Geometria Analítica e Álgebra Linear

Tamanho: px
Começar a partir da página:

Download "Geometria Analítica e Álgebra Linear"

Transcrição

1 NOS DE UL Geometri nlíti e Álger Liner rnsformções Lineres Professor: Lui Fernndo Nunes Dr 8/Sem_

2 Geometri nlíti e Álger Liner ii Índie 6 rnsformções Lineres 6 Definição 6 Imgem de um trnsformção liner 6 Núleo de um trnsformção liner 4 64 Mtri de um trnsformção Liner 8 65 rnsformções inertíeis 66 Eeríios Propostos Referênis iliográfis Geometri nlíti e Álger Liner

3 Prof Nunes 6 rnsformções Lineres 6 Definição Sejm V e W dois espços etoriis e : V W um função dd Diemos que é um trnsformção liner qundo stisf: i u V u u ii V Eemplos: Considere função : definid por onde Proe que est função é um trnsformção liner Pr pror isto deemos erifir que s ondições i e ii são stisfeits i u u u u u ii Logo é de fto um trnsformção liner! O gráfio dess função é um ret que pss pel origem tendo omo oefiiente liner ou t de rição Considere função : definid por Proe que est função é um trnsformção liner Nomente deemos erifir que s ondições i e ii são stisfeits Vmos onsiderr u e Neste so u e Considerndo s operções usuis i u u ii Logo é de fto um trnsformção liner! prtir de um mtri m n n m : uj regr é otid omo: onde é tomdo omo um etor olun Osere o so prtiulr: sempre podemos ssoir um trnsformção liner Geometri nlíti e Álger Liner

4 4 7 : 4 4 tl que: 7 7 Logo regr d trnsformção 4 7 Prof Nunes 4 Do mesmo modo dd um trnsformção liner por eemplo: : R R tl que: t t t podemos ssoir el mtri de ordem 4 : De fto temos que t t t Oserção: isto signifi que se multiplirmos à su direit pels oordends de um etor n se nôni oteremos s oordends tmém n se nôni d imgem do referido etor eorem: Sej : V W um trnsformção liner Então Demonstrção: V logo: Isto signifi que um trnsformção liner sempre ssoi etor nulo do domínio om etor nulo do ontrdomínio Oserção: reípro nem sempre é erddeir! Isto é nem tod trnsformção que ssoi etor nulo do domínio om etor nulo do ontrdomínio é um trnsformção liner eorem: Sej : V W um trnsformção liner Se } é um se de V isto é dimensão de V é n e } é um { n onjunto om etmente n etores ritrários de W então: Eiste um úni trnsformção liner : V W tl que: n n Eemplos: { n Geometri nlíti e Álger Liner

5 Enontre regr d trnsformção liner : 4 5 e É possíel de se erifir que os etores Geometri nlíti e Álger Liner Prof Nunes R R tl que: 4 e ; formm um se do pr isto st erifir que o onjunto formdo por estes etores é LI e que o onjunto gerdo por estes etores é etmente igul o R Primeirmente esreemos um etor genério do dos etores d se: R R omo um ominção liner 4 Logo enontrmos: e Então: Respost: Enontre regr d trnsformção liner : 789 Repre que os etores filitr stnte os álulos e formm um se do Primeirmente esreemos um etor genério do etores d se: Então: R R tl que: 45 e R É se nôni o que irá R omo um ominção liner dos [ ] Respost: Imgem de um trnsformção liner Sej : V W um trnsformção liner

6 Prof Nunes 4 Chmmos de imgem dest trnsformção liner e representmos por Im ou V o onjunto: Im V { W : V : } Oserções: Im W Im pois semos que Im é um suespço etoril de W isto é: i Im Im ii Im Im 6 Núleo de um trnsformção liner Sej : V W um trnsformção liner Chmmos de núleo dest trnsformção liner e representmos por Ker o onjunto: Ker { V : } Oserções: Ker V Ker pois semos que Ker é um suespço etoril de V isto é: i Ker Ker ii Ker Ker Ilustrção: Eemplos: Dd trnsformção liner : imgem dest trnsformção liner o Núleo dest trnsformção liner Geometri nlíti e Álger Liner R R tl que: enontre:

7 Prof Nunes 5 Geometri nlíti e Álger Liner ] [ Logo ] [ Im Logo } { Ker Dd trnsformção liner : R R tl que: enontre relção entre e pr que o etor Im Este sistem de equções lineres deerá ser possíel! Resolendo por eslonmento: Logo pr que o sistem sej possíel deemos ter Respost: Dd trnsformção liner : 4 R R tl que: t t t t enontre: Um se pr imgem dest trnsformção liner Um se pr o Núleo dest trnsformção liner Podemos reesreer regr dest trnsformção liner omo: t t t t t

8 Então podemos dier que: Geometri nlíti e Álger Liner Prof Nunes 6 Im [ ] isto é imgem de é o onjunto gerdo pelos etores: e em outrs plrs é o onjunto de tods s ominções lineres possíeis de serem formds om estes etores No entnto o onjunto { } não pode ser um se pr imgem de pois qutro etores do ssim temos que etrir um se deste onjunto R formm um onjunto LD Um mneir de se fer isso é esreer um etor sore o outro omo n mtri que segue: N sequeni trnsformmos est mtri em um mtri esd utilindo operções elementres ns linhs dest mtri ssim s linhs não erds formm os etores d referid se Respost: se d Im: { } e Dim Im = t t t t t t t eslonndo otemos: t t t t ssim s soluções são d form: t t t t Logo Ker [ ] Como { } é LI e Ker [ ] podemos dier que { } é um se pr o Ker e Dim Ker = Respost: se do Ker : { } Definições: Sej : V W um trnsformção liner é injetor u u é sorejetor Im W é ijetor é injetor e sorejetor Definição: Um trnsformção liner : V V é hmd de operdor liner eorem:

9 Sej : V W um trnsformção liner é injetor Ker {} Demonstrção: Hipótese: é injetor u u ese: Ker {} u Ker u u Ker u usndo hipótese u Ker {} Hipótese: Ker {} u Ker u ese: é injetor u u u u u u Ker usndo hipótese eorem do Núleo e d Imgem: Sej : V W um trnsformção liner Dim Ker Dim Im Dim V Consequênis: i Sej : V V um operdor liner é injetor é sorejetor Prof Nunes 7 ii Sej : V W um trnsformção liner é injetor Dim V Dim W iii Sej : V W um trnsformção liner é sorejetor Dim W Dim V i Sej : V W um trnsformção liner é ijetor Dim V Dim W Definição: Sej : V W um trnsformção liner ijetor diemos que é um isomorfismo Eemplo: Mostre que trnsformção : tl que Primeirmente temos que pror que é liner: Vmos onsiderr Neste so u e u e Considerndo s operções usuis i u Geometri nlíti e Álger Liner

