TESTE DE HIPÓTESES COM DUAS AMOSTRAS TESTE DE HIPOTESES DA DIFERENÇA ENTRE DUAS MÉDIAS POPULACIONAIS

Tamanho: px
Começar a partir da página:

Download "TESTE DE HIPÓTESES COM DUAS AMOSTRAS TESTE DE HIPOTESES DA DIFERENÇA ENTRE DUAS MÉDIAS POPULACIONAIS"

Transcrição

1 TESTE DE HIPÓTESES COM DUAS AMOSTRAS TESTE DE HIPOTESES DA DIFERENÇA ENTRE DUAS MÉDIAS POPULACIONAIS A hipóese ula (Ho) usualmee esaa é a e que as uas amosras eham sio obias e populações om méias iguais, ou seja ( μ μ ) 0. 0 O uso a isribuição ormal para uas amosras iepeees é uilizaa sempre (esvioparão a população) for oheio ou variâias populaioais oheias ( ). Uiliza-se a isribuição e Sue se for esoheio, ou seja, quao o esvio-parão a amosra for oheio E NÃO O DA POPULAÇÃO, ou seja, variâias esoheias (s ). O uso a isribuição e Sue () leva em oa se as variâias populaioais são equivalees ou iferees. Esuaremos os seguies asos: A) POPULACÕES NORMAIS COM VARIÂNCIAS CONHECIDAS Cosieremos uas populações ormais iepeees om méias μ e μ e variâias e, seo e uas amosras iepeees obias, respeivamee, essas populações, e x e x suas méias. A esaísia e ese a ser usaa é: z B) POPULACÕES NORMAIS COM VARIÂNCIAS DESCONHECIDAS E EQUIVALENTES Quao as variâias e uas populações Normais forem esoheias, mas iguais usamos uma s meia poeraa as variâias amosrais e, o álulo a esaísia e ese : s ˆ.ˆ ( ).S ( ).S A isribuição é uilizaa om um úmero e graus e liberae igual a gl

2 C) POPULACÕES NORMAIS COM VARIÂNCIAS DESCONHECIDAS E DIFERENTES Quao as variâias e uas populações Normais forem esoheias e iferees, usamos as s s variâias amosrais e, o álulo a esaísia e ese : s s A isribuição é uilizaa om um úmero e graus e liberae igual a: gl s s s s TESTE DE HIPOTESES DA DIFERENÇA ENTRE DUAS MÉDIAS POPULACIONAIS COM OBSERVACÕES EMPARELHADAS Fazemos eses e omparação e méias para aos emparelhaos (amosras epeees), obias e populações Normais. Para aa par efiio, o valor a primeira amosra esá laramee assoiao ao respeivo valor a segua amosra. Para observações emparelhaas, ou amosras pareaas, o ese apropriao para a ifereça ere uas méias osise em eermiar primeiro a ifereça ere aa par e valores, e eão esar a hipóese ula e que a méia as ifereças a população é zero. Eão, o poo e visa e álulo, o ese é apliao a uma úia amosra e valores. A méia e o esvio parão a amosra e valores são obios pelas fórmulas: S. A esimaiva o erro parão a ifereça méia ere observações emparelhaas é obia pela fórmula: ˆ S

3 Uma vez que o erro parão a ifereça méia é alulao om base as ifereças observaas em amosras emparelhaas (logo é esoheio) e uma vez que os valores e geralmee poem ser amiios omo eo isribuição Normal, as isribuições são apropriaas para esar a hipóese ula e que μ 0. A isribuição esse aso erá um úmero e graus e liberae igual a: gl - A esaísia e ese, eão, será aa por: μ ˆ o TESTE QUI-QUADRADO PARA DUAS AMOSTRAS NÃO-RELACIONADAS (OU TESTE DE INDEPENDÊNCIA: TABELAS DE CONTINGÊNCIA) A uilização em pesquisa e markeig o ese qui-quarao para uas amosra ão-relaioaas é para verifiar se as isribuições absoluas e uas amosras ão-relaioaas iferem sigifiaivamee em relação a eermiaa variável. Por exemplo: verifiar se as lasses soioeoômias iferem sigifiaivamee o osumo e eermiao prouo; verifiar se as esolhas o amaho o auomóvel ifere sigifiaivamee em fução o amaho a família e. Coições para uilização: Daos qualiaivos. Disribuição os aos em freqüêias absoluas. Amosras ão-relaioaas ou iepeees. Não poe ser uilizao se mais e 0% as freqüêias absoluas forem iferiores a 5 ou se qualquer freqüêia for iferior a. Neses asos a solução para orar a uilização o ese possível é a e agrupar élulas aé er as oições aeias. Coeio: O ese qui-quarao para uas amosras ão-relaioaas é, semelhaemee ao ese quiquarao e uma amosra, um ese o ipo aerêia, iso é, o quao que a isribuição observaa (O i ) se ajusa à isribuição esperaa (E i ). Aravés a omparação ere O i e E i, aeia-se ou rejeiase H 0, a eermiao ível e sigifiâia α. Proeimeo sumarizao o ese: ) Formular as hipóeses H 0 : As variáveis evolvias são iepeees. H a : As variáveis evolvias ão são iepeees. ) Calular a esaísia e ese 3

4 ( O ij E ij ) Χ i j E ij 3) Eorar o valor ríio a abela qui-quarao O valor o χ abelao orrespoee eora-se a liha (r-).(k-) e a olua α, seo r e k, respeivamee, o º e aegorias as variáveis evolvias o esuo. 4) Coluir Se χ alulao for meor o que o χ abelao, rejeia-se H 0. 5) Ierprear Ex.: Para α 0,05, poe-se afirmar que o osumo o prouo P epee a lasse soioeoômia. Os aos amosrais iiam que a lasse D é a que mais osome o prouo e a lasse A é a que meos osome. Apliação: A Alber s Brewery of Tuso, Arizoa, fabria e isribui rês ipos e erveja: ligh, ormal e esura. Em uma aálise e segmeos e merao para as rês ervejas, o grupo e pesquisa e merao a empresa levaou a quesão e que a preferêia pelos rês ipos e erveja varia e aoro om o sexo o osumior. Se a preferêia pela erveja iepee o sexo, uma ampaha publiiária será iiiaa para oas as ervejas a Alber. Ereao, se a preferêia pela erveja epee o sexo o osumior, a empresa aapará suas promoções para iferees meraosalvo. Uma amosra aleaória simples e 50 osumiores e erveja foi seleioaa. Depois e experimear aa erveja, os iivíuos assialaram suas preferêias ou primeira esolha. De aoro om o sexo e o ipo e erveja preferia, obeve-se a seguie abulação ruzaa resumio as resposas o esuo : Preferêia e erveja Ligh Normal Esura Masulio Femiio PROCEDIMENTO PARA O TESTE DE HIPÓTESES: ) HIPÓTESES Ho: A preferêia pela erveja é iepeee o sexo o osumior H a : A preferêia pela erveja ão é iepeee o sexo o osumior. ) CÁLCULO DA ESTATÍSTICA DE TESTE Supoo que a hipóese ula é veraeira, iso é, as variáveis são iepeees, evem-se alular as freqüêias esperaas para aa élula a abela. Verifiamos que 50/500,3333 ou 33,33% prefere erveja ligh; 70/50 0,4667 ou 46,67% prefere a ormal e 30/500,0 ou 0% prefere erveja esura. Porao, para uma amosra e 80 homes, esperamos que 50/50 x 80 6,67 homes (ou 33,33% os 80 homes ) prefiram erveja ligh; 70/50 x 80 37,33 prefiram erveja ormal ( ou 46,67% os 80 homes) e 30/50 x 80 6 prefiram erveja esura ( ou 0 % os 80 homes). Para as 70 4

