TUKEY Para obtenção da d.m.s. pelo Teste de TUKEY, basta calcular:

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "TUKEY Para obtenção da d.m.s. pelo Teste de TUKEY, basta calcular:"

Transcrição

1 Compaação de Médias Quando a análise de vaiância de um expeimento nos mosta que as médias dos tatamentos avaliados não são estatisticamente iguais, passamos a ejeita a hipótese da nulidade h=0, e aceitamos a hipótese altenativa h=1, devido a existência de uma distância amostal ponunciada, acusada no teste estatístico atavés da análise de vaiâncias sendo dada pelo valo obtido no teste F. Dessa foma, deve-se compaa as médias uma a uma, a fim de obte as difeenças mínimas significativas obsevadas que foam acusadas pelo teste estatístico. Difeença Mínima Significativa (DMS) O método da difeença mínima significativa (dms) ente médias avaliadas em um expeimento, é o conjunto de medidas que pemite ao pesquisado infei, toda vez que o valo absoluto da difeença ente duas médias é igual ou maio do que a difeença mínima significativa (dms), as médias são consideadas estatisticamente difeentes, ao nível alfa estabelecido. TUKEY Paa obtenção da d.m.s. pelo Teste de TUKEY, basta calcula: d.m.s. = q. QMRes onde: q = (K; n-k) Sendo: q = valo dado em tabela ao nível alfa estabelecido; QMRes = quadado médio do esíduo; = númeo de epetições de cada um dos tatamentos. Gáfico F com alfa fixado Como F calculado = 7,8 foi maio que o F tabelado = 3,24, devemos ejeita Ho ao nível de 5% significância, pois, no mínimo uma das médias vaiedades testadas difee estatisticamente das demais avaliadas no expeimento.

2 Faça a análise estatística e elaboe o Quado de análise de Vaiâncias de dois expeimentos paa compaação de médias de podução de cultivaes de milho, feitas consideando um delineamento inteiamente casualizados em duas áeas distintas. Áea expeimental I Áea expeimental - II A B C D E F G H

3 Aplicando-se Tukey a um execício anteio, com nível alfa de 0,05 ou 5% de significância, obtêm-se: d.m.s. Tukey = q. QMRes Quado de Compaação de Médias d.m.s. paa podução de milho no expeimento - cultiva média Conclusão: As cultivaes de milho e, obtiveam ou apesentaam os maioes valoes de podução em média, sendo potanto, significativamente supeio às demais cultivaes testadas.

4 EXPERIMENTOS EM BLOCOS CASUALIZADOS - DBC Bloco 1 Bloco 2 Bloco 3 Paa veifica se 04 vaiedades de milho poduzem em média, a mesma podução, um agônomo dividiu a áea de tea de que dispunha em cinco faixas de igual fetilidade. Depois, dividiu cada faixa em quato pacelas e soteou, dento de cada faixa uma vaiedade paa cada pacela. Esquema do expeimento: Análise de Vaiâncias A análise de vaiâncias de um expeimento em blocos casualizados considea K tatamentos e blocos. O total de cada tatamento é dado pela soma da ee () unidades submetidas a esse tatamento; e o total do bloco é dado pela soma de K unidade do bloco.

5 Tabela de um expeimento em blocos ao acaso. Tatamento Bloco k total 1 ẏ11 ẏ21 ẏ31 ẏk1 B1 2 ẏ12 ẏ22 ẏ32 ẏk2 B2 3 ẏ13 ẏ23 ẏ33 ẏk3 B ẏ1 ẏ2 ẏ3 ẏk B total T1 T2 T3... Tk Soma tot = S blo = S y n epet.... n=k. médias ẏ1 ẏ2 ẏ3 ẏk Paa faze a análise de vaiância de um expeimento em blocos ao acaso é peciso pimeio obte: A) Os gaus de libedade: B) O valo de C, dado pelo total geal elevado ao quadado e dividido pelo númeo de obsevações. O Valo de C é conhecido como fato de coeção C) A soma de quadados totais D) A soma de quadados de tatamentos E) A soma de quadados de blocos

6 F) A soma de quadados do esíduo As somas de quadados são apesentados no quado de análise de vaiâncias. Sendo que, os quadados médios são obtidos dividindo-se a soma de quadados pelos seus espectivos gaus de libedade. Obseve que, a SOTotal que dá a vaiabilidade dos dados em tono da média geal, foi dividida em tês componentes: SQTatamento; SQBlocos; SQResíduo, onde o valo de F mede a gandeza da vaiabilidade dos tatamentos em elação às gandezas da vaiabilidade do fenômeno. QUADRO DE ANÁLISE DE VARIÂNCIA DE EXPERIMENTO EM BLOCOS AO ACASO CAUSAS DE VARIAÇÃO GL SQ QM F TRATAMENTOS K - 1 SQT QMT Fcalculado BLOCOS - 1 SQBl QMT Fcalculado RESÍDUO (K 1).( 1) SQRes QMRes - TOTAL K. 1 SQT - - Na tabela abaixo são apesentados os dados de um expeimento inteiamente casualizados, onde a podução de milho em kg/100m 2 é dada em função das vaiedades. Compae os valoes de podução estatisticamente e com base nos valoes do teste F veifique se há difeenças ente as médias dos tatamentos, compaando-as com Tukey a 0,05% de significância. Vaiedades bloco A B C D Total Total média

7 Estabeleça: Gaus de libedade; Valo de Coeção; Soma de Quadados totais; Soma de Quadados de tatamentos; Soma de Quadados de blocos; Soma de Quadados de esíduos; Valo do teste F; Compaação de médias com d.m.s Tukey α = 0,05. QUADRO DE ANÁLISE DE VARIÂNCIA DE EXPERIMENTO EM BLOCOS AO ACASO CAUSAS DE VARIAÇÃO GL SQ QM F TRATAMENTOS BLOCOS RESÍDUO TOTAL QUADRO DE COMPARAÇÃO DE MÉDIAS CULTIVAR MÉDIAS DE PRODUÇÃO Conclusão:

8 Faça a análise de vaiâncias e compae as médias de podução de vaiedades de milho segundo o tipo de solo. Tipo de Vaiedades Solo A B C D Total I 4,00 4,00 5,52 3,76 II 4,48 4,72 4,72 4,00 III 4,16 5,28 5,44 4,32 IV 4,40 4,72 5,76 4,96 V 5,76 5,28 5,76 4,96 Total média

