Universidade Federal de Pelotas Disciplina de Microeconomia 1 Professor Rodrigo Nobre Fernandez Lista 4 - Soluções

Tamanho: px
Começar a partir da página:

Download "Universidade Federal de Pelotas Disciplina de Microeconomia 1 Professor Rodrigo Nobre Fernandez Lista 4 - Soluções"

Transcrição

1 Univesidade Fedeal de Pelotas Disciplina de Micoeconomia Pofesso Rodigo Nobe Fenandez Lista 4 - Soluções ) Resolva o poblema de maximização dos lucos de uma fima com a tecnologia Cobb Douglas f x,x ) x x. S:Pimeiamente montaemos a função de lucos:π pf x,x ) x + x ) O poblema da fima é escolhe a quantidade de insumos que maximiza essa função: As CPOs são: maxπ pf x,x ) x + x ) x,x px x ) Multiplicaemos a equação ) po x e a ) po x obtendo: px x ) px x x 3) Lembe que y x x. Usando este fato em 3) e 4): px x x 4) Inseindo 5) e 6) na função de podução obtemos a função de ofeta ótima: py x 5) py x 6) ) py y py ) p y ) p ) Inseindo 7) em 5) e 6) obteemos as escolhas ótimas po insumos, isto é, as demandas ótimas: x p x p ) ) ) ) 7) 8) 9) ) Considee a função de podução f x,x ) {minx,x )}. Enconte as demandas ótimas po insumos, a função de ofeta e a função de luco. Que estição deve satisfaze? S: Na solução ótima devemos te x x. O poblema da fima nesse caso é equivalente a:

2 A CPO desse poblema é: max x Π px x + ) px + 0) Desse modo teemos que: A função de ofeta é: ) p x + ) E a função de lucos: ) p y ) + escala. ) p Π p + p + ) + ) Π ) + ) p Apenas necessitamos que <, ou seja, a função de podução deve apesenta etonos decescentes de 3) Enconte as demandas condicionais e a função custo paa os tês casos abaixo: a) Tecnologia Linea: f x,x ) x + x S: As demandas condicionais são: A função de custos mínimos é dada po: y, se j > i x i qualque valo ente 0 e y, se j i 0, se se j < i a) Tecnologia Leontief: f x,x ) min{x,x } c,,y) ymin{, } S: Devemos usa uma quantidade igual de ambos os insumos paa podução, desse modo: x x y. A função de custos mínimos é dada po b) Tecnologia CES f x,x ) x + x ) S: Devemos fomula o Lagangiano: c,,y) y + ) [ L x + x + y ] x + ) x As CPOs são: [ ] x + ) x x [ ] x + ) x x 3) 4)

3 y x + x ) 5) Sabemos que: y x + x ) Potanto: Usando esses fatos nas duas CPOS temos que: y x + ) x y x O que esulta em: y x Substituindo as equações 6) e 7) na equação 5) obtemos que: y x ) y 6) x ) y 7) ) y + ) p + ) ) y p Substituindo essa expessão nas equações 6) e 7) teemos: x x + + ) 8) ) y 9) ) y 0) Podemos insei 9) e 0) na função objetivo paa obtemos a função de custos mínimos: x,,y) + x,,y) Denote c,,y) + ) y + + ) y, então e e com um pouco de álgeba tediosa teemos: c,,y) + ) y ) Ou seja, a função de custos mínimos CES tem um fomato análogo a pópia função de podução. 4) Considee uma fima com uma tecnologia Cobb Douglas f k,l) k l, onde k denota unidades de capital usadas pela fima, l denota unidades de tabalho usadas pela fima, o saláio pago aos tabalhadoes e o 3

4 peço do insumo capital. A fima que minimiza o custo de poduzi y unidades do bem final e possui acesso a mecados de fatoes pefeitamente competitivos. po µ. a) Qual é o poblema de minimização de custos da fima? Denote o multiplicado de Lagange desse poblema S: e. b) Quais são os paâmetos do poblema? L k + l + µ [y k l ] S: Os paâmetos do poblema são os peços dos fatoes, e, e os paâmetos da função de podução c) Enconte as funções de demanda condicionais. Denote-as po l,,y) e k,,y) S: As CPOs do poblema são: µk l ) µk l 3) y k l 4) Divida ) po 3) paa obte: Insia 5) em 4) e obtenha: k ) l 5) Substituindo 6) em 5): l y ) 6) k y ) d) Enconte a função custo c,,y). Qual a intepetação econômica dessa função? S: A função de custo é: 7) Insia 6) e 7) na equação acima paa obte: c,,y) k,,y) + l,,y) c,,y) e) Ache µ,,y). Qual a intepetação do multiplicado? S: As duas pimeias CPOs esultam em: µy Substituindo essas duas equações na equação 4) obtemos: ) ) + y k 8) µy l 9) 4

5 y µy ) µ ) ) µy ) y 30) Dizemos que o multiplicado de Lagange é o peço somba da estição do poblema de minimização de custos, isto é, µ,,y) mede o aumento no custo da fima decoente de um pequeno aumento na quantidade poduzida. f) Ache dy dc e moste que é igual ao multiplicado de Lagange. S: Pimeio note que a seguinte elação é válida: ) ) ) ) + ) Deivando a função de custos em elação a y: dc,,y) dy Usando a elação acima: dc,,y) dy ) + ) ) + ) ) + ) + ) ) y ) ) ) ) ) + ) ) + ) y ) y µ g) Como dy dc com elação a + )? S: Se aumentamos + ) então dy dc diminui. Isto é espeado: significa que poduzi a mesma quantidade é mais baato quanto maio o etono de escala que a fima tive. h) Moste que as demandas condicionais são homogêneas de gau 0 em e. S: Seja t>0, então usando as equações das demandas condicionais, teemos que: l t,t,y) y k y t t ) y ) t y t ) ) i) Moste que a função custo é homogênea linea em e. Qual é a intuição desse esultado? S: ct,t,y) t) t) ) ) + y 3) 3) 5

