Introdução: momento fletor.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Introdução: momento fletor."

Transcrição

1 Flexão em Vigas e Projeto de Vigas APOSTILA Mecânica dos Sólidos II Introdução: As vigas certamente podem ser consideradas entre os mais importantes de todos os elementos estruturais. Citamos como exemplo elementos utilizados para suportar o piso de um edifício, a plataforma de uma ponte ou a asa de um avião. Além disso, o eixo de um automóvel, a lança de um guindaste e até mesmo muitos dos ossos do corpo humano agem como vigas. As cargas que atuam numa viga a fazem fletir (ou curvar), e assim deformar o seu eixo em uma curva. Vigas e eixos são importantes elementos estruturais e mecânicos usados em projetas de engenharia. Nesta seção, determinaremos a tensão provocada nesses elementos por conta da flexão. Começaremos com uma discussão sobre como construir os diagramas de força cortante e momento fletor para uma viga ou eixo. Assim como os diagramas de força normal e de torque, os diagramas de força cortante e momento fletor proporcionam um meio útil para determinar a maior força de cisalhamento e o maior momento em um elemento e especificam onde esses máximos ocorrem. Uma vez determinado o momento interno em uma seção, a tensão de flexão pode ser calculada. Em primeiro lugar, consideraremos elementos retos, com seção transversal simétrica e feita de materiais homogêneos lineares elásticos. Em seguida, discutiremos casos especiais que envolvem flexão assimétrica e elementos feitos de materiais compósitos. Também consideraremos elementos curvos, concentrações de tensão, flexão inelástica e tensões residuais. 1. Esforço cortante (V) e Momento Fletor (M) Por conta dos carregamentos aplicados, as vigas desenvolvem uma força de cisalhamento interna (força cortante) e momento fletor que, em geral, variam de ponto para ponto ao longo do eixo da viga. Para projetar uma viga corretamente, em primeiro lugar, é necessário determinar a força de cisalhamento e o momento máximos que agem na viga. Um modo de fazer isso é expressar V e M em função de uma posição arbitrária x ao longo do eixo da viga. Então, essas funções de cisalhamento e momento podem ser representadas em gráficos denominados diagramas de força cortante e momento fletor. disso, uma vez que fornecem informações detalhadas sobre a variação do cisalhamento e do momento ao longo do eixo da viga, os diagramas de força cortante e momento fletor são frequentemente usados pelos engenheiros para decidir onde colocar materiais de reforço no interior da viga ou como calcular as dimensões da viga em vários pontos ao longo de seu comprimento. O esforço cortante e o momento fletor em um determinado ponto de uma viga é encontrado, passando-se uma seção através do ponto desejado e aplicando-se as equações de equilíbrio da estática para o trecho cortado. Os valores máximos tanto de V quanto de M podem ser obtidos desses gráficos. Além

2 viga; a força cortante interna provoca uma rotação em sentido horário no segmento da viga sobre o qual age; e o momento interno causa compressão nas fibras superiores do segmento. Figura 1.1 esforço cortante e o momento fletor em um determinado ponto de uma viga. Convenção de sinal para vigas. Antes de apresentar um método para determinar o cisalhamento e o momento em função de x e, então, construir um gráfico dessas funções (diagramas de força cortante e momento fletor), é necessário estabelecer uma convenção de sinal de modo a definir força cortante interna e momento fletor como "positivos" e "negativos". Embora a escolha de uma convenção de sinal seja arbitrária, aqui adotaremos a convenção frequentemente utilizada na prática da engenharia e mostrada na Figura 1.2. As direções positivas são as seguintes: a carga distribuída age para baixo na Figura 1.2 Esforços Internos As resultantes F R e M R0 reduzidas ao C.G. da seção direita deve ter o mesmo módulo e sentidos opostos das resultantes reduzidas ao C.G. da seção esquerda. Decompondo os vetores F R e M 0 nas direções normal e paralela à seção, obtém:

3 Componentes de F R : M = Momento Fletor; T = Momento Torçor. Sinais: N = Esforço Normal; V = Esforça Cortante. Componentes de M R0 : 1.1. Procedimento de Análise Os diagramas de força cortante e momento fletor para uma viga podem ser construídos por meio dos procedimentos descritos a seguir.

4 Reações nos apoios Determine todas as forças de reação e momentos conjugados que agem na viga e decomponha todas as forças em componentes que agem perpendicular e paralelamente ao eixo da viga. Diagramas de força cortante e momento fletor Construa o diagrama de força cortante (V versus x) e o diagrama de momento fletor (M versus x). Se os valores numéricos das funções que descrevem V e M forem positivos, serão marcados acima do eixo x, ao passo que valores negativos serão marcados abaixo do eixo. Em geral, é conveniente mostrar os diagramas de força cortante e momento fletor diretamente abaixo do diagrama de corpo livre da viga. Exemplo: Para a viga e o carregamento mostrado na figura, construa o diagrama de esforço cortante e de momento fletor. Solução: Aplique as equações de equilíbrio da estática e determine as reações de apoio para a viga:

5 Construa o diagrama de esforço cortante e de momento fletor, identificando os valores máximos (em módulo). Seccione a viga e aplique as condições de equilíbrio para cada parte:

6 2. Tensão de Flexão em Vigas A teoria de tensões de flexão nas vigas se aplica para vigas admitidas com suficiente estabilidade lateral em virtude de suas proporções ou suficientemente reforçadas na direção transversal Deformação por flexão de um elemento reto Nesta seção, discutiremos as deformações que ocorrem quando uma viga prismática reta, feita de um material homogêneo, é submetida à flexão. A discussão ficará limitada a vigas com área de seção transversal simétrica em relação a um eixo e a um momento fletor aplicado em torno de uma linha central perpendicular a esse eixo de simetria, como mostrado na Figura 2.1. O comportamento de elementos com seções transversais assimétricas ou feitos de vários materiais diferentes é baseado em observações semelhantes e será discutido separadamente em seções posteriores deste capítulo. Se usarmos um material de alta capacidade de deformação, como a borracha, poderemos ilustrar fisicamente o que acontece quando um elemento prismático reto é submetido a um momento fietor. Considere, por exemplo, a barra reta (não deformada) na Figura 2.2a, que tem seção transversal quadrada e marcada por uma grade de linhas longitudinais e transversais. Quando um momento fietor é aplicado, as linhas da grade tendem a se distorcer segundo o padrão mostrado na Figura 2.2b. Aqui, podemos ver que as linhas longitudinais se tornam curvas e as linhas transversais verticais continuam retas, porém sofrem rotação. O comportamento de qualquer barra deformável sujeita a um momento fietor provoca o alongamento do material na parte inferior da barra e a compressão do material na porção superior da barra. Por consequência, entre essas duas regiões devem existir uma superfície, denominada supe1jície neutra, na qual não ocorrerá mudança nos comprimentos das fibras longitudinais do material (Figura 2.1). Figura 2.1

7 Figura 2.2 Com base nessas observações, adotaremos as três premissas seguintes em relação ao modo como a tensão deforma o material. A primeira é que o eixo longitudinal x, que se encontra no interior da superfície neutra (Figura 2.3a), não sofre qualquer mudança no comprimento. Mais exatamente, o momento tenderá a deformar a viga de modo que essa linha toma-se uma curva localizada no plano de simetria x-y (Figura 2.3b). A segunda é que todas as seções transversais da viga permanecem planas e perpendiculares ao eixo longitudinal durante a deformação. A terceira é que qualquer deformação da seção transversal dentro de seu próprio plano, como observamos na Figura 2.2b, será desprezada. Em particular, o eixo z, que se encontra no plano da seção transversal e em torno do qual a seção transversal gira, é denominado eixo neutro (Figura 2.3b ). Sua localização será determinada na próxima seção. Figura Flexão Hipótese fundamental da teoria da flexão: As seções planas de uma viga, tomadas normalmente a seu eixo, permanecem planas após a viga ser submetida à flexão. Essa conclusão é válida para vigas de qualquer material, seja ele elástico ou inelástico, linear ou não-linear. As propriedades dos materiais, assim como as dimensões, devem ser simétricas em relação ao plano de flexão. As linhas longitudinais na parte inferior da viga são alongadas (tracionadas), enquanto aquelas na parte superior são diminuídas (comprimidas).