10 Prof Nunes 8 Geometri nlíti e Álger Liner u ii Logo é de fto um trnsformção liner! gor lulremos o Ker : Resolendo onluímos que: D P S ssim } { Ker logo é um trnsformção liner injetor Como todo operdor liner injetor é tmém sorejetor er teorem nterior onluímos que é um ijeção e portnto um isomorfismo Oserção: Um outro minho seri lulr Im onluindo que Im o que indiri que é sorejetor Nesse so pelo mesmo teorem itdo nteriormente sendo um operdor liner podemos onluir que é tmém injetor e portnto um operdor ijetor Logo é um isomorfismo 64 Mtri de um trnsformção Liner Sejm W V : um trnsformção liner um se de V e um se de W Sem prejuío d generlição onsideremos o so em que dim V = e dim W = Sejm e ses de V e W respetimente Um etor V pode ser epresso por: isto é e imgem por: isto é Por outro ldo: Sendo e etores de W eles são ominções lineres dos etores de : 4 Sustituindo estes lores em em:

11 Prof Nunes 9 ou Comprndo est iguldde om onlui-se: Ou n form mtriil: ou simolimente: sendo mtri Oserções: denomind mtri de em relção às ses e mtri é de ordem qundo dim V = e dim W = s oluns d mtri são s oordends ds imgens dos etores d se em relção à se onforme se pode er em e 4 De um modo gerl pr : V W liner se dim V = n e dim W = m n e m ses de V e W respetimente teremos que é um mtri de ordem m n onde d olun é formd pels oordends ds imgens dos etores de em relção à se : m m n n mn Como se ê mtri depende ds ses e onsiderds isto é d dupl de ses orresponde um prtiulr mtri ssim um trnsformção liner poderá ter um infinidde de mtries pr representá-l No entnto fids s ses mtri é úni Eemplos: Sej : tl que liner Consideremos s ses om e sendo e 5 Determinr Se 4 oordends em relção à se nôni do utilindo mtri enontrd mtri é de ordem : Geometri nlíti e Álger Liner lulr e

12 Fendo: Otemos os sistems: Logo: Se-se que: Prof Nunes Como está epresso om oordends n se nôni isto é 4 4 teremos que primeirmente epressá-lo n se isto é: 4 ou: 4 que é um sistem uj solução é Portnto: ssim s oordends de n se nôni são: = 5 isto é n logo temos que 7 6 Consideremos mesm trnsformção liner do eeríio nterior Sejm s ses nôni mesm e Determinr Se 4 lulr Resposts: e utilindo mtri enontrd Geometri nlíti e Álger Liner

13 Prof Nunes Consideremos mesm trnsformção liner do eeríio nterior Sejm s ses nônis do e do Determinr Se 4 lulr Resposts: : e e utilindo mtri enontrd 4 Dds s ses do determinr trnsformção liner : uj mtri é: Se-se que o signifido de d olun dess mtri é: e logo: 5 4 e do ssim otiemos s imgens dos etores d se do Dest form sendo que: 5 4 podemos oter referid trnsformção liner: 8 5 Geometri nlíti e Álger Liner Oserção: mtri dest trnsformção em relção às ses nônis é: n n rnsformções inertíeis Pr que um trnsformção liner sej inertíel é neessário e sufiiente que el sej um isomorfismo eorem: Se : V W é um isomorfismo um se de V e um se de W então mtri d trnsformção liner : W V é tl que:

14 Prof Nunes Corolário: Sej : V W um trnsformção liner e um se de V e um se de W Então é inertíel se e só se det Eemplo: Sej de e de : um trnsformção liner dd por n Regr de : 4 n 4 Logo 4 isto é: 4 Regr de : n 4 4 n 4 [ ] n Eeríios Propostos Considere trnsformção liner : dd por = determine um se do núleo de dê dimensão d imgem de? é sorejetor? Justifique d Fç um esoço de Ker e Im Resposts: Dim Im = Não pois Sej : definid por = é um trnsformção liner? Justifique Geometri nlíti e Álger Liner 4 he s regrs Se é um etor de quis s ondições sore pr que o etor estej n imgem de? Resposts: Sim Determine plição liner : tl que = ; = e = Enontre tl que = e om Resposts: 4 Qul é trnsformção liner : tl que = e

15 Prof Nunes =? he e 5 Resposts: ; e 5 5 Sej Resposts: Ker Ker e = - e Im e Im Enontre Ker Im Ker Im 6 he todos os lores de m pr que o operdor liner : R R uj regr é: m tenh o núleo onstituído pens do etor nulo Respost: m Referênis iliográfis OLDRINI José Lui et l Álger Liner Edição São Pulo: Hrper & Ro do rsil 98 CLLIOLI Crlos et l Álger Liner e plições 6 Edição São Pulo: tul 99 LIPSCHULZ S Álger Liner São Pulo: MGr-Hill do rsil 98 4 SEINRUCH e WINERLE P Introdução à Álger Liner São Pulo: MGr-Hill do rsil 99 Geometri nlíti e Álger Liner

C Sistema destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET RACIOCÍNIO LÓGICO

C Sistema destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET  RACIOCÍNIO LÓGICO Pr Ordendo RACIOCÍNIO LÓGICO AULA 06 RELAÇÕES E FUNÇÕES O pr ordendo represent um ponto do sistem de eixos rtesinos. Este sistem é omposto por um pr de rets perpendiulres. A ret horizontl é hmd de eixo

Leia mais

Álgebra Linear e Geometria Analítica

Álgebra Linear e Geometria Analítica Álger iner e Geometri nlti º Folh de poio o estudo Sumário: ü Operções lgris om mtrizes: dição de mtrizes multiplição de um eslr por um mtriz e multiplição de mtrizes. ü Crtersti de um mtriz. Eerios resolvidos.

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear NOTAS DE AULA Geometri Anlíti e Álger Liner Cônis Professor: Luiz Fernndo Nunes Dr 8/Sem_ Geometri Anlíti e Álger Liner ii Índie 9 Curvs Cônis 9 Elipse 9 Hipérole 9 Práol 8 9 Eeríios propostos: Referênis

Leia mais

Adriano Pedreira Cattai

Adriano Pedreira Cattai Adrino Pedreir Ctti pctti@hoocomr Universidde Federl d Bhi UFBA, MAT A01, 006 Superfícies de Revolução 1 Introdução Podemos oter superfícies não somente por meio de um equção do tipo F(,, ), eistem muitos

Leia mais

3. LOGARITMO. SISTEMA DE LOGARITMO

3. LOGARITMO. SISTEMA DE LOGARITMO 0. LOGARITMO. SISTEMA DE LOGARITMO.. LOGARITMO ritmo. Agor que já "semos" o que é, podemos formlizr definição de Definição Sejm e números reis positivos, om. Chm-se ritmo de n se, o epoente que stisfz

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 2. MATEMÁTICA III 1 DETERMINANTES

Todos os exercícios sugeridos nesta apostila se referem ao volume 2. MATEMÁTICA III 1 DETERMINANTES INTRODUÇÃO... DETERMINANTE DE MATRIZ DE ORDEM... DETERMINANTE DE MATRIZ DE ORDEM... DETERMINANTE DE MATRIZ DE ORDEM... PROPRIEDADES DOS DETERMINANTES... 8 REGRA DE CHIÓ... MENOR COMPLEMENTAR... COFATOR...