6 ct,t,y) t ) ) ) ) + y ct,t,y) tc,,y) A homogeneidade da função custo significa que se todos os peços dos insumos mudam na mesma popoção, o custo ótimo de podução também muda na mesma popoção. j) Moste que d dc dc 0 e que d 0. Qual a intuição desse esultado? S: Deive a função de custos em elação a estes dois paâmetos, obtendo: dc,,y) d dc,,y) d ) ) + + ) ) ) ) + ) ) + y > 0 y > 0 Se o o peço do insumo aumenta, então o custo de se obte o mesmo nível de podução que antes não pode diminui. k) Moste que a função custo é côncava em. Em temos econômicos o que significa esse esultado? S: Veja a segunda deivada da função custo com elação a : [ d c,,y) d + ) ] ) ) ) + y < 0 O que implica que a função de custos é côncava com espeito a. A função de custo se côncava com elação ao peço do insumo significa que a fima pode se beneficia da possibilidade de substitui insumos. 5) Suponha que uma fima competitiva poduz eleticidade em duas usinas difeentes, uma hidelética e outa nuclea. O custo de poduzi y h megaatts de eleticidade na hidelética é C h y h ) y h + 5y h. O custo de poduzi y n megaatts de eleticidade na usina nuclea é C n y n ) 0 + 0y n + 5y n. Qual a foma de meno custo possível de se poduzi um total de megaatts? S: O poblema é descito po: O Lagangiano desse poblema é: maxc h y h ) + C n y n ) sujeito à y n + y h y h,y n As CPOs do poblema são: L 0 + 0y n + 5y n y h + 5y h + [ y n y h ] y h 33) 0 + 0y n 34) Igualando as duas CPOs teemos: y h + y n 35) y h 0 + 0y n 6

7 3 + y h y n Substituindo na equação 35): y h + 3 y h 4 36) Usando a equação 36) temos que: y n 7 37) 7

é a variação no custo total dada a variação na quantidade

é a variação no custo total dada a variação na quantidade TP043 Micoeconomia 21/10/2009 AULA 15 Bibliogafia: PINDYCK - CAPÍTULO 7 Custos fixos e vaiáveis: Custos fixos não dependem do nível de podução, enquanto que custos vaiáveis dependem do nível de podução.

Leia mais

Material Teórico - Sistemas Lineares e Geometria Anaĺıtica. Sistemas com Três Variáveis - Parte 2. Terceiro Ano do Ensino Médio

Material Teórico - Sistemas Lineares e Geometria Anaĺıtica. Sistemas com Três Variáveis - Parte 2. Terceiro Ano do Ensino Médio Mateial Teóico - Sistemas Lineaes e Geometia Anaĺıtica Sistemas com Tês Vaiáveis - Pate 2 Teceio Ano do Ensino Médio Auto: Pof. Fabício Siqueia Benevides Reviso: Pof. Antonio Caminha M. Neto 1 Sistemas

Leia mais

Capítulo 8. Equilíbrio Macroeconómico 1

Capítulo 8. Equilíbrio Macroeconómico 1 Capítulo 8. Equilíbio Macoeconómico 1 8.1. Equilíbio Macoeconómico de uma Economia Fechada 8.1.1. Equilíbio de Longo azo de uma Economia Fechada 8.1.2. Equilíbio de Cuto azo de uma Economia Fechada 8.1.3.

Leia mais

Seção 8: EDO s de 2 a ordem redutíveis à 1 a ordem

Seção 8: EDO s de 2 a ordem redutíveis à 1 a ordem Seção 8: EDO s de a odem edutíveis à a odem Caso : Equações Autônomas Definição Uma EDO s de a odem é dita autônoma se não envolve explicitamente a vaiável independente, isto é, se fo da foma F y, y, y

Leia mais

( ) 10 2 = = 505. = n3 + n P1 - MA Questão 1. Considere a sequência (a n ) n 1 definida como indicado abaixo:

( ) 10 2 = = 505. = n3 + n P1 - MA Questão 1. Considere a sequência (a n ) n 1 definida como indicado abaixo: P1 - MA 1-011 Questão 1 Considee a sequência (a n ) n 1 definida como indicado abaixo: a 1 = 1 a = + 3 a 3 = + 5 + 6 a = 7 + 8 + 9 + 10 (05) (a) O temo a 10 é a soma de 10 inteios consecutivos Qual é o

Leia mais

Seção 24: Laplaciano em Coordenadas Esféricas

Seção 24: Laplaciano em Coordenadas Esféricas Seção 4: Laplaciano em Coodenadas Esféicas Paa o leito inteessado, na pimeia seção deduimos a expessão do laplaciano em coodenadas esféicas. O leito ue estive disposto a aceita sem demonstação pode dietamente

Leia mais

Modelagem Matemática de Sistemas Mecânicos Introdução às Equações de Lagrange

Modelagem Matemática de Sistemas Mecânicos Introdução às Equações de Lagrange Modelagem Matemática de Sistemas Mecânicos Intodução às Equações de Lagange PTC 347 Páticas de Pojeto de Sistemas de Contole º semeste de 7 Buno Angélico Laboatóio de Automação e Contole Depatamento de

Leia mais

Parte II Teoria da Firma

Parte II Teoria da Firma Parte II Teoria da Firma Maximização de Lucro Roberto Guena de Oliveira 28 de abril de 2017 USP Sumário 1 Introdução 2 Abordagem direta 3 Abordagem através da função de custo 4 Exercícios 1 Introdução

Leia mais

Descontos desconto racional e desconto comercial

Descontos desconto racional e desconto comercial Descontos desconto acional e desconto comecial Uma opeação financeia ente dois agentes econômicos é nomalmente documentada po um título de cédito comecial, devendo esse título conte todos os elementos

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL II 014.2

CÁLCULO DIFERENCIAL E INTEGRAL II 014.2 CÁLCULO IFERENCIAL E INTEGRAL II Obsevações: ) Todos os eecícios popostos devem se esolvidos e entegue no dia de feveeio de 5 Integais uplas Integais uplas Seja z f( uma função definida em uma egião do

Leia mais

UFSCar Cálculo 2. Quinta lista de exercícios. Prof. João C.V. Sampaio e Yolanda K. S. Furuya

UFSCar Cálculo 2. Quinta lista de exercícios. Prof. João C.V. Sampaio e Yolanda K. S. Furuya UFSCa Cálculo 2. Quinta lista de eecícios. Pof. João C.V. Sampaio e Yolanda K. S. Fuua Rega da cadeia, difeenciais e aplicações. Calcule (a 4 w (0,, π/6, se w = 4 4 + 2 u (b (c 2 +2 (, 3,, se u =. Resposta.