8 Superfície Neutra ss: é uma superfície em algum lugar entre o topo e a base da viga em que as linhas longitudinais não mudam de comprimento. Linha neutra: é a interseção da superfície neutra com qualquer plano de seção transversal. O eixo z é a linha neutra da seção transversal ilustrada na Figura 2.11b. Ocorre quando uma barra é submetida a uma força F, atuando perpendicularmente ao seu eixo, produzindo uma flexão na barra, ou seja, uma curvatura na peça. O esforço solicitante responsável por este comportamento é chamado de momento fletor, podendo ou não ser acompanhado de esforço cortante e força normal. Figura Representação de uma viga biapoiada submetida á flexão. A ação da carga externa (a) sobre a viga produz o momento fletor (b) curvatura observada em (c). As fibras superiores tendem a se aproximar (compressão) e as fibras inferiores tendem a se afastar (tração). A flexão é provavelmente o tipo mais comum de solicitação produzida em componentes de máquinas, os quais atuam como vigas quando, em funcionamento, transmitem ou recebem esforços Flexão Pura e Flexão Não-Uniforme Flexão Pura - Referente à flexão na viga submetida a um momento fletor constante. Ocorre nas regiões onde a força de cisalhamento é zero, pois V=dM/dx

9 Figura Viga simples em flexão pura (M=M1) Figura Viga engastada em flexão Pura (M=-M2) Considere a viga AB mostrada na figura abaixo, cujo trecho CD encontra-se sobre Flexão pura. Figura 2.7 Flexão Não-Uniforme Flexão na presença de forças de cisalhamento, o que significa que o momento fletor varia quando nos movemos ao longo do eixo da viga. Veja a Figura 2.8

10 Figura Viga com região central em flexão pura e extremidades em flexão não uniforme Flexão Simples Uma viga engastada numa extremidade, com uma carga concentrada P, aplicada na extremidade livre, está submetida à flexão simples ou flexão simples plana, quando a carga aplicada atua perpendicularmente ao eixo da viga. Figura Flexão Composta Quando o carregamento atua num plano não perpendicular ao eixo da viga. Neste caso a carga poderá ser decomposta em duas componentes, como apresentado na figura abaixo:

11 Figura 2.10 No dimensionamento de peças submetidas à flexão, admitem-se somente deformações elásticas. A tensão de trabalho é fixada pelo fator de segurança, através da tensão admissível. A fórmula da flexão é aplicada nas secções críticas, ou seja, nas secções onde o momento fletor é máximo M máx. O momento fletor máximo de uma viga pode ser determinado através dos diagramas obtidos pelo método das secções, ou através de tabelas que apresentam expressões para estas grandezas. Nos anexos desta apostila estão algumas tabelas que permitem determinar o momento fletor máximo e outras grandezas relativas ao estudo de vigas. Hipóteses Os modelos de flexão utilizados em nosso estudo de resistência dos materiais baseiamse nas seguintes hipóteses: Sobre o Corpo Sólido I - O material é considerado homogêneo e isotrópico; II - A viga admite um plano de simetria; III - O corpo é formado por um conjunto de fibras unidas entre si e paralelas ao plano longitudinal. Sobre as forças IV - As forças atuam no plano de simetria; V - As forças atuantes são perpendiculares ao eixo, portanto trata-se de um problema de flexão simples:

12 Figura 2.11 Sobre Deformações VI. Hipótese de Bernoulli: Os sólidos sob flexão são elásticos longitudinalmente e rígidos transversalmente. Figura 2.12 VII. Hipótese de Navier: Sob ação de cargas de flexão, algumas fibras longitudinais que compõem o corpo sólido são submetidas à tração e outras a compressão, existindo uma Superfície intermediária onde a deformação (ε x ) e a tensão (σ x ) para as fibras nela cintidas tornam-se nulas, isto é, não se encurtam e nem se alongam. Esta superfície é chamada de superfície neutra. A superfície neutra intercepta uma dada secção transversal da barra segundo uma reta chamada linha neutra.

13 Figura Os esforços de tração e compressão aumentam à medida que se afastam da superfície neutra, atingindo sua intensidade máxima nas fibras mais distantes a ela. - O material obedece a Lei de Hooke, ou seja, as tensões e deformações produzidas no sólido estão abaixo do limite de proporcionalidade do material (regime elástico). Conclusões: 1. Supondo uma viga submetida a esforços de flexão, constituída por uma série de fibras planas longitudinais, as fibras próximas à superfície convexa estão sob tração e portanto sofrem um aumento em seu comprimento. Da mesma forma, as fibras próximas à superfície côncava estão sob compressão e sofrem uma diminuição no seu comprimento. Como na superfície neutra o esforço é nulo, a deformação resultante também será nula, sendo assim um plano de transição entre as deformações de tração e compressão. 2. De acordo com a Lei de Hooke, a tensão varia linearmente com a deformação. Desta forma temos que a tensão de flexão varia linearmente numa dada seção transversal de uma viga, passando por zero (tensão nula) na linha neutra. Figura Em uma viga com seção transversal constante, a linha neutra (interseção entre a superfície neutra e a seção transversal) passa pelo centro de gravidade desta seção.

14 2.6. Linha Neutra Analisando o trecho CD da viga mostrada: As linhas mn e pq giram e permanecem particulares as fibras longitudinais (hipótese de Bernoulli-Navier). plano da seção transversal forma a LINHA NEUTRA da seção. σ = 0 e ε = 0. Analisando as deformações entre as duas seções Sob a ação do momento M, as fibras da parte superior da viga estão sob compressão (diminuem de comprimento) e as fibras da parte inferior estão sob tração (aumentando de comprimento). Em algum ponto entre as partes superiores e inferiores da viga, as fibras longitudinais estão sob tensão nula, não sofrendo variação de comprimento. Essa superfície é denominada superfície neutra e a interseção com o distintas dx: ρ: raio do arco cd na linha LN; L: comprimento do arco cd da barra onde L = ρ.dɵ. dado por: L = (ρ-y).dɵ. O comprimento do arco ef distante y acima da LN pode ser

15 O comprimento original do arco ef era igual ao do arco cd, antes da deformação. Logo: δ = L L; δ = (ρ y).dɵ ρ.dɵ δ =-y.dɵ. A deformação específica ε x na fibra ef é dada por: A deformação específica ε x varia linearmente com a distância y da LN. A deformação específica máxima (ε xmáx ) ocorre para o maior valor de y Curvatura de uma viga Quando cargas são aplicadas a uma viga, seu eixo longitudinal é deformado em uma curva, como ilustrado anteriormente. As tensões e deformações resultantes estão diretamente relacionadas à curvatura da curva de deflexão. Ilustração do conceito de curvatura. Veja Figura 2.9. Figura Curvatura da viga fletida: (a) Viga com carregamento e (b) Curva de deflexão.

16 O - Centro de curvatura interseção das normais às tangentes às curvas de deflexão (normal à própria curva). m1o Raio de curvatura ( ρ ) κ - Curvatura é definida como o inverso do raio de curvatura. Assim, É uma medida de quão intensamente a viga é flexionada. Carga pequena na viga Viga praticamente reta Raio de curvatura grande Curvatura pequena e vice-versa. A partir da geometria do triângulo O m 1 m 2 obtemos: (1) onde dθ é o ângulo infinitesimal entre as normais medido em radianos e ds é a distância infinitesimal ao longo da curva m 1 e m 2, Combinando a eq.(2) com (1) tem-se (2) Sob as condições especiais de pequenas deflexões tem-se que: (3) Convenção de sinais para a curvatura Apresenta-se na Figura 2.10 (4)

17 Figura Convenção de sinal para a curvatura Fórmula de flexão Ocorre quando uma barra é submetida a uma força F, atuando perpendicularmente ao seu eixo, produzindo uma flexão na barra. O momento resultante na seção transversal é igual ao momento produzido pela distribuição linear da tensão normal em torno do eixo neutro. Flexão pura desprezam-se as forças cortantes. σ = tensão normal no membro M = momento interno I = momento de inércia y = distância perpendicular do eixo neutro Essa equação é chamada de fórmula e flexão. Tensões calculadas a partir da fórmula de flexão são chamadas de tensões fletoras ou tensões de flexão. Esta equação representa a distribuição linear de tensões apresentadas na figura abaixo._a tensão de flexão assume seu valor máximo na superfície mais distante_da_linha_neutra,_ou_seja,_no maior valor de y, onde y simboliza a distância a partir

18 da L.N., podendo chegar até a superfície da peça. Em vigas com seção simétrica (em realção a linha neutra), as tensões de tração e compressão produzidas durante a flexão terão o mesmo valor. Na s vigas com seções assimétricas, a tensão máxima ocorrerá na superfície mais distante da linha neutra. A expressão mostra que as tensões são diretamente proporcionais aos momentos fletores e que aumenta linearmente com o aumento de y. Nota-se que momentos fletores positivos causam tensões de compressão na viga na parte superior acima da linha neutra e causam tensões de tração na parte inferir, pois o y é negativo e também se pode visualizar este resultado na prática. Caso os momentos sejam negativos, as tensões terão sinais invertidos como mostra a Figura 2.17.

