DIVERGÊNCIA DO FLUXO ELÉTRICO E TEOREMA DA DIVERGÊNCIA

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "DIVERGÊNCIA DO FLUXO ELÉTRICO E TEOREMA DA DIVERGÊNCIA"

Transcrição

1 ELETROMAGNETIMO I 18 DIVERGÊNCIA DO FLUXO ELÉTRICO E TEOREMA DA DIVERGÊNCIA.1 - A LEI DE GAU APLICADA A UM ELEMENTO DIFERENCIAL DE VOLUME Vimos que a Lei de Gauss pemite estuda o compotamento do campo elético devido a cetas distibuições especiais de caga. Entetanto, paa se utiliada, a Lei de Gauss eige que a simetia do poblema seja conhecida, de foma a esulta que a componente nomal do veto densidade de fluo elético em qualque ponto da supefície gaussiana seja ou constante ou nula. Neste capítulo petendemos considea a aplicação da Lei de Gauss a poblemas que não possuem simetia. uponhamos um ume incemental v etemamente pequeno, poém finito e ento po uma supefície fechada. e assumimos uma densidade de caga unifome neste incemento de ume, a caga Q seá o poduto da densidade umética de caga ρ pelo ume v. Pela Lei de Gauss, podemos esceve: D d ρ v (.1) D ( / ) D P D D ( / ) D D ( / ) Figua..1 Volume incemental em tono do ponto P. Vamos agoa desenve a integal de supefície da equação acima, sobe uma supefície gaussiana elementa que engloba o ume v. Este ume está epesentado na figua.1, e é fomado pelas supefícies incementais.,., e.. Considee um ponto P(,, ) envido pela supefície gaussiana fomada pelas supefícies incementais. A epessão paa a densidade de fluo elético D no ponto P em coodenadas catesianas seá dada po: D D.â D.â D. â A integal sobe a supefície fechada é dividida em seis integais, uma sobe cada lado do ume v. D d fente atás esq. Paa a pimeia delas, na pate da fente, temos: di. topo base (.) (.) UNEP Naasson Peeia de Alcantaa Junio Claudio Vaa de Aquino

2 ELETROMAGNETIMO I 19 fente D fente fente D fente.. â D.. (.4) (D é a componente de D nomal ao plano ). Apoimando o esultado D.. pelos dois pimeios temos da epansão em séie de Talo em tono de D no ponto P vem: D D (D ) (.5) Neste caso, como e são independentes em elação a : D... fente (.6) Consideemos agoa a integal na supefície da pate de tás, atás : atás D atás atás D atás ( â ) D (D ) (.7) Nesta face o veto unitáio â em s tem dieção negativa. Da mesma foma, consideando a independência de e em elação a, temos: D.. (.8) atás Combinando as duas integais ao longo do eio :... fente (.9) atás Utiliando o mesmo aciocínio paa as outas faces, as integais estantes ficam:... di. (.1) esq.... topo (.11) base Assim a equação (.) fica: D d v (.1) A epessão acima di que o fluo elético que atavessa uma supefície fechada muito pequena é igual ao poduto ente o ume compeendido po essa supefície e a soma das deivadas paciais das componentes do veto D em elação às suas pópias dieções. Igualando-se as equações.1 e.1, e em seguida dividindo todos os temos po v, tem-se: UNEP Naasson Peeia de Alcantaa Junio Claudio Vaa de Aquino

3 ELETROMAGNETIMO I D d v (.1) Tatando-se de uma egião pontual, podemos passa ao limite, com v tendendo a eo, obtendo: lim v D d v (.14). - DIVERGÊNCIA A opeação indicada pela equação.14 não é petinente apenas ao fenômeno elético oa em estudo. uge tantas vees no estudo de outas gandeas físicas descitas po campos vetoiais, que os cientistas e os matemáticos do século passado esolveam designá-la com um nome especial e genéico: Divegência. Matematicamente, a divegência de um campo vetoial A pode se assim definida: lim A d Divegênciade A diva v v (.15) Conceito A divegência do veto densidade de fluo A (que epesenta um fenômeno físico qualque) é a vaiação do fluo atavés da supefície fechada de um pequeno ume que tende a eo A divegência é uma opeação matemática sobe um veto, cujo esultado é um escala. É definida como sendo a soma das deivadas paciais das componentes do veto, cada uma em elação à sua pópia dieção. A pati da definição da divegência e da equação.14, apesentamos a 1ª equação de Mawell. Em temos pontuais: div.d ρ (.16) A equação.14 estabelece que o fluo elético po unidade de ume deiando um ume infinitesimal é igual à densidade umética de caga neste ponto. Esta equação também é conhecida como a foma difeencial da Lei de Gauss, epessa como uma soma de deivadas paciais espaciais ou diecionais.. - O OPERADOR (nabla) E O TEOREMA DA DIVERGÊNCIA O opeado é definido como sendo o opeado vetoial difeencial:.â.â. â (.17) Realiando o poduto escala D, tem-se: ( D.â D.â D. â D.â.â.â ) (.18) Lembando que o poduto escala ente vetoes otogonais é nulo, o esultado seá: UNEP Naasson Peeia de Alcantaa Junio Claudio Vaa de Aquino

4 ELETROMAGNETIMO I 1 ou ainda po (.16): D D (.19) (.) O opeado não é utiliado somente em opeações de divegência, mas também em outas opeações vetoiais. Ele é definido somente em coodenadas catesianas. A pincípio, a epessão D seviia apenas paa se calcula as deivadas paciais do divegente do veto D em coodenadas catesianas. Entetanto, num abuso de linguagem, a epessão D como sendo a divegência do veto densidade de fluo elético é consagada e pode se utiliada mesmo quando o veto é definido em outos sistemas de efeência (ou coodenadas). Em coodenadas cilíndicas: ( D ) 1 D 1 φ φ (.1) Em coodenadas esféicas: 1 D 1 ( D ) ( D senθ) senθ θ θ 1 φ senθ φ (.) Entetanto, deve-se lemba, poém, que não possui uma foma especifica paa estes tipos de sistemas de coodenadas. Finalmente, vamos associa a divegência à Lei de Gauss, paa obte o teoema da divegência. Lembando que: e D d D ρ.dv podemos esceve: D d ( ) D dv (.) A equação. é o Teoema da Divegência ou teoema de Gauss (paa difeencia da Lei de Gauss). Estabelece que a integal da componente nomal de qualque campo vetoial sobe uma supefície fechada é igual à integal da divegência deste campo atavés do ume envido po essa supefície fechada. Uma maneia simples de se entende fisicamente o teoema da divegência é atavés da figua.. Um ume v, delimitado po uma supefície fechada é subdividido em pequenos umes incementais, ou células. O fluo que divege de cada célula convege paa as células viinhas, a não se que a célula possua um de seus lados sobe a supefície fechada. Então a soma da divegência da densidade de fluo de todas as células seá igual à soma do fluo liquido sobe a supefície fechada que enve o ume em questão. UNEP Naasson Peeia de Alcantaa Junio Claudio Vaa de Aquino

