja um ponto qualquer, pertencente a um corpo em uilíbrio, submetido a um estado de tensões cujas tensões principais estão representadas

Leia mais

MEMÓRIA DE CÁLCULO. Figura 1 Modelo de cálculo.

MEMÓRIA DE CÁLCULO. Figura 1 Modelo de cálculo. MEMÓRIA DE CÁLCULO Análise e dimensionamento O estudo do comportamento global da estrutura consistiu numa análise não linear efectuada com o programa Robot Millenium v.17. Nesta análise, a estrutura de

Leia mais

Fichas de sistemas de partículas

Fichas de sistemas de partículas Capítulo 3 Fichas de sistemas de partículas 1. (Alonso, pg 247) Um tubo de secção transversal a lança um fluxo de gás contra uma parede com uma velocidade v muito maior que a agitação térmica das moléculas.

Leia mais

Lista de exercícios sobre barras submetidas a força normal

Lista de exercícios sobre barras submetidas a força normal RESISTÊNCIA DOS MATERIAIS I Lista de exercícios sobre barras submetidas a força normal 1) O cabo e a barra formam a estrutura ABC (ver a figura), que suporta uma carga vertical P= 12 kn. O cabo tem a área

Leia mais

EXERCÍCIOS DE ESTRUTURAS DE MADEIRA

EXERCÍCIOS DE ESTRUTURAS DE MADEIRA UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA CIVIL,ARQUITETURA E URBANISMO Departamento de Estruturas EXERCÍCIOS DE ESTRUTURAS DE MADEIRA RAFAEL SIGRIST PONTES MARTINS,BRUNO FAZENDEIRO DONADON

Leia mais

5ª LISTA DE EXERCÍCIOS PROBLEMAS ENVOLVENDO FLEXÃO

5ª LISTA DE EXERCÍCIOS PROBLEMAS ENVOLVENDO FLEXÃO Universidade Federal da Bahia Escola Politécnica Departamento de Construção e Estruturas Professor: Armando Sá Ribeiro Jr. Disciplina: ENG285 - Resistência dos Materiais I-A www.resmat.ufba.br 5ª LISTA

Leia mais

PROVAESCRITA CARGO: ENGENHARIA CIVIL I

PROVAESCRITA CARGO: ENGENHARIA CIVIL I MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO SUL DE MINAS GERAIS CONCURSO PÚBLICO DE DOCENTES DO QUADRO EFETIVO EDITAL

Leia mais

Introdução ao Estudo da Corrente Eléctrica

Introdução ao Estudo da Corrente Eléctrica Introdução ao Estudo da Corrente Eléctrica Num metal os electrões de condução estão dissociados dos seus átomos de origem passando a ser partilhados por todos os iões positivos do sólido, e constituem

Leia mais

Mecânica Aplicada. Engenharia Biomédica ESFORÇOS INTERNOS EM PEÇAS LINEARES

Mecânica Aplicada. Engenharia Biomédica ESFORÇOS INTERNOS EM PEÇAS LINEARES Mecânica plicada Engenharia iomédica ESFORÇOS INTERNOS EM PEÇS INERES Versão 0.2 Setembro de 2008 1. Peça linear Uma peça linear é um corpo que se pode considerar gerado por uma figura plana cujo centro

Leia mais

Evocar os conceitos do MRUV (movimento retilíneo uniformemente variado), do MRU (movimento retilíneo uniforme) e a decomposição de forças.

Evocar os conceitos do MRUV (movimento retilíneo uniformemente variado), do MRU (movimento retilíneo uniforme) e a decomposição de forças. 14 Curso Básico de Mecânica dos Fluidos Objetivos da segunda aula da unidade 1: Evocar os conceitos do MRUV (movimento retilíneo uniformemente variado), do MRU (movimento retilíneo uniforme) e a decomposição

Leia mais

EM 421 - RESISTÊNCIA DOS MATERIAIS I 3. Prova Data: 06/12/96 Profs. Marco Lúcio Bittencourt e Euclides de Mesquita Neto GABARITO