5 mulheres o raioíio é o mesmo: 50/50 x 70 3,33 mulheres prefiram a ligh: 70 /50 x 70 3,67 prefiram a ormal e 30/50 x 70 4 prefiram a esura. Observe que o álulo poe ser resumio assim: (Toal a liha i) x (Toal a olua j) E ij... Tamaho a amosra. Os valores esperaos supoo que Ho é veraeira esão a abela abaixo. OBS: Noe que as somas as oluas e lihas ão se aleraram: Preferêia e erveja Ligh Normal Esura Masulio 6,67 37, Femiio 3,33 3, Esaísia e ese: ( O ij E ij ) Χ i j E ij Preferêia e erveja Ligh Normal Esura Masulio,67 0,9,00 Femiio,9 0,,4 6,3 Calulao a esaísia e ese, obemos χ alulao 6,3. 3) VALOR CRÍTICO DO TESTE (úmero e lihas -) x (úmero e oluas -) (-) (3-). O valor ríio, a abela a qui-quarao, para alfa 0,05, é χ α 5, ) CONCLUSÃO Como o χ alulao > χ α, rejeia-se Ho (0,05 < valor p < 0,05). 5) INTERPRETAÇÃO Para α 0,05, poe-se afirmar que a preferêia pelo ipo e erveja ão é iepeee o sexo o erevisao. Pela aálise as freqüêias esperaas e observaos, há iiação que as mulheres em preferêia maior pela ligh e os homes pela ormal e esura. 5

ANÁLISE ESTATÍSTICA DE SOBREVIVÊNCIA: UM ESTUDO COM PACIENTES COM CÂNCER DE MAMA

ANÁLISE ESTATÍSTICA DE SOBREVIVÊNCIA: UM ESTUDO COM PACIENTES COM CÂNCER DE MAMA ANÁLISE ESTATÍSTICA DE SOBREVIVÊNCIA: UM ESTUDO COM PACIENTES COM CÂNCER DE MAMA Kelly Araúo César Uiversiae Caólica e Brasília Resumo Ese rabalho apresea a aálise esaísica e sobrevivêcia. Essa esima o

Leia mais

CAP. 6 - ANÁLISE DE INVESTIMENTOS EM SITUAÇÃO DE RISCO

CAP. 6 - ANÁLISE DE INVESTIMENTOS EM SITUAÇÃO DE RISCO CAP. 6 - ANÁLISE DE INVESTIMENTOS EM SITUAÇÃO DE RISCO 1. APRESENTAÇÃO Nese capíulo serão abordados vários méodos que levam em coa o uso das probabilidades a aálise de ivesimeos. Eses méodos visam subsidiar

Leia mais

Universidade Federal de Lavras

Universidade Federal de Lavras Universidade Federal de Lavras Deparameno de Ciências Exaas Prof. Daniel Furado Ferreira 8 a Lisa de Exercícios Disribuição de Amosragem 1) O empo de vida de uma lâmpada possui disribuição normal com média

Leia mais

Centro Federal de EducaçãoTecnológica 28/11/2012

Centro Federal de EducaçãoTecnológica 28/11/2012 Análise da Dinâmica da Volailidade dos Preços a visa do Café Arábica: Aplicação dos Modelos Heeroscedásicos Carlos Albero Gonçalves da Silva Luciano Moraes Cenro Federal de EducaçãoTecnológica 8//0 Objevos

Leia mais

Escola de Engenharia de Lorena - USP Cinética Química Capítulo 03 Métodos Cinéticos

Escola de Engenharia de Lorena - USP Cinética Química Capítulo 03 Métodos Cinéticos Escola de Egeharia de Lorea - USP iéica Química aíulo 03 Méodos iéicos Irodução O esudo ciéico, usualmee, é feio a arir de dados exerimeais coleados durae a evolução de uma reação química. Eses dados coleados

Leia mais

5. A nota final será a soma dos pontos (negativos e positivos) de todas as questões

5. A nota final será a soma dos pontos (negativos e positivos) de todas as questões DEPARTAMENTO DE ESTATÍSTICA - UFMG PROVA DE ESTATÍSTICA E PROBABILIDADE SELEÇÃO - MESTRADO/ UFMG - 2013/2014 Istruções: 1. Cada questão respodida corretamete vale 1 (um) poto. 2. Cada questão respodida

Leia mais

Teste de hipóteses com duas amostras. Estatística Aplicada Larson Farber

Teste de hipóteses com duas amostras. Estatística Aplicada Larson Farber 8 Teste de hipóteses com duas amostras Estatística Aplicada Larson Farber Seção 8.1 Testando a diferença entre duas médias (amostras grandes e independentes) Visão geral Para testar o efeito benéfico de

Leia mais

INTRODUÇÃO. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ...