Leia mais

Microeconomia 1 - Teoria da Firma

Microeconomia 1 - Teoria da Firma Microeconomia - Teoria da Firma Rodrigo Nobre Fernandez Pelotas, 05 DECON/UFPEL Rodrigo Nobre Fernandez Microeconomia / 37 Conjunto de Possibilidade de Produção Uma firma é uma entidade que transforma

Leia mais

Energia no movimento de uma carga em campo elétrico

Energia no movimento de uma carga em campo elétrico O potencial elético Imagine dois objetos eletizados, com cagas de mesmo sinal, inicialmente afastados. Paa apoximá-los, é necessáia a ação de uma foça extena, capaz de vence a epulsão elética ente eles.

Leia mais

CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO

CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO Capítulo 4 - Cinemática Invesa de Posição 4 CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO 4.1 INTRODUÇÃO No capítulo anteio foi visto como detemina a posição e a oientação do ógão teminal em temos das vaiáveis

Leia mais

PPNL. Conjuntos Convexos. Exemplos. Otimização e Conjuntos Convexos

PPNL. Conjuntos Convexos. Exemplos. Otimização e Conjuntos Convexos PPNL Min (Max) f(x) s. a. g i (x) (,, =) b i, i =,,m one x = (x,,x n ) T é o veto n-imensional as vaiáveis e ecisão; f (x) é a função objetivo; g i (x) são as funções e estição e os b i são constantes

Leia mais

4.4 Mais da geometria analítica de retas e planos

4.4 Mais da geometria analítica de retas e planos 07 4.4 Mais da geometia analítica de etas e planos Equações da eta na foma simética Lembemos que uma eta, no planos casos acima, a foma simética é um caso paticula da equação na eta na foma geal ou no

Leia mais

Cap. 4 - O Campo Elétrico

Cap. 4 - O Campo Elétrico ap. 4 - O ampo Elético 4.1 onceito de ampo hama-se ampo a toda egião do espaço que apesenta uma deteminada popiedade física. Esta popiedade pode se de qualque natueza, dando oigem a difeentes campos, escalaes

Leia mais

O Paradoxo de Bertrand para um Experimento Probabilístico Geométrico

O Paradoxo de Bertrand para um Experimento Probabilístico Geométrico O Paadoxo de etand paa um Expeimento Pobabilístico Geomético maildo de Vicente 1 1 Colegiado do Cuso de Matemática Cento de Ciências Exatas e Tecnológicas da Univesidade Estadual do Oeste do Paaná Caixa

Leia mais

Curso: Engenharia de Produção PPNL. Min (Max) f(x)

Curso: Engenharia de Produção PPNL. Min (Max) f(x) PPNL Min (Max) f(x) Cuo: Engenhaia de Podução. a. g i (x) (,, ) b i, i 1,,m onde x (x 1,,x n ) T é o veto n-dimenional da vaiávei de decião; f (x) é a função objetivo; g i (x) ão a funçõe de etição e o

Leia mais

CPV O cursinho que mais aprova na GV

CPV O cursinho que mais aprova na GV RJ_MATEMATICA_9_0_08 FGV-RJ A dministação Economia Dieito C Administação 26 26 das 200 vagas da GV têm ficado paa os alunos do CPV CPV O cusinho que mais apova na GV Ciências Sociais ociais GV CPV. ociais

Leia mais

PPNL. Conjuntos Convexos. Exemplos. Otimização e Conjuntos Convexos

PPNL. Conjuntos Convexos. Exemplos. Otimização e Conjuntos Convexos PPNL Min (Max) f(x). a. g i (x) (,, =) b i, i =,,m onde x = (x,,x n ) T é o veto n-dimenional da vaiávei de decião; f (x) é a função objetivo; g i (x) ão a funçõe de etição e o b i ão contante conhecida.

Leia mais

3.3 Potencial e campo elétrico para dadas configurações de carga.

3.3 Potencial e campo elétrico para dadas configurações de carga. . Potencial e campo elético paa dadas configuações de caga. Emboa a maio utilidade do potencial se evele em situações em ue a pópia configuação de caga é uma incógnita, nas situações com distibuições conhecidas

Leia mais

Consideremos um ponto P, pertencente a um espaço rígido em movimento, S 2.

Consideremos um ponto P, pertencente a um espaço rígido em movimento, S 2. 1 1. Análise das elocidades Figua 1 - Sólido obseado simultaneamente de dois efeenciais Consideemos um ponto P, petencente a um espaço ígido em moimento, S 2. Suponhamos que este ponto está a se isto po

Leia mais

Figura 1 Bolas em rota de colisão

Figura 1 Bolas em rota de colisão As equações do poblema Objeto de apendizagem: Colisões bidimensionais Romeo Taaes omeo@fisica.ufpb.b NOA - UFPB Poblema Vamos considea uma bola que se moe com elocidade I, na dieção de uma outa bola que

Leia mais

3. INSTRUMENTAL TEÓRICO

3. INSTRUMENTAL TEÓRICO 36 3. INSTRUMENTAL TEÓRICO 3.1. Descição das vaiáveis utiliadas a lono do tabalho Neste tabalho, utilia-se os dados da pesquisa sobe Economia Infomal Ubana ECINF, de 1997, ealiada pelo Instituto Basileio

Leia mais

REGRESSÃO LINEAR MÚLTIPLA Correlação múltipla

REGRESSÃO LINEAR MÚLTIPLA Correlação múltipla REGRESSÃO LINEAR MÚLTIPLA Coelação múltipla Coeficiente de coelação múltipla: indicado de quanto da vaiação total da vaiável dependente é explicado pelo conjunto das vaiáveis independentes (explicativas)

Leia mais

Departamento de Física - Universidade do Algarve FORÇA CENTRÍFUGA

Departamento de Física - Universidade do Algarve FORÇA CENTRÍFUGA FORÇA CENTRÍFUGA 1. Resumo Um copo desceve um movimento cicula unifome. Faz-se vaia a sua velocidade de otação e a distância ao eixo de otação, medindo-se a foça centífuga em função destes dois paâmetos..

Leia mais

Reversão da Intensidade de Capital, Retorno das Técnicas e Indeterminação da

Reversão da Intensidade de Capital, Retorno das Técnicas e Indeterminação da evesão da Intensidade de Capital, etono das Técnicas e Indeteminação da Dotação de Capital : a Cítica Saffiana à Teoia Neoclássica. Fanklin Seano, IE-UFJ Vesão evista, Outubo 2005 I.Capital Homogêneo Suponha

Leia mais

5 Estudo analítico de retas e planos

5 Estudo analítico de retas e planos GA3X1 - Geometia Analítica e Álgeba Linea 5 Estudo analítico de etas e planos 5.1 Equações de eta Definição (Veto dieto de uma eta): Qualque veto não-nulo paalelo a uma eta chama-se veto dieto dessa eta.