EM 421 - RESISTÊNCIA DOS MATERIAIS I 3. Prova Data: 06/12/96 Profs. Marco Lúcio Bittencourt e Euclides de Mesquita Neto GABARITO EM 421 - RESISTÊNCIA DOS MATERIAIS I 3. Prova Data: 06/12/96 Profs. Marco Lúcio Bittencourt e Euclides de Mesquita Neto GABARITO 1. QUESTÃO (VALOR 6.0) A viga bi-engastada abaio mostrada deverá ser construída

Leia mais

ESTRUTURAS DE COBERTURA PARA GRANDES VÃOS

ESTRUTURAS DE COBERTURA PARA GRANDES VÃOS ESTRUTURAS DE COBERTURA PARA GRANDES VÃOS Travamentos e Contraventamentos Estruturas de Coberturas Elementos Principais vencem o vão Elementos Secundários Exemplo: Planta geral da cobertura Planta da cobertura

Leia mais

Flambagem de Colunas Introdução

Flambagem de Colunas Introdução - UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Flambagem de Colunas Introdução Os sistemas

Leia mais

3.4 Movimento ao longo de uma curva no espaço (terça parte)

3.4 Movimento ao longo de uma curva no espaço (terça parte) 3.4-41 3.4 Movimento ao longo de uma curva no espaço (terça parte) Antes de começar com a nova matéria, vamos considerar um problema sobre o material recentemente visto. Problema: (Projeção de uma trajetória

Leia mais

Bacharelado Engenharia Civil

Bacharelado Engenharia Civil Bacharelado Engenharia Civil Disciplina: Física Geral e Experimental I Força e Movimento- Leis de Newton Prof.a: Msd. Érica Muniz Forças são as causas das modificações no movimento. Seu conhecimento permite

Leia mais

Análise de Regressão Linear Simples e Múltipla

Análise de Regressão Linear Simples e Múltipla Análise de Regressão Linear Simples e Múltipla Carla Henriques Departamento de Matemática Escola Superior de Tecnologia de Viseu Carla Henriques (DepMAT ESTV) Análise de Regres. Linear Simples e Múltipla

Leia mais

ANÁLISE DE ESTRUTURAS I. Apontamentos sobre análise de lajes

ANÁLISE DE ESTRUTURAS I. Apontamentos sobre análise de lajes ANÁLISE DE ESTRUTURAS I Apontamentos sobre análise de lajes Grupo de Análise de Estruturas Departamento de Engenharia Civil Instituto Superior Técnico, 4 Estes apontamentos, da autoria de Vitor MA Leitão

Leia mais

Velocidade Média Velocidade Instantânea Unidade de Grandeza Aceleração vetorial Aceleração tangencial Unidade de aceleração Aceleração centrípeta

Velocidade Média Velocidade Instantânea Unidade de Grandeza Aceleração vetorial Aceleração tangencial Unidade de aceleração Aceleração centrípeta Velocidade Média Velocidade Instantânea Unidade de Grandeza Aceleração vetorial Aceleração tangencial Unidade de aceleração Aceleração centrípeta Classificação dos movimentos Introdução Velocidade Média

Leia mais

V = 0,30. 0,20. 0,50 (m 3 ) = 0,030m 3. b) A pressão exercida pelo bloco sobre a superfície da mesa é dada por: P 75. 10 p = = (N/m 2 ) A 0,20.

V = 0,30. 0,20. 0,50 (m 3 ) = 0,030m 3. b) A pressão exercida pelo bloco sobre a superfície da mesa é dada por: P 75. 10 p = = (N/m 2 ) A 0,20. 11 FÍSICA Um bloco de granito com formato de um paralelepípedo retângulo, com altura de 30 cm e base de 20 cm de largura por 50 cm de comprimento, encontra-se em repouso sobre uma superfície plana horizontal.