5 ELETROMAGNETIMO I Figua. Volume v subdividido em umes incementais. Eemplo.1 Calcula os dois lados do teoema da divegência, paa uma densidade de fluo elético D.â.â, em um cubo de aestas igual a unidades. olução: Vamos coloca a oigem do sistema de coodenadas catesianas em um dos vétices. Paa o outo lado, a divegência do campo fica: O veto D possui componentes nas dieções e. Potanto, a pincípio, a integal de supefície deve se calculada sobe 4 lados do cubo: D.d fente atás esq. di..a fente d.d.a atás..a.d.d.( a ) esq...a.d.d.( a )..a di..d.d.a 64 D.d D. D O outo lado da equação, numa integação de ume passa a se escito: ( D ) dv ( ) ( D ) dv ( ) ( D ) 64 dv d.d.d d.d ( ) D dv 4 d d Este capítulo apesenta uma genealiação da lei de Gauss, aplicada pontualmente a umes elementaes com o ecuso de um opeado vetoial sobe a densidade de fluo oiginado pelo campo elético poveniente de uma distibuição umética de cagas. A equação (.16),ou a (.) escita de outa foma, nos mosta um fluo divegente do veto densidade de fluo elético oiginado de uma caga elementa, de natuea positiva, indicada pela sua densidade umética. Geneicamente, se o divegente de um campo vetoial fo positivo, este indica a pesença de uma fonte de fluos divegentes do ponto dado. O divegente negativo, po sua ve, indica a pesença de um sovedouo ou de uma fonte de fluos convegentes ao ponto. Não havendo fonte geadoa de fluos o divegente do campo no ponto coespondente seá nulo. UNEP Naasson Peeia de Alcantaa Junio Claudio Vaa de Aquino

6 ELETROMAGNETIMO I EXERCÍCIO 1) Dado A ( ).$ a ( ).$ a calcule. A. ) Dedua a epessão do divegente de um campo vetoial D paa os sistemas de coodenadas cilíndicas e esféicas. ) Dado D ρ â paa a egião definida po 1 1 e D (ρ pontos do espaço, enconte a densidade de cagas eléticas. / ) â paa os demais 1,5 1,5 4) Paa a egião < m (coodenadas cilíndicas), D (4 e 4 e )â, e paa > m, D (,57 1 ). â. Obte a densidade umética de cagas ρ paa ambas as egiões. 5) Uma linha unifome de cagas de densidade ρ l petence ao eio. (a) Moste que. D em qualque luga, eceto na linha de cagas. (b) substitua a linha de cagas po uma densidade umética de cagas ρ em m. Relacione ρ l com ρ modo que a caga po unidade de compimento seja a mesma. Detemine então. D em toda pate. 6) A egião m (coodenadas esféicas) possui um campo elético 5 E (5 1 / ε ) â (V/m). Detemine a caga envida pela casca definida po m. 7) Moste e justifique poque o divegente do campo elético geado po uma distibuição unifome e supeficial de cagas é nulo. 8) Moste que. E é eo paa o campo de uma linha unifomemente caegada. Moste também que o campo D devido a uma caga pontual tem uma divegência nula. Discuta o poblema fisicamente, eplicando o motivo de tais compotamentos. 9) Dado D( 1 ).â 4 em coodenadas cilíndicas, calcule cada um dos lados do teoema da divegência, paa o ume limitado po m, m e 1 m 1) Dado o campo A e â â, calcule ambos os lados do teoema da divegência paa o ume definido po, e 5. 11) Dado D 1sen θ.â cosθ. â θ, pede-se calcula ambos os lados do teoema da divegência, paa o ume limitado pela casca m. 1) Dado D (1 / 4)â (C/m ), calcule ambos os lados do teoema da divegência paa o ume limitado po 1m, m, e 1m. UNEP Naasson Peeia de Alcantaa Junio Claudio Vaa de Aquino

7 ELETROMAGNETIMO I 4 1) Dipolo Elético, ou simplesmente dipolo, é o nome dado ao conjunto de duas cagas pontuais de igual magnitude e sinais opostos, sepaadas po uma distância pequena compaada com a distância ao ponto P onde se deseja conhece o campo elético. O ponto P descito em coodenadas esféicas (figua abaio), po, θ e φ 9 gaus é visto em simetia aimutal. As cagas positivas e negativas estão sepaadas po d, e localiadas em (,,d/) m e (,,-d/). Qd e o campo no ponto P é E (cosθ.â sen θ.â θ ), moste que a divegência deste 4πε campo é nula. P R 1 Q θ R d - Q Figua paa o poblema 1. UNEP Naasson Peeia de Alcantaa Junio Claudio Vaa de Aquino

SISTEMA DE COORDENADAS

SISTEMA DE COORDENADAS ELETROMAGNETISMO I 1 0 ANÁLISE VETORIAL Este capítulo ofeece uma ecapitulação aos conhecimentos de álgeba vetoial, já vistos em outos cusos. Estando po isto numeado com o eo, não fa pate de fato dos nossos

Leia mais

Energia no movimento de uma carga em campo elétrico

Energia no movimento de uma carga em campo elétrico O potencial elético Imagine dois objetos eletizados, com cagas de mesmo sinal, inicialmente afastados. Paa apoximá-los, é necessáia a ação de uma foça extena, capaz de vence a epulsão elética ente eles.

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL II 014.2

CÁLCULO DIFERENCIAL E INTEGRAL II 014.2 CÁLCULO IFERENCIAL E INTEGRAL II Obsevações: ) Todos os eecícios popostos devem se esolvidos e entegue no dia de feveeio de 5 Integais uplas Integais uplas Seja z f( uma função definida em uma egião do

Leia mais

Lei de Gauss II Revisão: Aula 2_2 Física Geral e Experimental III Prof. Cláudio Graça

Lei de Gauss II Revisão: Aula 2_2 Física Geral e Experimental III Prof. Cláudio Graça Lei de Gauss II Revisão: Aula 2_2 Física Geal e Expeimental III Pof. Cláudio Gaça Revisão Cálculo vetoial 1. Poduto de um escala po um veto 2. Poduto escala de dois vetoes 3. Lei de Gauss, fluxo atavés

Leia mais

ELETROMAGNETISMO I 44

ELETROMAGNETISMO I 44 ELETROMAGNETIMO I 44 6 CORRENTE ELÉTRICA Nos capítulos anteioes estudamos os campos eléticos quando geados a pati de distibuições de cagas eléticas estáticas. Neste capítulo faemos o estudo da coente elética,

Leia mais

a) A energia potencial em função da posição pode ser representada graficamente como

a) A energia potencial em função da posição pode ser representada graficamente como Solução da questão de Mecânica uântica Mestado a) A enegia potencial em função da posição pode se epesentada gaficamente como V(x) I II III L x paa x < (egião I) V (x) = paa < x < L (egião II) paa x >

Leia mais

Carga Elétrica e Campo Elétrico

Carga Elétrica e Campo Elétrico Aula 1_ Caga lética e Campo lético Física Geal e peimental III Pof. Cláudio Gaça Capítulo 1 Pincípios fundamentais da letostática 1. Consevação da caga elética. Quantização da caga elética 3. Lei de Coulomb

Leia mais

&255(17((/e75,&$ (6.1) Se a carga é livre para se mover, ela sofrerá uma aceleração que, de acordo com a segunda lei de Newton é dada por : r r (6.