Leia mais

Teo. 5 - Trabalho da força eletrostática - potencial elétrico

Teo. 5 - Trabalho da força eletrostática - potencial elétrico Teo. 5 - Tabalho da foça eletostática - potencial elético 5.1 Intodução S.J.Toise Suponhamos que uma patícula qualque se desloque desde um ponto até em ponto sob a ação de uma foça. Paa medi a ação dessa

Leia mais

n θ E Lei de Gauss Fluxo Eletrico e Lei de Gauss

n θ E Lei de Gauss Fluxo Eletrico e Lei de Gauss Fundamentos de Fisica Clasica Pof icado Lei de Gauss A Lei de Gauss utiliza o conceito de linhas de foça paa calcula o campo elético onde existe um alto gau de simetia Po exemplo: caga elética pontual,

Leia mais

Curso: Engenharia de Produção PPNL. Min (Max) f(x)

Curso: Engenharia de Produção PPNL. Min (Max) f(x) PPNL Min (Max) f(x). a. g i (x) (,, ) b i, i 1,,m onde x (x 1,,x n ) T é o veto n-dimenional da vaiávei de decião; f (x) é a função objetivo; g i (x) ão a funçõe de etição e o b i ão contante conhecida.

Leia mais

CAPÍTULO 3 DEPENDÊNCIA LINEAR

CAPÍTULO 3 DEPENDÊNCIA LINEAR Luiz Fancisco da Cuz Depatamento de Matemática Unesp/Bauu CAPÍTULO 3 DEPENDÊNCIA LINEAR Combinação Linea 2 n Definição: Seja {,,..., } um conjunto com n etoes. Dizemos que um eto u é combinação linea desses

Leia mais

O perímetro da circunferência

O perímetro da circunferência Univesidade de Basília Depatamento de Matemática Cálculo 1 O peímeto da cicunfeência O peímeto de um polígono de n lados é a soma do compimento dos seus lados. Dado um polígono qualque, você pode sempe

Leia mais

5. Análise de Curtos-Circuitos ou Faltas. 5.2 Componentes Simétricos (ou Simétricas)

5. Análise de Curtos-Circuitos ou Faltas. 5.2 Componentes Simétricos (ou Simétricas) Sistemas Eléticos de Potência 5. nálise de utos-icuitos ou Faltas 5. omponentes Siméticos (ou Siméticas) Pofesso: D. Raphael ugusto de Souza enedito E-mail:aphaelbenedito@utfp.edu.b disponível em: http://paginapessoal.utfp.edu.b/aphaelbenedito

Leia mais

4 Modelo para Extração de Regras Fuzzy a partir de Máquinas de Vetores Suporte FREx_SVM 4.1 Introdução

4 Modelo para Extração de Regras Fuzzy a partir de Máquinas de Vetores Suporte FREx_SVM 4.1 Introdução 4 Modelo paa Extação de Regas Fuzzy a pati de Máquinas de Vetoes Supote FREx_SVM 4.1 Intodução Como já mencionado, em máquinas de vetoes supote não se pode explica a maneia como sua saída é obtida. No

Leia mais

π (II.c) Dualidade em Programação Linear c T Seja o PPL apresentado na forma abaixo: (PRIMAL) Max x (I.a) (I.b) (I.c)

π (II.c) Dualidade em Programação Linear c T Seja o PPL apresentado na forma abaixo: (PRIMAL) Max x (I.a) (I.b) (I.c) 1 Dualidade em Pogamação Linea Sea o PPL apesentado na foma abaio: (PIMAL) Ma (I.a) s.a: A b (I.b) 0 (I.) Então sempe é possível ontui o PPL que se segue: (DUAL) Min b π (II.a) s.a: A π (II.b) π (II.)

Leia mais

VETORES GRANDEZAS VETORIAIS

VETORES GRANDEZAS VETORIAIS VETORES GRANDEZAS VETORIAIS Gandezas físicas que não ficam totalmente deteminadas com um valo e uma unidade são denominadas gandezas vetoiais. As gandezas que ficam totalmente expessas po um valo e uma

Leia mais

Equações diferenciais lineares com coeficientes constantes e derivação da equação característica

Equações diferenciais lineares com coeficientes constantes e derivação da equação característica ISSN 2316-9664 Volume 9, jul. 2017 Ricado da Silva Santos Instituto Fedeal do Espíito Santo - Campus Itapina icado.santos@ifes.edu.b Ole Pete Smith Univesidade Fedeal de Goiás ole@ufg.b Equações difeenciais

Leia mais

CONCURSO PÚBLICO EDITAL Nº 03 / 2015

CONCURSO PÚBLICO EDITAL Nº 03 / 2015 MINISTÉRIO DA EDUCAÇÃO INSTITUTO FEDERAL DO ESPÍRITO SANTO REITORIA Avenida Rio Banco, 50 Santa Lúcia 9056-55 Vitóia ES 7 3357-7500 CONCURSO PÚBLICO EDITAL Nº 03 / 015 Pofesso do Magistéio do Ensino Básico,

Leia mais

CAPÍTULO 6. Exercícios 6.3

CAPÍTULO 6. Exercícios 6.3 CAPÍTULO 6 Execícios 6.3 1. Em notação vetoial: (x, y) (x 0, y 0 ) (a, b) é a equação da eta que passa pelo ponto (x 0, y 0 ) e é paalela à dieção do veto v ( a, b). Potanto, (x, y) (1, 2) (1, 1), é a

Leia mais

Aula Invariantes Adiabáticos

Aula Invariantes Adiabáticos Aula 6 Nesta aula, iemos inicia o estudo sobe os invaiantes adiabáticos, finalizando o capítulo 2. Também iniciaemos o estudo do capítulo 3, onde discutiemos algumas popiedades magnéticas e eléticas do

Leia mais

apresentar um resultado sem demonstração. Atendendo a que

apresentar um resultado sem demonstração. Atendendo a que Aula Teóica nº 2 LEM-26/27 Equação de ot B Já sabemos que B é um campo não consevativo e, potanto, que existem pontos onde ot B. Queemos agoa calcula este valo: [1] Vamos agoa apesenta um esultado sem