Leia mais

Propriedades das Linguagens Regulares

Propriedades das Linguagens Regulares Cpítulo 5 Proprieddes ds Lingugens Regulres Considerndo um lfeto, já vimos que podemos rterizr lsse ds lingugens regulres sore esse lfeto omo o onjunto ds lingugens que podem ser desrits por expressões

Leia mais

Hewlett-Packard O ESTUDO DO PONTO. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard O ESTUDO DO PONTO. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hewlett-Pkrd O ESTUDO DO PONTO Auls 0 05 Elson Rodrigues, Griel Crvlho e Pulo Luiz Sumário INTRODUÇÃO AO PLANO CARTESIANO... Alguns elementos do plno rtesino... Origem... Eios... Qudrntes... Bissetrizes

Leia mais

VETORES. Problemas Resolvidos

VETORES. Problemas Resolvidos Prolems Resolvidos VETORES Atenção Lei o ssunto no livro-teto e ns nots de ul e reproduz os prolems resolvidos qui. Outros são deidos pr v. treinr PROBLEMA 1 Dois vetores, ujos módulos são de 6e9uniddes

Leia mais

- Departamento de Matemática Aplicada (GMA) Notas de aula Prof a. Marlene Dieguez Fernandez. Integral definida

- Departamento de Matemática Aplicada (GMA) Notas de aula Prof a. Marlene Dieguez Fernandez. Integral definida Interl Deinid Nots de ul - pro. Mrlene - 28-2 1 - Deprtmento de Mtemáti Aplid (GMA) Nots de ul - 28-2 Pro. Mrlene Dieuez Fernndez Interl deinid Oservção: esse teto ontém pens prte teóri desse ssunto, não

Leia mais

Dados dois conjuntos A e B, uma função de A em B é uma correspondência que a cada elemento de A faz corresponder um e um só elemento de B.

Dados dois conjuntos A e B, uma função de A em B é uma correspondência que a cada elemento de A faz corresponder um e um só elemento de B. TEMA IV Funções eis de Vriável el 1. evisões Ddos dois onjuntos A e B, um unção de A em B é um orrespondêni que d elemento de A z orresponder um e um só elemento de B. Dus unções e são iuis se e somente

Leia mais

Álgebra Linear e Geometria Analítica D

Álgebra Linear e Geometria Analítica D 3 Deprtmento de Mtemáti Álgebr Liner e Geometri Anlíti D Segundo Teste 6 de Jneiro de 2 PREENCHA DE FORMA BEM LEGÍVEL Nome: Número de derno: Grelh de Resposts A B C D 2 3 4 5 Atenção Os primeiros 5 grupos

Leia mais

MAT Cálculo Avançado - Notas de Aula

MAT Cálculo Avançado - Notas de Aula MAT5711 - Cálulo Avnçdo - Nots de Aul 26 de mrço de 2010 1. INTEGRAL DE RIEMANN EM ESPAÇOS DE BANACH Definição 1.1 (Integrl de Riemnn). Sejm [, b] R e E um espço de Bn. A noção de Riemnn-integrbilidde

Leia mais

AULA: Superfícies Quádricas

AULA: Superfícies Quádricas AULA: Superfíies Quádris Definição : Um equção gerl do gru em três vriáveis é um equção do tipo: A B C D E F G H I J (I), om pelo menos um ds onstntes A, B, C, D, E ou F é diferente de ero. Definição :

Leia mais

Máximos e Mínimos Locais

Máximos e Mínimos Locais INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA MAT B Limites e Derivds - Pro Grç Luzi Domiguez Sntos ESTUDO DA VARIAÇÃO DAS FUNÇÕES Máimos e Mínimos Lois Deinição: Dd um unção, sej D i possui

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MAT ALGEBRA LINEAR I-A PROF.: GLÓRIA MÁRCIA

UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MAT ALGEBRA LINEAR I-A PROF.: GLÓRIA MÁRCIA UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MAT - ALGEBRA LINEAR I-A PROF.: GLÓRIA MÁRCIA LISTA DE EXERCÍCIOS ) Sejm A, B e C mtries inversíveis de mesm ordem, encontre epressão d mtri X,

Leia mais

Máximos e Mínimos Locais

Máximos e Mínimos Locais INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA MAT AO CÁLCULO A - Pro : Grç Luzi Domiguez Sntos ESTUDO DA VARIAÇÃO DAS FUNÇÕES Máimos e Mínimos Lois Deinição: Dd um unção, sej D i possui um

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear NOS DE U Geometri líti e Álger ier Mtrizes e Determites Professor: uiz Ferdo Nues, Dr 8/Sem_ Geometri líti e Álger ier ii Ídie Mtrizes e Determites Mtrizes Determites e Mtriz Ivers 8 Referêis iliográfis

Leia mais

Material Teórico - Módulo Teorema de Pitágoras e Aplicações. Algumas demonstrações do Teorema de Pitágoras. Nono Ano

Material Teórico - Módulo Teorema de Pitágoras e Aplicações. Algumas demonstrações do Teorema de Pitágoras. Nono Ano teril Teório - ódulo Teorem de Pitágors e plições lgums demonstrções do Teorem de Pitágors Nono no utor: Prof. Ulisses im Prente Revisor: Prof. ntonio minh. Neto 30 de mrço de 2019 1 Teorem de Pitágors

Leia mais

ALGEBRA LINEAR AUTOVALORES E AUTOVETORES. Prof. Ademilson

ALGEBRA LINEAR AUTOVALORES E AUTOVETORES. Prof. Ademilson LGEBR LINER UTOVLORES E UTOVETORES Prof. demilson utovlores e utovetores utovlores e utovetores são conceitos importntes de mtemátic, com plicções prátics em áres diversificds como mecânic quântic, processmento

Leia mais

3. CÁLCULO INTEGRAL EM IR

3. CÁLCULO INTEGRAL EM IR 3 CÁLCULO INTEGRAL EM IR A importâni do álulo integrl em IR reside ns sus inúmers plições em vários domínios d engenhri, ms tmém em ísi, em teori ds proiliddes, em eonomi, em gestão 3 Prtição de um intervlo

Leia mais

MATEMÁTICA. Equações do Segundo Grau. Professor : Dêner Rocha. Monster Concursos 1

MATEMÁTICA. Equações do Segundo Grau. Professor : Dêner Rocha. Monster Concursos 1 MATEMÁTICA Equções do Segundo Gru Professor : Dêner Roh Monster Conursos 1 Equções do segundo gru Ojetivos Definir equções do segundo gru. Resolver equções do segundo gru. Definição Chm-se equção do º