19 Figura 2.17 Relações entre os sinais dos momentos fletores e as direções das tensões normais: (a) momento fletor positivo e (b) momento fletor negativo. Quando desenvolvemos a fórmula da flexão, impusemos a condição de que a área da seção tra sversal fosse simétrica em torno de um eixo perpendicular ao eixo neutro e também que o momento interno resultante M agisse ao longo do eixo neutro. Agora veremos como fica a fórmulada flexão para uma viga com momento interno resultante que aja em qualquer direção Tensões Máximas na Seção Transversal As tensões máximas de flexão ocorrem nos pontos mais distantes da seção (LN). Denota-se c 1 e c 2 a distância da linha neutra para os elementos extremos como mostra a Figura 10. σ 1 = maior tensão de tração; σ 2 = maior tensão de compressão; C 1 = distancia da fibra tracionada mais afastada da L.N. C 2 = distancia da fibra comprimida mais afastada da L.N. Tensões Máximas:,

20 Característica Geométrica Módulo de Resistência Mecânica dos Sólidos II, Para seções de diferentes formas geométricas:

21 Vantagens: As vantagens de se expressar as tensões máximas em termos de módulo de seção vêm do fato de que cada módulo de seção combina as propriedades relevantes da seção transversal da viga em um valor singular. Esse valor pode ser listado em tabelas e manuais como uma propriedade da viga, o que é mais conveniente para projetistas.

22 3. Tensões em Vigas Isostáticas Flexão Normal Uma estrutura sofrendo flexão se deformará e nas suas seções transversais e em cada ponto das seções sofrerá: Tensões (pressões) normais de compressão; Tensões (pressões) normais de tração; Tensões (pressões) tangenciais de cisalhamento (deslizamento); E se for o caso, tensões de tração. O conceito corrente de tensão força dividida por área refere-se, na linguagem comum, à situações de compressão. Vamos aqui ampliá-lo também para situações de tração e cisalhamento. Vejamos a viga. As tensões de tração, de compressão e cisalhamento variam de seção para seção e, em uma seção, de ponto a ponto. Para facilitar o entendimento, o estudo Serpa dividido em tensões normais (tração e compressão) e tangenciais. Tensões normais de compressão e tração Partindo de um caso simples de uma viga de seção retangular, vamos generalizar para outras seções:

23 Exercício 1: Mecânica dos Sólidos II Seja uma prancha de aço de seção transversal medindo 10 x 30 cm apoiada sobre duas colunas e sujeita a uma carga concentrada de 9,2 tf situada no meio do vão. Por ser pequeno, o peso próprio da viga será desprezado. Como sempre, onde o diagrama de forças cortantes passe por zero (ponto C) o diagrama de momentos fletores alcança um máximo ou mínimo.

24

25

26

27

28 4. A Flexão Obliqua nas Vigas Vigas com eixos de simetria Seja a força F que está aplicada no ponto Z da peça horizontal engastada numa parede. A força F causará uma flexão em um plano que não contém um dos eixos de simetria da viga. Esse tipo de flexão é chamado de flexão oblíqua. Pelo princípio da superposição, a flexão oblíqua pode se decompor em duas flexões normais mais uma carga centrada. Veja:

29

30

31

32

33 5. Flexão assimétrica Quando desenvolvemos a fórmula da flexão, impusemos a condição de que a área da seção transversal fosse simétrica em torno de um eixo perpendicular ao eixo neutro e também que o momento interno resultante M agisse ao longo do eixo neutro. É isso o que ocorre nas seções em T ou em U, mostradas na Figura 5.1. Porém, essas condições são desnecessárias, e, nesta seção, mostraremos que a fórmula da flexão também pode ser aplicada tanto a uma viga com área de seção transversal de qualquer formato, como a uma viga com momento interno resultante que aja em qualquer direção. Figura Momento aplicado ao longo do eixo principal. Considere que a seção transversal da viga tem a forma assimétrica mostrada na Figura 5.2a. O sistema de coordenadas x, y, z orientado para a direita é definido de modo tal que a origem esteja localizada no centroide C da seção transversal e o momento interno resultante M aja ao longo do eixo +z. A distribuição de tensão que age sobre toda a área da seção transversal deve ter força resultante nula, momento interno resultante em torno do eixo y nulo e momento interno resultante em torno do eixo z igual a M. Estas três condições podem ser expressas matematicamente considerando-se a força que age sobre o elemento diferencial da localizado em (O, y, z) (Figura 5.2a). Figura 5.2.

34 Essa força é df = uda e, portanto, temos: Mecânica dos Sólidos II 5.2. Momento aplicado arbitrariamente. Às vezes, um elemento pode ser carregado de tal modo que o momento interno resultante não aja em torno de um dos eixos principais da seção transversal. Quando isso ocorre, em primeiro lugar, o momento deve ser decomposto em componentes dirigidas ao longo dos eixos principais. Figura 5.3 Então, a fórmula da flexão pode ser usada para determinar a tensão normal provocada por cada componente do momento. Por fim, usando o princípio da superposição, a tensão normal resultante no ponto pode ser determinada. Para tal, considere que a viga tenha seção transversal retangular e está sujeita ao momento M (Figura 5.3a). Aqui, M forma um ângulo θ com o eixo principal z. Consideraremos que θ é positivo quando estiver direcionado do eixo + z para o eixo + y, como mostra a figura. Decompondo M em componentes ao longo dos eixos z e y, temos Mz = Mcosθ e My = Msenθ, respectivamente. Cada uma dessas componentes é

35 mostrada separadamente na seção transversal nas figuras 5.3b e 5.3c. As distribuições de tensão normal que produzem M e suas componentes Mz e My são mostradas nas figuras 5.3d, 5.3e e 5.3f, respectivamente. Aqui, consideramos que (σ x )máx > (σ x ')máx. Por inspeção, as tensões de tração e compressão máximas [(σ x )máx + (σ x ')máx) ocorrem em dois cantos opostos da seção transversal (Figura 5.3d). Aplicando a fórmula da flexão a cada componente do momento nas figuras 5.3b e 5.3c, podemos expressar a tensão normal resultante em qualquer ponto na seção transversal (Figura 5.3d), em termos gerais, como Onde: σ = tensão normal no ponto; y, z = coordenadas do ponto medidas em relação aos eixos x, y, z com origem no centróide da área da seção transversal e formando um sistema de coordenadas orientado para a direita. O eixo x é direcionado para fora da seção transversal, e os eixos y e z representam, respectivamente, os eixos principais dos momentos de inércia mínimo e máximo para a área. My, Mz = componentes do momento interno resultante direcionadas ao longo dos eixos principais y e z. São positivos se direcionados ao longo dos eixos +y e +z; caso contrário, são negativos. Ou, em outras palavras, My = Msenθ e Mz = Mcosθ e, onde e é positivo se medido do eixo +z na direção do eixo +y. I y, I z = momentos principais de inércia calculados em torno dos eixos y e z, respectivamente. Como observamos antes, é muito importante que os eixos x, y, z formem um sistema orientado para a direita e que sejam designados os sinais algébricos adequados às componentes do momento e às coordenadas quando aplicamos essa equação. A tensão resultante será de tração se ela for positiva e de compressão se ela for negativa Orientação do eixo neutro O ângulo α do eixo neutro na Figura 5.3d pode ser determinado pela abaixo com α = 0, visto que, por definição, nenhuma tensão normal age no eixo neutro.

36 IMPORTANTE: utilizar um sistema x, y e z orientado pela regra da mão direita. Ângulo sentido do +z para +y até encontrar o M. Ângulo α sentido do +z para +y até encontrar LN. ou seja horário positivo, anti-horário negativo. Exemplo 1 A seção transversal retangular mostrada na figura abaixo está sujeita a um momento fletor M = 12 kn.m. Determine a tensão normal desenvolvida em cada canto da seção.

37 Solução: Mecânica dos Sólidos II

38 Exemplo 2 Uma viga em T está sujeita a um momento fletor de 15 kn.m. Determine a tensão normal máxima na viga.

39

40 6. Vigas compostas Vigas construídas de dois ou mais materiais diferentes são denominadas vigas compostas. A fórmula da flexão foi desenvolvida para vigas de material homogêneo. Entretanto vamos modificar a seção transversal da viga em uma seção feita de um único material e utilizar a fórmula. Método da seção transformada Se um momento for aplicado a essa viga, então, como ocorre a um material homogêneo, a área total da seção transversal permanecerá plana após a flexão, e por conseqüência, as deformações normais variarão linearmente de zero no eixo neutro a máxima no material mais afastado desse eixo.

41 A altura da viga deve permanecer a mesma para preservar a distribuição de deformações. 1 + rígido; 2 rígido - Regra: numerador o material que será substituído! O fator de transformação é uma razão entre os módulos dos diferentes materiais que compõem a viga. Exemplo 1 Uma vez determinada a tensão da seção transformada, ela deve ser multiplicada pelo fator de transformação para obter a tensão na viga verdadeira

42 Uma viga composta é feita de madeira e reforçada com uma tira de aço localizada em sua parte inferior. Ela tem a área de seção transversal mostrada na figura abaixo. Se for submetida a um momento fletor M = 2 kn.m, determine a tensão normal nos pontos B e C. Considere E mad = 12 GPa e E aço = 200 GPa.