9 Compaando os valoes de podução de soja ton/ha em expeimento em blocos casualizados, os pesquisadoes obtiveam os seguintes esultados abaixo. Objetivando compaa os valoes de podução ente as cultivaes nos expeimentos, aplique Tukey a 0,05%, demonstando a metodologia utilizada paa análise de vaiâncias na constução do quado ANAVA e paa a d.m.s.: VARIEDADES BLOCOS A B C D E F TOTAL 1 3,40 4,89 3,47 2,80 2,77 2,50 2 3,85 3,92 3,45 3,20 2,64 3,80 3 3,20 4,20 3,20 2,56 2,45 5,69 4 4,10 4,36 3,90 3,03 3,80 4,56 5 3,82 4,58 4,08 3,00 3,78 3,54 6 3,15 4,61 3,39 3,41 3,20 2,70 7 2,99 4,25 4,00 3,17 2,90 5,20 TOTAL média

10 Compaação de Médias Student Teste T Foam popostas divesas maneias de calcula a difeença mínima significativa. Cada poposta é, na ealidade um teste, que leva o nome de seu auto. Não há pocedimentos que sejam melhoes que outos, po isso, são apesentados aqui os pocedimentos mais comuns, sendo o teste T Student, e outos mais como Dunnet, Chow, Scheffé, Scott-Knott, Wilcoxon, Mann- Whitney, Duncan...ente outos, que também podem se utilizados paa testa elações ente as vaiáveis de inteesse utilizadas. Teste T Student A estatística T foi intoduzida em 1908 pelo químico da cevejaia Guinness, Willian Sealy Gosset, na Ilanda. Foçado a não se identifica usava o pseudonome de Student. Na distibuição de Student, valoes muito altos ou muito baixos tem pobabilidade meno de ocoência, indicando que é menos povável que a média de uma amosta apesente valoes distantes da média da população. Paa o nível alfa de confiança utilizado, não ejeita a hipótese nula (Ho) é a mesma coisa que afima que a hipótese altenativa (h1) é válida com o mesmo nível de significância, o que seia uma intepetação incoeta do teste. Paa obte a difeença mínima significativa estabelecida pelo teste T, basta calcula: d.m.s. Student = t. 2.QMRes onde: t = valo dado em tabela (GL es; nível alfa teste); QMR = quadado médio do esíduo; = n de epetições de cada tatamento. Obseve os exemplos a segui, descitos anteiomente paa os execícios ealizados: Vaiedade Média D 31 B 27 C 26 A 23 Vaiedade Média E 17 D 16 A 12 C 11 B 09

EXPERIMENTAÇÃO AGRÁRIA

EXPERIMENTAÇÃO AGRÁRIA EXPERIMENTAÇÃO AGRÁRIA Tema 3: Testes de Compaações Múltiplas Testes de Compaações Múltiplas (TCM) Os TCM são subdivididos em: i. Compaação de paes planeados os paes específicos de tatamentos são identificados

Leia mais

1. EXPERIMENTOS FATORIAIS.

1. EXPERIMENTOS FATORIAIS. Expeimentos Fatoiais 89. EXPERIMENTOS FTORIIS. Nos expeimentos mais simples compaamos tatamentos ou níveis de um único fato, consideando que todos os demais fatoes que possam intefei nos esultados obtidos

Leia mais

ANÁLISE DE VARIÂNCIA MULTIVARIADA Carlos Alberto Alves Varella 1

ANÁLISE DE VARIÂNCIA MULTIVARIADA Carlos Alberto Alves Varella 1 ANÁLISE MULTIVARIADA APLICADA AS CIÊNCIAS AGRÁRIAS PÓS-GRADUAÇÃO EM AGRONOMIA CIÊNCIA DO SOLO: CPGA-CS ANÁLISE DE VARIÂNCIA MULTIVARIADA Calos Albeto Alves Vaella ÍNDICE INTRODUÇÃO... MODELO ESTATÍSTICO...

Leia mais

Estatística: Aplicação ao Sensoriamento Remoto SER 202 - ANO 2016. Análise de Variância (ANOVA)

Estatística: Aplicação ao Sensoriamento Remoto SER 202 - ANO 2016. Análise de Variância (ANOVA) Estatística: Aplicação ao Sensoiamento Remoto SER 0 - ANO 016 Análise de Vaiância (ANOVA) Camilo Daleles Rennó camilo@dpi.inpe.b http://www.dpi.inpe.b/~camilo/estatistica/ Compaando-se médias de duas populações

Leia mais

Departamento de Física - Universidade do Algarve FORÇA CENTRÍFUGA

Departamento de Física - Universidade do Algarve FORÇA CENTRÍFUGA FORÇA CENTRÍFUGA 1. Resumo Um copo desceve um movimento cicula unifome. Faz-se vaia a sua velocidade de otação e a distância ao eixo de otação, medindo-se a foça centífuga em função destes dois paâmetos..

Leia mais

PROVA COMENTADA E RESOLVIDA PELOS PROFESSORES DO CURSO POSITIVO

PROVA COMENTADA E RESOLVIDA PELOS PROFESSORES DO CURSO POSITIVO Vestibula AFA 010 Pova de Matemática COMENTÁRIO GERAL DOS PROFESSORES DO CURSO POSITIVO A pova de Matemática da AFA em 010 apesentou-se excessivamente algébica. Paa o equílibio que se espea nesta seleção,

Leia mais

CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO

CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO Capítulo 4 - Cinemática Invesa de Posição 4 CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO 4.1 INTRODUÇÃO No capítulo anteio foi visto como detemina a posição e a oientação do ógão teminal em temos das vaiáveis

Leia mais

Matemática do Ensino Médio vol.2

Matemática do Ensino Médio vol.2 Matemática do Ensino Médio vol.2 Cap.11 Soluções 1) a) = 10 1, = 9m = 9000 litos. b) A áea do fundo é 10 = 0m 2 e a áea das paedes é (10 + + 10 + ) 1, = 51,2m 2. Como a áea que seá ladilhada é 0 + 51,2

Leia mais

Energia no movimento de uma carga em campo elétrico

Energia no movimento de uma carga em campo elétrico O potencial elético Imagine dois objetos eletizados, com cagas de mesmo sinal, inicialmente afastados. Paa apoximá-los, é necessáia a ação de uma foça extena, capaz de vence a epulsão elética ente eles.