Leia mais

Formas Lineares, Bilineares e Quadráticas

Formas Lineares, Bilineares e Quadráticas Forms Lineres Bilineres e Qudrátics Considere V um R-espço vetoril n-dimensionl Forms Lineres Qulquer trnsformção liner d form f : V R é denomind um funcionl liner ou form liner Eemplos: f : R R tl que

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MATA07 ÁLGEBRA LINEAR A PROFs.: Enaldo Vergasta,Glória Márcia. 2 a LISTA DE EXERCÍCIOS

UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MATA07 ÁLGEBRA LINEAR A PROFs.: Enaldo Vergasta,Glória Márcia. 2 a LISTA DE EXERCÍCIOS UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MATA07 ÁLGEBRA LINEAR A PROFs: Enldo VergstGlóri Márci LISTA DE EXERCÍCIOS ) Verifique se são verddeirs ou flss s firmções bixo: ) Dois vetores

Leia mais

Teorema 1 (critério AAA de semelhança de triângulos) Se os ângulos de um triângulo forem respectivamente congruentes aos ângulos correspondentes

Teorema 1 (critério AAA de semelhança de triângulos) Se os ângulos de um triângulo forem respectivamente congruentes aos ângulos correspondentes SÉTIM LIST DE EXERÍIOS Fundmentos d Mtemáti II MTEMÁTI DET UES Humerto José ortolossi http://www.ues.r/relos/ Semelhnç de triângulos Dizemos que o triângulo é semelhnte o triângulo XY Z e esrevemos XY

Leia mais

ÁLGEBRA LINEAR Equações Lineares na Álgebra Linear EQUAÇÃO LINEAR SISTEMA LINEAR GEOMETRIA DA ESQUAÇÕES LINEARES RESOLUÇÃO DOS SISTEMAS

ÁLGEBRA LINEAR Equações Lineares na Álgebra Linear EQUAÇÃO LINEAR SISTEMA LINEAR GEOMETRIA DA ESQUAÇÕES LINEARES RESOLUÇÃO DOS SISTEMAS EQUAÇÃO LINEAR SISTEMA LINEAR GEOMETRIA DA ESQUAÇÕES LINEARES RESOLUÇÃO DOS SISTEMAS Equção Liner * Sej,,,...,, (números reis) e n (n ) 2 3 n x, x, x,..., x (números reis) 2 3 n Chm-se equção Liner sobre

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear NOTS DE UL Geometri líti e Álger Lier Ret e lo rofessor: Lui Fero Nues Dr. 8/Sem_ Geometri líti e Álger Lier ii Íie Estuo Ret e o lo.... Ret o Espço.... O lo.... Distâis.... Eeríios ropostos... 8. Referêis

Leia mais

Matemática Régis Cortes FUNÇÃO DO 2 0 GRAU

Matemática Régis Cortes FUNÇÃO DO 2 0 GRAU FUNÇÃO DO 2 0 GRAU 1 Fórmul de Bháskr: x 2 x 2 4 2 Utilizndo fórmul de Bháskr, vmos resolver lguns exeríios: 1) 3x²-7x+2=0 =3, =-7 e =2 2 4 49 4.3.2 49 24 25 Sustituindo n fórmul: x 2 7 25 2.3 7 5 7 5

Leia mais

INTEGRAL DEFINIDO. O conceito de integral definido está relacionado com um problema geométrico: o cálculo da área de uma figura plana.

INTEGRAL DEFINIDO. O conceito de integral definido está relacionado com um problema geométrico: o cálculo da área de uma figura plana. INTEGRAL DEFINIDO O oneito de integrl definido está reliondo om um prolem geométrio: o álulo d áre de um figur pln. Vmos omeçr por determinr áre de um figur delimitd por dus rets vertiis, o semi-eio positivo

Leia mais

Hewlett-Packard O ESTUDO DA RETA. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard O ESTUDO DA RETA. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hewlett-Pkrd O ESTUDO DA RETA Auls 01 05 Elson Rodrigues, Griel Crvlho e Pulo Luiz Sumário EQUAÇÃO GERAL DA RETA... 2 Csos espeiis... 2 Determinção d equção gerl de um ret prtir de dois de seus pontos...

Leia mais

Funções do 1 o Grau. Exemplos

Funções do 1 o Grau. Exemplos UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Funções do o Gru. Função

Leia mais

LISTA DE EXERCÍCIOS Questões de Vestibulares. e B = 2

LISTA DE EXERCÍCIOS Questões de Vestibulares. e B = 2 LISTA DE EXERCÍCIOS Questões de Vestiulres ) UFBA 9 Considere s mtries A e B Sendo-se que X é um mtri simétri e que AX B, determine -, sendo Y ( ij) X - R) ) UFBA 9 Dds s mtries A d Pode-se firmr: () se

Leia mais

CCI-22. Matemática Computacional. Carlos Henrique Q. Forster

CCI-22. Matemática Computacional. Carlos Henrique Q. Forster CCI- temáti Computionl Crlos Henrique Q. Forster CCI- étodos pr Estimr Auto-lores e uto-etores Nots omplementres Auto-lores e uto-etores A 4 4 A ( A I ) A A 3 4 3 Sistem homogêneo só tem solução não-triil

Leia mais

Material Teórico - Módulo Triângulo Retângulo, Leis dos Cossenos e dos Senos, Poĺıgonos Regulares. Lei dos Senos e Lei dos Cossenos - Parte 1

Material Teórico - Módulo Triângulo Retângulo, Leis dos Cossenos e dos Senos, Poĺıgonos Regulares. Lei dos Senos e Lei dos Cossenos - Parte 1 Mteril Teório - Módulo Triângulo Retângulo, Leis dos ossenos e dos Senos, Poĺıgonos Regulres Lei dos Senos e Lei dos ossenos - Prte 1 Nono no utor: Prof. Ulisses Lim Prente Revisor: Prof. ntonio min M.

