Material Teórico - Módulo Triângulo Retângulo, Leis dos Cossenos e dos Senos, Poĺıgonos Regulares. Lei dos Senos e Lei dos Cossenos - Parte 1

Tamanho: px
Começar a partir da página:

Download "Material Teórico - Módulo Triângulo Retângulo, Leis dos Cossenos e dos Senos, Poĺıgonos Regulares. Lei dos Senos e Lei dos Cossenos - Parte 1"

Transcrição

1 Mteril Teório - Módulo Triângulo Retângulo, Leis dos ossenos e dos Senos, Poĺıgonos Regulres Lei dos Senos e Lei dos ossenos - Prte 1 Nono no utor: Prof. Ulisses Lim Prente Revisor: Prof. ntonio min M. Neto Portl d OMEP

2 1 Lei dos ossenos O ojetivo desse mteril é demonstrr e eiir lgums plições do teorem io, que é um generlizção do Teorem de Pitágors, oneido omo Lei dos ossenos. ntes, porém, neessitmos estender definição de osseno ângulos retos e otusos. Pr tnto, onsidere α um ângulo otuso. Temos: 90 o < α < 180 o 180 o < α < 90 o 0 o < 180 o α < 90 o, ou sej, 180 o α é um ângulo gudo. Então, pr 90 o < α < 180 o, definimos o osseno de α por osα = os(180 o α). Definimos, ind, os90 o = 0. Mis dinte, estudremos o osseno em situções mis geris e firá lro o porquê ds definições im. Teorem 1. Sej um triângulo de ldos =, = e =. Então, = + osâ. (1) Prov. Iniimos om o so  = 90o. omo os90 o = 0, temos: + osâ = + os90 o = +. Por outro ldo, omo é retângulo em, o Teorem de Pitágors grnte que + =. Então, (1) vle nesse so. Supon, gor,queâ < 90o, e sejm opédperpendiulr o segmento pssndo pelo vértie, = e =. Se tmém tivermos < 90 o, situção é desrit n figur seguir (o so 90 o pode ser trtdo de modo nálogo, om modifições mínims): Portl d OMEP omo =, plindo o Teorem de Pitágors os triângulos retângulos e, otemos, respetivmente, Tis igulddes são equivlentes (tmém respetivmente) = e = ( ), de sorte que = ( ). Ms, = ( ) = + = +. gor, omo o triângulo é retângulo (vej novmente figur nterior), rzão, entre o teto oposto o ângulo  e ipotenus do triângulo, é igul osâ. Dí, otemos = osâ e, portnto, = + osâ. so  > 90o, sejm o pé d perpendiulr id de o prolongmento do ldo (vej próim figur), = e =. omo no so nterior, o Te- orem de Pitágors plido os triângulos e fornee s igulddes ou, ind, = + e = +(+) = e = (+). prtir dels, temos = ( + ). Tmém omo ntes, = (+) = = + +. Um vez que  > 90 (vej novmente figur), temos osâ = os(180 Â) = osâ. Por outro ldo, oservndo o triângulo, notmos que = osâ. Portnto, e, ssim, otemos: = osâ = osâ = + + = + osâ. = + e = +( ). ttp://mtemti.omep.org.r/ 1 mtemti@omep.org.r

3 O orolário seguir trz um onsequêni útil d Lei dos ossenos. orolário. Sej um triângulo de ldos =, = e =. Se > >, então: () é retângulo = +. () é utângulo < +. () é otusângulo < +. Prov. Pr o item (), omee oservndo que, omo > >, o triângulo é retângulo se, e só se, su ipotenus for. Portnto, o item () é omposto pelo Teorem de Pitágors e su reípro, os quis já form provdos n ul sore relções métris em triângulos retângulos. Pr o item (), oserve iniilmente que, utilizndo Lei dos ossenos, temos: < + + osâ < + osâ < 0 osâ < 0  < 90o. gor, note que ipótese > > impli 90 o >  > > Ĉ, o que onlui prov do item (). Pr (), podemos mostrr, trvés de um rgumento nálogo o feito im, que > +  > 90o. No restnte deste mteril, presentremos lgums plições d Lei dos ossenos. Eemplo 3 (UFRGS). No triângulo representdo n figur io, os ldos e têm um mesm medid, e ltur reltiv o ldo é igul 3 d medid do ldo. om se nesses ddos, lule o osseno do ângulo Â. Portl d OMEP Solução. Iniilmente, reorde que, sendo isóseles de se e ltur reltiv, temos que é o ponto médio de (isso segue d ongruêni dos triângulos e, pelo so de ongruêni de triângulos retângulos). Portnto, s notções = =, empregds n figur nterior, têm sentido. plindo o Teorem de Pitágors o triângulo e usndo iguldde (dd no enunido) = 3, otemos: ( ) ( ) ( = + = = + 3 ) = = = = 5 36 = = 5 6. Por outro ldo, plindo Lei dos ossenos o triângulo, otemos: = + osâ = = (1 osâ) = = (1 osâ) = 1 osâ = = osâ = 1 50 = osâ = = 7 5. Eemplo 4. Sej um triângulo tl que =, = e = +. lule, em grus, medid do ângulo. Solução. Utilizndo lei dos ossenos, otemos e, dí, Portnto, = + osâ ( ) + = + osâ. + = + osâ, e, pós efeturmos os nelmentos possíveis, osâ = 1. Dí, segue que  = 60o. ttp://mtemti.omep.org.r/ mtemti@omep.org.r

4 Eemplo 5. Um míssil, vijndo em trjetóri prtimente retilíne, foi detetdo por um rdr situdo no ponto em dois instntes distintos: o primeiro no ponto tl que = 6km, e o segundo no ponto, tl que = 10 km. Sendo que  = 10o, lule distâni perorrid pelo míssil do ponto té o ponto. Solução. O triângulo d figur io represent situção desrit no enunido. plindo Lei dos 6 km 10 o 10 km ossenos o mesmo e omitindo s uniddes de distâni por onveniêni, otemos: Ms, = os10 o. os10 o = os(180 o 10 o ) = os60 o = 1, de modo que ( = ) Então, = = 196. = 196 km = 14 km. Eemplo 6. figur io represent um fol de ppel retngulr, de dimensões D = 6 m e = 8 m. D 6 m Portl d OMEP 8 m Susequentemente, ess fol foi dord de modo que o vértie fiou sore o ponto médio M d digonl D, onforme mostrdo n próim figur. Pede-se lulr medid do segmento EM. D M Solução. plindo o Teorem de Pitágors o triângulo retângulo D, otemos: D = D + = D = 6 +8 E = D = = D = 100 = D = 10. gor, ns notções d segund figur im, vej que EM = E. Dí, otemos: Note tmém que e DE = D E = 8 EM. ose DM = os D = D D = 8 10 = 4 5. DM = D = 10 = 5. Portnto, plindo Lei dos ossenos o triângulo EDM, otemos: EM = DE +DM DE DM ose DM = ( 8 EM ) +5 ( 8 EM ) = 64 16EM +EM +5 8 ( 8 EM ) = 64 16EM +EM EM = 8EM +EM +5. Então, 8EM = 5, de sorte que EM = 5 8 = 3,15 m. Eemplo 7. Sej um triângulo om =, = e =. Denotndo por M o ponto médio do ldo, lule medid m d medin M em função de, e. ttp://mtemti.omep.org.r/ 3 mtemti@omep.org.r