Leia mais

1ª Ficha Global de Física 12º ano

1ª Ficha Global de Física 12º ano 1ª Ficha Global de Física 1º ano Duação: 10 minutos Toleância: não há. Todos os cálculos devem se apesentados de modo clao e sucinto Note: 1º - as figuas não estão desenhadas a escala; º - o enunciado

Leia mais

Escola Secundária com 3º Ciclo do E. B. de Pinhal Novo Física e Química A 10ºAno MEDIÇÃO EM QUÍMICA

Escola Secundária com 3º Ciclo do E. B. de Pinhal Novo Física e Química A 10ºAno MEDIÇÃO EM QUÍMICA Escola Secundáia com 3º Ciclo do E. B. de Pinhal Novo Física e Química A 10ºAno MEDIÇÃO EM QUÍMICA Medi - é compaa uma gandeza com outa da mesma espécie, que se toma paa unidade. Medição de uma gandeza

Leia mais

Descontos desconto racional e desconto comercial

Descontos desconto racional e desconto comercial Descontos desconto acional e desconto comecial Uma opeação financeia ente dois agentes econômicos é nomalmente documentada po um título de cédito comecial, devendo esse título conte todos os elementos

Leia mais

O Paradoxo de Bertrand para um Experimento Probabilístico Geométrico

O Paradoxo de Bertrand para um Experimento Probabilístico Geométrico O Paadoxo de etand paa um Expeimento Pobabilístico Geomético maildo de Vicente 1 1 Colegiado do Cuso de Matemática Cento de Ciências Exatas e Tecnológicas da Univesidade Estadual do Oeste do Paaná Caixa

Leia mais

( ) 10 2 = = 505. = n3 + n P1 - MA Questão 1. Considere a sequência (a n ) n 1 definida como indicado abaixo:

( ) 10 2 = = 505. = n3 + n P1 - MA Questão 1. Considere a sequência (a n ) n 1 definida como indicado abaixo: P1 - MA 1-011 Questão 1 Considee a sequência (a n ) n 1 definida como indicado abaixo: a 1 = 1 a = + 3 a 3 = + 5 + 6 a = 7 + 8 + 9 + 10 (05) (a) O temo a 10 é a soma de 10 inteios consecutivos Qual é o

Leia mais

CAMPO ELÉCTRICO NO EXTERIOR DE CONDUTORES LINEARES

CAMPO ELÉCTRICO NO EXTERIOR DE CONDUTORES LINEARES CAMPO ELÉCTRICO NO EXTERIOR DE CONDUTORES LINEARES 1. Resumo A coente que passa po um conduto poduz um campo magnético à sua volta. No pesente tabalho estuda-se a vaiação do campo magnético em função da

Leia mais

Relação Risco Retorno em uma série histórica

Relação Risco Retorno em uma série histórica Relação Risco Retono em uma séie históica E ( j ) R j Retono espeado é a expectativa que se constói paa o esultado de um ativo a pati da média históica de esultado. E( j ) R j j,1 + j, + L+ n j, n n i

Leia mais

APÊNDICE. Revisão de Trigonometria

APÊNDICE. Revisão de Trigonometria E APÊNDICE Revisão de Tigonometia FUNÇÕES E IDENTIDADES TRIGONOMÉTRICAS ÂNGULOS Os ângulos em um plano podem se geados pela otação de um aio (semi-eta) em tono de sua etemidade. A posição inicial do aio

Leia mais

O perímetro da circunferência

O perímetro da circunferência Univesidade de Basília Depatamento de Matemática Cálculo 1 O peímeto da cicunfeência O peímeto de um polígono de n lados é a soma do compimento dos seus lados. Dado um polígono qualque, você pode sempe

Leia mais

Aula 35-Circunferência. 1) Circunferência (definição) 2)Equação reduzida. 3) Equação geral. 4) Posições relativas. 5) Resolução de exercícios

Aula 35-Circunferência. 1) Circunferência (definição) 2)Equação reduzida. 3) Equação geral. 4) Posições relativas. 5) Resolução de exercícios Aula 35-icunfeência 1) icunfeência (definição) 2)Equação eduzida 3) Equação geal 4) Posições elativas 5) Resolução de execícios 1) icunfeência definição. A cicunfeência é o luga geomético definido como:

Leia mais

Áreas parte 2. Rodrigo Lucio Isabelle Araújo

Áreas parte 2. Rodrigo Lucio Isabelle Araújo Áeas pate Rodigo Lucio Isabelle Aaújo Áea do Cículo Veja o cículo inscito em um quadado. Medida do lado do quadado:. Áea da egião quadada: () = 4. Então, a áea do cículo com aio de medida é meno do que

Leia mais

VETORES GRANDEZAS VETORIAIS

VETORES GRANDEZAS VETORIAIS VETORES GRANDEZAS VETORIAIS Gandezas físicas que não ficam totalmente deteminadas com um valo e uma unidade são denominadas gandezas vetoiais. As gandezas que ficam totalmente expessas po um valo e uma

Leia mais

4 Modelos de Predição de Cobertura

4 Modelos de Predição de Cobertura 4 Modelos de Pedição de Cobetua 4.1 Intodução A pedição da áea de cobetua é um passo impotantíssimo no planejamento de qualque sistema de Radiodifusão. Uma gande vaiedade de modelos de canal têm sido utilizados

Leia mais

Movimento unidimensional com aceleração constante

Movimento unidimensional com aceleração constante Movimento unidimensional com aceleação constante Movimento Unifomemente Vaiado Pof. Luís C. Pena MOVIMENTO VARIADO Os movimentos que conhecemos da vida diáia não são unifomes. As velocidades dos móveis

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 3. MATEMÁTICA III 1 GEOM. ANALÍTICA ESTUDO DO PONTO

Todos os exercícios sugeridos nesta apostila se referem ao volume 3. MATEMÁTICA III 1 GEOM. ANALÍTICA ESTUDO DO PONTO INTRODUÇÃO... NOÇÕES BÁSICAS... POSIÇÃO DE UM PONTO EM RELAÇÃO AO SISTEMA...4 DISTÂNCIA ENTRE DOIS PONTOS...6 RAZÃO DE SECÇÃO... 5 DIVISÃO DE UM SEGMENTO NUMA RAZÃO DADA... 6 PONTO MÉDIO DE UM SEGMENTO...

Leia mais

Cap014 - Campo magnético gerado por corrente elétrica

Cap014 - Campo magnético gerado por corrente elétrica ap014 - ampo magnético geado po coente elética 14.1 NTRODUÇÃO S.J.Toise Até agoa os fenômenos eléticos e magnéticos foam apesentados como fatos isolados. Veemos a pati de agoa que os mesmos fazem pate

Leia mais

Análise de Correlação e medidas de associação

Análise de Correlação e medidas de associação Análise de Coelação e medidas de associação Pof. Paulo Ricado B. Guimaães 1. Intodução Muitas vezes pecisamos avalia o gau de elacionamento ente duas ou mais vaiáveis. É possível descobi com pecisão, o

Leia mais

TRABAJO. Empresa o Entidad Daimon Engenharia e Sistemas Companhia de Eletricidade do Estado da Bahia - COELBA

TRABAJO. Empresa o Entidad Daimon Engenharia e Sistemas Companhia de Eletricidade do Estado da Bahia - COELBA Título Análise de Patida de Motoes de Indução em Redes de Distibuição Utilizando Cicuito Elético Equivalente Obtido po Algoitmo Evolutivo Nº de Registo (Resumen 134 Empesa o Entidad Daimon Engenhaia e