Leia mais

Cap03 - Estudo da força de interação entre corpos eletrizados

Cap03 - Estudo da força de interação entre corpos eletrizados ap03 - Estudo da foça de inteação ente copos eletizados 3.1 INTRODUÇÃO S.J.Toise omo foi dito na intodução, a Física utiliza como método de tabalho a medida das qandezas envolvidas em cada fenômeno que

Leia mais

Matemática do Ensino Médio vol.2

Matemática do Ensino Médio vol.2 Matemática do Ensino Médio vol.2 Cap.11 Soluções 1) a) = 10 1, = 9m = 9000 litos. b) A áea do fundo é 10 = 0m 2 e a áea das paedes é (10 + + 10 + ) 1, = 51,2m 2. Como a áea que seá ladilhada é 0 + 51,2

Leia mais

TUKEY Para obtenção da d.m.s. pelo Teste de TUKEY, basta calcular:

TUKEY Para obtenção da d.m.s. pelo Teste de TUKEY, basta calcular: Compaação de Médias Quando a análise de vaiância de um expeimento nos mosta que as médias dos tatamentos avaliados não são estatisticamente iguais, passamos a ejeita a hipótese da nulidade h=0, e aceitamos

Leia mais

TEORIA MICROECONÔMICA I N

TEORIA MICROECONÔMICA I N CENTRO DE CIÊNCIAS SOCIAIS DEPARTAMENTO DE ECONOMIA ECO 1113 TEORIA MICROECONÔMICA I N PROFESSOR: JULIANO ASSUNÇÃO TURMA: 2JA Capítulo 5: Escolha 1. Resolva os seguintes problemas de maximização sujeita

Leia mais

Exercícios Resolvidos Integrais em Variedades

Exercícios Resolvidos Integrais em Variedades Instituto upeio Técnico Depatamento de Matemática ecção de Álgeba e Análise Eecícios Resolvidos Integais em Vaiedades Eecício Consideemos uma montanha imagináia M descita pelo seguinte modelo M {(,, )

Leia mais

Aula 16. Nesta aula, iniciaremos o capítulo 6 do livro texto, onde vamos estudar a estabilidade e o equilíbrio do plasma como um fluido.

Aula 16. Nesta aula, iniciaremos o capítulo 6 do livro texto, onde vamos estudar a estabilidade e o equilíbrio do plasma como um fluido. Aula 16 Nesta aula, iniciaemos o capítulo 6 do livo texto, onde vamos estuda a estabilidade e o equilíbio do plasma como um fluido. 6.1 Equilíbio e Estabilidade Do ponto de vista das patículas individuais,

Leia mais

EAE0111 Fundamentos de Macroeconomia. Lista 3 - Gabarito

EAE0111 Fundamentos de Macroeconomia. Lista 3 - Gabarito EE0111 Fundamentos de Macoeconomia Lista 3 - Gabaito Pof: Danilo Iglioi Questões betas Questão 1 a) invenção do chip de alta velocidade aumenta a demanda po investimento, deslocando a cuva IS paa foa.

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO SCOL POLITÉCIC UIVRSI SÃO PULO epatamento de ngenhaia ecânica P 100 CÂIC 1 Pova Substitutiva 1 de julho de 017 - uação: 110 minutos (não é pemitido o uso de celulaes, tablets, calculadoas e dispositivos

Leia mais

É o trabalho blh realizado para deslocar um corpo, com velocidade idd constante, t de um ponto a outro num campo conservativo ( )

É o trabalho blh realizado para deslocar um corpo, com velocidade idd constante, t de um ponto a outro num campo conservativo ( ) 1. VAIAÇÃO DA ENEGIA POTENCIAL É o tabalho blh ealizado paa desloca um copo, com velocidade idd constante, t de um ponto a outo num campo consevativo ( ) du W = F. dl = 0 = FF. d l Obs. sobe o sinal (-):

Leia mais

',9(5*Ç1&,$'2)/8;2(/e75,&2 (7(25(0$'$',9(5*Ç1&,$

',9(5*Ç1&,$'2)/8;2(/e75,&2 (7(25(0$'$',9(5*Ç1&,$ Ã Ã $Ã /(,Ã '(Ã *$866Ã $/,&$'$Ã $Ã 8Ã (/((17 ',)(5(1&,$/Ã'(Ã9/8( 17 ',9(5*Ç1&,$')/8;(/e75,& (7(5($'$',9(5*Ç1&,$ Ao final deste capítulo você deveá se capa de: ½ Entende o que é a Divegência de um veto

Leia mais

TEORIA MICROECONÔMICA I N

TEORIA MICROECONÔMICA I N CENTRO DE CIÊNCIAS SOCIAIS DEPARTAMENTO DE ECONOMIA 2016.1 ECO 1113 TEORIA MICROECONÔMICA I N PROFESSOR: JULIANO ASSUNÇÃO TURMA: 2JA LISTA 1 1. Um consumidor dispõe de R$ 320 para gastar com maçãs nacionais

Leia mais

PROVA COMENTADA. Figura 1 Diagrama de corpo livre: sistema de um grau de liberdade (1gdl) F F F P 0. k c i t

PROVA COMENTADA. Figura 1 Diagrama de corpo livre: sistema de um grau de liberdade (1gdl) F F F P 0. k c i t ? Equilíbio da estutua PROVA COMENTADA a) Diagama de copo live (DCL): Paa monta o diagama de copo live deve-se inclui todas as foças atuando no bloco de massa m. Obseve que o bloco pode movimenta-se somente

Leia mais

APÊNDICE. Revisão de Trigonometria

APÊNDICE. Revisão de Trigonometria E APÊNDICE Revisão de Tigonometia FUNÇÕES E IDENTIDADES TRIGONOMÉTRICAS ÂNGULOS Os ângulos em um plano podem se geados pela otação de um aio (semi-eta) em tono de sua etemidade. A posição inicial do aio

Leia mais

CRITÉRIOS GERAIS DE CLASSIFICAÇÃO

CRITÉRIOS GERAIS DE CLASSIFICAÇÃO CRITÉRIOS GERAIS DE CLASSIFICAÇÃO Dado a pova apesenta duas vesões, o examinando teá de indica na sua folha de espostas a vesão a que está a esponde. A ausência dessa indicação implica a atibuição de zeo

Leia mais

Uma dedução heurística da métrica de Schwarzschild. Rodrigo Rodrigues Machado & Alexandre Carlos Tort