5 Sugestões de Leitur omplementr m M Solução. Nsnotçõesdfigurim, pondoθ = M, temos M = 180 o θ. Utilizndo Lei dos ossenos nos triângulos M e M otemos, respetivmente, ( ) = +m mosθ e = 4 +m mosθ ( ) = +m mos(180o θ) = = 4 +m m( osθ) 4 +m +mosθ. Somndo memro memro s epressões pr e otids im, fimos om Então, e, por fim, + = 4 +m = +m. m = 1 ) ( + = ( + ) 4 m = 1 ( + ). Dis pr o Professor Reomendmos que sejm utilizds dus sessões de 50min pr epor o onteúdo deste mteril. Eplir os lunos que Lei dos ossenos é um generlizção do Teorem de Pitágors é fundmentl pr o entendimento desse onteúdo. Sugerimos o uso de figurs (omprndo os três sos) pr melor eplir o orolário. lém disso, o fzer d eemplo, resslte o momento onde está sendo plid Lei dos ossenos. s referênis seguir ontêm mis eemplos e prolems de vridos grus de difiuldde, envolvendo Lei dos ossenos. 1.. min. Tópios de Mtemáti Elementr, Volume : Geometri Eulidin Pln. Rio de Jneiro, Editor S..M., G. Iezzi. Fundmentos de Mtemáti Elementr, Volume 3: Trigonometri. São pulo, Editor tul, 013. Portl d OMEP ttp://mtemti.omep.org.r/ 4 mtemti@omep.org.r

Material Teórico - Módulo Teorema de Pitágoras e Aplicações. Algumas demonstrações do Teorema de Pitágoras. Nono Ano

Material Teórico - Módulo Teorema de Pitágoras e Aplicações. Algumas demonstrações do Teorema de Pitágoras. Nono Ano teril Teório - ódulo Teorem de Pitágors e plições lgums demonstrções do Teorem de Pitágors Nono no utor: Prof. Ulisses im Prente Revisor: Prof. ntonio minh. Neto 30 de mrço de 2019 1 Teorem de Pitágors

Leia mais

Material Teórico - Módulo Teorema de Pitágoras e Aplicações. Algumas demonstrações do Teorema de Pitágoras - Parte 2. Nono Ano

Material Teórico - Módulo Teorema de Pitágoras e Aplicações. Algumas demonstrações do Teorema de Pitágoras - Parte 2. Nono Ano Mteril Teórico - Módulo Teorem de itágors e plicções lgums demonstrções do Teorem de itágors - rte 2 Nono no utor: rof. Ulisses Lim rente Revisor: rof. ntonio minh M. Neto 27 de ril de 2019 1 lgums plicções

Leia mais

Material Teórico - Módulo Triângulo Retângulo, Leis dos Cossenos e dos Senos, Poĺıgonos Regulares. Lei dos Senos e Lei dos Cossenos - Parte 2

Material Teórico - Módulo Triângulo Retângulo, Leis dos Cossenos e dos Senos, Poĺıgonos Regulares. Lei dos Senos e Lei dos Cossenos - Parte 2 Mteril Teórico - Módulo Triângulo Retângulo, Leis dos ossenos e dos Senos, Poĺıgonos Regulres Lei dos Senos e Lei dos ossenos - Prte Nono no utor: Prof. Ulisses Lim Prente Revisor: Prof. ntonio minh M.

Leia mais

Portal da OBMEP. Material Teórico - Módulo de Lei dos Senos e dos Cossenos. Leis dos Senos e dos Cossenos. Primeiro Ano do Ensino Médio

Portal da OBMEP. Material Teórico - Módulo de Lei dos Senos e dos Cossenos. Leis dos Senos e dos Cossenos. Primeiro Ano do Ensino Médio Mteril Teório - Módulo de Lei dos Senos e dos ossenos Leis dos Senos e dos ossenos Primeiro no do Ensino Médio Prof. ntonio minh M. Neto Portl d OMEP Nest segund ul, estudremos Lei dos Senos e Lei dos

Leia mais

RELAÇÕES MÉTRICAS E TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO

RELAÇÕES MÉTRICAS E TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO Mtemáti RELÇÕES MÉTRIS E TRIGONOMETRI NO TRIÂNGULO RETÂNGULO 1. RELÇÕES MÉTRIS Ddo o triângulo retângulo io:. RELÇÕES TRIGONOMÉTRIS Sej o triângulo retângulo io: n m Temos: e são os tetos; é ipotenus;

Leia mais

Material Teórico - Módulo Triângulo Retângulo, Leis dos Cossenos e dos Senos, Poĺıgonos Regulares. Lei dos Senos e Lei dos Cossenos - Parte 3

Material Teórico - Módulo Triângulo Retângulo, Leis dos Cossenos e dos Senos, Poĺıgonos Regulares. Lei dos Senos e Lei dos Cossenos - Parte 3 Mteril Teório - Módulo Triâgulo Retâgulo, Leis dos osseos e dos Seos, Poĺıgoos Regulres Lei dos Seos e Lei dos osseos - Prte 3 Noo o utor: Prof Ulisses Li Prete Revisor: Prof toio ih M Neto 3 de julho

Leia mais

Teorema 1 (critério AAA de semelhança de triângulos) Se os ângulos de um triângulo forem respectivamente congruentes aos ângulos correspondentes

Teorema 1 (critério AAA de semelhança de triângulos) Se os ângulos de um triângulo forem respectivamente congruentes aos ângulos correspondentes SÉTIM LIST DE EXERÍIOS Fundmentos d Mtemáti II MTEMÁTI DET UES Humerto José ortolossi http://www.ues.r/relos/ Semelhnç de triângulos Dizemos que o triângulo é semelhnte o triângulo XY Z e esrevemos XY

Leia mais

As fórmulas aditivas e as leis do seno e do cosseno

As fórmulas aditivas e as leis do seno e do cosseno ul 3 s fórmuls ditivs e s leis do MÓDULO 2 - UL 3 utor: elso ost seno e do cosseno Objetivos 1) ompreender importânci d lei do seno e do cosseno pr o cálculo d distânci entre dois pontos sem necessidde