Leia mais

16.4. Cálculo Vetorial. Teorema de Green

16.4. Cálculo Vetorial. Teorema de Green ÁLULO VETORIAL álculo Vetoril pítulo 6 6.4 Teorem de Green Nest seção, prenderemos sore: O Teorem de Green pr váris regiões e su plicção no cálculo de integris de linh. INTROUÇÃO O Teorem de Green fornece

Leia mais

MÉTODO DA POSIÇÃO FALSA EXEMPLO

MÉTODO DA POSIÇÃO FALSA EXEMPLO MÉTODO DA POSIÇÃO FALSA Vimos que o Método d Bissecção encontr um novo intervlo trvés de um médi ritmétic. Ddo o intervlo [,], o método d posição fls utiliz médi ponderd de e com pesos f( e f(, respectivmente:

Leia mais

Dep. Matemática e Aplicações 27 de Abril de 2011 Universidade do Minho 1 o Teste de Teoria das Linguagens. Proposta de resolução

Dep. Matemática e Aplicações 27 de Abril de 2011 Universidade do Minho 1 o Teste de Teoria das Linguagens. Proposta de resolução Dep. Mtemátic e Aplicções 27 de Aril de 2011 Universidde do Minho 1 o Teste de Teori ds Lingugens Lic. Ciêncis Computção Propost de resolução 1. Considere lingugem L = A sore o lfeto A = {,}. Durção: 2

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA

UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA PRIMEIRO SEMESTRE DE 2015 13 de Fevereiro de 2015 Prte I Álgebr Liner 1 Questão: Sejm

Leia mais

Prof. Ms. Aldo Vieira Aluno:

Prof. Ms. Aldo Vieira Aluno: Prof. Ms. Aldo Vieir Aluno: Fich 1 Chmmos de mtriz, tod tbel numéric com m linhs e n coluns. Neste cso, dizemos que mtriz é do tipo m x n (onde lemos m por n ) ou que su ordem é m x n. Devemos representr

Leia mais

GEOMETRIA DESCRITIVA PASSO A PASSO PROF. JAIR ROBERTO BÄCHTOLD UDESC

GEOMETRIA DESCRITIVA PASSO A PASSO PROF. JAIR ROBERTO BÄCHTOLD UDESC GEOMETRIA DESCRITIVA PASSO A PASSO PROF. JAIR ROBERTO BÄCHTOLD UDESC Tópio 01 Tópio 02 Tópio 03 Tópio 04 Tópio 05 Tópio 06 Tópio 07 Tópio 08 Tópio 09 Tópio 10 Tópio 11 ÍNDICE Sistems de Projeções Estudo

Leia mais

Lista de Exercícios Vetores Mecânica da Partícula

Lista de Exercícios Vetores Mecânica da Partícula List de Eeríios Vetores Meâni d Prtíul 01) Ddos os vetores e, ujos módulos vlem, respetivmente, 6 e 8, determine grfimente o vetor som e lule o seu módulo notções 0) Ddos os vetores, e, represente grfimente:

Leia mais

Diferenciação Numérica

Diferenciação Numérica Cpítulo 6: Dierencição e Integrção Numéric Dierencição Numéric Em muits circunstâncis, torn-se diícil oter vlores de derivds de um unção: derivds que não são de ácil otenção; Eemplo clculr ª derivd: e

Leia mais

x = x 2 x 1 O acréscimo x é também chamado de diferencial de x e denotado por dx, isto é, dx = x.

x = x 2 x 1 O acréscimo x é também chamado de diferencial de x e denotado por dx, isto é, dx = x. Universidde Federl Fluminense Mtemátic II Professor Mri Emili Neves Crdoso Cpítulo Integrl. Diferenciis dy Anteriormente, foi considerdo um símolo pr derivd de y em relção à, ms em lguns prolems é útil

Leia mais

E DA. Prof. Jorge. Filho

E DA. Prof. Jorge. Filho UNIVERSIDADE FEDERA DA PARAÍBAA CENTRO DE CIÊNCIAS EXATAS E DA NATUREZA DEPARTAMENTO DE MATEMÁTICA Cálculo Vet toril e Geometri Anlític Prof. Jorge Cost Durte Filho Prof. Mri Sili C. Freto. ÍNDICE. MATRIZES

Leia mais

Aula. Transformações lineares hlcs

Aula. Transformações lineares hlcs UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE Aul Álger Liner Trnsformções lineres hls Resumo Trnsformções lineres Definição Núleo Imgem Definição Relção entre espços vetoriis Preservção e operções* Aplição

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 1º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tem II Introdução o Cálulo Diferenil II Tref nº 1 do plno de trlho nº 7 Pr levr o est tref pode usr su luldor ou o sketh fmilis.gsp

Leia mais

Prova elaborada pelo prof. Octamar Marques. Resolução da profa. Maria Antônia Conceição Gouveia.

Prova elaborada pelo prof. Octamar Marques. Resolução da profa. Maria Antônia Conceição Gouveia. ª AVALIAÇÃO DA ª UNIDADE ª SÉRIE DO ENSINO MÉDIO DISCIPLINA: MATEMÁTICA Prov elord pelo prof. Otmr Mrques. Resolução d prof. Mri Antôni Coneição Gouvei.. Dispondo de livros de mtemáti e de físi, qunts

Leia mais

Resolução: a) o menor valor possível para a razão r ; b) o valor do décimo oitavo termo da PA, para a condição do item a.

Resolução: a) o menor valor possível para a razão r ; b) o valor do décimo oitavo termo da PA, para a condição do item a. O segundo, o sétimo e o vigésimo sétimo termos de um Progressão Aritmétic (PA) de números inteiros, de rzão r, formm, nest ordem, um Progressão Geométric (PG), de rzão q, com qer ~ (nturl diferente de

Leia mais

fundamental do cálculo. Entretanto, determinadas aplicações do Cálculo nos levam a formulações de integrais em que:

fundamental do cálculo. Entretanto, determinadas aplicações do Cálculo nos levam a formulações de integrais em que: Cpítulo 8 Integris Imprópris 8. Introdução A eistênci d integrl definid f() d, onde f é contínu no intervlo fechdo [, b], é grntid pelo teorem fundmentl do cálculo. Entretnto, determinds plicções do Cálculo

Leia mais

POLINÔMIOS. Definição: Um polinômio de grau n é uma função que pode ser escrita na forma. n em que cada a i é um número complexo (ou

POLINÔMIOS. Definição: Um polinômio de grau n é uma função que pode ser escrita na forma. n em que cada a i é um número complexo (ou POLINÔMIOS Definição: Um polinômio de gru n é um função que pode ser escrit n form P() n n i 0... n i em que cd i é um número compleo (ou i 0 rel) tl que n é um número nturl e n 0. Os números i são denomindos

Leia mais

xy 1 + x 2 y + x 1 y 2 x 2 y 1 x 1 y xy 2 = 0 (y 1 y 2 ) x + (x 2 x 1 ) y + (x 1 y 2 x 2 y 1 ) = 0

xy 1 + x 2 y + x 1 y 2 x 2 y 1 x 1 y xy 2 = 0 (y 1 y 2 ) x + (x 2 x 1 ) y + (x 1 y 2 x 2 y 1 ) = 0 EQUAÇÃO DA RETA NO PLANO 1 Equção d ret Denominmos equção de um ret no R 2 tod equção ns incógnits x e y que é stisfeit pelos pontos P (x, y) que pertencem à ret e só por eles. 1.1 Alinhmento de três pontos

Leia mais

Aula 5 Plano de Argand-Gauss

Aula 5 Plano de Argand-Gauss Ojetivos Plno de Argnd-Guss Aul 5 Plno de Argnd-Guss MÓDULO - AULA 5 Autores: Celso Cost e Roerto Gerldo Tvres Arnut 1) presentr geometricmente os números complexos ) Interpretr geometricmente som, o produto