INTRODUÇÃO. Exemplos. Comparar três lojas quanto ao volume médio de vendas. ... INTRODUÇÃO Exemplos Para curar uma certa doeça existem quatro tratametos possíveis: A, B, C e D. Pretede-se saber se existem difereças sigificativas os tratametos o que diz respeito ao tempo ecessário

Leia mais

FUNDO DE COMÉRCIO * Pedro Schubert

FUNDO DE COMÉRCIO * Pedro Schubert FUNDO DE COMÉRCIO * Pedro Schuber Esa maéria que ão em bibliografia e o seu coceio o ambiee coábil refere-se aos bes iagíveis e os auores ficam com os ies iagíveis possíveis de serem regisrados pela coabilidade

Leia mais

Jackknife, Bootstrap e outros métodos de reamostragem

Jackknife, Bootstrap e outros métodos de reamostragem Jackkife, Bootstrap e outros métodos de reamostragem Camilo Daleles Reó camilo@dpi.ipe.br Referata Biodiversa (http://www.dpi.ipe.br/referata/idex.html) São José dos Campos, 8 de dezembro de 20 Iferêcia

Leia mais

Instituto de Tecnologia de Massachusetts Departamento de Engenharia Elétrica e Ciência da Computação. Tarefa 5 Introdução aos Modelos Ocultos Markov

Instituto de Tecnologia de Massachusetts Departamento de Engenharia Elétrica e Ciência da Computação. Tarefa 5 Introdução aos Modelos Ocultos Markov Insiuo de Tecnologia de Massachuses Deparameno de Engenharia Elérica e Ciência da Compuação 6.345 Reconhecimeno Auomáico da Voz Primavera, 23 Publicado: 7/3/3 Devolução: 9/3/3 Tarefa 5 Inrodução aos Modelos

Leia mais

conceito de análise de investimento

conceito de análise de investimento 1. coceio de aálise de ivesimeo Aálise de Ivesimeos Prof. Uério Cruz O coceio de aálise de ivesimeo pode hoje ser um cojuo de écicas que permiem a comparação ere resulados de omada de decisões referees

Leia mais

Testes χ 2 (cont.) Testes χ 2 para k categorias (cont.)

Testes χ 2 (cont.) Testes χ 2 para k categorias (cont.) Testes χ 2 de ajustameto, homogeeidade e idepedêcia Testes χ 2 (cot.) Os testes χ 2 cosiderados este último poto do programa surgem associados a dados de cotagem. Mais cocretamete, dados que cotam o úmero

Leia mais

ÁLGEBRA DE MATRIZES. Baseado no Capítulo 2 do livro: Linear Models in Statistics, A. C. Rencher, 2000 John Wiley & Sons, New York.

ÁLGEBRA DE MATRIZES. Baseado no Capítulo 2 do livro: Linear Models in Statistics, A. C. Rencher, 2000 John Wiley & Sons, New York. ÁGEBRA DE ATRIZES Bseo o Cpíulo o livro: ier oels i Sisics, A. C. Recher, Joh Wiley & Sos, New York. eril prepro pelo Prof. Dr. Césr Goçlves e im E-mil: ceglim@usp.r DCE/ESAQ USP Fevereiro e 7 Í N D I

Leia mais

Teoria da Comunicação. Prof. Andrei Piccinini Legg Aula 09

Teoria da Comunicação. Prof. Andrei Piccinini Legg Aula 09 Teoria da Comuniação Pro. Andrei Piinini Legg Aula 09 Inrodução Sabemos que a inormação pode ser ransmiida aravés da modiiação das araerísias de uma sinusóide, hamada poradora do sinal de inormação. Se

Leia mais

TEORIA DE VALORES EXTREMOS PARA CÁLCULO DE VaR *

TEORIA DE VALORES EXTREMOS PARA CÁLCULO DE VaR * TEORIA DE VALORES ETREMOS PARA CÁLCULO DE VaR * Luiz Alvares Rezede de Souza ** (lalvares@usp.br) Marcos Eugêio da Silva *** (medsilva@usp.br) Julho de 999 Resumo É cohecido o fao de que disribuições de

Leia mais

Estatística stica para Metrologia

Estatística stica para Metrologia Estatística stica para Metrologia Aula Môica Barros, D.Sc. Juho de 28 Muitos problemas práticos exigem que a gete decida aceitar ou rejeitar alguma afirmação a respeito de um parâmetro de iteresse. Esta

Leia mais

Exemplo pág. 28. Aplicação da distribuição normal. Normal reduzida Z=(900 1200)/200= 1,5. Φ( z)=1 Φ(z)

Exemplo pág. 28. Aplicação da distribuição normal. Normal reduzida Z=(900 1200)/200= 1,5. Φ( z)=1 Φ(z) Exemplo pág. 28 Aplcação da dsrbução ormal Normal reduzda Z=(9 2)/2=,5 Φ( z)= Φ(z) Subsudo valores por recurso à abela da ormal:,9332 = Φ(z) Φ(z) =,668 Φ( z)= Φ(z) Φ(z) =,33 Φ(z) =,977 z = (8 2)/2 = 2

Leia mais

Técnicas de Previsão

Técnicas de Previsão Técicas de Previsão Prof. Ferado Auguso Silva Maris www.feg.uesp.br/~fmaris fmaris@feg.uesp.br 1 Sumário 1. Coceios 2. Eapas de um Modelo de Previsão 1. Objeivos 2. Colea e aálise de dados 3. Seleção da

Leia mais

Testes de Hipóteses para a Diferença Entre Duas Médias Populacionais

Testes de Hipóteses para a Diferença Entre Duas Médias Populacionais Estatística II Atoio Roque Aula Testes de Hipóteses para a Difereça Etre Duas Médias Populacioais Vamos cosiderar o seguite problema: Um pesquisador está estudado o efeito da deficiêcia de vitamia E sobre

Leia mais

Modelos de Previsão. 1. Introdução. 2. Séries Temporais. Modelagem e Simulação - Modelos de Previsão

Modelos de Previsão. 1. Introdução. 2. Séries Temporais. Modelagem e Simulação - Modelos de Previsão Modelos de Previsão Inrodução Em omada de decisão é basane comum raar problemas cujas decisões a serem omadas são funções de faos fuuros Assim, os dados descrevendo a siuação de decisão precisam ser represenaivos

Leia mais

Equação diferencial é uma equação que apresenta derivadas ou diferenciais de uma função desconhecida.

Equação diferencial é uma equação que apresenta derivadas ou diferenciais de uma função desconhecida. . EQUAÇÕES DIFERENCIAIS.. Coceito e Classificação Equação iferecial é uma equação que apreseta erivaas ou ifereciais e uma fução escohecia. Seja uma fução e e um iteiro positivo, etão uma relação e igualae

Leia mais

Computação Científica - Departamento de Informática Folha Prática 1

Computação Científica - Departamento de Informática Folha Prática 1 1. Costrua os algoritmos para resolver os problemas que se seguem e determie as respetivas ordes de complexidade. a) Elaborar um algoritmo para determiar o maior elemeto em cada liha de uma matriz A de

Leia mais

Equação Diferencial. Uma equação diferencial é uma expressão que relaciona uma função desconhecida (incógnita) y com suas derivadas.