Leia mais

Estruturas Planas. Prof. António Ressano Garcia Lamas

Estruturas Planas. Prof. António Ressano Garcia Lamas Estruturas Planas Prof. António Ressano Garcia Lamas Estruturas planas são estruturas formadas por barras de eixo plano ligadas entre si de modo a os eixos serem complanares (geometria plana) e actuadas

Leia mais

e R 2 , salta no ar, atingindo sua altura máxima no ponto médio entre A e B, antes de alcançar a rampa R 2

e R 2 , salta no ar, atingindo sua altura máxima no ponto médio entre A e B, antes de alcançar a rampa R 2 FÍSICA 1 Uma pista de skate, para esporte radical, é montada a partir de duas rampas R 1 e R 2, separadas entre A e B por uma distância D, com as alturas e ângulos indicados na figura. A pista foi projetada

Leia mais

Resistência dos Materiais

Resistência dos Materiais Aula 2 Tensão Normal Média e Tensão de Cisalhamento Média Tópicos Abordados Nesta Aula Definição de Tensão. Tensão Normal Média. Tensão de Cisalhamento Média. Conceito de Tensão Representa a intensidade

Leia mais

7 AULA. Curvas Polares LIVRO. META Estudar as curvas planas em coordenadas polares (Curvas Polares).

7 AULA. Curvas Polares LIVRO. META Estudar as curvas planas em coordenadas polares (Curvas Polares). 1 LIVRO Curvas Polares 7 AULA META Estudar as curvas planas em coordenadas polares (Curvas Polares). OBJETIVOS Estudar movimentos de partículas no plano. Cálculos com curvas planas em coordenadas polares.

Leia mais

1 a QUESTÃO Valor 1,0

1 a QUESTÃO Valor 1,0 1 a QUESTÃO Valor 1,0 Um esquimó aguarda a passagem de um peixe sob um platô de gelo, como mostra a figura abaixo. Ao avistá-lo, ele dispara sua lança, que viaja com uma velocidade constante de 50 m/s,

Leia mais

UNESP DESENHO TÉCNICO: Fundamentos Teóricos e Introdução ao CAD. Parte 3/5: Prof. Víctor O. Gamarra Rosado

UNESP DESENHO TÉCNICO: Fundamentos Teóricos e Introdução ao CAD. Parte 3/5: Prof. Víctor O. Gamarra Rosado UNESP UNIVERSIDADE ESTADUAL PAULISTA FACULDADE DE ENGENHARIA CAMPUS DE GUARATINGUETÁ DESENHO TÉCNICO: Fundamentos Teóricos e Introdução ao CAD Parte 3/5: 8. Projeções ortogonais 9. Terceira Vista 10. Tipos

Leia mais

1. Equilíbrio de corpos rígidos

1. Equilíbrio de corpos rígidos 1. Equilíbrio de corpos rígidos No capítulo anterior foi referido que as forças exteriores que actuam num corpo rígido podem ser reduzidas a um sistema equivalente força/binário. Quando a força e o binário

Leia mais

1. Definição dos Elementos Estruturais

1. Definição dos Elementos Estruturais A Engenharia e a Arquitetura não devem ser vistas como duas profissões distintas, separadas, independentes uma da outra. Na verdade elas devem trabalhar como uma coisa única. Um Sistema Estrutural definido

Leia mais

Considerações Gerais

Considerações Gerais Considerações Gerais Aviões de transporte comercial são desenhados especificamente para o transporte de passageiros e carga de um aeroporto para outro. Por outro lado, aviões militares como caças e bombardeiros

Leia mais

Ensaio de tração: cálculo da tensão

Ensaio de tração: cálculo da tensão Ensaio de tração: cálculo da tensão A UU L AL A Você com certeza já andou de elevador, já observou uma carga sendo elevada por um guindaste ou viu, na sua empresa, uma ponte rolante transportando grandes

Leia mais

Fig. 4.2 - Exemplos de aumento de aderência decorrente de compressão transversal

Fig. 4.2 - Exemplos de aumento de aderência decorrente de compressão transversal aderência - 1 4. Aderência, ancoragem e emenda por traspasse 4.1. Aderência A solidariedade da barra de armadura com o concreto circundante, que impede o escorregamento relativo entre os dois materiais,

Leia mais

Eletricidade e Magnetismo - Lista de Exercícios I CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA

Eletricidade e Magnetismo - Lista de Exercícios I CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA Eletricidade e Magnetismo - Lista de Exercícios I CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA Carga Elétrica e Lei de Coulomb 1. Consideremos o ponto P no centro de um quadrado