&255(17((/e75,&$ (6.1) Se a carga é livre para se mover, ela sofrerá uma aceleração que, de acordo com a segunda lei de Newton é dada por : r r (6. 9 &55(1((/e5,&$ Nos capítulos anteioes estudamos os campos eletostáticos, geados a pati de distibuições de cagas eléticas estáticas. Neste capítulo iniciaemos o estudo da coente elética, que nada mais

Leia mais

Seção 24: Laplaciano em Coordenadas Esféricas

Seção 24: Laplaciano em Coordenadas Esféricas Seção 4: Laplaciano em Coodenadas Esféicas Paa o leito inteessado, na pimeia seção deduimos a expessão do laplaciano em coodenadas esféicas. O leito ue estive disposto a aceita sem demonstação pode dietamente

Leia mais

E nds. Electrostática. int erior. 1.4 Teorema de Gauss (cálculo de Campos). Teorema de Gauss.

E nds. Electrostática. int erior. 1.4 Teorema de Gauss (cálculo de Campos). Teorema de Gauss. lectomagnetismo e Óptica LTI+L 1ºSem 1 13/14 Pof. J. C. Fenandes http://eo-lec lec-tagus.ist.utl.pt/ lectostática 1.4 Teoema de Gauss (cálculo de Campos). ρ dv = O integal da densidade de caga dá a caga

Leia mais

7.3. Potencial Eléctrico e Energia Potencial Eléctrica de Cargas Pontuais

7.3. Potencial Eléctrico e Energia Potencial Eléctrica de Cargas Pontuais 7.3. Potencial Eléctico e Enegia Potencial Eléctica de Cagas Pontuais Ao estabelece o conceito de potencial eléctico, imaginamos coloca uma patícula de pova num campo eléctico poduzido po algumas cagas

Leia mais

VETORES GRANDEZAS VETORIAIS

VETORES GRANDEZAS VETORIAIS VETORES GRANDEZAS VETORIAIS Gandezas físicas que não ficam totalmente deteminadas com um valo e uma unidade são denominadas gandezas vetoiais. As gandezas que ficam totalmente expessas po um valo e uma

Leia mais

75$%$/+2(327(1&,$/ (/(75267È7,&2

75$%$/+2(327(1&,$/ (/(75267È7,&2 3 75$%$/+(37(&,$/ (/(7567È7,& Ao final deste capítulo você deveá se capa de: ½ Obte a epessão paa o tabalho ealiado Calcula o tabalho que é ealiado ao se movimenta uma caga elética em um campo elético

Leia mais

FGE0270 Eletricidade e Magnetismo I

FGE0270 Eletricidade e Magnetismo I FGE7 Eleticidade e Magnetismo I Lista de execícios 9 1. Uma placa condutoa uadada fina cujo lado mede 5, cm enconta-se no plano xy. Uma caga de 4, 1 8 C é colocada na placa. Enconte (a) a densidade de

Leia mais

n θ E Lei de Gauss Fluxo Eletrico e Lei de Gauss

n θ E Lei de Gauss Fluxo Eletrico e Lei de Gauss Fundamentos de Fisica Clasica Pof icado Lei de Gauss A Lei de Gauss utiliza o conceito de linhas de foça paa calcula o campo elético onde existe um alto gau de simetia Po exemplo: caga elética pontual,

Leia mais

&21'8725(6(,62/$17(6

&21'8725(6(,62/$17(6 45 &'875(6(,6/$7(6 Ao final deste capítulo você deveá se capaz de: ½ efini o que são mateiais condutoes, isolantes e semicondutoes. ½ ntende o compotamento do veto intensidade de campo elético e do veto

Leia mais

Cap014 - Campo magnético gerado por corrente elétrica

Cap014 - Campo magnético gerado por corrente elétrica ap014 - ampo magnético geado po coente elética 14.1 NTRODUÇÃO S.J.Toise Até agoa os fenômenos eléticos e magnéticos foam apesentados como fatos isolados. Veemos a pati de agoa que os mesmos fazem pate

Leia mais

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 2 VETORES NO PLANO E NO ESPAÇO

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru CAPÍTULO 2 VETORES NO PLANO E NO ESPAÇO Lui Fancisco da Cu Depatamento de Matemática Unesp/Bauu CAPÍTULO VETORES NO PLANO E NO ESPAÇO Vetoes no plano O plano geomético, também chamado de R, simbolicamente escevemos: R RR {(,), e R}, é o conunto

Leia mais

4.4 Mais da geometria analítica de retas e planos

4.4 Mais da geometria analítica de retas e planos 07 4.4 Mais da geometia analítica de etas e planos Equações da eta na foma simética Lembemos que uma eta, no planos casos acima, a foma simética é um caso paticula da equação na eta na foma geal ou no

Leia mais

Aula 3_2. Potencial Elétrico II. Física Geral e Experimental III. Capítulo 3. Prof. Cláudio Graça

Aula 3_2. Potencial Elétrico II. Física Geral e Experimental III. Capítulo 3. Prof. Cláudio Graça Aula 3_ Potencial lético II Física Geal e xpeimental III Pof. Cláudio Gaça Capítulo 3 Resumo da Aula () a pati de V() xemplo: dipolo quipotenciais e Condutoes Foma difeencial da Lei de Gauss Distibuição

Leia mais

APÊNDICE. Revisão de Trigonometria

APÊNDICE. Revisão de Trigonometria E APÊNDICE Revisão de Tigonometia FUNÇÕES E IDENTIDADES TRIGONOMÉTRICAS ÂNGULOS Os ângulos em um plano podem se geados pela otação de um aio (semi-eta) em tono de sua etemidade. A posição inicial do aio

Leia mais

FORÇA MAGNÉTICA SOBRE CONDUTORES

FORÇA MAGNÉTICA SOBRE CONDUTORES ELETROMAGNETSMO 95 11 FORÇA MAGNÉTCA SOBRE CONDUTORES Até então, nossos estudos sobe campos magnéticos o enfatiaam como sendo oiginado pela ciculação de uma coente elética em um meio conduto. No entanto,

Leia mais

2.5 Aplicações da lei de Gauss para distribuições de carga com simetria

2.5 Aplicações da lei de Gauss para distribuições de carga com simetria .5 Aplicações da lei de Gauss paa distibuições de caga com simetia Paa distibuições de caga com alto gau de simetia, a lei de Gauss pemite calcula o campo elético com muita facilidade. Pecisamos explica

Leia mais

Leitura obrigatória Mecânica Vetorial para Engenheiros, 5ª edição revisada, Ferdinand P. Beer, E. Russell Johnston, Jr.