Equação Diferencial. Uma equação diferencial é uma expressão que relaciona uma função desconhecida (incógnita) y com suas derivadas. Equação Difereial Uma equação difereial é uma epressão que relaioa uma fução desoheida (iógita) om suas derivadas É útil lassifiar os diferetes tipos de equações para um desevolvimeto sistemátio da Teoria

Leia mais

PROVA DE ESTATÍSTICA E PROBABILIDADE SELEÇÃO MESTRADO/UFMG 2008. são fixos (não aleatórios), α e β são parâmetros desconhecidos e os εi

PROVA DE ESTATÍSTICA E PROBABILIDADE SELEÇÃO MESTRADO/UFMG 2008. são fixos (não aleatórios), α e β são parâmetros desconhecidos e os εi PROVA DE ESTATÍSTICA E PROBABILIDADE SELEÇÃO MESTRADO/UFMG 008 Istruções para a prova: a) Cada questão respodida corretamete vale um poto. b) Questões deixadas em braco valem zero potos (este caso marque

Leia mais

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE TRANSPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMENTO DE ENGENHARIA CIVIL ECV

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE TRANSPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMENTO DE ENGENHARIA CIVIL ECV PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE TRANSPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMENTO DE ENGENHARIA CIVIL ECV DISCIPLINA: TGT410026 FUNDAMENTOS DE ESTATÍSTICA 8ª AULA: ESTIMAÇÃO POR INTERVALO

Leia mais

2. Referencial Teórico

2. Referencial Teórico 15 2. Referencial Teórico Se os mercados fossem eficienes e não houvesse imperfeições, iso é, se os mercados fossem eficienes na hora de difundir informações novas e fossem livres de impedimenos, índices

Leia mais

$35(6(17$d 2Ã&/Ë1,&$ 'LDJQyVWLFRÃ FOtQLFR &ROHGRFROLWtDVH &ROHFLVWLWH 3DQFUHDWLWH &ROHGRFROLWtDVH HP UHVROXomR &ROHFLVWLWH 3DQFUHDWLWH &ROHGRFROLWtDVH HP UHVROXomR &yolfdãeloldu (FRJUDILD &ROpGRFRÃ!ÃÃFP

Leia mais

Epidemiologia. Profa. Heloisa Nascimento

Epidemiologia. Profa. Heloisa Nascimento Epidemiologia Profa. Heloisa Nascimento Medidas de efeito e medidas de associação -Um dos objetivos da pesquisa epidemiológica é o reconhecimento de uma relação causal entre uma particular exposição (fator

Leia mais

Experimento. Guia do professor. O método de Monte Carlo. Governo Federal. Ministério da Educação. Secretaria de Educação a Distância

Experimento. Guia do professor. O método de Monte Carlo. Governo Federal. Ministério da Educação. Secretaria de Educação a Distância Análise de dados e probabilidade Guia do professor Experimeno O méodo de Mone Carlo Objeivos da unidade 1. Apresenar um méodo ineressane e simples que permie esimar a área de uma figura plana qualquer;.

Leia mais

2 Métodos de previsão de vendas de itens de estoque 2.1 Introdução

2 Métodos de previsão de vendas de itens de estoque 2.1 Introdução 8 Méodos de previsão de vedas de ies de esoque. Irodução A previsão de demada é processo comum o plaejameo das empresas e poderá ser basae úil o corole de esoques e egociações de preços. Ao se rabalhar

Leia mais

Lista VII Correlação e Regressão Linear. Professor Salvatore Estatística I

Lista VII Correlação e Regressão Linear. Professor Salvatore Estatística I Lista VII Correlação e Regressão Liear Professor Salvatore Estatístia I 19/1/011 1. Uma empresa de trasportes de argas iteraioais por via marítima suspeita que os ustos om a armazeagem de suas argas vêm

Leia mais

2. Teoria das Filas. 2.1. Características estruturais dos sistemas de fila

2. Teoria das Filas. 2.1. Características estruturais dos sistemas de fila 2. Teoria das Filas Segudo Fogliatti (2007), a teoria das filas osiste a modelagem aalítia de proessos ou sistemas que resultam em espera e tem omo objetivo determiar e avaliar quatidades, deomiadas medidas

Leia mais

DETERMINAÇÃO EXPERIMENTAL DAS PROPRIEDADES DINÂMICAS DE TRANSDUTORES DE PRESSÃO PIEZORRESISTIVOS

DETERMINAÇÃO EXPERIMENTAL DAS PROPRIEDADES DINÂMICAS DE TRANSDUTORES DE PRESSÃO PIEZORRESISTIVOS DETERMINAÇÃO EXPERIMENTAL DAS PROPRIEDADES DINÂMICAS 15 DETERMINAÇÃO EXPERIMENTAL DAS PROPRIEDADES DINÂMICAS DE TRANSDUTORES DE PRESSÃO PIEZORRESISTIVOS Evaldo Ferezi Luiz Carlos Felicio EESC-USP, Av.

Leia mais

Probabilidades. José Viegas

Probabilidades. José Viegas Probabilidades José Viegas Lisboa 001 1 Teoria das probabilidades Coceito geral de probabilidade Supoha-se que o eveto A pode ocorrer x vezes em, igualmete possíveis. Etão a probabilidade de ocorrêcia

Leia mais

SIMULADO. Física. 1 (Fuvest-SP) 3 (UERJ) 2 (UFPA)

SIMULADO. Física. 1 (Fuvest-SP) 3 (UERJ) 2 (UFPA) (Fuves-SP) (UERJ) No esáio o Morumbi, 0 000 orceores assisem a um jogo. Aravés e caa uma as 6 saías isponíveis, poem passar 000 pessoas por minuo. Qual é o empo mínimo necessário para esvaziar o esáio?

Leia mais

MODELAGEM MATEMÁTICA E O EFEITO ESTUFA

MODELAGEM MATEMÁTICA E O EFEITO ESTUFA a MODELAGEM MATEMÁTICA E O EFEITO ESTUFA Âgela Maria Loureção Gerolômo 1 UEL Uiversidade Esadual de Lodria agela-maemaica@uol.com.br Rodolfo Eduardo Verua 2 UEL Uiversidade Esadual de Lodria rodolfoverua@yahoo.com.br

Leia mais

FUNDAÇÃO GETÚLIO VARGAS ESCOLA DE ADMINISTRAÇÃO E EMPRESAS DE SÃO PAULO GVPESQUISA RICARDO RATNER ROCHMAN

FUNDAÇÃO GETÚLIO VARGAS ESCOLA DE ADMINISTRAÇÃO E EMPRESAS DE SÃO PAULO GVPESQUISA RICARDO RATNER ROCHMAN FUNDAÇÃO GETÚLIO VARGAS ESCOLA DE ADMINISTRAÇÃO E EMPRESAS DE SÃO PAULO GVPESQUISA RICARDO RATNER ROCHMAN INSIDER TRADING E GOVERNANÇA CORPORATIVA: O PERFIL E PRÁTICA DOS INSIDERS DE EMPRESAS DE GOVERNANÇA

Leia mais

MACROECONOMIA I LEC 201

MACROECONOMIA I LEC 201 MACROECONOMIA I LEC 2 3.. Modelo Keynesiano Simples Ouubro 27, inesdrum@fep.up.p sandras@fep.up.p 3.. Modelo Keynesiano Simples No uro prazo, a Maroeonomia preoupa-se om as ausas e as uras dos ilos eonómios.