Leia mais

. Essa força é a soma vectorial das forças individuais exercidas em q 0 pelas várias cargas que produzem o campo E r. Segue que a força q E

. Essa força é a soma vectorial das forças individuais exercidas em q 0 pelas várias cargas que produzem o campo E r. Segue que a força q E 7. Potencial Eléctico Tópicos do Capítulo 7.1. Difeença de Potencial e Potencial Eléctico 7.2. Difeenças de Potencial num Campo Eléctico Unifome 7.3. Potencial Eléctico e Enegia Potencial Eléctica de Cagas

Leia mais

Carga Elétrica e Campo Elétrico

Carga Elétrica e Campo Elétrico Aula 1_ Caga lética e Campo lético Física Geal e peimental III Pof. Cláudio Gaça Capítulo 1 Pincípios fundamentais da letostática 1. Consevação da caga elética. Quantização da caga elética 3. Lei de Coulomb

Leia mais

SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO DE CIÊNCIAS BIOLÓGICAS DECB

SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO DE CIÊNCIAS BIOLÓGICAS DECB Governo do Estado do Rio Grande do Norte Secretaria de Estado da Educação e da Cultura - SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO

Leia mais

Seu pé direito nas melhores Faculdades

Seu pé direito nas melhores Faculdades 0 INSPER 01/11/00 Seu pé dieito nas melhoes Faculdades 0. Na figua a segui, ABC e DEF são tiângulos equiláteos, ambos de áea S. O ponto D é o baicento do tiângulo ABC e os segmentos BC e DE são paalelos.

Leia mais

Bioexperimentação. Prof. Dr. Iron Macêdo Dantas

Bioexperimentação. Prof. Dr. Iron Macêdo Dantas Governo do Estado do Rio Grande do Norte Secretaria de Estado da Educação e da Cultura - SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO

Leia mais

Prova Escrita de Matemática A

Prova Escrita de Matemática A EXAME NACIONAL DO ENSINO SECUNDÁRIO DecetoLei n.º 39/0, de 5 de julho Pova Escita de Matemática A.º Ano de Escolaidade Pova 635/Época Especial Citéios de Classificação Páginas 03 COTAÇÕES GRUPO I. a 8....(8

Leia mais

DIFICULDADES DOS ALUNOS DO 5º ANO DO ENSINO FUNDAMENTAL EM RESOLVER PROBLEMAS DE MULTIPLICAÇÃO E DIVISÃO 1

DIFICULDADES DOS ALUNOS DO 5º ANO DO ENSINO FUNDAMENTAL EM RESOLVER PROBLEMAS DE MULTIPLICAÇÃO E DIVISÃO 1 DIFICULDADES DOS ALUNOS DO 5º ANO DO ENSINO FUNDAMENTAL EM RESOLVER PROBLEMAS DE MULTIPLICAÇÃO E DIVISÃO 1 Eika Cistina Peeia Guimaães; Univesidade Fedeal do Tocantins-email:eikacistina0694@hotmail.com

Leia mais

Campo Magnético produzido por Bobinas Helmholtz

Campo Magnético produzido por Bobinas Helmholtz defi depatamento de física Laboatóios de Física www.defi.isep.ipp.pt Campo Magnético poduzido po Bobinas Helmholtz Instituto Supeio de Engenhaia do Poto- Depatamento de Física ua D. António Benadino de

Leia mais

Credenciamento Portaria MEC 3.613, de D.O.U

Credenciamento Portaria MEC 3.613, de D.O.U edenciamento Potaia ME 3.63, de 8..4 - D.O.U. 9..4. MATEMÁTIA, LIENIATURA / Geometia Analítica Unidade de apendizagem Geometia Analítica em meio digital Pof. Lucas Nunes Ogliai Quest(iii) - [8/9/4] onteúdos

Leia mais

Polarização Circular e Elíptica e Birrefringência

Polarização Circular e Elíptica e Birrefringência UNIVRSIDAD D SÃO PAULO Polaização Cicula e líptica e Biefingência Nessa pática estudaemos a polaização cicula e elíptica da luz enfatizando as lâminas defasadoas e a sua utilização como instumento paa

Leia mais

Campo Gravítico da Terra

Campo Gravítico da Terra Campo Gavítico da Tea 3. otencial Gavítico O campo gavítico é um campo vectoial (gandeza com 3 componentes) Seá mais fácil tabalha com uma gandeza escala, que assume apenas um valo em cada ponto Seá possível

Leia mais

Análise da Variância. Prof. Dr. Alberto Franke (48)

Análise da Variância. Prof. Dr. Alberto Franke (48) Análise da Variância Prof. Dr. Alberto Franke (48) 91471041 Análise da variância Até aqui, a metodologia do teste de hipóteses foi utilizada para tirar conclusões sobre possíveis diferenças entre os parâmetros

Leia mais

Grandezas vetoriais: Além do módulo, necessitam da direção e do sentido para serem compreendidas.

Grandezas vetoriais: Além do módulo, necessitam da direção e do sentido para serem compreendidas. NOME: Nº Ensino Médio TURMA: Data: / DISCIPLINA: Física PROF. : Glênon Duta ASSUNTO: Gandezas Vetoiais e Gandezas Escalaes Em nossas aulas anteioes vimos que gandeza é tudo aquilo que pode se medido. As

Leia mais

7.3. Potencial Eléctrico e Energia Potencial Eléctrica de Cargas Pontuais

7.3. Potencial Eléctrico e Energia Potencial Eléctrica de Cargas Pontuais 7.3. Potencial Eléctico e Enegia Potencial Eléctica de Cagas Pontuais Ao estabelece o conceito de potencial eléctico, imaginamos coloca uma patícula de pova num campo eléctico poduzido po algumas cagas

Leia mais

Conceitos Básicos Teste t Teste F. Teste de Hipóteses. Joel M. Corrêa da Rosa

Conceitos Básicos Teste t Teste F. Teste de Hipóteses. Joel M. Corrêa da Rosa 2011 O 1. Formular duas hipóteses sobre um valor que é desconhecido na população. 2. Fixar um nível de significância 3. Escolher a Estatística do Teste 4. Calcular o p-valor 5. Tomar a decisão mediante

Leia mais

Seção 24: Laplaciano em Coordenadas Esféricas

Seção 24: Laplaciano em Coordenadas Esféricas Seção 4: Laplaciano em Coodenadas Esféicas Paa o leito inteessado, na pimeia seção deduimos a expessão do laplaciano em coodenadas esféicas. O leito ue estive disposto a aceita sem demonstação pode dietamente

Leia mais

IF Eletricidade e Magnetismo I

IF Eletricidade e Magnetismo I IF 437 Eleticidade e Magnetismo I Enegia potencial elética Já tatamos de enegia em divesos aspectos: enegia cinética, gavitacional, enegia potencial elástica e enegia témica. segui vamos adiciona a enegia