Leia mais

MATEMÁTICA. Capítulo 5 LIVRO 1. Teorema de Pitágoras Relações Métricas nos Triângulos. Páginas: 190 à 201

MATEMÁTICA. Capítulo 5 LIVRO 1. Teorema de Pitágoras Relações Métricas nos Triângulos. Páginas: 190 à 201 MATEMÁTICA LIVRO 1 Cpítulo 5 Teorem de Pitágors Relções Métris nos Triângulos Págins: 190 à 01 Teorem de Pitágors: II ² III IV ² II ² I I IV III "A áre do qudrdo formdo om o ldo d hipotenus é igul som

Leia mais

Resoluções de Atividades

Resoluções de Atividades VOLU 1 GOTRI Resoluções de tividdes Sumário pítulo 1 Rzão e proporção...1 pítulo Teorem de Tles.... pítulo Teorem d issetriz etern... pítulo Semelhnç... pítulo Teorem d issetriz intern... pítulo 1 Rzão

Leia mais

Bateria de Exercícios Matemática II. 1 Determine os valores de x e y, sabendo que os triângulos ABC e DEF são semelhantes:

Bateria de Exercícios Matemática II. 1 Determine os valores de x e y, sabendo que os triângulos ABC e DEF são semelhantes: Colégio: Nome: nº Sem limite pr reser Professor(): Série: 1ª EM Turm: Dt: / /2013 Desonto Ortográfio: Not: Bteri de Exeríios Mtemáti II 1 Determine os vlores de x e y, sendo que os triângulos ABC e DEF

Leia mais

Matemática Básica II - Trigonometria Nota 02 - Trigonometria no Triângulo

Matemática Básica II - Trigonometria Nota 02 - Trigonometria no Triângulo Mtemátic ásic II - Trigonometri Not 0 - Trigonometri no Triângulo Retângulo Márcio Nscimento d Silv Universidde Estdul Vle do crú - UV urso de Licencitur em Mtemátic mrcio@mtemticuv.org 18 de mrço de 014

Leia mais

Geometria Plana II - Respostas

Geometria Plana II - Respostas Geometri Pln II - Resosts Ensino de qulidde, qunto ntes, melor 01 Sej M o onto médio de DE, então BM é medin reltiv à iotenus do triângulo BDE Logo B DM ME BM Como BM é isóseles, temos que MB ˆ lém disso,

Leia mais

RESPOSTAS DA LISTA 2 - Números reais: propriedades algébricas e de ordem

RESPOSTAS DA LISTA 2 - Números reais: propriedades algébricas e de ordem List de Mtemáti Bási 009- (RESPOSTAS) 4 RESPOSTAS DA LISTA - Números reis: proprieddes lgéris e de ordem Pr filitr onsult, repetimos qui os xioms e s proprieddes lgéris e de ordem listds em ul. À medid

Leia mais

Hewlett-Packard O ESTUDO DO PONTO. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard O ESTUDO DO PONTO. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hewlett-Pkrd O ESTUDO DO PONTO Auls 0 05 Elson Rodrigues, Griel Crvlho e Pulo Luiz Sumário INTRODUÇÃO AO PLANO CARTESIANO... Alguns elementos do plno rtesino... Origem... Eios... Qudrntes... Bissetrizes

Leia mais

Lista de Exercícios Vetores Mecânica da Partícula

Lista de Exercícios Vetores Mecânica da Partícula List de Eeríios Vetores Meâni d Prtíul 01) Ddos os vetores e, ujos módulos vlem, respetivmente, 6 e 8, determine grfimente o vetor som e lule o seu módulo notções 0) Ddos os vetores, e, represente grfimente:

Leia mais

20 29 c) 20 b) 3 5, é TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO. 1) No triângulo abaixo, o seno do ângulo B vale:

20 29 c) 20 b) 3 5, é TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO. 1) No triângulo abaixo, o seno do ângulo B vale: TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO ) (UNISINOS) O ldo do qudrdo ABCD, d figur ixo, mede m e M é o ponto médio do ldo CD. 1) No triângulo ixo, o seno do ângulo B vle: 9 ) 0 9 ) 1 0 ) 9 0 1 1 9 ) (UFRGS)

Leia mais

VETORES. Problemas Resolvidos

VETORES. Problemas Resolvidos Prolems Resolvidos VETORES Atenção Lei o ssunto no livro-teto e ns nots de ul e reproduz os prolems resolvidos qui. Outros são deidos pr v. treinr PROBLEMA 1 Dois vetores, ujos módulos são de 6e9uniddes

Leia mais

C Sistema destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET RACIOCÍNIO LÓGICO

C Sistema destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET  RACIOCÍNIO LÓGICO Pr Ordendo RACIOCÍNIO LÓGICO AULA 06 RELAÇÕES E FUNÇÕES O pr ordendo represent um ponto do sistem de eixos rtesinos. Este sistem é omposto por um pr de rets perpendiulres. A ret horizontl é hmd de eixo

Leia mais

A B C Para colocar letras nas figuras, escrevem-se as letras segundo o sentido contrário ao dos ponteiros do relógio.

A B C Para colocar letras nas figuras, escrevem-se as letras segundo o sentido contrário ao dos ponteiros do relógio. Ângulos e triângulos Unidde 6 PLIR 1. Oserv figur. Nos pontos e estão plntds árvores. Pretende-se plntr um árvore num ponto de modo que os pontos, e pertençm à mesm ret. z três desenhos indindo o ponto

Leia mais

AULAS 16 A 19. I. Triângulo retângulo e seus principais elementos. II. Relações Métricas.

AULAS 16 A 19. I. Triângulo retângulo e seus principais elementos. II. Relações Métricas. 009 www.ursonglo.om.r Treinmento pr Olimpíds de Mtemáti N Í V E L ULS 16 19 TIÂNGULO ETÂNGULO (relções métris e rzões trigonométris) ÁES (polígonos e írulo) oneitos eliondos I. Triângulo retângulo e seus

Leia mais

3. LOGARITMO. SISTEMA DE LOGARITMO

3. LOGARITMO. SISTEMA DE LOGARITMO 0. LOGARITMO. SISTEMA DE LOGARITMO.. LOGARITMO ritmo. Agor que já "semos" o que é, podemos formlizr definição de Definição Sejm e números reis positivos, om. Chm-se ritmo de n se, o epoente que stisfz

Leia mais

Propriedades das Linguagens Regulares

Propriedades das Linguagens Regulares Cpítulo 5 Proprieddes ds Lingugens Regulres Considerndo um lfeto, já vimos que podemos rterizr lsse ds lingugens regulres sore esse lfeto omo o onjunto ds lingugens que podem ser desrits por expressões

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 2. MATEMÁTICA III 1 DETERMINANTES

Todos os exercícios sugeridos nesta apostila se referem ao volume 2. MATEMÁTICA III 1 DETERMINANTES INTRODUÇÃO... DETERMINANTE DE MATRIZ DE ORDEM... DETERMINANTE DE MATRIZ DE ORDEM... DETERMINANTE DE MATRIZ DE ORDEM... PROPRIEDADES DOS DETERMINANTES... 8 REGRA DE CHIÓ... MENOR COMPLEMENTAR... COFATOR...