Leia mais

Diferentes testes para verificar normalidade de uma amostra aleatória

Diferentes testes para verificar normalidade de uma amostra aleatória Diferetes testes para verificar ormalidade de uma amostra aleatória Ferado Lucambio Departameto de Estatística Uiversidade Federal do Paraá Curitiba/PR 81531 990 Brasil email: lucambio@ufpr.br Maio de

Leia mais

Universidade Federal Fluminense

Universidade Federal Fluminense Universidade Federal Fluminense INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA ESTATÍSTICA V Lista 9: Intervalo de Confiança. 1. Um pesquisador está estudando a resistência de um determinado

Leia mais

I. NÚMEROS INTEIROS E FRAÇÕES OPERAÇÕES COM:

I. NÚMEROS INTEIROS E FRAÇÕES OPERAÇÕES COM: I. NÚMEROS INTEIROS E FRAÇÕES OPERAÇÕES COM: Relembrano...(números inteiros: soma e subtração) Observe os eeríios resolvios, e a seguir resolva os emais:. + =. + 7 = Obs.: failmente entenemos que essas

Leia mais

Métodos de Amortização

Métodos de Amortização Méodos de Amorização Rui Assis Egeheiro Mecâico IST rassis@rassis.com www.rassis.com Fevereiro de 2006 Reviso em Seembro de 20 Méodos de Amorização Irodução Na perspeciva coabilísica, a amorização referese

Leia mais

Grupo A - 1 o semestre de 2014 Gabarito Lista de exercícios 11 - Teste Qhi-quadrado C A S A

Grupo A - 1 o semestre de 2014 Gabarito Lista de exercícios 11 - Teste Qhi-quadrado C A S A Exercício 1. (2,0 pontos). Em um estudo que está sendo realizado por uma pesquisadora da Escola de Educação Física da USP, deseja-se avaliar características das lutas de judô em diferentes categorias.

Leia mais

METODOLOGIA PROJEÇÃO DE DEMANDA POR TRANSPORTE AÉREO NO BRASIL

METODOLOGIA PROJEÇÃO DE DEMANDA POR TRANSPORTE AÉREO NO BRASIL METODOLOGIA PROJEÇÃO DE DEMANDA POR TRANSPORTE AÉREO NO BRASIL 1. Inrodução O presene documeno visa apresenar dealhes da meodologia uilizada nos desenvolvimenos de previsão de demanda aeroporuária no Brasil

Leia mais

PREÇOS DE PRODUTO E INSUMO NO MERCADO DE LEITE: UM TESTE DE CAUSALIDADE

PREÇOS DE PRODUTO E INSUMO NO MERCADO DE LEITE: UM TESTE DE CAUSALIDADE PREÇOS DE PRODUTO E INSUMO NO MERCADO DE LEITE: UM TESTE DE CAUSALIDADE Luiz Carlos Takao Yamaguchi Pesquisador Embrapa Gado de Leie e Professor Adjuno da Faculdade de Economia do Insiuo Vianna Júnior.

Leia mais

CAPÍTULO 9. y(t). y Medidor. Figura 9.1: Controlador Analógico

CAPÍTULO 9. y(t). y Medidor. Figura 9.1: Controlador Analógico 146 CAPÍULO 9 Inrodução ao Conrole Discreo 9.1 Inrodução Os sisemas de conrole esudados aé ese pono envolvem conroladores analógicos, que produzem sinais de conrole conínuos no empo a parir de sinais da

Leia mais

Exercícios de Cálculo Numérico Interpolação Polinomial e Método dos Mínimos Quadrados

Exercícios de Cálculo Numérico Interpolação Polinomial e Método dos Mínimos Quadrados Eercícos e Cálculo Numérco Iterpolação Polomal e Métoo os Mímos Quaraos Para a ução aa, seja,, 6 e, 9 Costrua polômos e grau, para apromar, 5, e ecotre o valor o erro veraero a cos b c l Use o Teorema

Leia mais

AULA: Inferência Estatística

AULA: Inferência Estatística AULA: Iferêcia Estatística stica Prof. Víctor Hugo Lachos Dávila Iferêcia Estatística Iferêcia Estatística é um cojuto de técicas que objetiva estudar uma oulação através de evidêcias forecidas or uma

Leia mais

Prova 3 Física. N ọ DE INSCRIÇÃO:

Prova 3 Física. N ọ DE INSCRIÇÃO: Prova 3 QUESTÕES OBJETIIVAS N ọ DE ORDEM: NOME DO CANDIDATO: N ọ DE INSCRIÇÃO: IINSTRUÇÕES PARA A REALIIZAÇÃO DA PROVA. Cofira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, coforme o que costa a etiqueta

Leia mais

Métodos Numéricos e Estatísticos Parte II-Métodos Estatísticos

Métodos Numéricos e Estatísticos Parte II-Métodos Estatísticos Métodos Numéricos e Estatísticos Parte II-Métodos Estatísticos Lic. Eng. Biomédica e Bioengenharia-2009/2010 Até ao momento, adiantamos um valor razoável, ou um intervalo de valores razoáveis para um parâmetro

Leia mais

Ascensão e Queda do Desemprego no Brasil: 1998-2012

Ascensão e Queda do Desemprego no Brasil: 1998-2012 Ascensão e Queda do Desemprego no Brasil: 1998-2012 Fernando Siqueira dos Sanos Resumo: ese rabalho analisa a evolução do desemprego nos úlimos anos, com foco no período 1998 a 2012 devido à melhor disponibilidade

Leia mais

METODOLOGIAS ALTERNATIVAS DE GERAÇÃO DE CENÁRIOS NA APURAÇÃO DO V@R DE INSTRUMETOS NACIONAIS. Alexandre Jorge Chaia 1 Fábio da Paz Ferreira 2

METODOLOGIAS ALTERNATIVAS DE GERAÇÃO DE CENÁRIOS NA APURAÇÃO DO V@R DE INSTRUMETOS NACIONAIS. Alexandre Jorge Chaia 1 Fábio da Paz Ferreira 2 IV SEMEAD METODOLOGIAS ALTERNATIVAS DE GERAÇÃO DE CENÁRIOS NA APURAÇÃO DO V@R DE INSTRUMETOS NACIONAIS Alexandre Jorge Chaia 1 Fábio da Paz Ferreira 2 RESUMO Uma das ferramenas de gesão do risco de mercado