Uma dedução heurística da métrica de Schwarzschild. Rodrigo Rodrigues Machado & Alexandre Carlos Tort UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Instituto de Física Pogama de Pós-Gaduação em Ensino de Física Mestado Pofissional em Ensino de Física Uma dedução heuística da mética de Schwazschild Rodigo Rodigues

Leia mais

1. cosh(x) = ex +e x senh(x) = ex e x cos(t) = eit +e it sen(t) = eit e it

1. cosh(x) = ex +e x senh(x) = ex e x cos(t) = eit +e it sen(t) = eit e it UFRG INTITUTO DE MATEMÁTICA Depatamento de Matemática Pua e Aplicada MAT1168 - Tuma C - 14/1 Pimeia avaliação - Gupo 1 1 3 4 Total Nome: Catão: Regas a obseva: eja sucinto, completo e clao. Justifique

Leia mais

Uma derivação simples da Lei de Gauss

Uma derivação simples da Lei de Gauss Uma deivação simples da Lei de Gauss C. E. I. Caneio de maço de 009 Resumo Apesentamos uma deivação da lei de Gauss (LG) no contexto da eletostática. Mesmo paa cagas em epouso, uma deivação igoosa da LG

Leia mais

INFORMAÇÃO COMPLEMENTAR

INFORMAÇÃO COMPLEMENTAR INFORMAÇÃO-PROVA MATEMÁTICA A 208 Pova 5 2.º Ano de Escolaidade (Deceto-Lei n.º 9/202, de 5 de julho) INFORMAÇÃO COMPLEMENTAR Na sequência da Infomação-Pova do exame final nacional de Matemática A 5, de

Leia mais

QUESTÃO 1. r z = b. a) y

QUESTÃO 1. r z = b. a) y QUESTÃO 1 Uma longa baa cilíndica condutoa, de aio R, está centada ao longo do eixo z. A baa possui um cote muito fino em z = b. A baa conduz em toda sua extensão e no sentido de z positivo, uma coente

Leia mais

Física Experimental: Mecânica. Aula 1. Introdução ao laboratório

Física Experimental: Mecânica. Aula 1. Introdução ao laboratório Física Expeimental: Mecânica Aula 1 Intodução ao laboatóio 1 Conteúdo desta aula: -Objetivos... slides 3 6 -Divisão de gupos... slides 6 8 -Uso de equipamentos... slides 9 11 -Unidades Intenacionais...

Leia mais

Geodésicas 151. A.1 Geodésicas radiais nulas

Geodésicas 151. A.1 Geodésicas radiais nulas Geodésicas 151 ANEXO A Geodésicas na vizinhança de um buaco nego de Schwazschild A.1 Geodésicas adiais nulas No caso do movimento adial de um fotão os integais δ (expessão 1.11) e L (expessão 1.9) são

Leia mais

19 - Potencial Elétrico

19 - Potencial Elétrico PROBLEMAS RESOLVIDOS DE FÍSICA Pof. Andeson Cose Gaudio Depatamento de Física Cento de Ciências Exatas Univesidade Fedeal do Espíito Santo http://www.cce.ufes.b/andeson andeson@npd.ufes.b Última atualização:

Leia mais

Credenciamento Portaria MEC 3.613, de D.O.U

Credenciamento Portaria MEC 3.613, de D.O.U edenciamento Potaia ME 3.63, de 8..4 - D.O.U. 9..4. MATEMÁTIA, LIENIATURA / Geometia Analítica Unidade de apendizagem Geometia Analítica em meio digital Pof. Lucas Nunes Ogliai Quest(iii) - [8/9/4] onteúdos

Leia mais

PROPRIEDADES DAS EQUAÇÕES POLINOMIAIS RECÍPROCAS

PROPRIEDADES DAS EQUAÇÕES POLINOMIAIS RECÍPROCAS RAÍZES RECÍPROCAS Pof. Macelo Renato Equação Polinomial Recípoca, ou simplesmente "Equação ecípoca", é aquela que, se possui "x " como aiz, então seu ecípoco ("/x ") também seá aiz da equação. Exemplo:

Leia mais

2013 Copyright. Curso Agora eu Passo - Todos os direitos reservados ao autor.

2013 Copyright. Curso Agora eu Passo - Todos os direitos reservados ao autor. Cuso: Execícios ESAF paa Receita Fedeal 03 Disciplina: Raciocínio Lógico-Quantitativo Assunto: Tópico 04 Matizes, Deteminantes e Sistemas Lineaes Pofesso: Valdenilson Gacia 03 Copyight. Cuso Agoa eu Passo

Leia mais

Matemática B Extensivo V. 6

Matemática B Extensivo V. 6 Matemática Etensivo V. 6 Eecícios ) Seja: + e s a eta pependicula a : omo s, temos: m s m s Logo, a equação da eta s é dada po: m ( ) ( ) ( ) + + + ) + + Temos ainda: m + + m m omo as etas acima são paalelas,

Leia mais

1E207 - MACROECONOMIA II

1E207 - MACROECONOMIA II LIENIATURA EM EONOMIA (009-0) E07 - MAROEONOMIA II ap. 3 onsumo e oupança Execício 3. Numa deteminada economia, a família epesentativa tem um hoizonte de vida de peíodos (pesente e futuo) e pefeências

Leia mais

LGE207: MACROECONOMIA II (2º Ano)

LGE207: MACROECONOMIA II (2º Ano) LICENCIATURA EM GESTÃO 005/006 LGE07: MACROECONOMIA II (º Ano Exame 6 de Junho 006 Nomas e Recomendações: Duação da pova: hoa e 30 minutos. O teste é constituído po tês gupos: Gupo I (6 valoes - escolha

Leia mais

ANÁLISE DE VARIÂNCIA MULTIVARIADA Carlos Alberto Alves Varella 1

ANÁLISE DE VARIÂNCIA MULTIVARIADA Carlos Alberto Alves Varella 1 ANÁLISE MULTIVARIADA APLICADA AS CIÊNCIAS AGRÁRIAS PÓS-GRADUAÇÃO EM AGRONOMIA CIÊNCIA DO SOLO: CPGA-CS ANÁLISE DE VARIÂNCIA MULTIVARIADA Calos Albeto Alves Vaella ÍNDICE INTRODUÇÃO... MODELO ESTATÍSTICO...