43 7. Vigas de concreto armado Todas as vigas sujeitas a flexão pura devem resistir a tensões de tração e compressão. Porém, o concreto é muito suscetível a fratura quando está sob tração, portanto, por si só, não seria adequado para resistir a um momento fletor. A inspeção de seu diagrama tensãodeformação particular revela que o concreto pode ser 12,5 vezes mais resistente sob compressão do que sob tração. Para contornar essa deficiência, os engenheiros colocam hastes de reforço de aço no interior das vigas de concreto no local onde o concreto está sob tração (Figura 7.1a). Figura 7.1 Para maior efetividade, essas hastes são localizadas o mais longe possível do eixo neutro da viga, de modo que o momento criado pelas forças desenvolvidas nas hastes sej a maior em torno do eixo neutro. Por outro lado, também é necessário cobrir as hastes com concreto para protegê-las da corrosão ou da perda de resistência se ocorrer um incêndio. Em situações reais de projeto com concreto armado, a capacidade do concreto de suportar

44 qualquer carga de tração é desprezada, visto que a possível fratura do concreto é imprevisível. O resultado é que se considera que a distribuição da tensão normal que age na área da seção transversal de uma viga de concreto armado é semelhante à mostrada na Figura 7.1b. A análise da tensão requer localizar o eixo neutro e determinar a tensão máxima no aço e no concreto. Para tal em primeiro lugar, a área de aço A aço é transformada, aço em uma área equivalente de concreto usando o fator de transformação n = E aço /E conc. Essa razão, que dá n > 1, de concreto para substituir o aço. A área transformada é na aço, e a seção transformada é semelhante à mostrada na Figura 7.1c. Aqui, d representa a distância entre a parte superior da viga até o aço (transformado), b é a largura da viga e h' é a distância ainda desconhecida entre a parte superior da viga e o eixo neutro. Podemos obter h' usando o fato de que o centroide C da área da seção transversal da seção transformada se encontra no eixo neutro (7.1c). Portanto, com referência ao eixo neutro, o momento das duas áreas, ƩyA, deve ser nulo, visto que y = ƩyA/ƩA = O. Assim, Uma vez obtida h' por essa equação quadrática, a solução prossegue da maneira usual para obter a tensão na viga. Exemplo 1 A viga de concreto armado tem a área de seção transversal como mostra a figura abaixo. Se for submetida a um momento fletor M = 60 kn m, determine a tensão normal em cada uma das hastes de reforço de aço e a tensão normal máxima no concreto. Considere E aço = 200 GPa e E conc = 25 Gpa.

45

46 Referências Bibliográficas: 1. BEER, F.P. e JOHNSTON, JR., E.R. Resistência dos Materiais, 3.º Ed., Makron Books, HIBBELER, R.C. Resistência dos Materiais, 3.º Ed., Editora Livros Técnicos e Científicos, BOTELHO, M.H.C. Resistência dos Materiais: Para entender e gostar. 2º Ed. Blucher, 2013.

PROVAESCRITA CARGO: ENGENHARIA CIVIL I

PROVAESCRITA CARGO: ENGENHARIA CIVIL I MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICA INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO SUL DE MINAS GERAIS CONCURSO PÚBLICO DE DOCENTES DO QUADRO EFETIVO EDITAL

Leia mais

Terceira Lista de Exercícios

Terceira Lista de Exercícios Universidade Católica de Petrópolis Disciplina: Resitência dos Materiais I Prof.: Paulo César Ferreira Terceira Lista de Exercícios 1. Calcular o diâmetro de uma barra de aço sujeita a ação de uma carga

Leia mais

Resistência dos Materiais

Resistência dos Materiais Aula 5 Carga Axial e Princípio de Saint-Venant Carga Axial A tubulação de perfuração de petróleo suspensa no guindaste da perfuratriz está submetida a cargas e deformações axiais extremamente grandes,

Leia mais

Introdução A tensão plana existe praticamente em todas as estruturas comuns, incluindo prédios máquinas, veículos e aeronaves.

Introdução A tensão plana existe praticamente em todas as estruturas comuns, incluindo prédios máquinas, veículos e aeronaves. - UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Vasos de Pressão Introdução

Leia mais

Flambagem de Colunas Introdução

Flambagem de Colunas Introdução - UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Flambagem de Colunas Introdução Os sistemas

Leia mais

Forças internas. Objetivos da aula: Mostrar como usar o método de seções para determinar as cargas internas em um membro.

Forças internas. Objetivos da aula: Mostrar como usar o método de seções para determinar as cargas internas em um membro. Forças internas Objetivos da aula: Mostrar como usar o método de seções para determinar as cargas internas em um membro. Generalizar esse procedimento formulando equações que podem ser representadas de

Leia mais

Esforços axiais e tensões normais

Esforços axiais e tensões normais Esforços axiais e tensões normais (Ref.: Beer & Johnston, Resistência dos Materiais, ª ed., Makron) Considere a estrutura abaixo, construída em barras de aço AB e BC, unidas por ligações articuladas nas

Leia mais

E Flexão Pura. Σ F y = 0 Q = q (x) dx + (Q + dq)

E Flexão Pura. Σ F y = 0 Q = q (x) dx + (Q + dq) Cap. 5.0 FLEXAO PURA E Flexão Pura 5.1 INTRODUÇÃO As peças longas, quando sumetidas à flexão, apresentam tensões normais elevadas (por exemplo, para se querar um lápis, com as mãos, jamais se cogitaria

Leia mais

Lista de exercícios sobre barras submetidas a força normal

Lista de exercícios sobre barras submetidas a força normal RESISTÊNCIA DOS MATERIAIS I Lista de exercícios sobre barras submetidas a força normal 1) O cabo e a barra formam a estrutura ABC (ver a figura), que suporta uma carga vertical P= 12 kn. O cabo tem a área

Leia mais

Capítulo 6 Transformação de tensões e critérios de falhas

Capítulo 6 Transformação de tensões e critérios de falhas Capítulo 6 Transformação de tensões e critérios de falhas 6.1 Tensões principais no plano- O estado geral de tensão em um ponto é caracterizado por seis componentes independentes da tensão normal e de

Leia mais

CISALHAMENTO EM VIGAS CAPÍTULO 13 CISALHAMENTO EM VIGAS

CISALHAMENTO EM VIGAS CAPÍTULO 13 CISALHAMENTO EM VIGAS CISALHAMENTO EM VIGAS CAPÍTULO 13 Libânio M. Pinheiro, Cassiane D. Muzardo, Sandro P. Santos 25 ago 2010 CISALHAMENTO EM VIGAS Nas vigas, em geral, as solicitações predominantes são o momento fletor e

Leia mais

TECNOLOGIA MECÂNICA. Aula 04. Carregamento Axial Tensão Normal

TECNOLOGIA MECÂNICA. Aula 04. Carregamento Axial Tensão Normal FACULDADE DE TECNOLOGIA SHUNJI NISHIMURA POMPÉIA TECNOLOGIA MECÂNICA Aula 04 Carregamento Axial Tensão Normal Prof. Me. Dario de Almeida Jané Mecânica dos Sólidos - Revisão do conceito de Tensão - Carregamento

Leia mais

UNIDADE 2 DIMENSIONAMENTO DE ESTRUTURAS DE CONCRETO ARMADO

UNIDADE 2 DIMENSIONAMENTO DE ESTRUTURAS DE CONCRETO ARMADO Universidade Federal de Pelotas Centro de Engenharias Curso de Engenharia Civil e Engenharia Agrícola UNIDADE 2 DIMENSIONAMENTO DE ESTRUTURAS DE CONCRETO ARMADO (AULA 3 HIPÓTESES DE CÁLCULO) Prof. Estela

Leia mais

5ª LISTA DE EXERCÍCIOS PROBLEMAS ENVOLVENDO FLEXÃO

5ª LISTA DE EXERCÍCIOS PROBLEMAS ENVOLVENDO FLEXÃO Universidade Federal da Bahia Escola Politécnica Departamento de Construção e Estruturas Professor: Armando Sá Ribeiro Jr. Disciplina: ENG285 - Resistência dos Materiais I-A www.resmat.ufba.br 5ª LISTA

Leia mais

140 Nm 140 Nm 25. Linha Neutra

140 Nm 140 Nm 25. Linha Neutra Engenharia ecânica LISTA 2 1)Uma barra de aço tem seção retangular de x60 mm e fica submetida à ação de dois conjugados iguais e de sentido contrário que agem em um plano vertical de simetria da barra,

Leia mais

Óptica Geométrica. Universidade do Estado do Rio Grande do Norte. Dr. Edalmy Oliveira de Almeida

Óptica Geométrica. Universidade do Estado do Rio Grande do Norte. Dr. Edalmy Oliveira de Almeida Universidade do Estado do Rio Grande do Norte Rua Almino Afonso, 478 - Centro Mossoró / RN CEP: 59.610-210 www.uern.br email: reitoria@uern.br ou Fone: (84) 3315-2145 3342-4802 Óptica Geométrica Dr. Edalmy