Leia mais

Trabalhando com Pequenas Amostras: Distribuição t de Student

Trabalhando com Pequenas Amostras: Distribuição t de Student Probabilidade e Estatística Trabalhando com Pequenas Amostras: Distribuição t de Student Pequenas amostras x Grandes amostras Nos exemplos tratados até agora: amostras grandes (n>30) qualquer tipo de distribuição

Leia mais

1.4- Técnicas de Amostragem

1.4- Técnicas de Amostragem 1.4- Técicas de Amostragem É a parte da Teoria Estatística que defie os procedimetos para os plaejametos amostrais e as técicas de estimação utilizadas. As técicas de amostragem, tal como o plaejameto

Leia mais

Índices Físicos ÍNDICES

Índices Físicos ÍNDICES Ínice Fíico ÍNDICES = volume oal a amora; = volume a fae ólia a amora; = volume a fae líquia; a = volume a fae aoa; v = volume e vazio a amora = a + ; = peo oal a amora ; a = peo a fae aoa a amora; = peo

Leia mais

Sistemas não-lineares de 2ª ordem Plano de Fase

Sistemas não-lineares de 2ª ordem Plano de Fase EA93 - Pro. Von Zuben Sisemas não-lineares de ª ordem Plano de Fase Inrodução o esudo de sisemas dinâmicos não-lineares de a ordem baseia-se principalmene na deerminação de rajeórias no plano de esados,

Leia mais

Lista 9 - Introdução à Probabilidade e Estatística

Lista 9 - Introdução à Probabilidade e Estatística UNIVERSIDADE FEDERAL DO ABC Lista 9 - Itrodução à Probabilidade e Estatística Desigualdades e Teoremas Limites 1 Um ariro apota a um alvo de 20 cm de raio. Seus disparos atigem o alvo, em média, a 5 cm

Leia mais

A escolha do consumidor sob incerteza

A escolha do consumidor sob incerteza UNIVERSIDADE FEDERAL DE PELOTAS - UFPEL Departamento de Eonomia - DECON A esolha do onsumidor sob inerteza Professor Rodrigo Nobre Fernandez Pelotas 2015 1 Introdução A inerteza faz parte da vida, nos

Leia mais

AÇÕES DO MERCADO FINACEIRO: UM ESTUDO VIA MODELOS DE SÉRIES TEMPORAIS

AÇÕES DO MERCADO FINACEIRO: UM ESTUDO VIA MODELOS DE SÉRIES TEMPORAIS AÇÕES DO MERCADO FINACEIRO: UM ESTUDO VIA MODELOS DE SÉRIES TEMPORAIS Caroline Poli Espanhol; Célia Mendes Carvalho Lopes Engenharia de Produção, Escola de Engenharia, Universidade Presbieriana Mackenzie

Leia mais

CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA

CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA CAPÍTULO 5 - INTRODUÇÃO À INFERÊNCIA ESTATÍSTICA 5. INTRODUÇÃO É freqüete ecotrarmos problemas estatísticos do seguite tipo : temos um grade úmero de objetos (população) tais que se fossem tomadas as medidas

Leia mais

67.301/1. RLP 10 & 20: Controlador pneumático de volume-caudal. Sauter Components

67.301/1. RLP 10 & 20: Controlador pneumático de volume-caudal. Sauter Components 7./ RL & : Conrolador pneumáico de volume-caudal Usado em conjuno com um prao orifício ou com um sensor de pressão dinâmica e um acuador pneumáico de regiso para conrolo do volume de ar em sisemas de ar

Leia mais

O modelo ANOVA a dois factores, hierarquizados

O modelo ANOVA a dois factores, hierarquizados O modelo ANOVA a dois factores, hierarquizados Juntando os pressupostos necessários à inferência, Modelo ANOVA a dois factores, hierarquizados Seja A o Factor dominante e B o Factor subordinado. Existem

Leia mais

Redes de Computadores

Redes de Computadores Inrodução Ins iuo de Info ormáic ca - UF FRGS Redes de Compuadores Conrole de fluxo Revisão 6.03.015 ula 07 Comunicação em um enlace envolve a coordenação enre dois disposiivos: emissor e recepor Conrole

Leia mais

Análise de Variância com dois ou mais factores - planeamento factorial

Análise de Variância com dois ou mais factores - planeamento factorial Análise de Variância com dois ou mais factores - planeamento factorial Em muitas experiências interessa estudar o efeito de mais do que um factor sobre uma variável de interesse. Quando uma experiência

Leia mais

MAT302 - Cálculo 2. INTEGRAIS Integral Indefinida pág. 403. Bibliografia: Cálculo volume I, 5 edição. James Stewart Prof.

MAT302 - Cálculo 2. INTEGRAIS Integral Indefinida pág. 403. Bibliografia: Cálculo volume I, 5 edição. James Stewart Prof. MAT - Cálculo Biliografia: Cálculo volume I, 5 edição. James Sewar Prof. Valdecir Boega INTEGRAIS Iegral Idefiida pág. 4 Aé aqui, osso prolema ásico era: ecorar a derivada de uma fução dada. A parir de

Leia mais

CAPÍTULO 9 Exercícios Resolvidos

CAPÍTULO 9 Exercícios Resolvidos CAPÍTULO 9 Exercícios Resolvidos R9.1) Diâmetro de esferas de rolamento Os dados a seguir correspondem ao diâmetro, em mm, de 30 esferas de rolamento produzidas por uma máquina. 137 154 159 155 167 159

Leia mais

O teste de McNemar. A tabela 2x2. Depois

O teste de McNemar. A tabela 2x2. Depois Prof. Lorí Viali, Dr. http://www.pucrs.br/famat/viali/ viali@pucrs.br O teste de McNemar O teste de McNemar para a significância de mudanças é particularmente aplicável aos experimentos do tipo "antes

Leia mais

AULAS 24 E 25 Análise de Regressão Múltipla: Inferência

AULAS 24 E 25 Análise de Regressão Múltipla: Inferência 1 AULAS 24 E 25 Análise de Regressão Múltipla: Inferência Ernesto F. L. Amaral 23 e 25 de novembro de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Wooldridge, Jeffrey M. Introdução à econometria: uma

Leia mais

Duas Fases da Estatística

Duas Fases da Estatística Aula 5. Itervalos de Cofiaça Métodos Estadísticos 008 Uiversidade de Averio Profª Gladys Castillo Jordá Duas Fases da Estatística Estatística Descritiva: descrever e estudar uma amostra Estatística Idutiva