Leia mais

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 6 PLANO. v r 1

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 6 PLANO. v r 1 Luiz Fancisco a Cuz Depatamento e Matemática Unesp/Bauu CAPÍTULO 6 PLANO Definição: Seja A um ponto qualque o plano e v e v ois vetoes LI (ou seja, não paalelos), mas ambos paalelos ao plano. Seja X um

Leia mais

Questão 1. Questão 2. Questão 3. alternativa C. alternativa E

Questão 1. Questão 2. Questão 3. alternativa C. alternativa E Questão 1 Dois pilotos iniciaam simultaneamente a disputa de uma pova de automobilismo numa pista cuja extensão total é de, km. Enquanto Máio leva 1,1 minuto paa da uma volta completa na pista, Júlio demoa

Leia mais

UFABC - Física Quântica - Curso Prof. Germán Lugones. Aula 14. A equação de Schrödinger em 3D: átomo de hidrogénio (parte 2)

UFABC - Física Quântica - Curso Prof. Germán Lugones. Aula 14. A equação de Schrödinger em 3D: átomo de hidrogénio (parte 2) UFABC - Física Quântica - Cuso 2017.3 Pof. Gemán Lugones Aula 14 A equação de Schödinge em 3D: átomo de hidogénio (pate 2) 1 Equação paa a função adial R() A equação paa a pate adial da função de onda

Leia mais

Noturno - Prof. Alvaro Vannucci. q R Erad. 4πε. q a

Noturno - Prof. Alvaro Vannucci. q R Erad. 4πε. q a Eletomagnetismo II 1 o Semeste de 7 Notuno - Pof. Alvao Vannui 4 a aula 15jun/7 Vimos: Usando os poteniais de Lienad-Wiehet, os ampos de agas em M..U. são dados po: i) v q ( v ) q 1 E( a ) u ( u ) ii)

Leia mais

PUC-RIO CB-CTC. P2 DE ELETROMAGNETISMO segunda-feira GABARITO. Nome : Assinatura: Matrícula: Turma:

PUC-RIO CB-CTC. P2 DE ELETROMAGNETISMO segunda-feira GABARITO. Nome : Assinatura: Matrícula: Turma: PUC-RIO CB-CTC P2 DE ELETROMAGNETISMO 16.05.11 segunda-feia GABARITO Nome : Assinatua: Matícula: Tuma: NÃO SERÃO ACEITAS RESPOSTAS SEM JUSTIFICATIVAS E CÁLCULOS EXPLÍCITOS. Não é pemitido destaca folhas

Leia mais

Teoria da Produção. Humberto Moreira. June 5, EPGE, Fundação Getulio Vargas

Teoria da Produção. Humberto Moreira. June 5, EPGE, Fundação Getulio Vargas Teoria da Produção Humberto Moreira EPGE, Fundação Getulio Vargas June 5, 2013 Introdução Uma teoria da firma deveria ser capaz de responder pelo menos a seguinte pergunta: Por que certas atividades são

Leia mais

3. Política Monetária de Keynes e dos Pós-Keynesianos 3.1. Não-neutralidade da moeda e 3.2. Eficácia da política monetária

3. Política Monetária de Keynes e dos Pós-Keynesianos 3.1. Não-neutralidade da moeda e 3.2. Eficácia da política monetária 3. Política Monetáia de Keynes e dos Pós-Keynesianos 3.1. Não-neutalidade da moeda e 3.2. Eficácia da política monetáia Cavalho et al. (2015: cap. 7, 14.2 e 14.3) 17/10/2017 1 Política Monetáia e a não-neutalidade

Leia mais

Parte II Teoria da Firma

Parte II Teoria da Firma Parte II Teoria da Firma Maximização de Lucro Roberto Guena de Oliveira USP 25 de julho de 2014 Roberto Guena de Oliveira (USP) Produção 25 de julho de 2014 1 / 33 Sumário 1 Introdução Roberto Guena de

Leia mais

ELETRICIDADE CAPÍTULO 3 LEIS DE CIRCUITOS ELÉTRICOS

ELETRICIDADE CAPÍTULO 3 LEIS DE CIRCUITOS ELÉTRICOS ELETICIDADE CAPÍTULO 3 LEIS DE CICUITOS ELÉTICOS - CONSIDEE A SEGUINTE ELAÇÃO: 3. LEI DE OHM - QUALQUE POCESSO DE CONVESÃO DE ENEGIA PODE SE ELACIONADO A ESTA EQUAÇÃO. - EM CICUITOS ELÉTICOS : - POTANTO,

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. Departamento de Engenharia Mecânica

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. Departamento de Engenharia Mecânica ª Questão ( pontos. Um caetel de massa M cento e aios (exteno e (inteno está aticulado a uma baa de massa m e compimento L confome indicado na figua. Mediante a aplicação de uma foça (constante a um cabo

Leia mais

Referências 06/07/17 INTRODUÇÃO À ECONOMIA: MICROECONOMIA ESCOLHA INTERTEMPORAL. Ver Capítulo 10. Prof. Salomão Franco Neves

Referências 06/07/17 INTRODUÇÃO À ECONOMIA: MICROECONOMIA ESCOLHA INTERTEMPORAL. Ver Capítulo 10. Prof. Salomão Franco Neves Univesidade Fedeal Teoia Micoeconômica do Amazonas I - Pof. Salomão UFAM Neves Faculdade de Estudos Sociais FES Depatamento de Economia e Análise - DEA INTRODUÇÃO À ECONOMIA: MICROECONOMIA Pof. Salomão

Leia mais

CAMPO ELÉCTRICO NO EXTERIOR DE CONDUTORES LINEARES

CAMPO ELÉCTRICO NO EXTERIOR DE CONDUTORES LINEARES CAMPO ELÉCTRICO NO EXTERIOR DE CONDUTORES LINEARES 1. Resumo A coente que passa po um conduto poduz um campo magnético à sua volta. No pesente tabalho estuda-se a vaiação do campo magnético em função da

Leia mais

Prova Escrita de Matemática A

Prova Escrita de Matemática A EXAME FINAL NACIONAL DO ENSINO SECUNDÁRIO Pova Escita de Matemática A 12.º Ano de Escolaidade Deceto-Lei n.º 19/2012, de 5 de julho Pova 65/1.ª Fase Citéios de Classificação 11 Páginas 2016 Pova 65/1.ª