Leia mais

FLAMBAGEM DE BARRAS UNIVERSIDADE ESTADUAL DE CAMPINAS PROF DR. NILSON TADEU MASCIA

FLAMBAGEM DE BARRAS UNIVERSIDADE ESTADUAL DE CAMPINAS PROF DR. NILSON TADEU MASCIA 1 UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA CIVIL,ARQUITETURA E URBANISMO Departamento de Estruturas FLAMBAGEM DE BARRAS PROF DR. NILSON TADEU MASCIA JUNHO DE 006 1 - Introdução...3 - Conceito

Leia mais

Mecânica dos Fluidos

Mecânica dos Fluidos Mecânica dos Fluidos Vladimir R. M. Cobas Mecânica dos fluidos Estuda o comportamento dos fluidos em repouso (estática) ou em movimento (dinâmica). O campo de estudo vai desde o escoamento do sangue dentro

Leia mais

( Curso Dimensionamento de Estruturas de Aço CBCA módulo 3)

( Curso Dimensionamento de Estruturas de Aço CBCA módulo 3) GALPÕES (Projeto proposto) A ligação mais imediata que se faz da palavra galpão é com o uso industrial. No entanto galpões podem ser usados para as mais diversas atividades, tais como, hangares, espaços

Leia mais

RESUMO DAS NORMAS TÉCNICAS DA ABNT

RESUMO DAS NORMAS TÉCNICAS DA ABNT RESUMO DAS NORMAS TÉCNICAS DA ABNT A padronização ou normalização do desenho técnico tem como objetivo uniformizar o desenho por meio de um conjunto de regras ou recomendações que regulamentam a execução

Leia mais

ENG1200 Mecânica Geral Semestre 2013.2 Lista de Exercícios 3 Equilíbrio de Corpos Rígidos

ENG1200 Mecânica Geral Semestre 2013.2 Lista de Exercícios 3 Equilíbrio de Corpos Rígidos ENG1200 Mecânica Geral Semestre 2013.2 Lista de Exercícios 3 Equilíbrio de Corpos Rígidos Questão 1 Prova P2-2013.1 A estrutura ilustrada na figura é sustentada por três cabos (BD, CD e EF) e uma rótula

Leia mais

TIPO-A FÍSICA. x v média. t t. x x

TIPO-A FÍSICA. x v média. t t. x x 12 FÍSICA Aceleração da gravidade, g = 10 m/s 2 Constante gravitacional, G = 7 x 10-11 N.m 2 /kg 2 Massa da Terra, M = 6 x 10 24 kg Velocidade da luz no vácuo, c = 300.000 km/s 01. Em 2013, os experimentos

Leia mais

QUESTÃO 24 PETROBRÁS / 2008

QUESTÃO 24 PETROBRÁS / 2008 QUESTÃO 24 PETROBRÁS / 2008 Um esforço axial de tração gera os valores máximos de tensão (A) normal na seção transversal e de cisalhamento em um plano a 45 o. (B) normal na seção transversal e de cisalhamento

Leia mais

CAPÍTULO 3 PROBLEMA 3.1

CAPÍTULO 3 PROBLEMA 3.1 PÍTULO 3 PROLM 3.1 onsidere a placa em forma de L, que faz parte da fundação em ensoleiramento geral de um edifício, e que está sujeita às cargas indicadas. etermine o módulo, a direcção, o sentido e o

Leia mais

NOTAS DE AULAS DE FÍSICA MODERNA CAPÍTULO 1. Prof. Carlos R. A. Lima INTRODUÇÃO AO CURSO E TEORIA DA RELATIVIDADE ESPECIAL

NOTAS DE AULAS DE FÍSICA MODERNA CAPÍTULO 1. Prof. Carlos R. A. Lima INTRODUÇÃO AO CURSO E TEORIA DA RELATIVIDADE ESPECIAL NOTAS DE AULAS DE FÍSICA MODERNA Prof. Carlos R. A. Lima CAPÍTULO 1 INTRODUÇÃO AO CURSO E TEORIA DA RELATIVIDADE ESPECIAL Edição de junho de 2014 2 CAPÍTULO 1 TEORIA DA RELATIVIDADE ESPECIAL ÍNDICE 1.1-

Leia mais

CINEMÁTICA VETORIAL. Observe a trajetória a seguir com origem O.Pode-se considerar P a posição de certo ponto material, em um instante t.