Leia mais

Conceito de Tensão. Índice

Conceito de Tensão. Índice Conceito de Tensão Índice Breve Revisão dos Métodos da Estática 1 Tensões em Elementos Estruturais 2 nálise e Dimensionamento 3 Esforço xial; Tensão Normal 4 rincípio de Saint-Venant 5 Tensão Tangencial

Leia mais

Resistência. dos Materiais II

Resistência. dos Materiais II Resistência Prof. MSc Eng Halley Dias dos Materiais II Material elaborado pelo Prof. MSc Eng Halley Dias Instituto Federal de Educação Ciência e Tecnologia de Santa Catarina Aplicado ao Curso Técnico de

Leia mais

CAPÍTULO IX CISALHAMENTO CONVENCIONAL

CAPÍTULO IX CISALHAMENTO CONVENCIONAL I. ASECTOS GERAIS CAÍTULO IX CISALHAMENTO CONVENCIONAL O cisalhamento convencional é adotado em casos especiais, que é a ligação de peças de espessura pequena. Considera-se inicialmente um sistema formado

Leia mais

FLAMBAGEM DE BARRAS UNIVERSIDADE ESTADUAL DE CAMPINAS PROF DR. NILSON TADEU MASCIA

FLAMBAGEM DE BARRAS UNIVERSIDADE ESTADUAL DE CAMPINAS PROF DR. NILSON TADEU MASCIA 1 UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA CIVIL,ARQUITETURA E URBANISMO Departamento de Estruturas FLAMBAGEM DE BARRAS PROF DR. NILSON TADEU MASCIA JUNHO DE 006 1 - Introdução...3 - Conceito

Leia mais

Consolos Curtos Notas de aula Parte 1

Consolos Curtos Notas de aula Parte 1 Prof. Eduardo C. S. Thomaz 1 / 13 CONSOLOS CURTOS 1-SUMÁRIO Um consolo curto geralmente é definido geometricamente como sendo uma viga em balanço na qual a relação entre o comprimento ( a ) e a altura

Leia mais

2.0 DEFORMAÇÃO POR TORÇÃO DE UM EIXO CIRCULAR

2.0 DEFORMAÇÃO POR TORÇÃO DE UM EIXO CIRCULAR TORÇÃO 1.0 OBJETIVO No estudo da torção serão discutidos os efeitos da aplicação de esforços torcionais em um elemento linear longo, tal como um eixo ou um tubo. Será considerado que o elemento tenha seção

Leia mais

ELEMENTOS DE MÁQUINAS I

ELEMENTOS DE MÁQUINAS I UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA MECÂNICA ELEMENTOS DE MÁQUINAS I APOSTILA PARA O CURSO 2 o Semestre de 2001 Molas Helicoidais e Planas AUTOR: P ROF. DR. AUTELIANO A NTUNES DOS

Leia mais

UNIVERSIDADE DE MARÍLIA

UNIVERSIDADE DE MARÍLIA UNIVERSIDADE DE MARÍLIA Faculdade de Engenharia, Arquitetura e Tecnologia SISTEMAS ESTRUTURAIS (NOTAS DE AULA) Professor Dr. Lívio Túlio Baraldi MARILIA, 2007 1. DEFINIÇÕES FUNDAMENTAIS Força: alguma causa

Leia mais

Bacharelado Engenharia Civil

Bacharelado Engenharia Civil Bacharelado Engenharia Civil Disciplina: Física Geral e Experimental I Força e Movimento- Leis de Newton Prof.a: Msd. Érica Muniz Forças são as causas das modificações no movimento. Seu conhecimento permite

Leia mais

DINÂMICA DO PONTO MATERIAL

DINÂMICA DO PONTO MATERIAL DINÂMICA DO PONTO MATERIAL 1.0 Conceitos Forças se comportam como vetores. Forças de Contato: Representam o resultado do contato físico entre dois corpos. Forças de Campo: Representam as forças que agem

Leia mais

e-mail: ederaldoazevedo@yahoo.com.br

e-mail: ederaldoazevedo@yahoo.com.br Centro de Ensino Superior do Amapá-CEAP Curso: Arquitetura e Urbanismo Assunto: Cálculo de Pilares Prof. Ederaldo Azevedo Aula 4 e-mail: ederaldoazevedo@yahoo.com.br Centro de Ensino Superior do Amapá-CEAP

Leia mais

Curso de Engenharia Civil. Universidade Estadual de Maringá Centro de Tecnologia Departamento de Engenharia Civil CAPÍTULO 6: TORÇÃO

Curso de Engenharia Civil. Universidade Estadual de Maringá Centro de Tecnologia Departamento de Engenharia Civil CAPÍTULO 6: TORÇÃO Curso de Engenharia Civil Universidade Estadual de Maringá Centro de ecnologia Departamento de Engenharia Civil CPÍULO 6: ORÇÃO Revisão de Momento orçor Convenção de Sinais: : Revisão de Momento orçor

Leia mais

VIGAS E LAJES DE CONCRETO ARMADO

VIGAS E LAJES DE CONCRETO ARMADO UNIVERSIDADE ESTADUAL PAULISTA UNESP - Campus de Bauru/SP FACULDADE DE ENGENHARIA Departamento de Engenharia Civil Curso: Arquitetura e Urbanismo Disciplina: 6033 - SISTEMAS ESTRUTURAIS I Notas de Aula

Leia mais

3.4 Movimento ao longo de uma curva no espaço (terça parte)

3.4 Movimento ao longo de uma curva no espaço (terça parte) 3.4-41 3.4 Movimento ao longo de uma curva no espaço (terça parte) Antes de começar com a nova matéria, vamos considerar um problema sobre o material recentemente visto. Problema: (Projeção de uma trajetória

Leia mais

4Distribuição de. freqüência

4Distribuição de. freqüência 4Distribuição de freqüência O objetivo desta Unidade é partir dos dados brutos, isto é, desorganizados, para uma apresentação formal. Nesse percurso, seção 1, destacaremos a diferença entre tabela primitiva

Leia mais

OTIMIZAÇÃO DE VIGAS CONSIDERANDO ESTADOS LIMITES ÚLTIMOS, DE UTILIZAÇÃO E DISPOSIÇÕES CONSTRUTIVAS

OTIMIZAÇÃO DE VIGAS CONSIDERANDO ESTADOS LIMITES ÚLTIMOS, DE UTILIZAÇÃO E DISPOSIÇÕES CONSTRUTIVAS OTIMIZAÇÃO DE VIGAS CONSIDERANDO ESTADOS LIMITES ÚLTIMOS, DE UTILIZAÇÃO E DISPOSIÇÕES CONSTRUTIVAS Eng. Civil Leonardo Roncetti da Silva, TECHCON Engenharia e Consultoria Ltda. Resumo Estuda-se a otimização

Leia mais

Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Engenharia Civil. Mecânica Vetorial ENG01035

Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Engenharia Civil. Mecânica Vetorial ENG01035 Universidade Federal do Rio Grande do Sul Escola de Engenharia Departamento de Engenharia Civil EXERCÍCIOS D 2 a. ÁRE Mecânica Vetorial ENG035 LIST DE PROLEMS DE PROV CENTRO DE GRVIDDE 1) peça representada

Leia mais

Potenciação no Conjunto dos Números Inteiros - Z

Potenciação no Conjunto dos Números Inteiros - Z Rua Oto de Alencar nº 5-9, Maracanã/RJ - tel. 04-98/4-98 Potenciação no Conjunto dos Números Inteiros - Z Podemos epressar o produto de quatro fatores iguais a.... por meio de uma potência de base e epoente

Leia mais

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 6. O trabalho feito pela força para deslocar o corpo de a para b é dado por: = =

IBM1018 Física Básica II FFCLRP USP Prof. Antônio Roque Aula 6. O trabalho feito pela força para deslocar o corpo de a para b é dado por: = = Energia Potencial Elétrica Física I revisitada 1 Seja um corpo de massa m que se move em linha reta sob ação de uma força F que atua ao longo da linha. O trabalho feito pela força para deslocar o corpo

Leia mais

LISTA DE EXERCÍCIOS CAMPO MAGNÉTICO

LISTA DE EXERCÍCIOS CAMPO MAGNÉTICO 1. (Fuvest 96) A figura esquematiza um ímã permanente, em forma de cruz de pequena espessura, e oito pequenas bússolas, colocadas sobre uma mesa. As letras N e S representam, respectivamente, pólos norte

Leia mais

Aula 17 GRANDEZAS ESCALARES E VETORIAIS. META Apresentar as grandezas vetoriais e seu signifi cado

Aula 17 GRANDEZAS ESCALARES E VETORIAIS. META Apresentar as grandezas vetoriais e seu signifi cado GRANDEZAS ESCALARES E VETORIAIS META Apresentar as grandezas vetoriais e seu signifi cado OBJETIVOS Ao fi nal desta aula, o aluno deverá: Diferenciar grandezas escalares e vetoriais; compreender a notação

Leia mais

Cap. 7 - Fontes de Campo Magnético

Cap. 7 - Fontes de Campo Magnético Universidade Federal do Rio de Janeiro Instituto de Física Física III 2014/2 Cap. 7 - Fontes de Campo Magnético Prof. Elvis Soares Nesse capítulo, exploramos a origem do campo magnético - cargas em movimento.