Leia mais

Mecânica. Conceito de campo Gravitação 2ª Parte Prof. Luís Perna 2010/11

Mecânica. Conceito de campo Gravitação 2ª Parte Prof. Luís Perna 2010/11 Mecânica Gavitação 2ª Pate Pof. Luís Pena 2010/11 Conceito de campo O conceito de campo foi intoduzido, pela pimeia vez po Faaday no estudo das inteacções elécticas e magnéticas. Michael Faaday (1791-1867)

Leia mais

Universidade Federal de Pelotas Disciplina de Microeconomia 1 Professor Rodrigo Nobre Fernandez Lista 4 - Soluções

Universidade Federal de Pelotas Disciplina de Microeconomia 1 Professor Rodrigo Nobre Fernandez Lista 4 - Soluções Univesidade Fedeal de Pelotas Disciplina de Micoeconomia Pofesso Rodigo Nobe Fenandez Lista 4 - Soluções ) Resolva o poblema de maximização dos lucos de uma fima com a tecnologia Cobb Douglas f x,x ) x

Leia mais

Metodologia para Amostragem de Documentos Contábeis

Metodologia para Amostragem de Documentos Contábeis Metodologia paa Amostagem de Documentos Contábeis Valte de Senna SENAI-CIMATEC Valte.senna@gmail.com Kaen Dias SENAI-CIMATEC diasckaen@gmail.com Annibal Paacho Sant Anna UFF Annibal.paacho@gmail.com Resumo

Leia mais

DELINEAMENTO EM BLOCOS AO ACASO

DELINEAMENTO EM BLOCOS AO ACASO DELINEAMENTO EM BLOCOS AO ACASO Sempre que não houver condições experimentais homogêneas, devemos utilizar o principio do controle local, instalando Blocos, casualizando os tratamentos, igualmente repetidos.

Leia mais

Exercícios e outras práticas sobre as aplicações da Termodinâmica Química 1 a parte

Exercícios e outras práticas sobre as aplicações da Termodinâmica Química 1 a parte 5 Capítulo Capítulo Execícios e outas páticas sobe as aplicações da emodinâmica Química 1 a pate Só queo sabe do que pode da ceto Não tenho tempo a pede. (leta da música Go Back, cantada pelo gupo itãs.

Leia mais

4.4 Mais da geometria analítica de retas e planos

4.4 Mais da geometria analítica de retas e planos 07 4.4 Mais da geometia analítica de etas e planos Equações da eta na foma simética Lembemos que uma eta, no planos casos acima, a foma simética é um caso paticula da equação na eta na foma geal ou no

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL II 014.2

CÁLCULO DIFERENCIAL E INTEGRAL II 014.2 CÁLCULO IFERENCIAL E INTEGRAL II Obsevações: ) Todos os eecícios popostos devem se esolvidos e entegue no dia de feveeio de 5 Integais uplas Integais uplas Seja z f( uma função definida em uma egião do

Leia mais

MATEMÁTICA 3 A SÉRIE - E. MÉDIO

MATEMÁTICA 3 A SÉRIE - E. MÉDIO 1 MTEMÁTIC 3 SÉRIE - E. MÉDIO Pof. Rogéio Rodigues ELEMENTOS PRIMITIVOS / ÂNGULOS NOME :... NÚMERO :... TURM :... 2 I) ELEMENTOS PRIMITIVOS ÂNGULOS Os elementos pimitivos da Geometia são O Ponto, eta e

Leia mais

Prova Escrita de Matemática A

Prova Escrita de Matemática A EXAME FINAL NACIONAL DO ENSINO SECUNDÁRIO Pova Escita de Matemática A 12.º Ano de Escolaidade Deceto-Lei n.º 139/2012, de 5 de julho Pova 635/2.ª Fase Citéios de Classificação 11 Páginas 2015 Pova 635/2.ª

Leia mais

Escola Secundária/3 da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo 2003/04 Geometria 2 - Revisões 11.º Ano

Escola Secundária/3 da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo 2003/04 Geometria 2 - Revisões 11.º Ano Escola Secundáia/ da Sé-Lamego Ficha de Tabalho de Matemática Ano Lectivo 00/04 Geometia - Revisões º Ano Nome: Nº: Tuma: A egião do espaço definida, num efeencial otonomado, po + + = é: [A] a cicunfeência

Leia mais

CAPÍTULO 02 MOVIMENTOS DE CORPO RÍGIDO. TRANSFORMAÇÕES HOMOGÊNEAS

CAPÍTULO 02 MOVIMENTOS DE CORPO RÍGIDO. TRANSFORMAÇÕES HOMOGÊNEAS Caítulo 2 - Movimentos de Coo Rígido. Tansfomações Homogêneas 8 CAPÍTULO 02 MOVIMENTOS DE CORPO RÍGIDO. TRANSFORMAÇÕES HOMOGÊNEAS 2. INTRODUÇÃO Paa o desenvolvimento das equações cinemáticas do maniulado

Leia mais

é a variação no custo total dada a variação na quantidade

é a variação no custo total dada a variação na quantidade TP043 Micoeconomia 21/10/2009 AULA 15 Bibliogafia: PINDYCK - CAPÍTULO 7 Custos fixos e vaiáveis: Custos fixos não dependem do nível de podução, enquanto que custos vaiáveis dependem do nível de podução.

Leia mais

Seção 8: EDO s de 2 a ordem redutíveis à 1 a ordem

Seção 8: EDO s de 2 a ordem redutíveis à 1 a ordem Seção 8: EDO s de a odem edutíveis à a odem Caso : Equações Autônomas Definição Uma EDO s de a odem é dita autônoma se não envolve explicitamente a vaiável independente, isto é, se fo da foma F y, y, y

Leia mais

Exame Final Nacional de Matemática A Prova 635 Época Especial Ensino Secundário º Ano de Escolaridade. Critérios de Classificação.