CINEMÁTICA VETORIAL. Observe a trajetória a seguir com origem O.Pode-se considerar P a posição de certo ponto material, em um instante t. CINEMÁTICA VETORIAL Na cinemática escalar, estudamos a descrição de um movimento através de grandezas escalares. Agora, veremos como obter e correlacionar as grandezas vetoriais descritivas de um movimento,

Leia mais

Capítulo1 Tensão Normal

Capítulo1 Tensão Normal - UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Referências Bibliográficas:

Leia mais

"SISTEMAS DE COTAGEM"

SISTEMAS DE COTAGEM AULA 6T "SISTEMAS DE COTAGEM" Embora não existam regras fixas de cotagem, a escolha da maneira de dispor as cotas no desenho técnico depende de alguns critérios. A cotagem do desenho técnico deve tornar

Leia mais

LISTA 10 INDUÇÃO ELETROMAGNÉTICA

LISTA 10 INDUÇÃO ELETROMAGNÉTICA 1. (Ufmg 95) Esta figura mostra uma espira retangular, de lados a = 0,20 m e b = 0,50 m, sendo empurrada, com velocidade constante v = 0,50 m/s, para uma região onde existe um campo magnético uniforme

Leia mais

ponto P terá as projecções P 1 e P 2. E o eixo X passa para X. Vamos ver o que acontece no plano do

ponto P terá as projecções P 1 e P 2. E o eixo X passa para X. Vamos ver o que acontece no plano do Mudança de planos 1- Introdução As projecções de uma figura só representam as suas verdadeiras grandezas se essa figura está contida num plano paralelo aos planos de projecção. Caso contrário as projecções

Leia mais

Cálculo da carga aplicada

Cálculo da carga aplicada 508-BR O guia linear é capaz de receber cargas e momentos em todas as direções que sejam gerados em função da posição de montagem, do alinhamento, da posição do centro de gravidade de um objeto móvel,

Leia mais

ELEMENTOS DE MÁQUINAS I

ELEMENTOS DE MÁQUINAS I UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA MECÂNICA ELEMENTOS DE MÁQUINAS I APOSTILA PARA O CURSO 2 o Semestre de 2001 Molas Helicoidais e Planas AUTOR: P ROF. DR. AUTELIANO A NTUNES DOS

Leia mais

Lista de Eletromagnetismo - Tubarão. amostra em relação à localização dos. 1. Num laboratório de biofísica, um. lagos de onde vieram.

Lista de Eletromagnetismo - Tubarão. amostra em relação à localização dos. 1. Num laboratório de biofísica, um. lagos de onde vieram. 1. Num laboratório de biofísica, um pesquisador realiza uma experiência com "bactérias magnéticas", bactérias que tem pequenos ímãs no seu interior. Com auxílio desses imãs, amostra em relação à localização

Leia mais

Tensão de Cisalhamento

Tensão de Cisalhamento - UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Tensão de Cisalhamento

Leia mais

Cálculo em Computadores - 2007 - trajectórias 1. Trajectórias Planas. 1 Trajectórias. 4.3 exercícios... 6. 4 Coordenadas polares 5

Cálculo em Computadores - 2007 - trajectórias 1. Trajectórias Planas. 1 Trajectórias. 4.3 exercícios... 6. 4 Coordenadas polares 5 Cálculo em Computadores - 2007 - trajectórias Trajectórias Planas Índice Trajectórias. exercícios............................................... 2 2 Velocidade, pontos regulares e singulares 2 2. exercícios...............................................

Leia mais

Propriedades Mecânicas. Prof. Hamilton M. Viana

Propriedades Mecânicas. Prof. Hamilton M. Viana Propriedades Mecânicas Prof. Hamilton M. Viana Propriedades Mecânicas Propriedades Mecânicas Definem a resposta do material à aplicação de forças (solicitação mecânica). Força (tensão) Deformação Principais

Leia mais

Capítulo 6 ELEMENTOS GEOMÉTRICOS DAS ESTRADAS DE RODAGEM

Capítulo 6 ELEMENTOS GEOMÉTRICOS DAS ESTRADAS DE RODAGEM Capítulo 6 ELEMENTOS GEOMÉTRICOS DAS ESTRADAS DE RODAGEM 6.1. INTRODUÇÃO A geometria de uma estrada é definida pelo traçado do seu eixo em planta e pelos perfis longitudinal e transversal. A Fig. 6.1 apresentada

Leia mais

É usual dizer que as forças relacionadas pela terceira lei de Newton formam um par ação-reação.