Leia mais

Prova elaborada pelo prof. Octamar Marques. Resolução da profa. Maria Antônia Conceição Gouveia.

Prova elaborada pelo prof. Octamar Marques. Resolução da profa. Maria Antônia Conceição Gouveia. ª AVALIAÇÃO DA ª UNIDADE ª SÉRIE DO ENSINO MÉDIO DISCIPLINA: MATEMÁTICA Prov elord pelo prof. Otmr Mrques. Resolução d prof. Mri Antôni Coneição Gouvei.. Dispondo de livros de mtemáti e de físi, qunts

Leia mais

as raízes de ( ) Então resolver Q( x ) = 0 é equivalente a resolver as equações:

as raízes de ( ) Então resolver Q( x ) = 0 é equivalente a resolver as equações: (9) 5-0 O ELITE RESOLVE IME 0 DISURSIVS MTEMÁTI MTEMÁTI QUESTÃO 0 5 O polinômio P ( ) + 0 0 + 8 possui rízes comples simétrics e um riz com vlor igul o módulo ds rízes comples. Determine tods s rízes do

Leia mais

2 A trigonometria no triângulo retângulo

2 A trigonometria no triângulo retângulo 16 A trigonometri no triângulo retângulo A trigonometri foi inventd á mis de dois mil nos. El onsiste, essenilmente, em ssoir d ângulo, definido omo união de um pr de semirrets de mesm origem, não ontids

Leia mais

TRIGONOMETRIA PLANA E ESFÉRICA

TRIGONOMETRIA PLANA E ESFÉRICA PÊNDICE O CPÍTULO 7 TRIGONOMETRI PLN E ESFÉRIC INTRODUÇÃO Trigonometri Esféri é essenil pr ompreensão dos oneitos e resolução dos prolems de Nvegção stronômi e Nvegção Ortodrômi. É, ind, importnte pr entendimento

Leia mais

Material Teórico - Módulo Triângulo Retângulo, Lei dos Senos e Cossenos, Poĺıgonos Regulares. Razões Trigonométricas no Triângulo Retângulo.

Material Teórico - Módulo Triângulo Retângulo, Lei dos Senos e Cossenos, Poĺıgonos Regulares. Razões Trigonométricas no Triângulo Retângulo. Mtril Tórico - Módulo Triângulo Rtângulo, Li dos Snos ossnos, Poĺıgonos Rgulrs Rzõs Trigonométrics no Triângulo Rtângulo Nono no utor: Prof Ulisss Lim Prnt Rvisor: Prof ntonio min M Nto Portl d OMEP 1

Leia mais

CPV 82% de aprovação na ESPM em 2011

CPV 82% de aprovação na ESPM em 2011 CPV 8% de provção n ESPM em 0 Prov Resolvid ESPM Prov E 0/julho/0 MATEMÁTICA. Considerndo-se que x = 97, y = 907 e z =. xy, o vlor d expressão x + y z é: ) 679 b) 58 c) 7 d) 98 e) 77. Se três empds mis

Leia mais

INTEGRAL DEFINIDO. O conceito de integral definido está relacionado com um problema geométrico: o cálculo da área de uma figura plana.

INTEGRAL DEFINIDO. O conceito de integral definido está relacionado com um problema geométrico: o cálculo da área de uma figura plana. INTEGRAL DEFINIDO O oneito de integrl definido está reliondo om um prolem geométrio: o álulo d áre de um figur pln. Vmos omeçr por determinr áre de um figur delimitd por dus rets vertiis, o semi-eio positivo

Leia mais

x = x 2 x 1 O acréscimo x é também chamado de diferencial de x e denotado por dx, isto é, dx = x.

x = x 2 x 1 O acréscimo x é também chamado de diferencial de x e denotado por dx, isto é, dx = x. Universidde Federl Fluminense Mtemátic II Professor Mri Emili Neves Crdoso Cpítulo Integrl. Diferenciis dy Anteriormente, foi considerdo um símolo pr derivd de y em relção à, ms em lguns prolems é útil

Leia mais

Resolução: a) o menor valor possível para a razão r ; b) o valor do décimo oitavo termo da PA, para a condição do item a.

Resolução: a) o menor valor possível para a razão r ; b) o valor do décimo oitavo termo da PA, para a condição do item a. O segundo, o sétimo e o vigésimo sétimo termos de um Progressão Aritmétic (PA) de números inteiros, de rzão r, formm, nest ordem, um Progressão Geométric (PG), de rzão q, com qer ~ (nturl diferente de

Leia mais

Seu pé direito nas melhores faculdades

Seu pé direito nas melhores faculdades MTMÁTI Seu pé direito ns melhores fculddes 0. João entrou n lnchonete OG e pediu hmbúrgueres, suco de lrnj e cocds, gstndo $,0. N mes o ldo, lgums pessos pedirm 8 hmbúrgueres, sucos de lrnj e cocds, gstndo

Leia mais

Matemática B Superintensivo

Matemática B Superintensivo GRITO Mtemátic Superintensivo Eercícios 0) 4 m M, m 0 m N tg 0 = b = b = b = = cos 0 = 4 = = 4. =.,7 =,4 MN =, +,4 + MN =,9 m tg 60 = = =.. = h = + = 0 m 04) 0) D O vlor de n figur bio é: (Errt) 4 sen

Leia mais

16.4. Cálculo Vetorial. Teorema de Green

16.4. Cálculo Vetorial. Teorema de Green ÁLULO VETORIAL álculo Vetoril pítulo 6 6.4 Teorem de Green Nest seção, prenderemos sore: O Teorem de Green pr váris regiões e su plicção no cálculo de integris de linh. INTROUÇÃO O Teorem de Green fornece

Leia mais

Prova 1 Soluções MA-602 Análise II 27/4/2009 Escolha 5 questões

Prova 1 Soluções MA-602 Análise II 27/4/2009 Escolha 5 questões Prov 1 Soluções MA-602 Análise II 27/4/2009 Escolh 5 questões 1. Sej f : [, b] R um função limitd. Mostre que f é integrável se, e só se, existe um sequênci de prtições P n P [,b] do intervlo [, b] tl