Leia mais

TOMADA DE DECISÃO EM FUTUROS AGROPECUÁRIOS COM MODELOS DE PREVISÃO DE SÉRIES TEMPORAIS

TOMADA DE DECISÃO EM FUTUROS AGROPECUÁRIOS COM MODELOS DE PREVISÃO DE SÉRIES TEMPORAIS ARTIGO: TOMADA DE DECISÃO EM FUTUROS AGROPECUÁRIOS COM MODELOS DE PREVISÃO DE SÉRIES TEMPORAIS REVISTA: RAE-elerônica Revisa de Adminisração de Empresas FGV EASP/SP, v. 3, n. 1, Ar. 9, jan./jun. 2004 1

Leia mais

ANÁLISE DE TRANSIENTES COM ALTOS PERCENTUAIS DE TAMPONAMENTO DOS TUBOS DOS GERADORES DE VAPOR DE ANGRA 1

ANÁLISE DE TRANSIENTES COM ALTOS PERCENTUAIS DE TAMPONAMENTO DOS TUBOS DOS GERADORES DE VAPOR DE ANGRA 1 ANÁLISE DE TRANSIENTES COM ALTOS PERCENTUAIS DE TAMPONAMENTO DOS TUBOS DOS GERADORES DE VAPOR DE ANGRA 1 Márcio Poubel Lima *, Laercio Lucena Marins Jr *, Enio Anonio Vanni *, Márcio Dornellas Machado

Leia mais

INTERFERÊNCIA DE MICROONDAS (RELATÓRIO / EXPERIÊNCIA

INTERFERÊNCIA DE MICROONDAS (RELATÓRIO / EXPERIÊNCIA UNIVRSIDAD FDRAL DA BAHIA INSTITUTO D FÍSICA DPARTAMNTO D FÍSICA DO STADO SÓLIDO FIS 14 - FÍSICA GRAL XPRIMNTAL IV / LABORATÓRIO PROF.: José Ferao Turma: Teórica/ Prática T: P: 13 Data: 13/09/00 Aluo:

Leia mais

Análise Discriminante: classificação com 2 populações

Análise Discriminante: classificação com 2 populações Análse Dscrmnane: classcação com oulações Eemlo : Proreáros de coradores de rama oram avalados seundo duas varáves: Renda U$ ; Tamanho da roredade m. Eemlo : unção dscrmnane unvarada ~ ama4 4 3 e ~ ama8.5

Leia mais

4 Cenários de estresse

4 Cenários de estresse 4 Cenários de esresse Os cenários de esresse são simulações para avaliar a adequação de capial ao limie de Basiléia numa deerminada daa. Sua finalidade é medir a capacidade de o PR das insiuições bancárias

Leia mais

3 Os impostos sobre dividendos, ganhos de capital e a legislação societária brasileira

3 Os impostos sobre dividendos, ganhos de capital e a legislação societária brasileira 30 3 Os impostos sore ivienos, ganhos e capital e a legislação societária rasileira As legislações societárias e fiscais o Brasil iferem muito quano comparamos ao sistema americano. Neste capítulo aoraremos

Leia mais

Cifra Aleatória P. Quaresma. Cifra Aleatorizada P. Quaresma

Cifra Aleatória P. Quaresma. Cifra Aleatorizada P. Quaresma às Cifra Aleatória Fieiras Defiição ( ) Uma -bit ifra por bloos é uma fução : V K V, tal que para ada -bit K K, (P, K) é uma fução ivertível (a fução de eriptação para K) de V para V, deotada por K (P).

Leia mais

Sistemas Dinâmicos. Sistema massa-mola-atrito. O que é um sistema? Sistemas Lineares e Invariantes no Tempo

Sistemas Dinâmicos. Sistema massa-mola-atrito. O que é um sistema? Sistemas Lineares e Invariantes no Tempo Sisemas Diâmicos Sisemas Lieares e Ivariaes o Tempo O que é um sisema? Sisema massa-mola-ario Um sisema é um objeco ou grupo de objecos que ieragem com o mudo. Essa ieracção é represeada aravés de eradas

Leia mais

Taxa de Câmbio e Taxa de Juros no Brasil, Chile e México

Taxa de Câmbio e Taxa de Juros no Brasil, Chile e México Taxa de Câmbio e Taxa de Juros no Brasil, Chile e México A axa de câmbio consiui variável fundamenal em economias aberas, pois represena imporane componene do preço relaivo de bens, serviços e aivos, ou

Leia mais

EXPERIÊNCIA 7 CONSTANTE DE TEMPO EM CIRCUITOS RC

EXPERIÊNCIA 7 CONSTANTE DE TEMPO EM CIRCUITOS RC EXPERIÊNIA 7 ONSTANTE DE TEMPO EM IRUITOS R I - OBJETIVO: Medida da consane de empo em um circuio capaciivo. Medida da resisência inerna de um volímero e da capaciância de um circuio aravés da consane

Leia mais

10: Equações Diferenciais Parciais(EDP's)

10: Equações Diferenciais Parciais(EDP's) : Eqações Difereiais PariaisEDP's Uma EDP é ma eqação evolvedo das o mais variáveis idepedees yz... e derivadas pariais de ma fção variável depedee yz... Eemplos:............ 3 k k F se se + e d b y y

Leia mais

MÉTODO MARSHALL. Os corpos de prova deverão ter a seguinte composição em peso:

MÉTODO MARSHALL. Os corpos de prova deverão ter a seguinte composição em peso: TEXTO COMPLEMENTAR MÉTODO MARSHALL ROTINA DE EXECUÇÃO (PROCEDIMENTOS) Suponhamos que se deseje dosar um concreo asfálico com os seguines maeriais: 1. Pedra 2. Areia 3. Cimeno Porland 4. CAP 85 100 amos

Leia mais

Resolvido por Jorge Lagoa, tendo em atenção os Critérios de Classificação do Exame.

Resolvido por Jorge Lagoa, tendo em atenção os Critérios de Classificação do Exame. 1. Na esola da Rita, fez-se um estudo sobre o gosto dos alunos pela leitura. Um inquérito realizado inluía a questão seguinte. COTAÇÕES «Quantos livros leste desde o iníio do ano letivo?» As respostas

Leia mais

Alguns Comentários sobre o Impacto da Privatização. no Risco das Ações das Empresas. Resumo. Abstract

Alguns Comentários sobre o Impacto da Privatização. no Risco das Ações das Empresas. Resumo. Abstract Alguns Comenários sobre o Impaco da Privaização no Risco das Ações das Empresas Resumo Alexandre Rands Barros 1 Pierre Lucena 2 Nese arigo apresenou-se uma eoria que explicaria a mudança da percepção que

Leia mais

AMOSTRAGEM. metodologia de estudar as populações por meio de amostras. Amostragem ou Censo?