Leia mais

Texto 07 - Sistemas de Partículas. A figura ao lado mostra uma bola lançada por um malabarista, descrevendo uma trajetória parabólica.

Texto 07 - Sistemas de Partículas. A figura ao lado mostra uma bola lançada por um malabarista, descrevendo uma trajetória parabólica. Texto 07 - Sistemas de Partículas Um ponto especial A figura ao lado mostra uma bola lançada por um malabarista, descrevendo uma trajetória parabólica. Porém objetos que apresentam uma geometria, diferenciada,

Leia mais

3) Uma mola de constante elástica k = 400 N/m é comprimida de 5 cm. Determinar a sua energia potencial elástica.

3) Uma mola de constante elástica k = 400 N/m é comprimida de 5 cm. Determinar a sua energia potencial elástica. Lista para a Terceira U.L. Trabalho e Energia 1) Um corpo de massa 4 kg encontra-se a uma altura de 16 m do solo. Admitindo o solo como nível de referência e supondo g = 10 m/s 2, calcular sua energia

Leia mais

Fig. 4.2 - Exemplos de aumento de aderência decorrente de compressão transversal

Fig. 4.2 - Exemplos de aumento de aderência decorrente de compressão transversal aderência - 1 4. Aderência, ancoragem e emenda por traspasse 4.1. Aderência A solidariedade da barra de armadura com o concreto circundante, que impede o escorregamento relativo entre os dois materiais,

Leia mais

Empurra e puxa. Domingo, Gaspar reúne a família para uma. A força é um vetor

Empurra e puxa. Domingo, Gaspar reúne a família para uma. A força é um vetor A U A UL LA Empurra e puxa Domingo, Gaspar reúne a família para uma voltinha de carro. Ele senta ao volante e dá a partida. Nada. Tenta outra vez e nada consegue. Diz então para todos: O carro não quer

Leia mais

Propriedades Mecânicas. Prof. Hamilton M. Viana

Propriedades Mecânicas. Prof. Hamilton M. Viana Propriedades Mecânicas Prof. Hamilton M. Viana Propriedades Mecânicas Propriedades Mecânicas Definem a resposta do material à aplicação de forças (solicitação mecânica). Força (tensão) Deformação Principais

Leia mais

FONTES DE CAMPO MAGNÉTICO. Caracterizar e mostrar o campo magnético produzido por uma carga a velocidade constante.

FONTES DE CAMPO MAGNÉTICO. Caracterizar e mostrar o campo magnético produzido por uma carga a velocidade constante. FONTES DE CAMPO MAGNÉTICO META Aula 8 Caracterizar e mostrar o campo magnético produzido por uma carga a velocidade constante. Mostrar a lei da circulação de Ampère-Laplace e a lei de Biot-Savart. Estudar

Leia mais

Capítulo 5: Aplicações da Derivada

Capítulo 5: Aplicações da Derivada Instituto de Ciências Exatas - Departamento de Matemática Cálculo I Profª Maria Julieta Ventura Carvalho de Araujo Capítulo 5: Aplicações da Derivada 5- Acréscimos e Diferenciais - Acréscimos Seja y f

Leia mais

Tensão de Cisalhamento

Tensão de Cisalhamento - UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Tensão de Cisalhamento

Leia mais

Facear Concreto Estrutural I

Facear Concreto Estrutural I 1. ASSUNTOS DA AULA a) Concreto: Definição e requisitos de norma b) Concreto: Massa específica, resistência a compressão, resistência a tração e módulo de elasticidade c) Coeficiente de Poisson d) Diagrama

Leia mais

Módulo 6 Pilares: Estados Limites Últimos Detalhamento Exemplo. Imperfeições Geométricas Globais. Imperfeições Geométricas Locais

Módulo 6 Pilares: Estados Limites Últimos Detalhamento Exemplo. Imperfeições Geométricas Globais. Imperfeições Geométricas Locais NBR 68 : Estados Limites Últimos Detalhamento Exemplo P R O O Ç Ã O Conteúdo Cargas e Ações Imperfeições Geométricas Globais Imperfeições Geométricas Locais Definições ELU Solicitações Normais Situações

Leia mais

9. Derivadas de ordem superior

9. Derivadas de ordem superior 9. Derivadas de ordem superior Se uma função f for derivável, então f é chamada a derivada primeira de f (ou de ordem 1). Se a derivada de f eistir, então ela será chamada derivada segunda de f (ou de

Leia mais

Os conceitos mais básicos dessa matéria são: Deslocamento: Consiste na distância entre dados dois pontos percorrida por um corpo.

Os conceitos mais básicos dessa matéria são: Deslocamento: Consiste na distância entre dados dois pontos percorrida por um corpo. Os conceitos mais básicos dessa matéria são: Cinemática Básica: Deslocamento: Consiste na distância entre dados dois pontos percorrida por um corpo. Velocidade: Consiste na taxa de variação dessa distância

Leia mais

CORPOS RÍGIDOS: As forças que actuam num corpo rígido podem ser divididas em dois grupos:

CORPOS RÍGIDOS: As forças que actuam num corpo rígido podem ser divididas em dois grupos: CORPOS RÍGIDOS: As forças que actuam num corpo rígido podem ser divididas em dois grupos: 1. Forças externas (que representam as acções externas sobre o corpo rígido) 2. Forças internas (que representam

Leia mais

Universidade Federal de Pelotas Centro de Engenharias. Resistência dos Materiais I Estruturas II. Capítulo 5 Torção

Universidade Federal de Pelotas Centro de Engenharias. Resistência dos Materiais I Estruturas II. Capítulo 5 Torção Capítulo 5 Torção 5.1 Deformação por torção de um eixo circular Torque é um momento que tende a torcer um elemento em torno de seu eixo longitudinal. Se o ângulo de rotação for pequeno, o comprimento e

Leia mais

SOLDAGEM DOS METAIS CAPÍTULO 11 TENSÕES E DEFORMAÇÕES EM SOLDAGEM

SOLDAGEM DOS METAIS CAPÍTULO 11 TENSÕES E DEFORMAÇÕES EM SOLDAGEM 82 CAPÍTULO 11 TENSÕES E DEFORMAÇÕES EM SOLDAGEM 83 TENSÕES E DEFORMAÇÕES EM SOLDAGEM Nas operações de soldagem, principalmente as que envolvem a fusão dos materiais, temos uma variação não uniforme e

Leia mais

A UTILIZAÇÃO DA ANALOGIA DE GRELHA PARA ANÁLISE DE PAVIMENTOS DE EDIFÍCIOS EM CONCRETO ARMADO

A UTILIZAÇÃO DA ANALOGIA DE GRELHA PARA ANÁLISE DE PAVIMENTOS DE EDIFÍCIOS EM CONCRETO ARMADO A UTILIZAÇÃO DA ANALOGIA DE GRELHA PARA ANÁLISE DE PAVIMENTOS DE EDIFÍCIOS EM CONCRETO ARMADO Marcos Alberto Ferreira da Silva (1) ; Jasson Rodrigues de Figueiredo Filho () ; Roberto Chust Carvalho ()

Leia mais

Análise de Arredondamento em Ponto Flutuante

Análise de Arredondamento em Ponto Flutuante Capítulo 2 Análise de Arredondamento em Ponto Flutuante 2.1 Introdução Neste capítulo, chamamos atenção para o fato de que o conjunto dos números representáveis em qualquer máquina é finito, e portanto

Leia mais

Força Magnética (Força de Lorentz) sobre Carga Lançada em Campo Magnético

Força Magnética (Força de Lorentz) sobre Carga Lançada em Campo Magnético PROESSOR Edney Melo ALUNO(A): Nº TURMA: TURNO: DATA: / / COLÉGIO: orça Magnética (orça de Lorentz) sobre Carga Lançada em Campo Magnético magnética, a força magnética tem o sentido de um tapa dado com

Leia mais

CAPÍTULO V CISALHAMENTO CONVENCIONAL

CAPÍTULO V CISALHAMENTO CONVENCIONAL 1 I. ASPECTOS GERAIS CAPÍTULO V CISALHAMENTO CONVENCIONAL Conforme já foi visto, a tensão representa o efeito de um esforço sobre uma área. Até aqui tratamos de peças submetidas a esforços normais a seção

Leia mais

Dinâmica de um Sistema de Partículas Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU

Dinâmica de um Sistema de Partículas Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Dinâmica de um Sistema de Partículas Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Profa. Dra. Diana Andrade & Prof. Dr. Sergio Pilling Parte 1 - Movimento Retilíneo Coordenada de posição, trajetória,

Leia mais

Universidade Federal de Pelotas Centro de Engenharias. Resistência dos Materiais II Estruturas III. Capítulo 2 Torção

Universidade Federal de Pelotas Centro de Engenharias. Resistência dos Materiais II Estruturas III. Capítulo 2 Torção Capítulo 2 Torção 2.1 Revisão Torque é um momento que tende a torcer um elemento em torno de seu eixo longitudinal. Se o ângulo de rotação for pequeno, o comprimento e o raio do eixo permanecerão inalterados.