Leia mais

Integrais duplas UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 24. Assunto: Integrais Duplas

Integrais duplas UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 24. Assunto: Integrais Duplas Assunto: Integris Dupls UNIVESIDADE FEDEAL DO PAÁ CÁLCULO II - POJETO NEWTON AULA 24 Plvrs-hves: integris dupls,soms de iemnn, teorem de Fubini Integris dupls Sej o retângulo do plno rtesino ddo por {(x,

Leia mais

RESPOSTAS DA LISTA 2 - Números reais: propriedades algébricas e de ordem

RESPOSTAS DA LISTA 2 - Números reais: propriedades algébricas e de ordem List de Mtemáti Bási 009- (RESPOSTAS) 4 RESPOSTAS DA LISTA - Números reis: proprieddes lgéris e de ordem Pr filitr onsult, repetimos qui os xioms e s proprieddes lgéris e de ordem listds em ul. À medid

Leia mais

4. APLICAÇÃO DA PROTEÇÃO DIFERENCIAL À PROTEÇÃO DE TRANSFORMADORES DE POTÊNCIA

4. APLICAÇÃO DA PROTEÇÃO DIFERENCIAL À PROTEÇÃO DE TRANSFORMADORES DE POTÊNCIA lever Pereir 4. PLÇÃO D PROTEÇÃO DFEREL À PROTEÇÃO DE TRSFORMDORES DE POTÊ 4.. Prinípio ásio s orrentes primáris e seundáris de um trfo de potêni gurdm entre si um relção onheid em ondições de operção

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, utilizaremos o Teorema Fundamental do Cálculo (TFC) para o cálculo da área entre duas curvas.

UNIVERSIDADE FEDERAL DE PERNAMBUCO. Resumo. Nesta aula, utilizaremos o Teorema Fundamental do Cálculo (TFC) para o cálculo da área entre duas curvas. CÁLCULO L1 NOTAS DA DÉCIMA SÉTIMA AULA UNIVERSIDADE FEDERAL DE PERNAMBUCO Resumo. Nest ul, utilizremos o Teorem Fundmentl do Cálculo (TFC) pr o cálculo d áre entre dus curvs. 1. A áre entre dus curvs A

Leia mais

Matemática. Resolução das atividades complementares. M24 Equações Polinomiais. 1 (PUC-SP) No universo C, a equação

Matemática. Resolução das atividades complementares. M24 Equações Polinomiais. 1 (PUC-SP) No universo C, a equação Resolução ds tividdes complementres Mtemátic M Equções Polinomiis p. 86 (PUC-SP) No universo C, equção 0 0 0 dmite: ) três rízes rcionis c) dus rízes irrcionis e) um únic riz positiv b) dus rízes não reis

Leia mais

3 Teoria dos Conjuntos Fuzzy

3 Teoria dos Conjuntos Fuzzy 0 Teori dos Conjuntos Fuzzy presentm-se qui lguns conceitos d teori de conjuntos fuzzy que serão necessários pr o desenvolvimento e compreensão do modelo proposto (cpítulo 5). teori de conjuntos fuzzy

Leia mais

AULA 7 EFICIÊNCIA E EFETIVIDADE DE ALETAS

AULA 7 EFICIÊNCIA E EFETIVIDADE DE ALETAS 49 UL 7 EFICIÊNCI E EFETIVIDDE DE LETS Efiiêni de let teori desenvolvid n ul nterior é stnte útil pr um nálise em detlhes pr o projeto de novs onfigurções e geometris de lets. Pr lguns sos simples, existem

Leia mais

Bhaskara e sua turma Cícero Thiago B. Magalh~aes

Bhaskara e sua turma Cícero Thiago B. Magalh~aes 1 Equções de Segundo Gru Bhskr e su turm Cícero Thigo B Mglh~es Um equção do segundo gru é um equção do tipo x + bx + c = 0, em que, b e c são números reis ddos, com 0 Dd um equção do segundo gru como

Leia mais

n. 6 SISTEMAS LINEARES

n. 6 SISTEMAS LINEARES n. 6 SISTEMAS LINEARES Sistem liner homogêneo Qundo os termos independentes de tods s equções são nulos. Todo sistem liner homogêneo dmite pelo menos solução trivil, que é solução identicmente nul. Assim,

Leia mais

Disciplina: Introdução à Álgebra Linear Prof. Dra. Shirley Maria Santos e Souza Curso de Licenciatura em Matemática UFPBVIRTUAL

Disciplina: Introdução à Álgebra Linear Prof. Dra. Shirley Maria Santos e Souza Curso de Licenciatura em Matemática UFPBVIRTUAL Disciplin: Introdção à Álgebr Liner Prof Dr Shirle Mri Sntos e Soz Crso de Licencitr em Mtemátic UFPBVIRTUAL shirle@mtfpbbr Ambiente Virtl de Aprendizgem: Moodle wwwedfpbbr Site d UFPBVIRTUAL wwwirtlfpbbr

Leia mais

Progressões Aritméticas

Progressões Aritméticas Segund Etp Progressões Aritmétics Definição São sequêncis numérics onde cd elemento, prtir do segundo, é obtido trvés d som de seu ntecessor com um constnte (rzão).,,,,,, 1 3 4 n 1 n 1 1º termo º termo

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES. FUNÇÕES Parte B

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 CAPES. FUNÇÕES Parte B Universidde Federl do Rio Grnde FURG Instituto de Mtemátic, Esttístic e Físic IMEF Editl 5 CPES FUNÇÕES Prte B Prof. ntônio Murício Medeiros lves Profª Denise Mri Vrell Mrtinez UNIDDE FUNÇÕES PRTE B. FUNÇÂO

Leia mais

Material Teórico - Módulo Teorema de Pitágoras e Aplicações. Algumas demonstrações do Teorema de Pitágoras - Parte 2. Nono Ano

Material Teórico - Módulo Teorema de Pitágoras e Aplicações. Algumas demonstrações do Teorema de Pitágoras - Parte 2. Nono Ano Mteril Teórico - Módulo Teorem de itágors e plicções lgums demonstrções do Teorem de itágors - rte 2 Nono no utor: rof. Ulisses Lim rente Revisor: rof. ntonio minh M. Neto 27 de ril de 2019 1 lgums plicções

Leia mais

Extrapolação de Richardson

Extrapolação de Richardson Etrpolção de Rirdson Apesr de todos os visos em relção à etrpolção, qui temos um eepção, em que, prtir de dus determinções de um integrl se lul um tereir, mis preis. 3/5/4 MN Etrpolção de Rirdson E é epressão

Leia mais

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x? INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região S utilizndo retângulos e depois

Leia mais

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x? INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região S utilizndo retângulos e depois