Leia mais

Material Teórico - Módulo Semelhança de Triângulos e Teorema de Tales. Nono Ano

Material Teórico - Módulo Semelhança de Triângulos e Teorema de Tales. Nono Ano Mtei Teóio - Móduo Semenç de Tiânguos e Teoem de Tes Reções Métis em Tiânguos Retânguos Nono no uto: Pof. Uisses Lim Pente Reviso: Pof. ntonio min M. Neto Pot d OMEP 1 Reções métis em tiânguos etânguos

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear NOS DE UL Geometri nlíti e Álger Liner rnsformções Lineres Professor: Lui Fernndo Nunes Dr 8/Sem_ Geometri nlíti e Álger Liner ii Índie 6 rnsformções Lineres 6 Definição 6 Imgem de um trnsformção liner

Leia mais

Universidade Federal de Rio de Janeiro

Universidade Federal de Rio de Janeiro Universidde Federl de Rio de Jneiro Instituto de Mtemátic Deprtmento de Métodos Mtemáticos Prof. Jime E. Muñoz River river@im.ufrj.r ttp//www.im.ufrj.r/ river Grito d Primeir Prov de Cálculo I Rio de Jneiro

Leia mais

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA LISTA 3 SEMELHANÇA. Disciplina: Matemática Professor: Marcello Amadeo Série: 9º ano / EF

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA LISTA 3 SEMELHANÇA. Disciplina: Matemática Professor: Marcello Amadeo Série: 9º ano / EF INSTITUTO E PLIÇÃO FERNNO RORIGUES SILVEIR isciplin: Mtemátic Professor: Mrcello mdeo Série: 9º no / EF lun(o): Turm: LIST 3 SEMELHNÇ FIGURS SEMELHNTES Em Mtemátic, qundo usmos medids proporcionis pr desenhr

Leia mais

Introdução à Integral Definida. Aula 04 Matemática II Agronomia Prof. Danilene Donin Berticelli

Introdução à Integral Definida. Aula 04 Matemática II Agronomia Prof. Danilene Donin Berticelli Introdução à Integrl Definid Aul 04 Mtemátic II Agronomi Prof. Dnilene Donin Berticelli Áre Desde os tempos mis ntigos os mtemáticos se preocupm com o prolem de determinr áre de um figur pln. O procedimento

Leia mais

Aula 27 Integrais impróprias segunda parte Critérios de convergência

Aula 27 Integrais impróprias segunda parte Critérios de convergência Integris imprópris segund prte Critérios de convergênci MÓDULO - AULA 7 Aul 7 Integris imprópris segund prte Critérios de convergênci Objetivo Conhecer dois critérios de convergênci de integris imprópris:

Leia mais

Integrais Duplas em Regiões Limitadas

Integrais Duplas em Regiões Limitadas Cálculo III Deprtmento de Mtemátic - ICEx - UFMG Mrcelo Terr Cunh Integris Dupls em egiões Limitds Ou por curiosidde, ou inspirdo ns possíveis plicções, é nturl querer usr integris dupls em regiões não

Leia mais

Relações Métricas e Razões Trigonométricas no Triângulo Retângulo - bombeiros

Relações Métricas e Razões Trigonométricas no Triângulo Retângulo - bombeiros Relções Métrics e Rzões Trigonométrics no Triângulo Retângulo - bombeiros Os ctetos de um triângulo retângulo medem cm e 8cm Nesss condições determine: ) medid "" d ipotenus b) medid "" d ltur reltiv à

Leia mais

Marcus Vinícius Dionísio da Silva (Angra dos Reis) 9ª série Grupo 1

Marcus Vinícius Dionísio da Silva (Angra dos Reis) 9ª série Grupo 1 Mrcus Vinícius Dionísio d Silv (Angr dos Reis) 9ª série Grupo 1 Tutor: Emílio Ruem Btist Júnior 1. Introdução: Este plno de ul tem o ojetivo gerl de mostrr os lunos um processo geométrico pr resolução

Leia mais

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS. Prof.

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS. Prof. CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS Prof. Bruno Fris Arquivo em nexo Conteúdo Progrmático Biliogrfi HALLIDAY,

Leia mais

Questão 02. Determine o valor da excentricidade da cônica dada pela equação. Questão 03

Questão 02. Determine o valor da excentricidade da cônica dada pela equação. Questão 03 IME "A mtemátic é o lfeto com que Deus escreveu o mundo" Glileu Glilei Questão A se de um prism reto ABCA BC é um triângulo com o ldo AB igul o ldo AC. O vlor do segmento CD vle x, onde D é o ponto médio

Leia mais

Lic. Ciências da Computação 2009/10 Exercícios de Teoria das Linguagens Universidade do Minho Folha 6. δ

Lic. Ciências da Computação 2009/10 Exercícios de Teoria das Linguagens Universidade do Minho Folha 6. δ Li. Ciênis d Computção 2009/10 Exeríios de Teori ds Lingugens Universidde do Minho Folh 6 2. Autómtos finitos 2.1 Considere o utómto A = (Q,A,δ,i,F) onde Q = {1,2,,4}, A = {,}, i = 1, F = {4} e função

Leia mais

Material Teórico - Módulo de Razões e Proporções. Proporções e Conceitos Relacionados. Sétimo Ano do Ensino Fundamental

Material Teórico - Módulo de Razões e Proporções. Proporções e Conceitos Relacionados. Sétimo Ano do Ensino Fundamental Mteril Teórico - Módulo de Rzões e Proporções Proporções e Conceitos Relciondos Sétimo Ano do Ensino Fundmentl Prof. Frncisco Bruno Holnd Prof. Antonio Cminh Muniz Neto Portl OBMEP 1 Introdução N ul nterior,

Leia mais

Adriano Pedreira Cattai

Adriano Pedreira Cattai Adrino Pedreir Ctti pctti@hoocomr Universidde Federl d Bhi UFBA, MAT A01, 006 Superfícies de Revolução 1 Introdução Podemos oter superfícies não somente por meio de um equção do tipo F(,, ), eistem muitos

Leia mais

FREEIMAGES.COM/JKLMNHOP MATEMÁTICA B

FREEIMAGES.COM/JKLMNHOP MATEMÁTICA B FREEIMAGES.COM/JKLMNHOP MATEMÁTICA B cderno. uls e 8 Relções trigonométrics no triângulo retângulo A 60º º d E B D º. h = ltur do vião o ultrpssr o morro. h tn = h =,8 tg,8 º C h no triângulo destcdo,

Leia mais

2. Prisma de base hexagonal: formado 8 faces, 2 hexágonos (bases), 6 retângulos (faces laterais).

2. Prisma de base hexagonal: formado 8 faces, 2 hexágonos (bases), 6 retângulos (faces laterais). unifmu Nome: Professor: Ricrdo Luís de Souz Curso de Design Mtemátic Aplicd Atividde Explortóri V Turm: Dt: SÓLIDOS GEOMÉTRICOS: CÁLCULO DE ÁREA SUPERFICIAL E DE VOLUME Objetivo: Conecer e nomer os principis

Leia mais

Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida.

Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida. 9 ENSINO 9-º no Mtemátic FUNDMENTL tividdes complementres Este mteril é um complemento d obr Mtemátic 9 Pr Viver Juntos. Reprodução permitid somente pr uso escolr. Vend proibid. Smuel Csl Cpítulo 6 Rzões

Leia mais

Dados dois conjuntos A e B, uma função de A em B é uma correspondência que a cada elemento de A faz corresponder um e um só elemento de B.

Dados dois conjuntos A e B, uma função de A em B é uma correspondência que a cada elemento de A faz corresponder um e um só elemento de B. TEMA IV Funções eis de Vriável el 1. evisões Ddos dois onjuntos A e B, um unção de A em B é um orrespondêni que d elemento de A z orresponder um e um só elemento de B. Dus unções e são iuis se e somente

Leia mais

Mania de Pitágoras Euclides Rosa

Mania de Pitágoras Euclides Rosa Texto omplementr Mni de Pitágors Eulides Ros MTEMÁTI 1 Mtemáti ssunto: Geometri Mni de Pitágors Elish Sott Loomis, professor de Mtemáti em levelnd, Ohio (Estdos Unidos), er relmente um pixondo pelo teorem

Leia mais

GRANDEZAS PROPORCIONAIS

GRANDEZAS PROPORCIONAIS Hewlett-Pkrd GRANDEZAS PROPORCIONAIS Auls 01 03 Elson Rodrigues, Griel Crvlho e Pulo Luiz Sumário GRANDEZAS... 1 O QUE É UMA GRANDEZA?... 1 PRELIMINAR 1... 1 PRELIMINAR 2... 1 GRANDEZAS DIRETAMENTE PROPORCIONAIS

Leia mais

C O L É G I O F R A N C O - B R A S I L E I R O

C O L É G I O F R A N C O - B R A S I L E I R O C O L É G I O F R A N C O - B R A S I L E I R O Nome: Nº: Turm: Professor: FÁBIO LUÍS Série: 1ª Dt: / / 01 LISTA DE EXERCÍCIOS TRIGONOMETRIA PARTE I 1 Os ctetos de um triângulo retângulo medem cm e 18cm

Leia mais

Máximos e Mínimos Locais

Máximos e Mínimos Locais INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA MAT B Limites e Derivds - Pro Grç Luzi Domiguez Sntos ESTUDO DA VARIAÇÃO DAS FUNÇÕES Máimos e Mínimos Lois Deinição: Dd um unção, sej D i possui

Leia mais

Notas de aulas 1 IFSP Mecânica Técnica

Notas de aulas 1 IFSP Mecânica Técnica Nots de uls 1 IFSP Meâni Téni 1. Revisão de trigonometri. Sistems de uniddes. Algrismos signifitivos. 2. Coneito de vetor. Som de vetores. Deomposição de forçs. 3. Equilírio de um ponto mteril. 4. Digrm

Leia mais

2.4 Integração de funções complexas e espaço

2.4 Integração de funções complexas e espaço 2.4 Integrção de funções complexs e espço L 1 (µ) Sej µ um medid no espço mensurável (, F). A teori de integrção pr funções complexs é um generlizção imedit d teori de integrção de funções não negtivs.

Leia mais

3. CÁLCULO INTEGRAL EM IR

3. CÁLCULO INTEGRAL EM IR 3 CÁLCULO INTEGRAL EM IR A importâni do álulo integrl em IR reside ns sus inúmers plições em vários domínios d engenhri, ms tmém em ísi, em teori ds proiliddes, em eonomi, em gestão 3 Prtição de um intervlo

Leia mais

Integrais duplas UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 24. Assunto: Integrais Duplas

Integrais duplas UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 24. Assunto: Integrais Duplas Assunto: Integris Dupls UNIVESIDADE FEDEAL DO PAÁ CÁLCULO II - POJETO NEWTON AULA 24 Plvrs-hves: integris dupls,soms de iemnn, teorem de Fubini Integris dupls Sej o retângulo do plno rtesino ddo por {(x,

Leia mais

AULA 7 EFICIÊNCIA E EFETIVIDADE DE ALETAS

AULA 7 EFICIÊNCIA E EFETIVIDADE DE ALETAS 49 UL 7 EFICIÊNCI E EFETIVIDDE DE LETS Efiiêni de let teori desenvolvid n ul nterior é stnte útil pr um nálise em detlhes pr o projeto de novs onfigurções e geometris de lets. Pr lguns sos simples, existem

Leia mais

fundamental do cálculo. Entretanto, determinadas aplicações do Cálculo nos levam a formulações de integrais em que:

fundamental do cálculo. Entretanto, determinadas aplicações do Cálculo nos levam a formulações de integrais em que: Cpítulo 8 Integris Imprópris 8. Introdução A eistênci d integrl definid f() d, onde f é contínu no intervlo fechdo [, b], é grntid pelo teorem fundmentl do cálculo. Entretnto, determinds plicções do Cálculo

Leia mais

d(p,f 1) + d(p,f 2) = 2a

d(p,f 1) + d(p,f 2) = 2a 1 3. Estudo d Elipse 3..1 Definição Consideremos no plno dois pontos F 1 e F, tis que d(f 1, F ) = c. Sej, > c. Chm-se elipse o conjunto de pontos P, do plno, tis que: d(p,f 1) + d(p,f ) = P F 1 O F 3..

Leia mais

GABARITO. Matemática D 16) D. 12z = 8z + 8y + 8z 4z = 2x + 2y z = 2z+ 2y z = 2x x z = = 1 2 = ) C

GABARITO. Matemática D 16) D. 12z = 8z + 8y + 8z 4z = 2x + 2y z = 2z+ 2y z = 2x x z = = 1 2 = ) C GRITO temátic tensivo V. ercícios 0) ) 40 b) 0) 0) ) elo Teorem de Tles, temos: 8 40 5 b) elo Teorem de Tles, temos: 4 7 prtir do Teorem de Tles, temos: 4 0 48 0 4,8 48, 48 6 : 9 6, + 4,8 + 9,8 prtir do

Leia mais

4 π. 8 π Considere a função real f, definida por f(x) = 2 x e duas circunferência C 1 e C 2, centradas na origem.

4 π. 8 π Considere a função real f, definida por f(x) = 2 x e duas circunferência C 1 e C 2, centradas na origem. EFOMM 2010 1. Anlise s firmtivs bixo. I - Sej K o conjunto dos qudriláteros plnos, seus subconjuntos são: P = {x K / x possui ldos opostos prlelos}; L = {x K / x possui 4 ldos congruentes}; R = {x K /

Leia mais

Objetivo. Conhecer a técnica de integração chamada substituição trigonométrica. e pelo eixo Ox. f(x) dx = A.