Leia mais

Facear Concreto Estrutural I

Facear Concreto Estrutural I 1. ASSUNTOS DA AULA Durabilidade das estruturas, estádios e domínios. 2. CONCEITOS As estruturas de concreto devem ser projetadas e construídas de modo que, quando utilizadas conforme as condições ambientais

Leia mais

V = 0,30. 0,20. 0,50 (m 3 ) = 0,030m 3. b) A pressão exercida pelo bloco sobre a superfície da mesa é dada por: P 75. 10 p = = (N/m 2 ) A 0,20.

V = 0,30. 0,20. 0,50 (m 3 ) = 0,030m 3. b) A pressão exercida pelo bloco sobre a superfície da mesa é dada por: P 75. 10 p = = (N/m 2 ) A 0,20. 11 FÍSICA Um bloco de granito com formato de um paralelepípedo retângulo, com altura de 30 cm e base de 20 cm de largura por 50 cm de comprimento, encontra-se em repouso sobre uma superfície plana horizontal.

Leia mais

TIPO-A FÍSICA. x v média. t t. x x

TIPO-A FÍSICA. x v média. t t. x x 12 FÍSICA Aceleração da gravidade, g = 10 m/s 2 Constante gravitacional, G = 7 x 10-11 N.m 2 /kg 2 Massa da Terra, M = 6 x 10 24 kg Velocidade da luz no vácuo, c = 300.000 km/s 01. Em 2013, os experimentos

Leia mais

Primeira lista de física para o segundo ano 1)

Primeira lista de física para o segundo ano 1) Primeira lista de física para o segundo ano 1) Dois espelhos planos verticais formam um ângulo de 120º, conforme a figura. Um observador está no ponto A. Quantas imagens de si mesmo ele verá? a) 4 b) 2

Leia mais

Capítulo 8 Dimensionamento de vigas

Capítulo 8 Dimensionamento de vigas Capítulo 8 Dimensionamento de vigas 8.1 Vigas prismáticas Nossa principal discussão será a de projetar vigas. Como escolher o material e as dimensões da seção transversal de uma dada viga, de modo que

Leia mais

Quais são os critérios adotados pelo programa para o cálculo dos blocos de fundação?

Quais são os critérios adotados pelo programa para o cálculo dos blocos de fundação? Assunto Quais são os critérios adotados pelo programa para o cálculo dos blocos de fundação? Artigo Segundo a NBR 6118, em seu item 22.5.1, blocos de fundação são elementos de volume através dos quais

Leia mais

Força Magnética. www.soexatas.com Página 1

Força Magnética. www.soexatas.com Página 1 Força Magnética 1. (Fuvest 2014) Partículas com carga elétrica positiva penetram em uma câmara em vácuo, onde há, em todo seu interior, um campo elétrico de módulo E e um campo magnético de módulo B, ambos

Leia mais

Hoje estou elétrico!

Hoje estou elétrico! A U A UL LA Hoje estou elétrico! Ernesto, observado por Roberto, tinha acabado de construir um vetor com um pedaço de papel, um fio de meia, um canudo e um pedacinho de folha de alumínio. Enquanto testava

Leia mais

TC 1 UECE 2012 FASE 2. PROF.: Célio Normando

TC 1 UECE 2012 FASE 2. PROF.: Célio Normando TC 1 UECE 01 FASE PROF.: Célio Normando Conteúdo: Aritmética Ordem de Grandeza 1. Racionalizar o uso da água significa usá-la sem desperdício e considerá-la uma prioridade social e ambiental, para que

Leia mais

ESTRUTURAS METÁLICAS UFPR CAPÍTULO 5 FLEXÃO SIMPLES

ESTRUTURAS METÁLICAS UFPR CAPÍTULO 5 FLEXÃO SIMPLES ESTRUTURAS METÁLICAS UFPR CAPÍTULO 5 FLEXÃO SIMPLES 1 INDICE CAPÍTULO 5 DIMENSIONAMENTO BARRAS PRISMÁTICAS À FLEXÃO... 1 1 INTRODUÇÃO... 1 2 CONCEITOS GERAIS... 1 2.1 Comportamento da seção transversal

Leia mais

CINEMÁTICA VETORIAL. Observe a trajetória a seguir com origem O.Pode-se considerar P a posição de certo ponto material, em um instante t.

CINEMÁTICA VETORIAL. Observe a trajetória a seguir com origem O.Pode-se considerar P a posição de certo ponto material, em um instante t. CINEMÁTICA VETORIAL Na cinemática escalar, estudamos a descrição de um movimento através de grandezas escalares. Agora, veremos como obter e correlacionar as grandezas vetoriais descritivas de um movimento,

Leia mais

PUCGoiás Física I. Lilian R. Rios. Rotação

PUCGoiás Física I. Lilian R. Rios. Rotação PUCGoiás Física I Lilian R. Rios Rotação O movimento de um cd, de um ventilador de teto, de uma roda gigante, entre outros, não podem ser representados como o movimento de um ponto cada um deles envolve

Leia mais

Nivelamento Desenho Técnico

Nivelamento Desenho Técnico Módulo: Nivelamento Desenho Técnico Natanael Gomes da Costa Júnior Curso: FTST - FORMAÇÃO TÉCNICA EM SEGURANÇA DO TRABALHO MÓDULO DE NIVELAMENTO DESENHO TÉCNICO Sumário Sumário...2 Competências a serem

Leia mais

Faculdade Sagrada Família

Faculdade Sagrada Família AULA 12 - AJUSTAMENTO DE CURVAS E O MÉTODO DOS MÍNIMOS QUADRADOS Ajustamento de Curvas Sempre que desejamos estudar determinada variável em função de outra, fazemos uma análise de regressão. Podemos dizer

Leia mais

Universidade Federal de Pelotas Centro de Engenharias. Resistência dos Materiais II Estruturas III. Capítulo 5 Flambagem

Universidade Federal de Pelotas Centro de Engenharias. Resistência dos Materiais II Estruturas III. Capítulo 5 Flambagem Capítulo 5 Flambagem 5.1 Experiências para entender a flambagem 1) Pegue uma régua escolar de plástico e pressione-a entre dois pontos bem próximos, um a cinco centímetros do outro. Você está simulando

Leia mais

Ensaio de torção. Diz o ditado popular: É de pequenino que

Ensaio de torção. Diz o ditado popular: É de pequenino que A UU L AL A Ensaio de torção Diz o ditado popular: É de pequenino que se torce o pepino! E quanto aos metais e outros materiais tão usados no nosso dia-a-dia: o que dizer sobre seu comportamento quando

Leia mais

Experimento 3 # Professor: Data: / / Nome: RA:

Experimento 3 # Professor: Data: / / Nome: RA: BC-0209 Fenômenos Eletromagnéticos Experimento 3 # Campo Magnético de Correntes Elétricas Professor: Data: / / Introdução e Objetivos Relatos históricos indicam que a bússola já era um instrumento utilizado

Leia mais

CAPÍTULO II INTRODUÇÃO À MECÂNICA DOS SÓLIDOS EQUILÍBRIO EXTERNO I. OBJETIVO PRINCIPAL DA MECÂNICA DOS SÓLIDOS

CAPÍTULO II INTRODUÇÃO À MECÂNICA DOS SÓLIDOS EQUILÍBRIO EXTERNO I. OBJETIVO PRINCIPAL DA MECÂNICA DOS SÓLIDOS 1 CAPÍTULO II INTRODUÇÃO À MECÂNICA DOS SÓLIDOS EQUILÍBRIO EXTERNO I. OBJETIVO PRINCIPAL DA MECÂNICA DOS SÓLIDOS O principal objetivo de um curso de mecânica dos sólidos é o desenvolvimento de relações

Leia mais

Projeção Perspectiva. Desenho Técnico I Profº Msc. Edgar Nogueira Demarqui

Projeção Perspectiva. Desenho Técnico I Profº Msc. Edgar Nogueira Demarqui Projeção Perspectiva Desenho Técnico I Profº Msc. Edgar Nogueira Demarqui Definição Quando olhamos para um objeto, temos a sensação de profundidade e relevo; O desenho, para transmitir essa mesma idéia,

Leia mais

Exercícios de Física Eletromagnetismo

Exercícios de Física Eletromagnetismo Exercícios de Física Eletromagnetismo 1-Considerando as propriedades dos ímãs, assinale a alternativa correta. a) Quando temos dois ímãs, podemos afirmar que seus pólos magnéticos de mesmo nome (norte

Leia mais

Exercícios de Física Eletromagnetismo

Exercícios de Física Eletromagnetismo Exercícios de Física Eletromagnetismo 1-Considerando as propriedades dos ímãs, assinale a alternativa correta. a) Quando temos dois ímãs, podemos afirmar que seus pólos magnéticos de mesmo nome (norte