AMOSTRAGEM. metodologia de estudar as populações por meio de amostras. Amostragem ou Censo? AMOSTRAGEM metodologia de estudar as populações por meio de amostras Amostragem ou Ceso? Por que fazer amostragem? população ifiita dimiuir custo aumetar velocidade a caracterização aumetar a represetatividade

Leia mais

ERROS ERRO DE ARREDONDAMENTO

ERROS ERRO DE ARREDONDAMENTO ERROS Seja o valor aproimado do valor eacto. O erro de deie-se por ε ε erro absoluto de Aálise N um érica 4 ERRO DE ARREDONDAENTO Seja o valor aproimado do valor eacto tedo eactamete k dígitos após o poto

Leia mais

CRITÉRIOS PARA A DETERMINAÇÃO DOS INTERVALOS DE CLASSE

CRITÉRIOS PARA A DETERMINAÇÃO DOS INTERVALOS DE CLASSE CRITÉRIOS PARA A DETERMINAÇÃO DOS INTERVALOS DE CLASSE Número de classes a considerar (k): a) Tabela de Truman L. Kelley n 5 10 25 50 100 200 500 1000 k 2 4 6 8 10 12 15 15 b) k=5 para n 25 e para n >25.

Leia mais

Testando a existência de efeitos lead-lag entre os mercados acionários norte-americano e brasileiro

Testando a existência de efeitos lead-lag entre os mercados acionários norte-americano e brasileiro SEGeT Simpósio de Excelêcia em Gesão e Tecologia 2 Tesado a exisêcia de efeios lead-lag ere os mercados acioários ore-americao e brasileiro Oávio Reiro de Medeiros Professor Tiular da Uiversidade de Brasília

Leia mais

12 Integral Indefinida

12 Integral Indefinida Inegral Indefinida Em muios problemas, a derivada de uma função é conhecida e o objeivo é enconrar a própria função. Por eemplo, se a aa de crescimeno de uma deerminada população é conhecida, pode-se desejar

Leia mais

Análise de uma Fila Única

Análise de uma Fila Única Aálise de ua Fila Úica The A of oue Syses Pefoace Aalysis Ra Jai a. 3 Fila Úica O odelo de filas ais siles coé aeas ua fila Pode se usado aa aalisa ecusos idividuais e siseas de couação Muias filas ode

Leia mais

Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-2010 - EPPGG

Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-2010 - EPPGG Resoluções comentadas de Raciocínio Lógico e Estatística - SEPLAG-010 - EPPGG 11. Em uma caixa há 1 bolas de mesmo tamanho: 3 brancas, 4 vermelhas e 5 pretas. Uma pessoa, no escuro, deve retirar n bolas

Leia mais

Dica : Para resolver esse exercício pegue o arquivo pontosm.txt, na página do professor.

Dica : Para resolver esse exercício pegue o arquivo pontosm.txt, na página do professor. Colégio Ténio Antônio Teieira Fernandes Disiplina ICG Computação Gráfia - 3º Anos (Informátia) (Lista de Eeríios I - Bimestre) Data: 10/03/2015 Eeríios 1) Elabore um proedimento em C++ que passe os pares

Leia mais

O Modelo de Black e Scholes

O Modelo de Black e Scholes O Moelo e Black e Scholes Prf. José Fajaro FGV-EBAPE Premio Nobel e Economia 1997 Merton, R.C.: heory of Rational Option Pricing, Bell Jounal of Economics an Management Science, 4(1973), 141-183 Black,

Leia mais

Tecido 1 2 3 4 5 6 7 A 36 26 31 38 28 20 37 B 39 27 35 42 31 39 22

Tecido 1 2 3 4 5 6 7 A 36 26 31 38 28 20 37 B 39 27 35 42 31 39 22 Teste para diferença de médias Exemplo Dois tipos diferentes de tecido devem ser comparados. Uma máquina de testes Martindale pode comparar duas amostras ao mesmo tempo. O peso (em miligramas) para sete

Leia mais

JUROS COMPOSTOS. Questão 01 A aplicação de R$ 5.000, 00 à taxa de juros compostos de 20% a.m irá gerar após 4 meses, um montante de: letra b

JUROS COMPOSTOS. Questão 01 A aplicação de R$ 5.000, 00 à taxa de juros compostos de 20% a.m irá gerar após 4 meses, um montante de: letra b JUROS COMPOSTOS Chamamos de regime de juros compostos àquele ode os juros de cada período são calculados sobre o motate do período aterior, ou seja, os juros produzidos ao fim de cada período passam a

Leia mais

CIRCUITOS SEQUÊNCIAIS

CIRCUITOS SEQUÊNCIAIS Coelh ho, J.P. @ Sistem mas Digita ais : Y20 07/08 CIRCUITOS SEQUÊNCIAIS O que é um circuito it sequêcial? Difereça etre circuito combiatório e sequecial... O elemeto básico e fudametal da lógica sequecial

Leia mais

Introdução ao Estudo de Sistemas Lineares

Introdução ao Estudo de Sistemas Lineares Itrodução ao Estudo de Sistemas Lieares 1. efiições. 1.1 Equação liear é toda seteça aberta, as icógitas x 1, x 2, x 3,..., x, do tipo a1 x1 a2 x2 a3 x3... a x b, em que a 1, a 2, a 3,..., a são os coeficietes

Leia mais

GABARITO DE QUÍMICA INSTITUTO MILITAR DE ENGENHARIA

GABARITO DE QUÍMICA INSTITUTO MILITAR DE ENGENHARIA GABARITO DE QUÍMICA INSTITUTO MILITAR DE ENGENHARIA Realizada em 8 de ouubro de 010 GABARITO DISCURSIVA DADOS: Massas aômicas (u) O C H N Na S Cu Zn 16 1 1 14 3 3 63,5 65,4 Tempo de meia - vida do U 38

Leia mais

PUCRS FAMAT DEPTº DE ESTATÍSTICA Estimação e Teste de Hipótese- Prof. Sérgio Kato

PUCRS FAMAT DEPTº DE ESTATÍSTICA Estimação e Teste de Hipótese- Prof. Sérgio Kato 1 PUCRS FAMAT DEPTº DE ESTATÍSTICA Estimação e Teste de Hipótese- Prof. Sérgio Kato 1. Estimação: O objetivo da iferêcia estatística é obter coclusões a respeito de populações através de uma amostra extraída

Leia mais