Leitura obrigatória Mecânica Vetorial para Engenheiros, 5ª edição revisada, Ferdinand P. Beer, E. Russell Johnston, Jr. UC - Goiás Cuso: Engenhaia Civil Disciplina: ecânica Vetoial Copo Docente: Geisa ies lano de Aula Leitua obigatóia ecânica Vetoial paa Engenheios, 5ª edição evisada, edinand. Bee, E. Russell Johnston,

Leia mais

MATERIAIS DIELÉTRICOS E RELAÇÕES DE FRONTEIRA NO CAMPO ELÉTRICO

MATERIAIS DIELÉTRICOS E RELAÇÕES DE FRONTEIRA NO CAMPO ELÉTRICO LTROMAGNTISMO I 53 7 MATRIAIS ILÉTRICOS RLAÇÕS FRONTIRA NO CAMPO LÉTRICO e acodo com a teoia atômica clássica, os átomos são constituídos de um núcleo cental fomado basicamente po pótons e nêutons, obitados

Leia mais

Introdução ao Método de Elementos Finitos

Introdução ao Método de Elementos Finitos Intodução ao Método de Elementos Finitos Jaime Atuo Ramíe Unidade 1 1 Método de Elementos Finitos Apesentação do cuso O que se estuda aqui? O que é peciso sabe? O que amos fae? 2 Apesentação do cuso O

Leia mais

CAMPOS MAGNETOSTÁTICOS PRODUZIDOS POR CORRENTE ELÉTRICA

CAMPOS MAGNETOSTÁTICOS PRODUZIDOS POR CORRENTE ELÉTRICA ELETOMAGNETMO 75 9 CAMPO MAGNETOTÁTCO PODUZDO PO COENTE ELÉTCA Nos capítulos anteioes estudamos divesos fenômenos envolvendo cagas eléticas, (foças de oigem eletostática, campo elético, potencial escala

Leia mais

O perímetro da circunferência

O perímetro da circunferência Univesidade de Basília Depatamento de Matemática Cálculo 1 O peímeto da cicunfeência O peímeto de um polígono de n lados é a soma do compimento dos seus lados. Dado um polígono qualque, você pode sempe

Leia mais

. Essa força é a soma vectorial das forças individuais exercidas em q 0 pelas várias cargas que produzem o campo E r. Segue que a força q E

. Essa força é a soma vectorial das forças individuais exercidas em q 0 pelas várias cargas que produzem o campo E r. Segue que a força q E 7. Potencial Eléctico Tópicos do Capítulo 7.1. Difeença de Potencial e Potencial Eléctico 7.2. Difeenças de Potencial num Campo Eléctico Unifome 7.3. Potencial Eléctico e Enegia Potencial Eléctica de Cagas

Leia mais

Série 2 versão 26/10/2013. Electromagnetismo. Série de exercícios 2

Série 2 versão 26/10/2013. Electromagnetismo. Série de exercícios 2 Séie 2 vesão 26/10/2013 Electomagnetismo Séie de execícios 2 Nota: Os execícios assinalados com seão esolvidos nas aulas. 1. A figua mosta uma vaa de plástico ue possui uma caga distibuída unifomemente

Leia mais

Mecânica Técnica. Aula 5 Vetor Posição, Aplicações do Produto Escalar. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica Técnica. Aula 5 Vetor Posição, Aplicações do Produto Escalar. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues ula 5 Veto Posição, plicações do Poduto Escala Pof. MSc. Luiz Eduado Mianda J. Rodigues Pof. MSc. Luiz Eduado Mianda J. Rodigues Tópicos bodados Nesta ula Vetoes Posição. Veto Foça Oientado ao Longo de

Leia mais

IF Eletricidade e Magnetismo I

IF Eletricidade e Magnetismo I IF 437 Eleticidade e Magnetismo I Enegia potencial elética Já tatamos de enegia em divesos aspectos: enegia cinética, gavitacional, enegia potencial elástica e enegia témica. segui vamos adiciona a enegia

Leia mais

FÍSICA III - FGE a Prova - Gabarito

FÍSICA III - FGE a Prova - Gabarito FÍICA III - FGE211 1 a Pova - Gabaito 1) Consiee uas cagas +2Q e Q. Calcule o fluxo o campo elético esultante essas uas cagas sobe a supefície esféica e aio R a figua. Resposta: Pela lei e Gauss, o fluxo

Leia mais

ESCOAMENTO POTENCIAL. rot. Escoamento de fluido não viscoso, 0. Equação de Euler: Escoamento de fluido incompressível cte. Equação da continuidade:

ESCOAMENTO POTENCIAL. rot. Escoamento de fluido não viscoso, 0. Equação de Euler: Escoamento de fluido incompressível cte. Equação da continuidade: ESCOAMENTO POTENCIAL Escoamento de fluido não viso, Equação de Eule: DV ρ ρg gad P Dt Escoamento de fluido incompessível cte Equação da continuidade: divv Escoamento Iotacional ot V V Se o escoamento fo

Leia mais

Análise Vetorial. Sistemas de coordenadas

Análise Vetorial. Sistemas de coordenadas Análise Vetoial Sistemas de coodenadas Retangula (,, ), cilíndico (, φ, ) e esféico (, θ, φ) são os tês sistemas de coodenadas mais utiliados em eletomagnetismo. No sistema etangula, um ponto P é definido

Leia mais

setor 1202 Aulas 39 e 40 ESTUDO DO CAMPO ELÉTRICO

setor 1202 Aulas 39 e 40 ESTUDO DO CAMPO ELÉTRICO seto 10 100508 ulas 39 e 40 ESTUDO DO CMPO ELÉTRICO CMPO DE UM CRG PUNTIFORME P E p = f (, P) Intensidade: E K = Dieção: eta (, P) Sentido: 0 (afastamento) 0 (apoximação). (FUVEST) O campo elético de uma

Leia mais

O Paradoxo de Bertrand para um Experimento Probabilístico Geométrico

O Paradoxo de Bertrand para um Experimento Probabilístico Geométrico O Paadoxo de etand paa um Expeimento Pobabilístico Geomético maildo de Vicente 1 1 Colegiado do Cuso de Matemática Cento de Ciências Exatas e Tecnológicas da Univesidade Estadual do Oeste do Paaná Caixa

Leia mais

Quasi-Neutralidade e Oscilações de Plasma

Quasi-Neutralidade e Oscilações de Plasma Quasi-Neutalidade e Oscilações de Plasma No pocesso de ionização, como é poduzido um pa eléton-íon em cada ionização, é de se espea que o plasma seja macoscopicamente uto, ou seja, que haja tantos elétons

Leia mais

E = F/q onde E é o campo elétrico, F a força

E = F/q onde E é o campo elétrico, F a força Campo Elético DISCIPLINA: Física NOE: N O : TURA: PROFESSOR: Glênon Duta DATA: Campo elético NOTA: É a egião do espaço em ue uma foça elética pode sugi em uma caga elética. Toda caga elética cia em tono