Exame Final Nacional de Matemática A Prova 635 Época Especial Ensino Secundário º Ano de Escolaridade. Critérios de Classificação. Exame Final Nacional de Matemática A Pova 635 Época Especial Ensino Secundáio 07.º Ano de Escolaidade Deceto-Lei n.º 39/0, de 5 de julho Citéios de Classificação 0 Páginas Pova 635/E. Especial CC Página

Leia mais

UMA PROPOSTA DE TRANSFORMAÇÃO DE DADOS PARA ANÁLISE DE COMPONENTES PRINCIPAIS

UMA PROPOSTA DE TRANSFORMAÇÃO DE DADOS PARA ANÁLISE DE COMPONENTES PRINCIPAIS UMA PROPOSTA DE TRANSFORMAÇÃO DE DADOS PARA ANÁLISE DE COMPONENTES PRINCIPAIS Ana Caolina Mota CAMPANA José Ivo RIBEIRO JÚNIOR Moysés NASCIMENTO RESUMO: A análise de Componentes Pincipais (CPs) não é invaiante

Leia mais

n θ E Lei de Gauss Fluxo Eletrico e Lei de Gauss

n θ E Lei de Gauss Fluxo Eletrico e Lei de Gauss Fundamentos de Fisica Clasica Pof icado Lei de Gauss A Lei de Gauss utiliza o conceito de linhas de foça paa calcula o campo elético onde existe um alto gau de simetia Po exemplo: caga elética pontual,

Leia mais

CAPÍTULO 3 DEPENDÊNCIA LINEAR

CAPÍTULO 3 DEPENDÊNCIA LINEAR Luiz Fancisco da Cuz Depatamento de Matemática Unesp/Bauu CAPÍTULO 3 DEPENDÊNCIA LINEAR Combinação Linea 2 n Definição: Seja {,,..., } um conjunto com n etoes. Dizemos que um eto u é combinação linea desses

Leia mais

MATEMÁTICA CADERNO 7 CURSO E. FRENTE 1 ÁLGEBRA n Módulo 28 Dispositivo de Briot-Ruffini Teorema Do Resto

MATEMÁTICA CADERNO 7 CURSO E. FRENTE 1 ÁLGEBRA n Módulo 28 Dispositivo de Briot-Ruffini Teorema Do Resto MATEMÁTICA FRENTE ÁLGEBRA n Módulo 8 Dispositivo de Biot-Ruffini Teoema Do Resto ) x + x x x po x + Utilizando o dispositivo de Biot-Ruffini: coeficientes esto Q(x) = x x + x 7 e esto nulo ) Pelo dispositivo

Leia mais

3. Análise estatística do sinal

3. Análise estatística do sinal 3. Análise estatística do sinal A análise da intensidade do sinal ecebido é u pocesso que abange dois estágios, sendo eles: i) a estiativa do sinal ediano ecebido e ua áea elativaente pequena, e ii) a

Leia mais

Swing-By Propulsado aplicado ao sistema de Haumea

Swing-By Propulsado aplicado ao sistema de Haumea Tabalho apesentado no DINCON, Natal - RN, 015. 1 Poceeding Seies of the Bazilian Society of Computational and Applied Mathematics Swing-By Populsado aplicado ao sistema de Haumea Alessanda Feaz da Silva

Leia mais

Árvores Digitais. Fonte de consulta: Szwarcfiter, J.; Markezon, L. Estruturas de Dados e seus Algoritmos, 3a. ed. LTC. Capítulo11

Árvores Digitais. Fonte de consulta: Szwarcfiter, J.; Markezon, L. Estruturas de Dados e seus Algoritmos, 3a. ed. LTC. Capítulo11 Ávoes Digitais Fonte de consulta: Szwacfite, J.; Makezon, L. Estutuas de Dados e seus Algoitmos, 3a. ed. LTC. Capítulo Pemissas do que vimos até aqui } As chaves têm tamanho fixo } As chaves cabem em uma

Leia mais

Resolução da Prova de Raciocínio Lógico

Resolução da Prova de Raciocínio Lógico ESAF/ANA/2009 da Pova de Raciocínio Lógico (Refeência: Pova Objetiva 1 comum a todos os cagos). Opus Pi. Rio de Janeio, maço de 2009. Opus Pi. opuspi@ymail.com 1 21 Um io pincipal tem, ao passa em deteminado

Leia mais

Medidas de Associação.

Medidas de Associação. Medidas de Associação. Medidas de associação quantificam a elação ente uma dada exposição e uma consequência. Medidas de impacto quantificam o impacto da mudança de exposição num dado gupo. Não podemos

Leia mais

ESCOLA SECUNDÁRIA JOSÉ SARAMAGO

ESCOLA SECUNDÁRIA JOSÉ SARAMAGO ESCOLA SECUNDÁRIA JOSÉ SARAMAGO FÍSICA e QUÍMICA A 11º ano /1.º Ano 3º este de Avaliação Sumativa Feveeio 007 vesão Nome nº uma Data / / Duação: 90 minutos Pof. I Paa que se possa entende a lei descobeta

Leia mais

Reversão da Intensidade de Capital, Retorno das Técnicas e Indeterminação da

Reversão da Intensidade de Capital, Retorno das Técnicas e Indeterminação da evesão da Intensidade de Capital, etono das Técnicas e Indeteminação da Dotação de Capital : a Cítica Saffiana à Teoia Neoclássica. Fanklin Seano, IE-UFJ Vesão evista, Outubo 2005 I.Capital Homogêneo Suponha

Leia mais

Lei de Gauss II Revisão: Aula 2_2 Física Geral e Experimental III Prof. Cláudio Graça

Lei de Gauss II Revisão: Aula 2_2 Física Geral e Experimental III Prof. Cláudio Graça Lei de Gauss II Revisão: Aula 2_2 Física Geal e Expeimental III Pof. Cláudio Gaça Revisão Cálculo vetoial 1. Poduto de um escala po um veto 2. Poduto escala de dois vetoes 3. Lei de Gauss, fluxo atavés

Leia mais

REINTERPRETANDO A CONSTRUÇÃO DO CÁLCULO DIFERENCIAL E INTEGRAL DE LEIBNIZ COM USO DE RECURSOS GEOMÉTRICOS

REINTERPRETANDO A CONSTRUÇÃO DO CÁLCULO DIFERENCIAL E INTEGRAL DE LEIBNIZ COM USO DE RECURSOS GEOMÉTRICOS REINERPREAND A CNSRUÇÃ D CÁLCUL DIFERENCIAL E INEGRAL DE LEIBNIZ CM US DE RECURSS GEMÉRICS Intodução Ségio Caazedo Dantas segio@maismatematica.com.b Resumo Nesse teto apesentamos algumas deduções que Leibniz

Leia mais

EXPERIÊNCIA 5 - RESPOSTA EM FREQUENCIA EM UM CIRCUITO RLC - RESSONÂNCIA

EXPERIÊNCIA 5 - RESPOSTA EM FREQUENCIA EM UM CIRCUITO RLC - RESSONÂNCIA UM/AET Eng. Elética sem 0 - ab. icuitos Eléticos I Pof. Athemio A.P.Feaa/Wilson Yamaguti(edição) EPEIÊNIA 5 - ESPOSTA EM FEQUENIA EM UM IUITO - ESSONÂNIA INTODUÇÃO. icuito séie onsideando o cicuito da