Leia mais

DIVERGÊNCIA DO FLUXO ELÉTRICO E TEOREMA DA DIVERGÊNCIA

DIVERGÊNCIA DO FLUXO ELÉTRICO E TEOREMA DA DIVERGÊNCIA ELETROMAGNETIMO I 18 DIVERGÊNCIA DO FLUXO ELÉTRICO E TEOREMA DA DIVERGÊNCIA.1 - A LEI DE GAU APLICADA A UM ELEMENTO DIFERENCIAL DE VOLUME Vimos que a Lei de Gauss pemite estuda o compotamento do campo

Leia mais

PROCESSO SELETIVO TURMA DE 2013 FASE 1 PROVA DE FÍSICA E SEU ENSINO

PROCESSO SELETIVO TURMA DE 2013 FASE 1 PROVA DE FÍSICA E SEU ENSINO PROCESSO SELETIVO TURM DE 03 FSE PROV DE FÍSIC E SEU ENSINO Cao pofesso, caa pofessoa esta pova tem 3 (tês) questões, com valoes difeentes indicados nas pópias questões. pimeia questão é objetiva, e as

Leia mais

Parte II Teoria da Firma

Parte II Teoria da Firma Parte II Teoria da Firma Maximização de Lucro Roberto Guena de Oliveira USP 25 de julho de 2014 Roberto Guena de Oliveira (USP) Produção 25 de julho de 2014 1 / 33 Sumário 1 Introdução 2 Abordagem direta

Leia mais

Série II - Resoluções sucintas Energia

Série II - Resoluções sucintas Energia Mecânica e Ondas, 0 Semeste 006-007, LEIC Séie II - Resoluções sucintas Enegia. A enegia da patícula é igual à sua enegia potencial, uma vez que a velocidade inicial é nula: V o mg h 4 mg R a As velocidades

Leia mais

Carga Elétrica e Campo Elétrico

Carga Elétrica e Campo Elétrico Aula 1_ Caga lética e Campo lético Física Geal e peimental III Pof. Cláudio Gaça Capítulo 1 Pincípios fundamentais da letostática 1. Consevação da caga elética. Quantização da caga elética 3. Lei de Coulomb

Leia mais

7.3. Potencial Eléctrico e Energia Potencial Eléctrica de Cargas Pontuais

7.3. Potencial Eléctrico e Energia Potencial Eléctrica de Cargas Pontuais 7.3. Potencial Eléctico e Enegia Potencial Eléctica de Cagas Pontuais Ao estabelece o conceito de potencial eléctico, imaginamos coloca uma patícula de pova num campo eléctico poduzido po algumas cagas

Leia mais

Prof. Anderson Coser Gaudio Departamento de Física Centro de Ciências Exatas Universidade Federal do Espírito Santo

Prof. Anderson Coser Gaudio Departamento de Física Centro de Ciências Exatas Universidade Federal do Espírito Santo POLEMAS ESOLVIDOS DE FÍSICA Pof. Andeson Cose Gaudo Depatamento de Físca Cento de Cêncas Eatas Unvesdade Fedeal do Espíto Santo http://www.cce.ufes.b/andeson andeson@npd.ufes.b Últma atualzação: 3/8/5

Leia mais

Disciplina Metodologia Analítica QUI102 II semestre AULA 01 (parte B) Profa. Maria Auxiliadora Costa Matos

Disciplina Metodologia Analítica QUI102 II semestre AULA 01 (parte B) Profa. Maria Auxiliadora Costa Matos Metodologia nalítica II sem/018 Pofa Ma uxiliadoa - 1 Univesidade Fedeal de Juiz de Foa Instituto de Ciências Exatas Depatamento de Química Disciplina Metodologia nalítica QUI10 II semeste 018 UL 01 (pate

Leia mais

ARITMÉTICA DE PONTO FLUTUANTE/ERROS EM OPERAÇÕES NUMÉRICAS

ARITMÉTICA DE PONTO FLUTUANTE/ERROS EM OPERAÇÕES NUMÉRICAS ARITMÉTICA DE PONTO FLUTUANTE/ERROS EM OPERAÇÕES NUMÉRICAS. Intodução O conjunto dos númeos epesentáveis em uma máquina (computadoes, calculadoas,...) é finito, e potanto disceto, ou seja não é possível

Leia mais

Equações Ordinarias 1ªOrdem - Lineares

Equações Ordinarias 1ªOrdem - Lineares Nome: Nº Curso: Licenciatura em Matemática Disciplina: Equações Diferenciais Ordinárias 7ºPeríodo Prof. Leonardo Data: / /2018 Equações Ordinarias 1ªOrdem - Lineares 1. EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

Leia mais

Aula 35-Circunferência. 1) Circunferência (definição) 2)Equação reduzida. 3) Equação geral. 4) Posições relativas. 5) Resolução de exercícios

Aula 35-Circunferência. 1) Circunferência (definição) 2)Equação reduzida. 3) Equação geral. 4) Posições relativas. 5) Resolução de exercícios Aula 35-icunfeência 1) icunfeência (definição) 2)Equação eduzida 3) Equação geal 4) Posições elativas 5) Resolução de execícios 1) icunfeência definição. A cicunfeência é o luga geomético definido como:

Leia mais

PROCESSO SELETIVO TURMA DE 2012 FASE 1 PROVA DE FÍSICA E SEU ENSINO

PROCESSO SELETIVO TURMA DE 2012 FASE 1 PROVA DE FÍSICA E SEU ENSINO PROCESSO SELETIVO TURMA DE FASE PROVA DE FÍSI E SEU ENSINO Cao pofesso, caa pofessoa esta pova tem 3 (tês) questões, com valoes difeentes indicados nas pópias questões. A pimeia questão é objetiva, e as

Leia mais

PROVA COMENTADA E RESOLVIDA PELOS PROFESSORES DO CURSO POSITIVO

PROVA COMENTADA E RESOLVIDA PELOS PROFESSORES DO CURSO POSITIVO Vestibula AFA 010 Pova de Matemática COMENTÁRIO GERAL DOS PROFESSORES DO CURSO POSITIVO A pova de Matemática da AFA em 010 apesentou-se excessivamente algébica. Paa o equílibio que se espea nesta seleção,

Leia mais

Microeconomia I 2009/10 26 de Outubro de 2009 Duração: 2h15m + 30 min

Microeconomia I 2009/10 26 de Outubro de 2009 Duração: 2h15m + 30 min icenciatuas em Economia e Administação e Gestão de Empesas icoeconomia I 009/10 6 de Outubo de 009 Duação: h1m 30 min Fenando achado Ana Filipa Almeida Buno Peeia Daniel Hota Fancisco Silva aia Jadim Fenandes

Leia mais