Leia mais

Credenciamento Portaria MEC 3.613, de D.O.U

Credenciamento Portaria MEC 3.613, de D.O.U edenciamento Potaia ME 3.63, de 8..4 - D.O.U. 9..4. MATEMÁTIA, LIENIATURA / Geometia Analítica Unidade de apendizagem Geometia Analítica em meio digital Pof. Lucas Nunes Ogliai Quest(iii) - [8/9/4] onteúdos

Leia mais

Eletromagnetismo e Ótica (MEAer/LEAN) Circuitos Corrente Variável, Equações de Maxwell

Eletromagnetismo e Ótica (MEAer/LEAN) Circuitos Corrente Variável, Equações de Maxwell Eletomagnetismo e Ótica (MEAe/EAN) icuitos oente Vaiável, Equações de Maxwell 11ª Semana Pobl. 1) (evisão) Moste que a pessão (foça po unidade de áea) na supefície ente dois meios de pemeabilidades difeentes

Leia mais

Matemática do Ensino Médio vol.2

Matemática do Ensino Médio vol.2 Matemática do Ensino Médio vol.2 Cap.11 Soluções 1) a) = 10 1, = 9m = 9000 litos. b) A áea do fundo é 10 = 0m 2 e a áea das paedes é (10 + + 10 + ) 1, = 51,2m 2. Como a áea que seá ladilhada é 0 + 51,2

Leia mais

Cap03 - Estudo da força de interação entre corpos eletrizados

Cap03 - Estudo da força de interação entre corpos eletrizados ap03 - Estudo da foça de inteação ente copos eletizados 3.1 INTRODUÇÃO S.J.Toise omo foi dito na intodução, a Física utiliza como método de tabalho a medida das qandezas envolvidas em cada fenômeno que

Leia mais

2.1. Fluxo Eléctrico 2.2. Lei de Gauss 2.3. Aplicações da Lei de Gauss a Isolantes Carregados 2.4. Condutores em Equilíbrio Electrostático

2.1. Fluxo Eléctrico 2.2. Lei de Gauss 2.3. Aplicações da Lei de Gauss a Isolantes Carregados 2.4. Condutores em Equilíbrio Electrostático 2. Lei de Gauss 1 2.1. Fluxo Eléctico 2.2. Lei de Gauss 2.3. Aplicações da Lei de Gauss a Isolantes Caegados 2.4. Condutoes em Equilíbio Electostático Lei de Gauss: - É uma consequência da lei de Coulomb.

Leia mais

Vetores Cartesianos. Marcio Varela

Vetores Cartesianos. Marcio Varela Vetoes Catesianos Macio Vaela Sistemas de Coodenadas Utilizando a Rega da Mão Dieita. Esse sistema seá usado paa desenvolve a teoia da álgeba vetoial. Componentes Retangulaes de um Veto Um veto pode te

Leia mais

Mecânica Técnica. Aula 4 Adição e Subtração de Vetores Cartesianos. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica Técnica. Aula 4 Adição e Subtração de Vetores Cartesianos. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues Aula 4 Adição e Subtação de Vetoes Catesianos Pof. MSc. Luiz Eduado Mianda J. Rodigues Pof. MSc. Luiz Eduado Mianda J. Rodigues Tópicos Abodados Nesta Aula Opeações com Vetoes Catesianos. Veto Unitáio.

Leia mais

Campo Elétrico Carga Distribuída

Campo Elétrico Carga Distribuída Aula _ Campo lético Caga Distibuída Física Geal e peimental III Pof. Cláudio Gaça Capítulo Campos léticos de distibuições contínuas de caga elética Fundamentos: (Lei de Coulomb Pincípio da Supeposição)

Leia mais

FORÇA ENTRE CARGAS ELÉTRICAS E O CAMPO ELETROSTÁTICO

FORÇA ENTRE CARGAS ELÉTRICAS E O CAMPO ELETROSTÁTICO LTOMAGNTISMO I FOÇA NT CAGAS LÉTICAS O CAMPO LTOSTÁTICO Os pimeios fenômenos de oigem eletostática foam obsevados pelos gegos, 5 séculos antes de Cisto. les obsevaam que pedaços de âmba (elekta), quando

Leia mais

IMPULSO E QUANTIDADE DE MOVIMENTO

IMPULSO E QUANTIDADE DE MOVIMENTO AULA 10 IMPULSO E QUANTIDADE DE MOVIMENTO 1- INTRODUÇÃO Nesta aula estudaemos Impulso de uma foça e a Quantidade de Movimento de uma patícula. Veemos que estas gandezas são vetoiais e que possuem a mesma

Leia mais

0.18 O potencial vector

0.18 O potencial vector 68 0.18 O potencial vecto onfome ecodámos no início da disciplina, a divegência do otacional de um campo vectoial é sempe nula. Este esultado do cálculo vectoial implica que todos os campos solenoidais,

Leia mais

Série II - Resoluções sucintas Energia

Série II - Resoluções sucintas Energia Mecânica e Ondas, 0 Semeste 006-007, LEIC Séie II - Resoluções sucintas Enegia. A enegia da patícula é igual à sua enegia potencial, uma vez que a velocidade inicial é nula: V o mg h 4 mg R a As velocidades

Leia mais

Algumas observações com relação ao conjunto de apostilas do curso de Fundamentos de Física Clássica ministrado pelo professor Ricardo (DF/CCT/UFCG).

Algumas observações com relação ao conjunto de apostilas do curso de Fundamentos de Física Clássica ministrado pelo professor Ricardo (DF/CCT/UFCG). undamentos de isica Classica Pof Ricado OBS: ESTAS APOSTILAS ORAM ESCRITAS, INICIALMENTE, NUM PC CUJO TECLADO NÃO POSSUIA ACENTUAÇÃO GRÁICA (TECLADO INGLES) PORTANTO, MUITAS PALAVRAS PODEM ESTAR SEM ACENTOS

Leia mais

LEI DE AMPÉRE E ROTACIONAL DO CAMPO MAGNÉTICO

LEI DE AMPÉRE E ROTACIONAL DO CAMPO MAGNÉTICO APOSTA DE EETOMAGNETSMO 85 E DE AMPÉE E OTACONA DO CAMPO MAGNÉTCO Pudemos veifia em apítulos anteioes que a distibuição de ampos elétios também é obtida pelo empego da lei de Gauss, desde que o poblema

Leia mais

Capítulo 29: Campos Magnéticos Produzidos por Correntes

Capítulo 29: Campos Magnéticos Produzidos por Correntes Capítulo 9: Campos Magnéticos Poduzidos po Coentes Cap. 9: Campos Magnéticos Poduzidos po Coentes Índice Lei de iot-savat; Cálculo do Campo Poduzido po uma Coente; Foça Ente duas Coentes Paalelas; Lei

Leia mais

Densidade de Fluxo Elétrico. Prof Daniel Silveira

Densidade de Fluxo Elétrico. Prof Daniel Silveira ensidade de Fluxo Elético Pof aniel ilveia Intodução Objetivo Intoduzi o conceito de fluxo Relaciona estes conceitos com o de campo elético Intoduzi os conceitos de fluxo elético e densidade de fluxo elético

Leia mais

Grandezas vetoriais: Além do módulo, necessitam da direção e do sentido para serem compreendidas.