É usual dizer que as forças relacionadas pela terceira lei de Newton formam um par ação-reação. Terceira Lei de Newton A terceira lei de Newton afirma que a interação entre dois corpos quaisquer A e B é representada por forças mútuas: uma força que o corpo A exerce sobre o corpo B e uma força que

Leia mais

DINÂMICA DO PONTO MATERIAL

DINÂMICA DO PONTO MATERIAL DINÂMICA DO PONTO MATERIAL 1.0 Conceitos Forças se comportam como vetores. Forças de Contato: Representam o resultado do contato físico entre dois corpos. Forças de Campo: Representam as forças que agem

Leia mais

2. O Programa. Figura 1 : Janela Principal do Programa

2. O Programa. Figura 1 : Janela Principal do Programa AUTOMAÇÃO DE PROJETOS DE TRELIÇAS METÁLICAS PLANAS Nilto Calixto Silva Aluno de Graduação ncalixto@fec.unicamp.br http://www.fec.unicamp.br/~ncalixto João Alberto Venegas Requena Professor Assistente Doutor

Leia mais

Construção dos números racionais, Números fracionários e operações com frações

Construção dos números racionais, Números fracionários e operações com frações Construção dos números racionais, Números fracionários e operações com frações O número racional pode ser definido a partir da aritmética fechamento da operação de divisão entre inteiros ou partir da geometria

Leia mais

Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Engenharia Civil. Mecânica Vetorial ENG01035

Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Engenharia Civil. Mecânica Vetorial ENG01035 Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Engenharia Civil EXERCÍCIOS D 2 a. ÁRE Mecânica Vetorial ENG035 LIST DE PROLEMS DE PROV CENTRO DE GRVIDDE 1) peça representada

Leia mais

Prof. Sérgio Viana. Estas notas de aula são destinadas aos alunos que. Gráfica, para um posterior estudo mais profundo.

Prof. Sérgio Viana. Estas notas de aula são destinadas aos alunos que. Gráfica, para um posterior estudo mais profundo. EXPRESSÃO GRÁFICA Prof. Sérgio Viana Estas notas de aula são destinadas aos alunos que desejam ter um conhecimento básico de Expressão Gráfica, para um posterior estudo mais profundo. 1 Caligrafia Técnica

Leia mais

FÍSICA. (19) 3251-1012 www.elitecampinas.com.br O ELITE RESOLVE FUVEST 2006 FÍSICA

FÍSICA. (19) 3251-1012 www.elitecampinas.com.br O ELITE RESOLVE FUVEST 2006 FÍSICA (9) 3- O ELITE RESOLVE FUVEST FÍSICA FÍSICA QUESTÃO Uma pista de skate, para esporte radical, é montada a partir de duas rampas R e R, separadas entre A e B por uma distância D, com as alturas e ângulos

Leia mais

M Questões Corte / Torção Questões de Testes e Provas Corte Puro Torção Pura. 4 cordões de solda a = 4 mm; l =160 mm. 60 k N

M Questões Corte / Torção Questões de Testes e Provas Corte Puro Torção Pura. 4 cordões de solda a = 4 mm; l =160 mm. 60 k N M Questões orte / Torção Questões de Testes e rovas orte uro Torção ura 8 parafusos Φ = 10 mm cordões de solda a = mm; l =160 mm 160 00 60 k N (1) ROV 003-01 O duto esquematizado é fabricado em chapa de

Leia mais

Análise de regressão linear simples. Departamento de Matemática Escola Superior de Tecnologia de Viseu

Análise de regressão linear simples. Departamento de Matemática Escola Superior de Tecnologia de Viseu Análise de regressão linear simples Departamento de Matemática Escola Superior de Tecnologia de Viseu Introdução A análise de regressão estuda o relacionamento entre uma variável chamada a variável dependente

Leia mais

Agrupamento de Escolas General Humberto Delgado Sede na Escola Secundária/3 José Cardoso Pires Santo António dos Cavaleiros