Leia mais

PROPOSTA DE UTILIZAÇÃO DE BETA-INDICADOR COMO MODELO DETERMINÍSTICO PARA GESTÃO DE CUSTOS ESTIMADOS

PROPOSTA DE UTILIZAÇÃO DE BETA-INDICADOR COMO MODELO DETERMINÍSTICO PARA GESTÃO DE CUSTOS ESTIMADOS PROPOSTA DE UTILIZAÇÃO DE BETA-INDICADOR COMO MODELO DETERMINÍSTICO PARA GESTÃO DE CUSTOS ESTIMADOS MANUEL MEIRELES MÁRCIO MARIETTO CIDA SANCHES SILVANA MARTINS Resumo: Este tabalho popõe um modelo deteminístico

Leia mais

CAPÍTULO 7: CAPILARIDADE

CAPÍTULO 7: CAPILARIDADE LCE000 Física do Ambiente Agícola CAPÍTULO 7: CAPILARIDADE inteface líquido-gás M M 4 esfea de ação molecula M 3 Ao colocamos uma das extemidades de um tubo capila de vido dento de um ecipiente com água,

Leia mais

IMPULSO E QUANTIDADE DE MOVIMENTO

IMPULSO E QUANTIDADE DE MOVIMENTO AULA 10 IMPULSO E QUANTIDADE DE MOVIMENTO 1- INTRODUÇÃO Nesta aula estudaemos Impulso de uma foça e a Quantidade de Movimento de uma patícula. Veemos que estas gandezas são vetoiais e que possuem a mesma

Leia mais

Universidade de Évora Departamento de Física Ficha de exercícios para Física I (Biologia)

Universidade de Évora Departamento de Física Ficha de exercícios para Física I (Biologia) Univesidade de Évoa Depatamento de Física Ficha de eecícios paa Física I (Biologia) 4- SISTEMA DE PARTÍCULAS E DINÂMICA DE ROTAÇÃO A- Sistema de patículas 1. O objecto epesentado na figua 1 é feito de

Leia mais

Algoritmo Genético Especializado na Resolução de Problemas com Variáveis Contínuas e Altamente Restritos

Algoritmo Genético Especializado na Resolução de Problemas com Variáveis Contínuas e Altamente Restritos UNIVERSIDADE ESTADUAL PAULISTA JULIO DE MESQUITA FILHO - CAMPUS DE ILHA SOLTEIRA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA Algoitmo Genético Especializado na Resolução de Poblemas com Vaiáveis Contínuas

Leia mais

AVALIAÇÃO EXPERIMENTAL DE TÉCNICAS DE CALIBRAÇÃO DE CÂMARAS DIGITAIS USANDO LINHAS RETAS E PONTOS

AVALIAÇÃO EXPERIMENTAL DE TÉCNICAS DE CALIBRAÇÃO DE CÂMARAS DIGITAIS USANDO LINHAS RETAS E PONTOS V Colóquio Basileio de Ciências Geodésicas ISSN 98-65, p. 563-569 AVALIAÇÃO EXPERIMENTAL DE TÉCNICAS DE CALIBRAÇÃO DE CÂMARAS DIGITAIS USANDO LINHAS RETAS E PONTOS JOSÉ MARCATO JUNIOR ANTONIO MARIA GARCIA

Leia mais

20 Exercícios Revisão

20 Exercícios Revisão 0 Execícios Revisão Nome Nº 1ª séie Física Beth/Reinaldo Data / / T cte. G. M. m F v a cp v G. M T.. v R Tea = 6,4 x 10 6 m M Tea = 6,0 x 10 4 kg G = 6,7 x 10 11 N.m /kg g = 10 m/s P = m.g M = F. d m d

Leia mais

DELINEAMENTO INTEIRAMENTE CASUALIZADO e CASUALIZADOS

DELINEAMENTO INTEIRAMENTE CASUALIZADO e CASUALIZADOS DELINEAMENTO INTEIRAMENTE CASUALIZADO e DELINEAMENTO EM BLOCOS CASUALIZADOS Prof. Anderson Rodrigo da Silva anderson.silva@ifgoiano.edu.br 1. Objetivos Estudar o procedimento de instalação e análise de

Leia mais

1 Busca em Amplitude

1 Busca em Amplitude Algoitmos de Busca A modelagem mostada até aqui detemina a configuação do espaço de estados do poblema, mas não mosta como chega à solução, isto é, como enconta um estado final em um tempo azoável. Paa

Leia mais

Unidade 13 Noções de Matemática Financeira. Taxas equivalentes Descontos simples e compostos Desconto racional ou real Desconto comercial ou bancário

Unidade 13 Noções de Matemática Financeira. Taxas equivalentes Descontos simples e compostos Desconto racional ou real Desconto comercial ou bancário Unidade 13 Noções de atemática Financeia Taxas equivalentes Descontos simples e compostos Desconto acional ou eal Desconto comecial ou bancáio Intodução A atemática Financeia teve seu início exatamente

Leia mais

Cap03 - Estudo da força de interação entre corpos eletrizados

Cap03 - Estudo da força de interação entre corpos eletrizados ap03 - Estudo da foça de inteação ente copos eletizados 3.1 INTRODUÇÃO S.J.Toise omo foi dito na intodução, a Física utiliza como método de tabalho a medida das qandezas envolvidas em cada fenômeno que

Leia mais

SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO DE CIÊNCIAS BIOLÓGICAS DECB

SEEC UNIVERSIDADE DO ESTADO DO RIO GRANDE DO NORTE UERN FACULDADE DE CIÊNCIAS EXATAS E NATURAIS FANAT DEPARTAMENTO DE CIÊNCIAS BIOLÓGICAS DECB DISCIPLINA BIOEXPERIMENTAÇÃO Exercício de experimento fatorial resolução passo-à-passo Os dados apresentados abaixo são uma adaptação do exemplo apresentado por Banzato e Kronka (199) Os dados são valores

Leia mais

EXPERIMENTAÇÃO AGRÁRIA

EXPERIMENTAÇÃO AGRÁRIA EXPERIMENTAÇÃO AGRÁRIA Tema : Delineamentos experimentais básicos (DCC/DBCC/DQL) Delineamento de Blocos Completos Casualizados (DBCC) Quando usar? Quando as unidades experimentais não apresentam características

Leia mais

3. Elementos de Sistemas Elétricos de Potência

3. Elementos de Sistemas Elétricos de Potência Sistemas Eléticos de Potência 3. Elementos de Sistemas Eléticos de Potência Pofesso: D. Raphael Augusto de Souza Benedito E-mail:aphaelbenedito@utfp.edu.b disponível em: http://paginapessoal.utfp.edu.b/aphaelbenedito

Leia mais

19 - Potencial Elétrico

19 - Potencial Elétrico PROBLEMAS RESOLVIDOS DE FÍSICA Pof. Andeson Cose Gaudio Depatamento de Física Cento de Ciências Exatas Univesidade Fedeal do Espíito Santo http://www.cce.ufes.b/andeson andeson@npd.ufes.b Última atualização:

Leia mais

EXERCÍCIOS DE REVISÃO MATEMÁTICA II CONTEÚDO: ÂNGULOS 3 a SÉRIE ENSINO MÉDIO

EXERCÍCIOS DE REVISÃO MATEMÁTICA II CONTEÚDO: ÂNGULOS 3 a SÉRIE ENSINO MÉDIO EXERÍIS E REVISÃ MTEMÁTI II NTEÚ: ÂNGULS 3 a SÉRIE ENSIN MÉI ======================================================================= 1) ois ângulos consecutivos Ô e Ô são tais que a medida do pimeio ecede

Leia mais

TEXTO DE REVISÃO 13 Impulso e Quantidade de Movimento (ou Momento Linear).