Grandezas vetoriais: Além do módulo, necessitam da direção e do sentido para serem compreendidas. NOME: Nº Ensino Médio TURMA: Data: / DISCIPLINA: Física PROF. : Glênon Duta ASSUNTO: Gandezas Vetoiais e Gandezas Escalaes Em nossas aulas anteioes vimos que gandeza é tudo aquilo que pode se medido. As

Leia mais

CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO

CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO Capítulo 4 - Cinemática Invesa de Posição 4 CAPÍTULO 04 CINEMÁTICA INVERSA DE POSIÇÃO 4.1 INTRODUÇÃO No capítulo anteio foi visto como detemina a posição e a oientação do ógão teminal em temos das vaiáveis

Leia mais

ASPECTOS GERAIS E AS LEIS DE KEPLER

ASPECTOS GERAIS E AS LEIS DE KEPLER 16 ASPECTOS GERAIS E AS LEIS DE KEPLER Gil da Costa Maques Dinâmica do Movimento dos Copos 16.1 Intodução 16. Foças Centais 16.3 Dinâmica do movimento 16.4 Consevação do Momento Angula 16.5 Enegias positivas,

Leia mais

Exercício 1 Escreva as coordenadas cartesianas de cada um dos pontos indicados na figura abaixo. Exemplo: A=(1,1). y (cm)

Exercício 1 Escreva as coordenadas cartesianas de cada um dos pontos indicados na figura abaixo. Exemplo: A=(1,1). y (cm) INTRODUÇÃO À FÍSICA tuma MAN / pofa Mata F Baoso EXERCÍCIOS Eecício Esceva as coodenadas catesianas de cada um dos pontos indicados na figua abaio Eemplo: A=(,) (cm) F E B A - O (cm) - D C - - Eecício

Leia mais

FGE0270 Eletricidade e Magnetismo I

FGE0270 Eletricidade e Magnetismo I FGE7 Eleticidade e Magnetismo I Lista de execícios 5 9 1. Quando a velocidade de um eléton é v = (,x1 6 m/s)i + (3,x1 6 m/s)j, ele sofe ação de um campo magnético B = (,3T) i (,15T) j.(a) Qual é a foça

Leia mais

Aplicação da Lei Gauss: Algumas distribuições simétricas de cargas

Aplicação da Lei Gauss: Algumas distribuições simétricas de cargas Aplicação da ei Gauss: Algumas distibuições siméticas de cagas Como utiliza a lei de Gauss paa detemina D s, se a distibuição de cagas fo conhecida? s Ds. d A solução é fácil se conseguimos obte uma supefície

Leia mais

TICA MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA. Nona Edição CAPÍTULO. Ferdinand P. Beer E. Russell Johnston, Jr.

TICA MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA. Nona Edição CAPÍTULO. Ferdinand P. Beer E. Russell Johnston, Jr. CAPÍTULO 2 Está MECÂNICA VETORIAL PARA ENGENHEIROS: ESTÁTICA TICA Fedinand P. Bee E. Russell Johnston, J. Notas de Aula: J. Walt Ole Teas Tech Univesit das Patículas Conteúdo Intodução Resultante de Duas

Leia mais

Áreas parte 2. Rodrigo Lucio Isabelle Araújo

Áreas parte 2. Rodrigo Lucio Isabelle Araújo Áeas pate Rodigo Lucio Isabelle Aaújo Áea do Cículo Veja o cículo inscito em um quadado. Medida do lado do quadado:. Áea da egião quadada: () = 4. Então, a áea do cículo com aio de medida é meno do que

Leia mais

Introdução às Equações Diferencias Parciais. Problemas com Valor de Fronteira e com Valores Iniciais

Introdução às Equações Diferencias Parciais. Problemas com Valor de Fronteira e com Valores Iniciais Intodção às Eqações Dieencias Paciais Poblemas com Valo de Fonteia e com Valoes Iniciais Conteúdo 1. Opeadoes Dieenciais. Condições iniciais e de onteia 3. Eqações Dieenciais Paciais 4. Sistemas de coodenadas.

Leia mais

Introdução à Física. Principio da pesquisa física

Introdução à Física. Principio da pesquisa física Intodução à Física S.J.Toise iência é a ate de estuda a natueza e este estudo pode se feito sob difeentes aspectos. ada um destes aspectos define um dos tês gandes amos da ciência: a iologia, a uímica

Leia mais

Escola Secundária/3 da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo 2003/04 Geometria 2 - Revisões 11.º Ano

Escola Secundária/3 da Sé-Lamego Ficha de Trabalho de Matemática Ano Lectivo 2003/04 Geometria 2 - Revisões 11.º Ano Escola Secundáia/ da Sé-Lamego Ficha de Tabalho de Matemática Ano Lectivo 00/04 Geometia - Revisões º Ano Nome: Nº: Tuma: A egião do espaço definida, num efeencial otonomado, po + + = é: [A] a cicunfeência

Leia mais

Exercícios. setor Aula 25. Separando as esferas. afastando a barra A ELETRIZAÇÃO POR INDUÇÃO E A ATRAÇÃO DE CORPOS NEUTROS

Exercícios. setor Aula 25. Separando as esferas. afastando a barra A ELETRIZAÇÃO POR INDUÇÃO E A ATRAÇÃO DE CORPOS NEUTROS seto 116 1160409 1160409-SP ula 5 ELETIZÇÃO PO INDUÇÃO E TÇÃO DE COPOS NEUTOS = conduto ou isolante, inicialmente eletizado (induto) = conduto, inicialmente neuto (induzido) Passo 1: Passo : Passo 3: Passo

Leia mais

( ) ( ) ( ) Agora podemos invocar a simetria de rotação e de translação e escrever

( ) ( ) ( ) Agora podemos invocar a simetria de rotação e de translação e escrever 7.5 Aplicações da lei de Ampèe paa distibuições de coente com simetia De foma muito semelhante do uso de simetia com a lei de Gauss, pode-se detemina o campo magnético geado po uma distibuição de densidade

Leia mais

Prof. Anderson Coser Gaudio Departamento de Física Centro de Ciências Exatas Universidade Federal do Espírito Santo

Prof. Anderson Coser Gaudio Departamento de Física Centro de Ciências Exatas Universidade Federal do Espírito Santo POBLMAS SOLVIDOS D FÍSICA Pof. Andeson Cose Gaudio Depatamento de Física Cento de Ciências xatas Univesidade Fedeal do spíito Santo http://www.cce.ufes.b/andeson andeson@npd.ufes.b Última atualização:

Leia mais

Departamento de Física - Universidade do Algarve FORÇA CENTRÍFUGA

Departamento de Física - Universidade do Algarve FORÇA CENTRÍFUGA FORÇA CENTRÍFUGA 1. Resumo Um copo desceve um movimento cicula unifome. Faz-se vaia a sua velocidade de otação e a distância ao eixo de otação, medindo-se a foça centífuga em função destes dois paâmetos..