Agrupamento de Escolas General Humberto Delgado Sede na Escola Secundária/3 José Cardoso Pires Santo António dos Cavaleiros Agrupamento de Escolas General Humberto Delgado Sede na Escola Secundária/3 José Cardoso Pires Santo António dos Cavaleiros 2º ciclo PCA - 6º ano Planificação Anual 2013-2014 MATEMÁTICA METAS CURRICULARES

Leia mais

AULA 33 PROCESSO DE RETIFICAÇÃO: OPERAÇÕES DE CORTE

AULA 33 PROCESSO DE RETIFICAÇÃO: OPERAÇÕES DE CORTE AULA 33 PROCESSO DE RETIFICAÇÃO: OPERAÇÕES DE CORTE 257 33. PROCESSO DE RETIFICAÇÃO: OPERAÇÕES DE CORTE 33.1. Introdução As peças que serão retificadas, normalmente, chegam à retificadora com um sobremetal

Leia mais

CONSOLIDAÇÃO ESTRUTURAL DO CORO ALTO DA IGREJA DO PÓPULO EM BRAGA

CONSOLIDAÇÃO ESTRUTURAL DO CORO ALTO DA IGREJA DO PÓPULO EM BRAGA A Intervenção no Património. Práticas de Conservação e Reabilitação 173 CONSOLIDAÇÃO ESTRUTURAL DO CORO ALTO DA IGREJA DO PÓPULO EM BRAGA ESMERALDA PAUPÉRIO Engenheira IC-FEUP ANÍBAL COSTA Engenheiro Prof.

Leia mais

Manual de Laboratório Física Experimental I- Hatsumi Mukai e Paulo R.G. Fernandes

Manual de Laboratório Física Experimental I- Hatsumi Mukai e Paulo R.G. Fernandes Pêndulo Simples 6.1 Introdução: Capítulo 6 Um pêndulo simples se define como uma massa m suspensa por um fio inextensível, de comprimento com massa desprezível em relação ao valor de m. Se a massa se desloca

Leia mais

FICHA DE TRABALHO DERIVADAS I PARTE. 1. Uma função f tem derivadas finitas à direita e à esquerda de x = 0. Então:

FICHA DE TRABALHO DERIVADAS I PARTE. 1. Uma função f tem derivadas finitas à direita e à esquerda de x = 0. Então: FICHA DE TRABALHO DERIVADAS I PARTE. Uma função f tem derivadas finitas à direita e à esquerda de = 0. Então: (A) f tem necessariamente derivada finita em = 0; (B) f não tem com certeza derivada finita

Leia mais

4.1 MOVIMENTO UNIDIMENSIONAL COM FORÇAS CONSTANTES

4.1 MOVIMENTO UNIDIMENSIONAL COM FORÇAS CONSTANTES CAPÍTULO 4 67 4. MOVIMENTO UNIDIMENSIONAL COM FORÇAS CONSTANTES Consideremos um bloco em contato com uma superfície horizontal, conforme mostra a figura 4.. Vamos determinar o trabalho efetuado por uma

Leia mais

Root Locus (Método do Lugar das Raízes)

Root Locus (Método do Lugar das Raízes) Root Locus (Método do Lugar das Raízes) Ambos a estabilidade e o comportamento da resposta transitória em um sistema de controle em malha fechada estão diretamente relacionadas com a localização das raízes

Leia mais

Estruturas Metálicas. Módulo II. Coberturas

Estruturas Metálicas. Módulo II. Coberturas Estruturas Metálicas Módulo II Coberturas 1 COBERTURAS Uma das grandes aplicações das estruturas metálicas se dá no campo das coberturas de grande vão, especialmente as de caráter industrial. Também devido

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE MATEMÁTICA E FÍSICA Professor: Renato Medeiros EXERCÍCIOS NOTA DE AULA IV Goiânia - 2014 EXERCÍCIOS 1. Uma partícula eletrizada positivamente é

Leia mais

TUBOS DE BETÃO ARMADO COM ALMA DE AÇO

TUBOS DE BETÃO ARMADO COM ALMA DE AÇO TUBOS DE BETÃO ARMADO COM ALMA DE AÇO 1. Materiais: 1.1. Cimento O tipo de cimento utilizado é o denominado de Portland, do tipo CEM II/A-L 42,5R GR. Nos casos em que a percentagem de sulfatos, expresso

Leia mais