Objetivo. Conhecer a técnica de integração chamada substituição trigonométrica. e pelo eixo Ox. f(x) dx = A. MÓDULO - AULA Aul Técnics de Integrção Substituição Trigonométric Objetivo Conhecer técnic de integrção chmd substituição trigonométric. Introdução Você prendeu, no Cálculo I, que integrl de um função

Leia mais

Recordando produtos notáveis

Recordando produtos notáveis Recordndo produtos notáveis A UUL AL A Desde ul 3 estmos usndo letrs pr representr números desconhecidos. Hoje você sbe, por exemplo, que solução d equção 2x + 3 = 19 é x = 8, ou sej, o número 8 é o único

Leia mais

Comprimento de arco. Universidade de Brasília Departamento de Matemática

Comprimento de arco. Universidade de Brasília Departamento de Matemática Universidde de Brsíli Deprtmento de Mtemátic Cálculo Comprimento de rco Considerefunçãof(x) = (2/3) x 3 definidnointervlo[,],cujográficoestáilustrdo bixo. Neste texto vmos desenvolver um técnic pr clculr

Leia mais

Assim, temos: Logo: igual a. de Z. Solução: Seja z a bi, com a, b. De log3 2z 2z 1 2, temos: 2z 2z 1 9. Calculando. b 4 b 4 (não convém) com

Assim, temos: Logo: igual a. de Z. Solução: Seja z a bi, com a, b. De log3 2z 2z 1 2, temos: 2z 2z 1 9. Calculando. b 4 b 4 (não convém) com ssim, temos: f 0 () fo () 0. Os inteiros,,,..., estão P com rzão não nul. Os termos, e 0 estão em PG, ssim, j e. Determine j. f 0 (0) 0 0 0. 0 r 9r Sej Z um número compleo tl que e log Z Zi. Determine

Leia mais

MAT Cálculo Avançado - Notas de Aula

MAT Cálculo Avançado - Notas de Aula MAT5711 - Cálulo Avnçdo - Nots de Aul 26 de mrço de 2010 1. INTEGRAL DE RIEMANN EM ESPAÇOS DE BANACH Definição 1.1 (Integrl de Riemnn). Sejm [, b] R e E um espço de Bn. A noção de Riemnn-integrbilidde

Leia mais

Trigonometria FÓRMULAS PARA AJUDÁ-LO EM TRIGONOMETRIA

Trigonometria FÓRMULAS PARA AJUDÁ-LO EM TRIGONOMETRIA Trigonometri é o estudo dos triângulos, que contêm ângulos, clro. Conheç lgums regrs especiis pr ângulos e váris outrs funções, definições e trnslções importntes. Senos e cossenos são dus funções trigonométrics

Leia mais

1.1) Dividindo segmentos em partes iguais com mediatrizes sucessivas.

1.1) Dividindo segmentos em partes iguais com mediatrizes sucessivas. COLÉGIO PEDRO II U. E. ENGENHO NOVO II Divisão Gráfi de segmentos e Determinção gráfi de epressões lgéris (qurt e tereir proporionl e médi geométri). Prof. Sory Izr Coord. Prof. Jorge Mrelo TURM: luno:

Leia mais

Gramáticas Regulares. Capítulo Gramáticas regulares

Gramáticas Regulares. Capítulo Gramáticas regulares Cpítulo Grmátics Regulres Ests nots são um complemento do livro e destinm-se representr lguns lgoritmos estuddos ns uls teórics. É ddo um exemplo de plicção de cd conceito. Mis exemplos form discutidos

Leia mais

Máximos e Mínimos Locais

Máximos e Mínimos Locais INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA MAT AO CÁLCULO A - Pro : Grç Luzi Domiguez Sntos ESTUDO DA VARIAÇÃO DAS FUNÇÕES Máimos e Mínimos Lois Deinição: Dd um unção, sej D i possui um

Leia mais

x u 30 2 u 1 u 6 + u 10 2 = lim (u 1)(1 + u + u 2 + u 3 + u 4 )(2 + 2u 5 + u 10 )

x u 30 2 u 1 u 6 + u 10 2 = lim (u 1)(1 + u + u 2 + u 3 + u 4 )(2 + 2u 5 + u 10 ) Universidde Federl de Viços Deprtmento de Mtemátic MAT 40 Cálculo I - 207/II Eercícios Resolvidos e Comentdos Prte 2 Limites: Clcule os seguintes ites io se eistirem. Cso contrário, justique não eistênci.

Leia mais

Modelos de Computação -Folha de trabalho n. 2

Modelos de Computação -Folha de trabalho n. 2 Modelos de Computção -Folh de trlho n. 2 Not: Os exercícios origtórios mrcdos de A H constituem os prolems que devem ser resolvidos individulmente. A resolução em ppel deverá ser depositd n cix d disciplin

Leia mais

Matrizes e Determinantes

Matrizes e Determinantes Págin de - // - : PROFESSOR: EQUIPE DE MTEMÁTIC NCO DE QUESTÕES - MTEMÁTIC - ª SÉRIE - ENSINO MÉDIO - PRTE =============================================================================================

Leia mais

Trigonometria - Primeira Parte

Trigonometria - Primeira Parte Cpítulo 7 Trigonometri - Primeir Prte 7 Introdução Triângulo é um polígono om ângulos internos, logo ldos Podemos lssiá-los de dus mneirs: qunto os tmnhos dos ldos: equilátero - ldos de mesmo omprimento,

Leia mais

CÁLCULO I. Denir e calcular o centroide de uma lâmina.

CÁLCULO I. Denir e calcular o centroide de uma lâmina. CÁLCULO I Prof. Mrcos Diniz Prof. André Almeid Prof. Edilson Neri Júnior Aul n o : Aplicções d Integrl: Momentos. Centro de Mss Objetivos d Aul Denir momento em relção um ponto xo e um ret. Denir e clculr

Leia mais

TÓPICOS DE CÁLCULO UNIVERSIDADE CRUZEIRO DO SUL 1º SEMESTRE 2014

TÓPICOS DE CÁLCULO UNIVERSIDADE CRUZEIRO DO SUL 1º SEMESTRE 2014 urso: ENGENHRI Professor Responsável: Ms.rlos Henrique Pontução:,0 (dois) TÓPIOS DE ÁLULO UNIVERSIDDE RUZEIRO DO SUL º SEMESTRE 0 UNIVERSIDDE RUZEIRO DO SUL tividde Pontud Disciplin: TÓPIOS DE ÁLULO Limite

Leia mais

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x? INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região S utilizndo retângulos e depois

Leia mais

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x? INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região S utilizndo retângulos e depois

Leia mais

Matemática. Resolução das atividades complementares. M24 Equações Polinomiais. 1 (PUC-SP) No universo C, a equação