Leia mais

Vetores. Capítulo. UNIDADE C Vetores e grandezas vetoriais: Cinemática vetorial

Vetores. Capítulo. UNIDADE C Vetores e grandezas vetoriais: Cinemática vetorial UNI etores e grndezs vetoriis: inemáti vetoril pítulo 7 etores s vetores são entes mtemátios mplmente utilizdos em Físi. les representm grndezs que só fim definids qundo são onheidos seu módulo, su direção

Leia mais

1 Integral de Riemann-Sieltjes

1 Integral de Riemann-Sieltjes Cálulo Avnçdo - 2009 Referêni: Brtle, R. G. The Elements of Rel Anlysis, Seond Edition, Wiley. 1 Integrl de Riemnn-Sieltjes 1.1 Definição No que segue vmos onsiderr f e g funções reis definids em J = [,

Leia mais

( ) Logaritmos. Logaritmos. a é a base do logaritmo, b é o logaritmando, x é o logaritmo. Exemplos

( ) Logaritmos. Logaritmos. a é a base do logaritmo, b é o logaritmando, x é o logaritmo. Exemplos UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Lgritms. Cneit de lgritm

Leia mais

TRANSFORMAÇÃO DE FONTES

TRANSFORMAÇÃO DE FONTES TRANSFORMAÇÃO DE FONTES OBJECTIVO: Trnsformção de um fonte de tensão em série com um resistênci num fonte de corrente em prlelo com ess mesm resistênci ou iceers. EXEMPLO s i Rs L L R L is Rsi i L L R

Leia mais

COMPENSAÇÃO ANGULAR E REMOÇÃO DA COMPONENTE DE SEQÜÊNCIA ZERO NA PROTEÇÃO DIFERENCIAL DE TRANSFORMADORES

COMPENSAÇÃO ANGULAR E REMOÇÃO DA COMPONENTE DE SEQÜÊNCIA ZERO NA PROTEÇÃO DIFERENCIAL DE TRANSFORMADORES SHWETZER ENGNEERNG LORTORES, OMERL LTD OMPENSÇÃO NGULR E REMOÇÃO D OMPONENTE DE SEQÜÊN ZERO N PROTEÇÃO DFERENL DE TRNSFORMDORES Por Rfel rdoso. NTRODUÇÃO O prinípio d proteção diferenil é de que som ds

Leia mais

v é o módulo do vetor v, sendo

v é o módulo do vetor v, sendo Geometri nlític e álculo Vetoril Nots de ul Prof. Dr. láudio S. Srtori Operções com Vetores no Espço R 3 : Representção: Determinção dos ângulos,, : rc rc rc Representção dos ângulos no espço R 3 : Representção:

Leia mais

Números, Desigualdades e Valores Absolutos

Números, Desigualdades e Valores Absolutos A CÁLCULO A Números, Desigulddes e Vlores Asolutos O cálculo sei-se no sistem de números reis. Começmos com os inteiros:...,,,, 0,,,, 4,... Então, construímos os números rcionis, que são s rzões de inteiros.

Leia mais

A Lei das Malhas na Presença de Campos Magnéticos.

A Lei das Malhas na Presença de Campos Magnéticos. A Lei ds Mlhs n Presenç de mpos Mgnéticos. ) Revisão d lei de Ohm, de forç eletromotriz e de cpcitores Num condutor ôhmico n presenç de um cmpo elétrico e sem outrs forçs tundo sore os portdores de crg

Leia mais

Fundamentos de Matemática I EFETUANDO INTEGRAIS. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques

Fundamentos de Matemática I EFETUANDO INTEGRAIS. Licenciatura em Ciências USP/ Univesp. Gil da Costa Marques EFETUANDO INTEGRAIS 7 Gil d Cost Mrques Fundmentos de Mtemátic I 7. Introdução 7. Algums Proprieddes d Integrl Definid Propriedde Propriedde Propriedde Propriedde 4 7. Um primeir técnic de Integrção 7..

Leia mais

Função Modular. x, se x < 0. x, se x 0

Função Modular. x, se x < 0. x, se x 0 Módulo de um Número Rel Ddo um número rel, o módulo de é definido por:, se 0 = `, se < 0 Observção: O módulo de um número rel nunc é negtivo. Eemplo : = Eemplo : 0 = ( 0) = 0 Eemplo : 0 = 0 Geometricmente,

Leia mais

Substituição Trigonométrica. Substituição Trigonométrica. Se a integral fosse. a substituição u = a 2 x 2 poderia ser eficaz, mas, como está,

Substituição Trigonométrica. Substituição Trigonométrica. Se a integral fosse. a substituição u = a 2 x 2 poderia ser eficaz, mas, como está, UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I. Introdução Se integrl

Leia mais

Após encontrar os determinantes de A. B e de B. A, podemos dizer que det A. B = det B. A?

Após encontrar os determinantes de A. B e de B. A, podemos dizer que det A. B = det B. A? PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - ª SÉRIE - ENSINO MÉDIO ============================================================================================= Determinntes - O vlor

Leia mais

Funções e Limites. Informática

Funções e Limites. Informática CURSO DE: SEGUNDA LICENCIATURA EM INFORMÁTICA DISCIPLINA: CÁLCULO I Funções e Limites Informátic Prof: Mrcio Demetrius Mrtinez Nov Andrdin 00 O CONCEITO DE UMA FUNÇÃO - FUNÇÃO. O que é um função Um função

Leia mais

Objetivo: Conceituar espaço vetorial; Realizar mudança de base; Conhecer e calcular transformações Lineares

Objetivo: Conceituar espaço vetorial; Realizar mudança de base; Conhecer e calcular transformações Lineares Alger Lier oldrii/cost/figeiredo/wetzler Ojetio: Coceitr espço etoril; Relizr mdç de se; Cohecer e clclr trsformções Lieres Itrodção Defiição de Espço Vetoril Sespço Comição Lier Represetção dos etores

Leia mais

Vectores Complexos. Prof. Carlos R. Paiva

Vectores Complexos. Prof. Carlos R. Paiva Vectores Complexos Todos sem que se podem representr vectores reis do espço ordinário (tridimensionl) por sets Porém, qul será representção geométric de um vector complexo? Mis do que um questão retóric

Leia mais

MATRIZES. 1) (CEFET) Se A, B e C são matrizes do tipo 2x3, 3x1 e 1x4, respectivamente, então o produto A.B.C. (a) é matriz do tipo 4 x 2

MATRIZES. 1) (CEFET) Se A, B e C são matrizes do tipo 2x3, 3x1 e 1x4, respectivamente, então o produto A.B.C. (a) é matriz do tipo 4 x 2 MATRIZES ) (CEFET) Se A, B e C são mtrizes do tipo, e 4, respectivmente, então o produto A.B.C () é mtriz do tipo 4 () é mtriz do tipo 4 (c) é mtriz do tipo 4 (d) é mtriz do tipo 4 (e) não é definido )

Leia mais

Apresentação. Um bom aprendizado! Prof, Anicio Bechara Arero.