Leia mais

FLUXO ELÉTRICO E LEI DE GAUSS

FLUXO ELÉTRICO E LEI DE GAUSS 11 FLUXO ELÉTRICO E LEI E GAUSS.1 - A LEI E GAUSS Eta lei é egida po pincípio muito imple e de fácil entendimento. O conceito geal de fluxo como endo o ecoamento de um campo vetoial que atavea uma ecção

Leia mais

10/Out/2012 Aula 6. 3/Out/2012 Aula5

10/Out/2012 Aula 6. 3/Out/2012 Aula5 3/Out/212 Aula5 5. Potencial eléctico 5.1 Potencial eléctico - cagas pontuais 5.2 Supefícies equipotenciais 5.3 Potencial ciado po um dipolo eléctico 5.4 elação ente campo e potencial eléctico 1/Out/212

Leia mais

Prova Escrita de Matemática A

Prova Escrita de Matemática A EXAME FINAL NACIONAL DO ENSINO SECUNDÁRIO Pova Escita de Matemática A 12.º Ano de Escolaidade Deceto-Lei n.º 139/2012, de 5 de julho Pova 635/2.ª Fase Citéios de Classificação 11 Páginas 2015 Pova 635/2.ª

Leia mais

MECÂNICA. F cp. F t. Dinâmica Força resultante e suas componentes AULA 7 1- FORÇA RESULTANTE

MECÂNICA. F cp. F t. Dinâmica Força resultante e suas componentes AULA 7 1- FORÇA RESULTANTE AULA 7 MECÂICA Dinâmica oça esultante e suas componentes 1- ORÇA RESULTATE oça esultante é o somatóio vetoial de todas as foças que atuam em um copo É impotante lemba que a foça esultante não é mais uma

Leia mais

Um pouco de cálculo 1 UM POUCO DE CÁLCULO. 1.1 Introdução aos vetores. S. C. Zilio e V. S. Bagnato Mecânica, calor e ondas

Um pouco de cálculo 1 UM POUCO DE CÁLCULO. 1.1 Introdução aos vetores. S. C. Zilio e V. S. Bagnato Mecânica, calor e ondas Um pouco de cálculo UM POUCO DE CÁLCULO. Intodução aos vetoes Eistem gandezas físicas que podem se especificadas fonecendo-se apenas um númeo. Assim, po eemplo, quando dizemos que a tempeatua de uma sala

Leia mais

Física II 2EI 2003 / 04 2º Semestre. Física II. Eng. Informática Carga e densidade de carga

Física II 2EI 2003 / 04 2º Semestre. Física II. Eng. Informática Carga e densidade de carga Física II Eng. Infomática 003-004 1 Caga e densidade de caga As patículas elementaes caegadas são o electão e o potão. Possuem uma caga de igual valo, mas de sinal contáio. Caga do electão: e = -1.6010

Leia mais

UNIVERSIDADE DE TAUBATÉ FACULDADE DE ENGENHARIA CIVIL CÁLCULO VETORIAL

UNIVERSIDADE DE TAUBATÉ FACULDADE DE ENGENHARIA CIVIL CÁLCULO VETORIAL OBJETIVOS DO CURSO UNIVERSIDADE DE TAUBATÉ FACULDADE DE ENGENHARIA CIVIL CÁLCULO VETORIAL Fonece ao aluno as egas básicas do cálculo vetoial aplicadas a muitas gandezas na física e engenhaia (noção de

Leia mais

3. Elementos de Sistemas Elétricos de Potência

3. Elementos de Sistemas Elétricos de Potência Sistemas Eléticos de Potência 3. Elementos de Sistemas Eléticos de Potência Pofesso: D. Raphael Augusto de Souza Benedito E-mail:aphaelbenedito@utfp.edu.b disponível em: http://paginapessoal.utfp.edu.b/aphaelbenedito

Leia mais

3.1 Potencial gravitacional na superfície da Terra

3.1 Potencial gravitacional na superfície da Terra 3. Potencial gavitacional na supefície da Tea Deive a expessão U(h) = mgh paa o potencial gavitacional na supefície da Tea. Solução: A pati da lei de Newton usando a expansão de Taylo: U( ) = GMm, U( +

Leia mais

3. Estática dos Corpos Rígidos. Sistemas de vectores

3. Estática dos Corpos Rígidos. Sistemas de vectores Secção de Mecânica Estutual e Estutuas Depatamento de Engenhaia Civil e Aquitectua ESTÁTICA Aquitectua 2006/07 3. Estática dos Copos ígidos. Sistemas de vectoes 3.1 Genealidades Conceito de Copo ígido

Leia mais

Universidade de Évora Departamento de Física Ficha de exercícios para Física I (Biologia)

Universidade de Évora Departamento de Física Ficha de exercícios para Física I (Biologia) Univesidade de Évoa Depatamento de Física Ficha de eecícios paa Física I (Biologia) 4- SISTEMA DE PARTÍCULAS E DINÂMICA DE ROTAÇÃO A- Sistema de patículas 1. O objecto epesentado na figua 1 é feito de

Leia mais

7.2 Aplicações da lei de Biot-Savart e a unidade ampère

7.2 Aplicações da lei de Biot-Savart e a unidade ampère 7. Aplicações da lei de iot-savat e a unidade ampèe Vamos utilia a lei de iot-savat, na foma válida paa fios finos, paa calcula o campo magnético geado po coente paa alguns casos simples. D C Exemplo 1:

Leia mais

2- FONTES DE CAMPO MAGNÉTICO

2- FONTES DE CAMPO MAGNÉTICO - FONTES DE CAMPO MAGNÉTCO.1-A LE DE BOT-SAVART Chistian Oestd (18): Agulha de uma bússola é desviada po uma coente elética. Biot-Savat: Mediam expeimentalmente as foças sobe um pólo magnético devido a

Leia mais

Forma Integral das Equações Básicas para Volume de Controle

Forma Integral das Equações Básicas para Volume de Controle Núcleo de Engenhaia Témica e Fluidos Mecânica dos Fluidos (SEM5749) Pof. Osca M. H. Rodiguez Foma Integal das Equações Básicas paa olume de Contole Fomulação paa vs Fomulação paa volume de contole: fluidos

Leia mais

Seção 8: EDO s de 2 a ordem redutíveis à 1 a ordem

Seção 8: EDO s de 2 a ordem redutíveis à 1 a ordem Seção 8: EDO s de a odem edutíveis à a odem Caso : Equações Autônomas Definição Uma EDO s de a odem é dita autônoma se não envolve explicitamente a vaiável independente, isto é, se fo da foma F y, y, y