Matemática. Resolução das atividades complementares. M24 Equações Polinomiais. 1 (PUC-SP) No universo C, a equação Resolução ds tividdes complementres Mtemátic M Equções Polinomiis p. 86 (PUC-SP) No universo C, equção 0 0 0 dmite: ) três rízes rcionis c) dus rízes irrcionis e) um únic riz positiv b) dus rízes não reis

Leia mais

Interpretação Geométrica. Área de um figura plana

Interpretação Geométrica. Área de um figura plana Integrl Definid Interpretção Geométric Áre de um figur pln Interpretção Geométric Áre de um figur pln Sej f(x) contínu e não negtiv em um intervlo [,]. Vmos clculr áre d região S. Interpretção Geométric

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 2. MATEMÁTICA I 1 TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO

Todos os exercícios sugeridos nesta apostila se referem ao volume 2. MATEMÁTICA I 1 TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO RELAÇÕES MÉTRICAS NO TRIÂNGULO RETÂNGULO... TRIGONOMETRIA TRIÂNGULO RETÂNGULO... 6 RELAÇÕES FUNDAMENTAIS DA TRIGONOMETRIA... 10 ÂNGULOS NOTÁVEIS... 14 TABELA DE RAZÕES TRIGNOMÉTRICAS... 16 RESPOSTAS...

Leia mais

POLINÔMIOS. Definição: Um polinômio de grau n é uma função que pode ser escrita na forma. n em que cada a i é um número complexo (ou

POLINÔMIOS. Definição: Um polinômio de grau n é uma função que pode ser escrita na forma. n em que cada a i é um número complexo (ou POLINÔMIOS Definição: Um polinômio de gru n é um função que pode ser escrit n form P() n n i 0... n i em que cd i é um número compleo (ou i 0 rel) tl que n é um número nturl e n 0. Os números i são denomindos

Leia mais

Progressões Aritméticas

Progressões Aritméticas Segund Etp Progressões Aritmétics Definição São sequêncis numérics onde cd elemento, prtir do segundo, é obtido trvés d som de seu ntecessor com um constnte (rzão).,,,,,, 1 3 4 n 1 n 1 1º termo º termo

Leia mais

4. Teorema de Green. F d r = A. dydx. (1) Pelas razões acima referidas, a prova deste teorema para o caso geral está longe

4. Teorema de Green. F d r = A. dydx. (1) Pelas razões acima referidas, a prova deste teorema para o caso geral está longe 4 Teorem de Green Sej U um berto de R 2 e r : [, b] U um cminho seccionlmente, fechdo e simples, isto é, r não se uto-intersect, excepto ns extremiddes Sej região interior r([, b]) prte d dificuldde n

Leia mais

Áreas de Figuras Planas: Mais Alguns Resultados. Nono Ano. Autor: Prof. Ulisses Lima Parente Revisor: Prof. Antonio Caminha M.

Áreas de Figuras Planas: Mais Alguns Resultados. Nono Ano. Autor: Prof. Ulisses Lima Parente Revisor: Prof. Antonio Caminha M. Mtril Tório - Módulo Árs d Figurs Plns Árs d Figurs Plns: Mis lguns Rsultdos Nono no utor: Prof Ulisss Lim Prnt Rvisor: Prof ntonio minh M Nto 6 d novmro d 08 Portl d OMEP fórmul d Hrão Nst ul, prsntrmos

Leia mais

Componente Curricular: Professor(a): Turno: Data: Matemática PAULO CEZAR Matutino Aluno(a): Nº do Série: Turma: Lista de Exercícios CONTINUAÇÂO

Componente Curricular: Professor(a): Turno: Data: Matemática PAULO CEZAR Matutino Aluno(a): Nº do Série: Turma: Lista de Exercícios CONTINUAÇÂO Vlor 2,0 omponente urriulr: Professor(): Turno: Dt: Mtemáti PULO EZR Mtutino luno(): Nº do Série: Turm: luno: 9º no Suesso! Pontução EXTR List de Eeríios ONTINUÇÂO List de eeríios do teorem de Tles. Semelhnç

Leia mais

CÁLCULO I. 1 Funções denidas por uma integral

CÁLCULO I. 1 Funções denidas por uma integral CÁLCULO I Prof. Mrcos Diniz Prof. André Almeid Prof. Edilson Neri Júnior Prof. Emerson Veig Prof. Tigo Coelho Aul n o 26: Teorem do Vlor Médio pr Integris. Teorem Fundmentl do Cálculo II. Funções dds por

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA

UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA PRIMEIRO SEMESTRE DE 2015 13 de Fevereiro de 2015 Prte I Álgebr Liner 1 Questão: Sejm

Leia mais

Material Teórico - Redução ao Primeiro Quadrante e Funções Trigonométricas. A Lei dos Cossenos Revisitada. Primeiro Ano do Ensino Médio

Material Teórico - Redução ao Primeiro Quadrante e Funções Trigonométricas. A Lei dos Cossenos Revisitada. Primeiro Ano do Ensino Médio Material Teórico - Redução ao Primeiro Quadrante e Funções Trigonométricas Lei dos ossenos Revisitada Primeiro no do Ensino Médio utor: Prof. Farício Siqueira enevides Revisor: Prof. ntonio aminha M. Neto

Leia mais

- Departamento de Matemática Aplicada (GMA) Notas de aula Prof a. Marlene Dieguez Fernandez. Integral definida

- Departamento de Matemática Aplicada (GMA) Notas de aula Prof a. Marlene Dieguez Fernandez. Integral definida Interl Deinid Nots de ul - pro. Mrlene - 28-2 1 - Deprtmento de Mtemáti Aplid (GMA) Nots de ul - 28-2 Pro. Mrlene Dieuez Fernndez Interl deinid Oservção: esse teto ontém pens prte teóri desse ssunto, não

Leia mais

Definição 1. (Volume do Cilindro) O volume V de um um cilindro reto é dado pelo produto: V = area da base altura.

Definição 1. (Volume do Cilindro) O volume V de um um cilindro reto é dado pelo produto: V = area da base altura. Cálculo I Aul 2 - Cálculo de Volumes Dt: 29/6/25 Objetivos d Aul: Clculr volumes de sólidos por seções trnsversis Plvrs-chves: Seções Trnsversis - Volumes Volume de um Cilindro Nosso objetivo nest unidde

Leia mais

3 Teoria dos Conjuntos Fuzzy

3 Teoria dos Conjuntos Fuzzy 0 Teori dos Conjuntos Fuzzy presentm-se qui lguns conceitos d teori de conjuntos fuzzy que serão necessários pr o desenvolvimento e compreensão do modelo proposto (cpítulo 5). teori de conjuntos fuzzy

Leia mais