Leia mais

Exercícios Eletromagnetismo

Exercícios Eletromagnetismo Exercícios Eletromagnetismo 1-Considerando as propriedades dos ímãs, assinale a alternativa correta. a) Quando temos dois ímãs, podemos afirmar que seus pólos magnéticos de mesmo nome (norte e norte, ou

Leia mais

Trabalho Mecânico. A força F 2 varia de acordo com o gráfico a seguir: Dados sem 30º = cos = 60º = 1/2

Trabalho Mecânico. A força F 2 varia de acordo com o gráfico a seguir: Dados sem 30º = cos = 60º = 1/2 Trabalho Mecânico 1. (G1 - ifce 2012) Uma pessoa sobe um lance de escada, com velocidade constante, em 1,0 min. Se a mesma pessoa subisse o mesmo lance, também com velocidade constante em 2,0 min, ela

Leia mais

EXERCÍCIOS DE ESTRUTURAS DE MADEIRA

EXERCÍCIOS DE ESTRUTURAS DE MADEIRA UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA CIVIL,ARQUITETURA E URBANISMO Departamento de Estruturas EXERCÍCIOS DE ESTRUTURAS DE MADEIRA RAFAEL SIGRIST PONTES MARTINS,BRUNO FAZENDEIRO DONADON

Leia mais

1 Propagação de Onda Livre ao Longo de um Guia de Ondas Estreito.

1 Propagação de Onda Livre ao Longo de um Guia de Ondas Estreito. 1 I-projeto do campus Programa Sobre Mecânica dos Fluidos Módulos Sobre Ondas em Fluidos T. R. Akylas & C. C. Mei CAPÍTULO SEIS ONDAS DISPERSIVAS FORÇADAS AO LONGO DE UM CANAL ESTREITO As ondas de gravidade

Leia mais

INSTITUTO TECNOLÓGICO

INSTITUTO TECNOLÓGICO PAC - PROGRAMA DE APRIMORAMENTO DE CONTEÚDOS. ATIVIDADES DE NIVELAMENTO BÁSICO. DISCIPLINAS: MATEMÁTICA & ESTATÍSTICA. PROFº.: PROF. DR. AUSTER RUZANTE 1ª SEMANA DE ATIVIDADES DOS CURSOS DE TECNOLOGIA

Leia mais

Resolução Vamos, inicialmente, calcular a aceleração escalar γ. Da figura dada tiramos: para t 0

Resolução Vamos, inicialmente, calcular a aceleração escalar γ. Da figura dada tiramos: para t 0 46 a FÍSICA Um automóvel desloca-se a partir do repouso num trecho retilíneo de uma estrada. A aceleração do veículo é constante e algumas posições por ele assumidas, bem como os respectivos instantes,

Leia mais

Curvas em coordenadas polares

Curvas em coordenadas polares 1 Curvas em coordenadas polares As coordenadas polares nos dão uma maneira alternativa de localizar pontos no plano e são especialmente adequadas para expressar certas situações, como veremos a seguir.

Leia mais

APOSTILA TECNOLOGIA MECANICA

APOSTILA TECNOLOGIA MECANICA FACULDADE DE TECNOLOGIA DE POMPEIA CURSO TECNOLOGIA EM MECANIZAÇÃO EM AGRICULTURA DE PRECISÃO APOSTILA TECNOLOGIA MECANICA Autor: Carlos Safreire Daniel Ramos Leandro Ferneta Lorival Panuto Patrícia de

Leia mais

1. Definição dos Elementos Estruturais

1. Definição dos Elementos Estruturais A Engenharia e a Arquitetura não devem ser vistas como duas profissões distintas, separadas, independentes uma da outra. Na verdade elas devem trabalhar como uma coisa única. Um Sistema Estrutural definido

Leia mais

FÍSICA. Professor Felippe Maciel Grupo ALUB

FÍSICA. Professor Felippe Maciel Grupo ALUB Revisão para o PSC (UFAM) 2ª Etapa Nas questões em que for necessário, adote a conversão: 1 cal = 4,2 J Questão 1 Noções de Ondulatória. (PSC 2011) Ondas ultra-sônicas são usadas para vários propósitos

Leia mais

UNESP DESENHO TÉCNICO: Fundamentos Teóricos e Introdução ao CAD. Parte 3/5: Prof. Víctor O. Gamarra Rosado

UNESP DESENHO TÉCNICO: Fundamentos Teóricos e Introdução ao CAD. Parte 3/5: Prof. Víctor O. Gamarra Rosado UNESP UNIVERSIDADE ESTADUAL PAULISTA FACULDADE DE ENGENHARIA CAMPUS DE GUARATINGUETÁ DESENHO TÉCNICO: Fundamentos Teóricos e Introdução ao CAD Parte 3/5: 8. Projeções ortogonais 9. Terceira Vista 10. Tipos

Leia mais

Introdução ao Estudo da Corrente Eléctrica

Introdução ao Estudo da Corrente Eléctrica Introdução ao Estudo da Corrente Eléctrica Num metal os electrões de condução estão dissociados dos seus átomos de origem passando a ser partilhados por todos os iões positivos do sólido, e constituem

Leia mais

Disciplina: Resistência dos Materiais Unidade I - Tensão. Professor: Marcelino Vieira Lopes, Me.Eng. http://profmarcelino.webnode.

Disciplina: Resistência dos Materiais Unidade I - Tensão. Professor: Marcelino Vieira Lopes, Me.Eng. http://profmarcelino.webnode. Disciplina: Resistência dos Materiais Unidade I - Tensão Professor: Marcelino Vieira Lopes, Me.Eng. http://profmarcelino.webnode.com/blog/ Referência Bibliográfica Hibbeler, R. C. Resistência de materiais.

Leia mais

POTENCIAL ELÉTRICO. por unidade de carga

POTENCIAL ELÉTRICO. por unidade de carga POTENCIAL ELÉTRICO A lei de Newton da Gravitação e a lei de Coulomb da eletrostática são matematicamente idênticas, então os aspectos gerais discutidos para a força gravitacional podem ser aplicadas para

Leia mais

Nome do(a) aluno(a): Matrícula: ENGENHARIA CIVIL

Nome do(a) aluno(a): Matrícula: ENGENHARIA CIVIL Nome do(a) aluno(a): Matrícula: NGNHRI IVIL onhecimentos specíficos Questões de múltipla escolha: 1 a 27. Questões discursivas: 28 a 30. 1. Questão Os critérios para localização de um aterro de resíduos

Leia mais

Experimento. Guia do professor. Otimização da cerca. Secretaria de Educação a Distância. Ministério da Ciência e Tecnologia. Ministério da Educação

Experimento. Guia do professor. Otimização da cerca. Secretaria de Educação a Distância. Ministério da Ciência e Tecnologia. Ministério da Educação Números e funções Guia do professor Experimento Otimização da cerca Objetivos da unidade 1. Resolver um problema de otimização através do estudo de uma função quadrática. 2. Estudar as propriedades de

Leia mais

Considerando a polaridade do ímã, as linhas de indução magnética criadas por ele e o sentido da corrente elétrica induzida no tubo condutor de cobre

Considerando a polaridade do ímã, as linhas de indução magnética criadas por ele e o sentido da corrente elétrica induzida no tubo condutor de cobre 1. Em uma aula de laboratório, os estudantes foram divididos em dois grupos. O grupo A fez experimentos com o objetivo de desenhar linhas de campo elétrico e magnético. Os desenhos feitos estão apresentados

Leia mais

Eletricidade e Magnetismo - Lista de Exercícios IV CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA

Eletricidade e Magnetismo - Lista de Exercícios IV CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA Eletricidade e Magnetismo - Lista de Exercícios IV CEFET-BA / UE - VITÓRIA DA CONQUISTA COORDENAÇÃO DE ENGENHARIA ELÉTRICA Campo Magnético (Fundamentos de Física Vol.3 Halliday, Resnick e Walker, Cap.

Leia mais

Universidade Federal de Santa Catarina Departamento de Engenharia Mecânica Grupo de Análise e Projeto Mecânico

Universidade Federal de Santa Catarina Departamento de Engenharia Mecânica Grupo de Análise e Projeto Mecânico Universidade Federal de Santa Catarina Departamento de Engenharia Mecânica Grupo de nálise e Projeto Mecânico CURSO DE MECÂNIC DOS SÓLIDOS Prof. José Carlos Pereira gosto de 00 SUMÁRIO 1 CÁLCULO DS REÇÕES...

Leia mais

MEMORIAL DE CÁLCULO 012310/1-0

MEMORIAL DE CÁLCULO 012310/1-0 1 SSC MEMORIAL DE CÁLCULO 012310/1-0 ANDAIME FACHADEIRO CONTRATANTE: Nopin Brasil Equipamentos para Construção Civil Ltda ENDEREÇO: Rodovia RS 122 nº 7470 Pavilhões 10 e 11 95110-310 Caxias do Sul - RS

Leia mais