TEXTO DE REVISÃO 13 Impulso e Quantidade de Movimento (ou Momento Linear). TEXTO DE REVISÃO 13 Impulso e Quantidade de Movimento (ou Momento Linea). Cao Aluno: Este texto de evisão apesenta um dos conceitos mais impotantes da física, o conceito de quantidade de movimento. Adotamos

Leia mais

A VELOCIDADE DE SAIDA DO VENTO É 1/3 DA VELOCIDADE DE ENTRADA DO VENTO.

A VELOCIDADE DE SAIDA DO VENTO É 1/3 DA VELOCIDADE DE ENTRADA DO VENTO. 5 CONCLUIMOS QUE A ELAÇÃO p T = P POTENCIA CEDIDA POTENCIA DISPONIEL À TUBINA NA ÁEA ATINGIÁ UM ALO MÁXIMO QUANDO 2 = 3 2 = 3 A ELOCIDADE DE SAIDA DO ENTO É /3 DA ELOCIDADE DE ENTADA DO ENTO. p NESTAS

Leia mais

ESTIMAÇÃO DE PARÂMETROS DO MOTOR DE INDUÇÃO UTILIZANDO UM MODELO CONTÍNUO NO TEMPO

ESTIMAÇÃO DE PARÂMETROS DO MOTOR DE INDUÇÃO UTILIZANDO UM MODELO CONTÍNUO NO TEMPO PEDRO JOSÉ ROSA DE OLIVEIRA, Engenheio Eleticista ESTIMAÇÃO DE PARÂMETROS DO MOTOR DE INDUÇÃO UTILIZANDO UM MODELO CONTÍNUO NO TEMPO Oientadoes: Pof. D. PAULO FERNANDO SEIXAS Pof. D. LUÍS ANTÔNIO AGUIRRE

Leia mais

+, a velocidade de reação resultante será expressa

+, a velocidade de reação resultante será expressa 3. - Velocidade de eação velocidade de eação ou taxa de eação de fomação de podutos depende da concentação, pessão e tempeatua dos eagentes e podutos da eação. É uma gandeza extensiva po que tem unidades

Leia mais

2013 Copyright. Curso Agora eu Passo - Todos os direitos reservados ao autor.

2013 Copyright. Curso Agora eu Passo - Todos os direitos reservados ao autor. Cuso: Execícios ESAF paa Receita Fedeal 03 Disciplina: Raciocínio Lógico-Quantitativo Assunto: Tópico 04 Matizes, Deteminantes e Sistemas Lineaes Pofesso: Valdenilson Gacia 03 Copyight. Cuso Agoa eu Passo

Leia mais

ENSINO DE QUÍMICA: O USO DE SOFTWARE PARA O APRENDIZADO DE TABELA PERIÓDICA COM O AUXILIO DE TABLET E APARELHOS CELULARES

ENSINO DE QUÍMICA: O USO DE SOFTWARE PARA O APRENDIZADO DE TABELA PERIÓDICA COM O AUXILIO DE TABLET E APARELHOS CELULARES ENSINO DE QUÍMICA: O USO DE SOFTWARE PARA O APRENDIZADO DE TABELA PERIÓDICA COM O AUXILIO DE TABLET E APARELHOS CELULARES Jaqueline Mendes da Cunha (1); Géssica Gacia Ramos (1); Antônio Macos de Oliveia

Leia mais

BEAM SEARCH FILTRADO COM INSERÇÃO DE OCIOSIDADE NA PROGRAMAÇÃO DE UMA MÁQUINA EM AMBIENTE DO TIPO JIT

BEAM SEARCH FILTRADO COM INSERÇÃO DE OCIOSIDADE NA PROGRAMAÇÃO DE UMA MÁQUINA EM AMBIENTE DO TIPO JIT Veax consultoia VX 989 eamseach.docx Função: opeações Segmento: indústia / logística Tema: planeamento de opeações Metodologia: análise uantitativa EM SERCH FILTRDO COM INSERÇÃO DE OCIOSIDDE N PROGRMÇÃO

Leia mais

ASPECTOS GERAIS E AS LEIS DE KEPLER

ASPECTOS GERAIS E AS LEIS DE KEPLER 16 ASPECTOS GERAIS E AS LEIS DE KEPLER Gil da Costa Maques Dinâmica do Movimento dos Copos 16.1 Intodução 16. Foças Centais 16.3 Dinâmica do movimento 16.4 Consevação do Momento Angula 16.5 Enegias positivas,

Leia mais

A dinâmica estuda as relações entre as forças que actuam na partícula e os movimentos por ela adquiridos.

A dinâmica estuda as relações entre as forças que actuam na partícula e os movimentos por ela adquiridos. CAPÍTULO 4 - DINÂMICA A dinâmica estuda as elações ente as foças que actuam na patícula e os movimentos po ela adquiidos. A estática estuda as condições de equilíbio de uma patícula. LEIS DE NEWTON 1.ª

Leia mais

Geometria: Perímetro, Área e Volume

Geometria: Perímetro, Área e Volume Geometia: Peímeto, Áea e Volume Refoço de Matemática ásica - Pofesso: Macio Sabino - 1 Semeste 2015 1. Noções ásicas de Geometia Inicialmente iemos defini as noções e notações de alguns elementos básicos

Leia mais

LITERATURA DE CORDEL NA SALA DE AULA: ferramenta pedagógica para o ensino de leitura e escrita na escola 1

LITERATURA DE CORDEL NA SALA DE AULA: ferramenta pedagógica para o ensino de leitura e escrita na escola 1 LITERATURA DE CORDEL NA SALA DE AULA: feamenta pedagógica paa o ensino de leitua e escita na escola 1 Auto: Maia Valdilene Santos Peeia Gaduanda em Licenciatua em Linguagens e Códigos Língua Potuguesa

Leia mais

EM423A Resistência dos Materiais

EM423A Resistência dos Materiais UNICAMP Univesidade Estadual de Campinas EM43A esistência dos Mateiais Pojeto Tação-Defomação via Medidas de esistência Pofesso: obeto de Toledo Assumpção Alunos: Daniel obson Pinto A: 070545 Gustavo de

Leia mais