Leia mais

3. Potencial Eléctrico

3. Potencial Eléctrico 3. Potencial Eléctico 3.1. Difeença de Potencial e Potencial Eléctico. 3.2. Difeenças de Potencial num Campo Eléctico Unifome. 3.3. Potencial Eléctico e Enegia Potencial de Cagas pontuais. 3.4. Potencial

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica ESCOL POLITÉCNIC D UNIVESIDDE DE SÃO PULO Depatamento de Engenhaia ecânica PE 100 ecânica Pova de ecupeação - Duação 100 minutos 05 de feveeio de 013 1 - Não é pemitido o uso de calculadoas, celulaes,

Leia mais

Sistemas de Referência Diferença entre Movimentos Cinética. EESC-USP M. Becker /58

Sistemas de Referência Diferença entre Movimentos Cinética. EESC-USP M. Becker /58 SEM4 - Aula 2 Cinemática e Cinética de Patículas no Plano e no Espaço Pof D Macelo ecke SEM - EESC - USP Sumáio da Aula ntodução Sistemas de Refeência Difeença ente Movimentos Cinética EESC-USP M ecke

Leia mais

Campo Gravítico da Terra

Campo Gravítico da Terra Campo Gavítico da Tea 3. otencial Gavítico O campo gavítico é um campo vectoial (gandeza com 3 componentes) Seá mais fácil tabalha com uma gandeza escala, que assume apenas um valo em cada ponto Seá possível

Leia mais

APOSTILA. AGA Física da Terra e do Universo 1º semestre de 2014 Profa. Jane Gregorio-Hetem. CAPÍTULO 4 Movimento Circular*

APOSTILA. AGA Física da Terra e do Universo 1º semestre de 2014 Profa. Jane Gregorio-Hetem. CAPÍTULO 4 Movimento Circular* 48 APOSTILA AGA0501 - Física da Tea e do Univeso 1º semeste de 014 Pofa. Jane Gegoio-Hetem CAPÍTULO 4 Movimento Cicula* 4.1 O movimento cicula unifome 4. Mudança paa coodenadas polaes 4.3 Pojeções do movimento

Leia mais

A tentativa de violação de qualquer regra abaixo anulará

A tentativa de violação de qualquer regra abaixo anulará Pova REC da Denise Nome: Infomações: Duação de 2:00. Pode come e bebe duante a pova. Pode faze a pova à lápis. Pode usa calculadoa (sem texto. A pova tem complexidade pogessiva. A tentativa de violação

Leia mais

LUZ COMO UMA ONDA... ELETROMAGNÉTICA 1

LUZ COMO UMA ONDA... ELETROMAGNÉTICA 1 LUZ COMO UMA ONDA... LTROMAGNÉTICA Ao abomos os tópicos Óptica, em alguns casos iniciamos o estudo pela apoximação epesenta pelos aios de luz, tata na Óptica Geomética, que pessupõe a popagação etilínea

Leia mais

a, a, a A A cos A sen A sen cos A cos cos A sen A A sen A cos A sen sen A cos sen A cos A A cos A sen A A cos A sen A sen A cos

a, a, a A A cos A sen A sen cos A cos cos A sen A A sen A cos A sen sen A cos sen A cos A A cos A sen A A cos A sen A sen A cos Depto. icuitos Eléticos Engenhaia Elética Faculdade de Engenhaia Eletoagnetiso EL65 «Fouláio de álculo etoial & Eletoagnetiso» etoes unitáios oodenadas etangulaes a, a, a oodenadas cilíndicas a, a, a oodenadas

Leia mais

r r r r r S 2 O vetor deslocamento(vetor diferença) é aquele que mostra o módulo, a direção e o sentido do menor deslocamento entre duas posições.

r r r r r S 2 O vetor deslocamento(vetor diferença) é aquele que mostra o módulo, a direção e o sentido do menor deslocamento entre duas posições. d d A Cinemática Escala estuda as gandezas: Posição, Deslocamento, Velocidade Média, Velocidade Instantânea, Aceleação Média e Instantânea, dando a elas um tatamento apenas numéico, escala. A Cinemática

Leia mais

CAPÍTULO 02 MOVIMENTOS DE CORPO RÍGIDO. TRANSFORMAÇÕES HOMOGÊNEAS

CAPÍTULO 02 MOVIMENTOS DE CORPO RÍGIDO. TRANSFORMAÇÕES HOMOGÊNEAS Caítulo 2 - Movimentos de Coo Rígido. Tansfomações Homogêneas 8 CAPÍTULO 02 MOVIMENTOS DE CORPO RÍGIDO. TRANSFORMAÇÕES HOMOGÊNEAS 2. INTRODUÇÃO Paa o desenvolvimento das equações cinemáticas do maniulado

Leia mais

Área projectada. Grandezas Radiométricas

Área projectada. Grandezas Radiométricas Áea pojectada Conceito de áea pojectada (fontes extensas) Tata-se da áea pojectada num plano pependicula à diecção de popagação da p dω da Também se aplica paa o caso de uma supefície eflectoa (emboa aí

Leia mais

Descontos desconto racional e desconto comercial

Descontos desconto racional e desconto comercial Descontos desconto acional e desconto comecial Uma opeação financeia ente dois agentes econômicos é nomalmente documentada po um título de cédito comecial, devendo esse título conte todos os elementos

Leia mais

REINTERPRETANDO A CONSTRUÇÃO DO CÁLCULO DIFERENCIAL E INTEGRAL DE LEIBNIZ COM USO DE RECURSOS GEOMÉTRICOS

REINTERPRETANDO A CONSTRUÇÃO DO CÁLCULO DIFERENCIAL E INTEGRAL DE LEIBNIZ COM USO DE RECURSOS GEOMÉTRICOS REINERPREAND A CNSRUÇÃ D CÁLCUL DIFERENCIAL E INEGRAL DE LEIBNIZ CM US DE RECURSS GEMÉRICS Intodução Ségio Caazedo Dantas segio@maismatematica.com.b Resumo Nesse teto apesentamos algumas deduções que Leibniz

Leia mais

Adriano Pedreira Cattai

Adriano Pedreira Cattai Adiano Pedeia Cattai apcattai@yahoocomb didisuf@gmailcom Univesidade Fedeal da Bahia UFBA :: 006 Depatamento de Matemática Cálculo II (MAT 04) Coodenadas polaes Tansfomações ente coodenadas polaes e coodenadas

Leia mais

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru

CÁLCULO VETORIAL E GEOMETRIA ANALÍTICA Luiz Francisco da Cruz Departamento de Matemática Unesp/Bauru Luiz Fancisco da Cuz Depatamento de Matemática Unesp/Bauu EXERCÍCIOS SOBRE CÁLCULO VETOTIL E GEOMETRI NLÍTIC 01) Demonste vetoialmente que o segmento que une os pontos médios dos lados não paalelos de

Leia mais