Apresentação. Um bom aprendizado! Prof, Anicio Bechara Arero. presentção disciplin Álger Liner, que f prte d grde curriculr dos cursos de Ets, dá continuidde os estudos de cálculo dos referidos cursos Est disciplin ojetiv dr o estudnte um continuidde no prendido

Leia mais

Material envolvendo estudo de matrizes e determinantes

Material envolvendo estudo de matrizes e determinantes E. E. E. M. ÁREA DE CONHECIMENTO DE MATEMÁTICA E SUAS TECNOLOGIAS PROFESSORA ALEXANDRA MARIA º TRIMESTRE/ SÉRIE º ANO NOME: Nº TURMA: Mteril envolvendo estudo de mtrizes e determinntes INSTRUÇÕES:. Este

Leia mais

as raízes de ( ) Então resolver Q( x ) = 0 é equivalente a resolver as equações:

as raízes de ( ) Então resolver Q( x ) = 0 é equivalente a resolver as equações: (9) 5-0 O ELITE RESOLVE IME 0 DISURSIVS MTEMÁTI MTEMÁTI QUESTÃO 0 5 O polinômio P ( ) + 0 0 + 8 possui rízes comples simétrics e um riz com vlor igul o módulo ds rízes comples. Determine tods s rízes do

Leia mais

Os números racionais. Capítulo 3

Os números racionais. Capítulo 3 Cpítulo 3 Os números rcionis De modo informl, dizemos que o conjunto Q dos números rcionis é composto pels frções crids prtir de inteiros, desde que o denomindor não sej zero. Assim como fizemos nteriormente,

Leia mais

5) Para b = temos: 2. Seja M uma matriz real 2 x 2. Defina uma função f na qual cada elemento da matriz se desloca para a posição. e as matrizes são:

5) Para b = temos: 2. Seja M uma matriz real 2 x 2. Defina uma função f na qual cada elemento da matriz se desloca para a posição. e as matrizes são: MATEMÁTIA Sej M um mtriz rel x. Defin um função f n qul cd elemento d mtriz se desloc pr posição b seguinte no sentido horário, ou sej, se M =, c d c implic que f (M) =. Encontre tods s mtrizes d b simétrics

Leia mais

3.18 EXERCÍCIOS pg. 112

3.18 EXERCÍCIOS pg. 112 89 8 EXERCÍCIOS pg Investigue continuidde nos pontos indicdos sen, 0 em 0 0, 0 sen 0 0 0 Portnto não é contínu em 0 b em 0 0 0 0 0 0 0 0 0 0 0 0 0 Portnto é contínu em 0 8, em, c 8 Portnto, unção é contínu

Leia mais

LISTA GERAL DE MATRIZES OPERAÇÕES E DETERMINANTES - GABARITO. b =

LISTA GERAL DE MATRIZES OPERAÇÕES E DETERMINANTES - GABARITO. b = LIS GERL DE MRIZES OPERÇÕES E DEERMINNES - GBRIO Dds s mtries [ ij ] tl que j ij i e [ ij ] B tl que ij j i, determine: c Solução Não é necessário construir tods s mtries Bst identificr os elementos indicdos

Leia mais

As fórmulas aditivas e as leis do seno e do cosseno

As fórmulas aditivas e as leis do seno e do cosseno ul 3 s fórmuls ditivs e s leis do MÓDULO 2 - UL 3 utor: elso ost seno e do cosseno Objetivos 1) ompreender importânci d lei do seno e do cosseno pr o cálculo d distânci entre dois pontos sem necessidde

Leia mais

Espaços Vetoriais. Profª Cristiane Guedes. Bibliografia: Algebra Linear Boldrini/Costa/Figueiredo/Wetzler

Espaços Vetoriais. Profª Cristiane Guedes. Bibliografia: Algebra Linear Boldrini/Costa/Figueiredo/Wetzler Espços Vetoriis Profª Cristie Gedes iliogrfi: Alger Lier oldrii/cost/figeiredo/wetzler Itrodção Ddo m poto P(,,z o espço, temos m etor ssocido esse poto: OP (,, z pode ser escrito d segite form: z z V

Leia mais

QUESTÃO 01 Seja f : R R uma função definida pela sentença f(x) = 3 0,5 x. A respeito desta função considere as seguintes afirmativas:

QUESTÃO 01 Seja f : R R uma função definida pela sentença f(x) = 3 0,5 x. A respeito desta função considere as seguintes afirmativas: PROVA DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - JUNHO DE. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA QUESTÃO Sej f : R R um

Leia mais

Introdução à Integral Definida. Aula 04 Matemática II Agronomia Prof. Danilene Donin Berticelli

Introdução à Integral Definida. Aula 04 Matemática II Agronomia Prof. Danilene Donin Berticelli Introdução à Integrl Definid Aul 04 Mtemátic II Agronomi Prof. Dnilene Donin Berticelli Áre Desde os tempos mis ntigos os mtemáticos se preocupm com o prolem de determinr áre de um figur pln. O procedimento

Leia mais

AULA 1. 1 NÚMEROS E OPERAÇÕES 1.1 Linguagem Matemática

AULA 1. 1 NÚMEROS E OPERAÇÕES 1.1 Linguagem Matemática 1 NÚMEROS E OPERAÇÕES 1.1 Lingugem Mtemátic AULA 1 1 1.2 Conjuntos Numéricos Chm-se conjunto o grupmento num todo de objetos, bem definidos e discerníveis, de noss percepção ou de nosso entendimento, chmdos

Leia mais

Definição 1 O determinante de uma matriz quadrada A de ordem 2 é por definição a aplicação. det

Definição 1 O determinante de uma matriz quadrada A de ordem 2 é por definição a aplicação. det 5 DETERMINANTES 5 Definição e Proprieddes Definição O erminnte de um mtriz qudrd A de ordem é por definição plicção ( ) : M IR IR A Eemplo : 5 A ( A ) ( ) ( ) 5 7 5 Definição O erminnte de um mtriz qudrd

Leia mais

SERVIÇO PÚBLICO FEDERAL Ministério da Educação

SERVIÇO PÚBLICO FEDERAL Ministério da Educação SERVIÇO PÚBLICO FEDERAL Ministério d Educção Universidde Federl do Rio Grnde Universidde Abert do Brsil Administrção Bchreldo Mtemátic pr Ciêncis Sociis Aplicds I Rodrigo Brbos Sores . Mtrizes:.. Introdução:

Leia mais

Degeneração. Exercício 1: Resolva o seguinte problema pelo método das duas fases: sujeito a

Degeneração. Exercício 1: Resolva o seguinte problema pelo método das duas fases: sujeito a Pros. Soorro Rngel UESP-SJRP, Soni Poltreniere UESP-uru Reerenis: Liner Progrmg - : Introdution, Dntzig. G.b. e Tpp,M.. -, Springer, ; Liner Progrmg - V. Chvátl, 8; Pesquis Operionl - Arenles e outros,.

Leia mais